认识无理数ppt课件
认识无理数课件
第二章 实数
1
认识无理数
学习目标
1.知道非有理数的存在,认识无理数.
2.理解无理数的概念,掌握无理数与有理数的区别,并
能判断一个数是有理数还是无理数.(重点)
3.探索无理数是无限不循环小数,并从中体会无限逼
近的思想(难点)
复习回顾
1.整 数和 分 数统称为有理数.
整数分为 正整数、0、负整数
3 (均
填整数)。
3
7.有六个数:0.123,(-1.5) ,3.1416, ,-2π,
0.1020020002···(每两个2之间依次增加一个0),若其中无理数
的个数为x,整数的个数为y,非负数的个数为z,则
x+y+z=
6
.
五、当堂达标检测
拓展提升
在下图的正方形网格中画出1个三角形使三边都是无理数。
例2:在下列正方形网格中,先找出长度为有理数的线段,再找
出长度是无理数的线段.
长度为有理数的线段: AB、EF
长度为无理数的线段:CD、GH、MN
三、即学即练,应用知识
1.判断下列说法是否正确:
(1)所有无限小数都是无理数;
(2)所有无理数都是无限小数;
(3)有理数都是有限小数;
(4)不是有限小数的不是有理数.
;
分数分为 正分数、负分数
.
2.一个整数的平方一定是整数吗? 是
3 .一个分数的平方一定是分数吗?
是
一、创设情境,引入新知
活动:把两个边长为1的小正方形通过剪、拼,设法得到一个大正方形,你会吗?
1
1
一、创设情境,引入新知
还有好多方法,课余时间再动手试一试,比比谁找的多!
认识无理数课件北师大版数学八年级上册
借助计算器完成下列表格:
边长a
1<a<2
1.4<a<1.5
1.41<a<1.42
1.414<a<1.415
1.414 2<a<1.414 3
面积S
1<S<4
1.96<S<2.25
1.988 1<S<2.016 4
1.999 396<S<2.002 225
1.999 961 64<S<2.000 244 49
2
数有______个.
巩固练习
5.体积为7的正方体的棱长可能是整数吗?可能是分
数吗?可能是有理数吗?请说明你的理由.
解:因为正方体的体积为7,
没有哪一个整数或分数的立方等于7,
故体积为7的正方体的棱长不可能是整数、
分数、有理数.
课堂小结
有理数
有限小数或无限循环小数
无理数
无限不循环小数
无理数的概念
无限不循环小数称为无理数.
除了前面提到的a=1.414 213 56…是无理数外,我们十分熟
悉的圆周率π=3.141 592 65…也是一个无限不循环小数,因
此它也是一个无理数.再如0.585 885 888 588 885…(相邻两
个5之间8的个数逐次加1),也是无理数.
下列各数中,哪些是有理数?哪些是无理数?
你有什么发现?
3 47 9 11 5
3, ,
,
,
,
5 8 11 90 9
3 3.0 ,
••
9
0. 81,
11
3
47
0.6 ,
《认识无理数》课件
无理数的特征
无理数的小数部分是无限不循环的, 无法精确表示。
无理数是实数的一种,具有实数的所 有性质和运算规则。
无理数与有理数的区别
有理数是可以表示为 两个整数之比的数, 包括整数、分数和十 进制小数。
有理数和无理数在实 数域中是互斥的,即 它们不能相互转化。
无理数则无法表示为 分数形式,其小数部 分无限不循环。
古希腊数学家阿基米德首次使用圆内接多边形的方法近似计 算出圆周率的值。
根号2的发现
根号2是一个无限不循环小数,表示2的平方根。
古希腊数学家欧几里德在《几何原本》中首次证明了根号2的存在性,并对其进 行了近似计算。
03 无理数的应用
在几何学中的应用
勾股定理
无理数在几何学中最为著名的应 用是勾股定理,它说明了直角三 角形的两条直角边的平方和等于 斜边的平方,其中斜边长度是一
无理数在未来的发展前景
01
推动数学与其他学科的进一步融合
随着科学技术的不断发展,无理数将在更多领域发挥重要作用,推动数
学与其他学科的进一步融合。
02
深化实数理论的研究
随着数学的发展,实数理论的研究将不断深入,无理数作为实数理论的
基础之一,其研究也将得到进一步深化。
03
促进数学教育的发展
无理数是数学教育中的重要内容之一,随着教育的不断改革和完善,无
02 无理数的产生
无法精确表示的数
无法用分数精确表示的数
例如,0.333...虽然可以无限接近于1/3,但无法精确等于1/3。
无法用有限小数或循环小数精确表示的数
例如,0.1010010001...是一个无限不循环小数,无法用有限小数或循环小数来 表示。
圆周率π的发现
北师大版数学八年级上册《认识无理数》教学课件
. < < .
. < < .
. < < .
. < < .
想一想:可以继续算下去吗?是有限小数吗?
数
教学过程——新知探究
第二章
北师大版 ∙ 八年级上册
教学课件
第二章
实
1. 认识无理数
数
教学内容
第二章
1.1
认识无理数
实
数
教学目标——重点难点
第二章
1.知道非有理数的存在,认识无理数.
2.理解无理数的概念,掌握无理数与有理数的区别,并
能判断一个数是有理数还是无理数.(重点)
3.能用“夹逼法”确定无理数的近似值(难点)
实
数
教学目标——温故知新
实
活动探究3
认识无理数
有理数与无理数区别:
因为整数都可以看着小数部分为0的小数,而分数都可以化为有限小数或无限循
环小数,所以有理数总可以用有限小数或无限循环小数表示;反过来,任何有限
小数或无限循环小数也都是有理数. 但无理数是无限不循环小数,所以有理数和
无理数的根本区别就在于无理数不能化为有限小数或无限循环小数.
第二章
知识储备
1.什么是有理数?
整数和分数统称为有理数.
2.有理数有哪些分类方法?
正整数
整数
负整数
分数
正分数
负分数
正整数
正数
正分数
负整数
负数
负分数
实
数
教学过程——新课引入
第二章
议一议
有两个正方形,一个正方形的面积为4,一个正方形的面积为
认识无理数课件ppt
90
9
事实上,任何一个有理数都可以写成有限小数或无 限循环小数. 反过来,任何有限小数或无限循环小数也都是有理数.
无理 2
0.101 001 000 1…(两个1之间依次多1个0)
-168.323 223 222 3…(两个3之间依次多1个2)
无理数有_______________________________ 实数有___27_2_,__13_,__, 0_._3_, 0____________________
【规律方法】
无理数的特征:
1.圆周率 及一些最终结果含有 的数.
2.开方开不尽的数. 3.有一定的规律,但不循环的无限小数.
随堂练习
1.下列各数:
,0,0.23,1,25,
2
27
0.303
003
(相邻两个3之间0
的个数逐次加1),1中,无理数的个数是( )
A.2个
B.3个 C.4个 D.5个
【解析】选A.无限不循环小数是无理数,其中 π,0.303 003 2
(相邻两个3之间0的个数逐次加1)两个是无理数,其他是有理数.
1 ,
5 ,
4
2
0,
有理数集合
, 0.373 773 777 3 (相邻两个3之间的7的个 数逐次加1)
无理数集合
【跟踪训练】
填空:在实数 22 , 1 , ,0.3,0 中,
73
整数有_______0__________________________ 有理数有____2_72_,__13_,_0_.3_,_0__________________
学习目标
1.理解无理数的概念,会判断一个数是有理数还是 无理数. 2.能在数轴上表示某些简单的无理数.
认识无理数课件北师大版八年级数学上册
C.是有理数
D.不是有理数
(2)如图,在Rt△ABC中,AC=2 cm,BC=2 cm,那么AB 的长是有理数吗?
AB的长不是有理数
3.【例1】边长为2的正方形的对角线长( D )
A.是整数
B.是分数
C.是有理数 D.不是有理数
C
5.【例3】(北师8上P21改编)如图,在Rt△ABC中,两直角边 长分别为a=2,b=3,斜边长为c. (1)c满足什么关系式? (2)c是整数吗? (3)c是有理数吗?
解:(1)根据勾股定理,得c2=a2+b2=22+32=13, ∴c满足c2=13的关系式. (2)c不是整数. (3)c不是有理数.
6.【例4】(新题速递)如图,阴影部分是正方形,求出此正方 形的面积.此正方形的边长是有理数吗?为什么? 解:设正方形的边长为a, 根据勾股定理得 a2=152-82=161. 因为a不是整数也不是分数,所以a不是有理数.
教学反思:这节课的内容是无理数的概念以及判断一个数是有 理数还是无理数.是数的范围的又一次扩充,是很重要的一节.培 养了学生分类归纳的思想.但对概念的理解掌握一些同学还不是 很好,只能在以后的教学过程中不断的完善.
教学重难点
1.无理数的探索过程. 2.了解无理数与有理数的区别,并能正确判断. 3把两个边长为1的正方形拼成一个大正方形的动手操作过程.
1.通过拼图活动,感受无理数产生的实际背景和引入的必要 性. 2.从实际背景中发现“不可比的数”,感受到这样的数的广泛 性.
知识点一:有理数(复习) 整数和分数都可以化成有限小数或无限循环小数.
-5,3,0 -5,3,0
知识点二:无理数的产生 (1)用边长为1的两个小正方形剪拼成一个面积为2的大正方形, 大正方形的边长a应满足的条件是 a2=2 ;a 不是 整数,
认识无理数ppt课件
新课引入
小红是刚升入八年级的新生,一个周末的上午,当工程 师的爸爸给小红出了一道数学题:一个边长为6cm的正方形 木板,按如图的痕迹锯掉四个一样的直角三角形.请计算剩下 的正方形木板的面积是多少?剩下的正方形木板的边长又是 多少厘米呢?见过这个数吗?你能帮小红解决这个问题吗?
探究学习
核心知识点一 无理数的认识 讨论一:a,b是否存在,它们是有理数吗?
(3)借助计算器进行探索,过程整理如下,你的结果呢?
边长a 1<a<2 1.4<a<1.5 1.41<a<1.42 1.414<a<1.415 1.4142<a<1.4143
面积s 1<s<4 1.96<s<2.25 1.9881<s<2.0164 1.999396<s<2.002225 1.99996164<s<2.00024449
解:(1)在整数10和11之间 (2)x精确到十分位时,x在10.2与10.3之间,x精确到百分位时,x 在10.29与10.30之间
9.如图,在3×3的方格网(每个小方格的边长均为1) 中有一阴影正方形, (1)阴影正方形的面积是多少? (2)阴影正方形的边长介于哪两个整数之间?
解:(1)S阴影正方形=3×3-12 ×1×2×4=5 (2)介于2和3之间
随堂练习
1.下列各数中,是有理数的是( B ) A.面积为3的正方形的边长 B.体积为8的正方体的棱长 C.两直角边长分别为2和3的直角三角形的斜边长 D.长为3,宽为2的长方形的对角线长
2.下列各数:π,0,0.23·,22,0.303 003 000 3…(每个 3 后增加 1 个 0)
北师大版八年级数学上册2.1 认识无理数(第1课时)课件(共23张PPT)
探究新知 素养考点 1 利用勾股定理识别非有理数
例 如图,在△ABC中,CD⊥AB,垂足为D,AC=6,AD=5,问:CD可能是整数吗?可能是分数吗? 可能是有理数吗?
解:在Rt△ACD中,AC为斜边,AC=6,AD=5,所以CD2= AC2-AD2=11.因为11是质数,大于1的整数的平方都是合数, 所以11不能写成一个整数的平方,所以CD不可能是整数. 因为最简分数的平方仍是分数,所以CD不可能是分数.所以 CD不可能是有理数.
解:b2=5.①因为22=4,32=9,4<5<9,
所以b不可能是整数. ②没有两个相同的分数相乘得5,故b不可能是分数. ③因为没有一个整数或分数的平方为5,所以b不是有理数.
探究新知
归纳总结
用生命换来的新数
像上面讨论的数a,b都不是有理数,而是另一类数—无理数.
早在公元前,古希腊数学家毕达哥拉斯认为万物皆“数”,即“宇宙 间的一切现象都能归结为整数或整数之比”.但是这个学派中的一个叫希 伯索斯的成员却发现边长为1的正方形的对角线的长不能用整数或整数之 比来表示,这个发现动摇了毕达哥拉斯学派的信条,据说为此希伯索斯 被投进了大海,他为真理而献出了宝贵的生命,但真理是不可战胜的, 后来古希腊人终于正视了希伯索斯的发现.也就是a2=2中的a不是有理数.
课堂检测
解:(1)如图1所示. (2)如图2所示.
能力提升题
图1
图2
课堂检测
拓广探索题
在下列4×4的网格中,每个小正方形的边长都为1,请在每一个图中分别画出一条线段,且它们 的长度均表示不等的非有理数.
课堂检测
解:答案不唯一.如图所示:
拓广探索题
AB2=2,2不能写成一个整数或分数的平方,所以AB表示的数是非有理数. CD2=8,8不能写成一个整数或分数的平方,所以CD表示的数是非有理数. EF2=18,18不能写成一个整数或分数的平方,所以EF表示的数是非有理数.
《认识无理数》实数精品课件
《认识无理数》实数精品课件汇报人:日期:•引言•无理数定义与性质•无理数与实数关系目录•无理数运算与估算•无理数在实际生活中的应用•总结与展望01引言无理数的概念和表示方法在数学中具有重要地位,是数学基础的一部分。
无理数在现实生活中有着广泛的应用,例如测量、计算和科学研究中。
学生对于无理数的认识往往存在困惑和误解,需要有针对性的教学。
课程背景课程目标掌握无理数的表示方法和运算规则。
通过实例和应用,培养学生的数学思维和应用能力。
帮助学生理解无理数的概念和特点。
02无理数定义与性质无理数定义不能表示为两个整数的比值无限不循环小数是无理数不能表示为有限小数或无限循环小数不能用分数形式表示无理数性质非有理数性质不能表示为两个有理数的比值具有连续、光滑、没有明显的界线等特征在有理数域外无限延伸无法表示为整系数多项式开方根的数,如$\pi$和$\sqrt{2}$等。
代数无理数超越无理数几何无理数无法表示为有理系数多项式方程的解的数,如$e$和$\ln$等。
无法用有理数逼近的数,如无理线段长度、无理面积等。
03无理数分类020103无理数与实数关系实数分类可以表示为有限小数或无限循环小数的实数,例如2.5、3.14等。
代数数无法表示为有理数的实数,例如π(圆周率)、e(自然对数的底数)等。
超越数既不是正数也不是负数的实数,具有特殊的性质和意义。
零无限不循环小数,例如√2(根号2)、√3(根号3)等。
无理数无理数在实数中的地位无理数是实数的重要组成部分,它们在数学中有着广泛的应用。
无理数的出现是数学发展史上的一个里程碑,对于数学的发展和人类的认识都具有重要意义。
无理数在几何学、物理学、工程学等领域中都有广泛的应用,对于推动人类科技进步具有不可替代的作用。
无理数与有理数的区别和联系有理数和无理数在性质和形态上有着根本的区别。
有理数是可数的,而无理数是不可数的,因此它们在数学中的处理方法和性质也有很大的不同。
有理数和无理数之间存在着紧密的联系,它们共同构成了实数的完整体系。
北师大版八年级数学上册课件 第2章 第1节 认识无理数(共32张PPT)
算一算
1
x
x2 ?
2
问:x是整数(或分数)吗?
剪一剪
把两个边长为1的小正方形通过剪、 拼,设法得到一个大正方形,你会吗?
1 1
1 1
拼一拼
•9、要学生做的事,教职员躬亲共做;要学生学的知识,教职员躬亲共学;要学生守的规则,教职员躬亲共守。2021/9/82021/9/8Wednesday, September 08, 2021 •10、阅读一切好书如同和过去最杰出的人谈话。2021/9/82021/9/82021/9/89/8/2021 11:00:52 AM •11、只有让学生不把全部时间都用在学习上,而留下许多自由支配的时间,他才能顺利地学习……(这)是教育过程的逻辑。2021/9/82021/9/82021/9/8Sep-218-Sep-21 •12、要记住,你不仅是教课的教师,也是学生的教育者,生活的导师和道德的引路人。2021/9/82021/9/82021/9/8Wednesday, September 08, 2021
(2)无限小数都是无理数; ( ╳ )
(3)无理数都是无限小数; ( √ )
(4)有理数是有限小数. ( ╳ )
强调
无理数是无限不循环小数, 有理数是有限小数或无限循环小数.
c 例3 以下各正方形的边长是无理数的是( )
A.面积为25的正方形;
B.面积为 4 的正方形; 25
C.面积为8的正方形;
13、He who seize the right moment, is the right man.谁把握机遇,谁就心想事成。2021/9/82021/9/82021/9/82021/9/89/8/2021 •14、谁要是自己还没有发展培养和教育好,他就不能发展培养和教育别人。2021年9月8日星期三2021/9/82021/9/82021/9/8 •15、一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人。2021年9月2021/9/82021/9/82021/9/89/8/2021 •16、教学的目的是培养学生自己学习,自己研究,用自己的头脑来想,用自己的眼睛看,用自己的手来做这种精神。2021/9/82021/9/8September 8, 2021 •17、儿童是中心,教育的措施便围绕他们而组织起来。2021/9/82021/9/82021/9/82021/9/8
认识无理数课件
其他生活场景中无理数现象
在金融领域,无理数也经常出 现。例如,股票价格、汇率等 金融数据经常以小数形式表示 ,并且可能包含无限不循环的 小数部分,因此是无理数。
在音乐中,音高和音程可以用 频率来表示。这些频率值往往 是无理数,因为音乐的和谐性 要求精确的音高比例。
在物理学中,许多常数和公式 涉及到无理数。例如,圆周率π 是一个典型的无理数,它在计 算圆的周长、面积等时经常出 现。
03
忽视无理数的运算 规则
在进行无理数的运算时,需要注 意运算顺序和运算法则,避免出 现计算错误。
拓展延伸:无理数在数学领域更深层次应用
无理数与几何学
在几何学中,无理数常常出现在与 长度、面积和体积相关的计算中,
如勾股定理中的斜边长度等。
无理数与数学分析
在数学分析中,无理数的存在 对于极限、连续性和可微性等 概念的研究具有重要影响。
无理数与代数学
在代数学中,无理数是实数域的一 个重要组成部分,对于方程的求解 和函数的性质研究具有重要意义。
无理数与概率论
在概率论中,无理数可以作为 随机变量的取值,参与概率分
布和期望等统计量的计算。
THANK YOU
感谢聆听
无理数的判别方法
通过开方、求根、三角函数等特殊运算产生的数 ,若无法化简为有理数形式,则可判定为无理数 。
易错难点剖析指导
01
误将无限循环小数 当作无理数
无限循环小数是有理数的一种形 式,可以表示为两个整数的比值, 因此不是无理数。
02
误将带根号的数当 作无理数
带根号的数不一定是无理数,例 如√4=2是有理数。需要判断开 方后是否能得到有理数。
在几何图形中,通过构造符合黄金分割比例的线段或图形,可以创造出
《认识无理数》实数精品课件
3. 教学目标
知识目标
掌握无理数的概念、性质 和运算方法,理解无理数 与有理数的区别和联系。
能力目标
能够运用无理数解决实际 问题,培养学生的思维能 力和创新能力。
情感态度与价值观
通过本课学习,培养学生 的数学兴趣和探究精神, 让他们感受到数学在现实 生活中的应用价值。
4. 教学过程
通过讲解无理数的概念、性质和运 算方法,引导学生理解无理数与有 理数的区别和联系。
06
课程总结与展望
课程总结
知识点梳理
本课程通过多个案例,帮助学 生理解无理数的概念、性质及 其在数学中的应用,掌握无理 数的估算、判断及证明方法。
教学方法
本课程采用讲解、讨论、示范等 多种教学方法,注重学生的参与 和互动,调动学生的学习积极性 和主动性。
练习与反馈
课程中设置了一系列练习题和例题 ,通过及时练习和反馈,帮助学生 巩固所学知识和提高解决问题的能 力。
化学中一些化合物的分子量、原子量等也是无理数,如水的分子量约为18.02。
生物学中细胞的尺寸、人类的生理周期等也涉及无理数,如女性月经周期的长度 约为28天。
工程领域中的应用
建筑学中一些著名的建筑结构中 存在无理数,如巴塞罗那的圣家 族大教堂的柱间距和高度之间存
在无理数关系。
机械工程中零件的尺寸和比例也 经常使用无理数,以确保产品的
\times \sqrt{3}$,其积为 $\sqrt{6}$,仍是无理数。 • 总结词:无理数乘法运算中需要注意的问题包括:1) 保证运算准确;2) 注意乘法交换律和结合律的使用;
3) 适当使用近似值。 • 详细描述:在进行无理数乘法运算时,可以先将各个无理数进行有理化处理,再进行乘法运算。另外,需
《认识无理数》PPT课件 (公开课)2022年北师大版 (8)
① 3x2 5x3
② (5a2b)(2a2)
③ (5an1b)(2a.) ④ (2x)3(2x2y)
⑤ (x2 yz3)2(x2y)3
收获感悟:
本节课你学到了什么? 发现了什么? 有什么收获? 还存在什么没有解决的问题?
课后作业:
1. 习题 2. 拓展探究:
, 若 (am1bn2)(a2n1b)a5b3 求 mn的值 。
2.客观世界中,的确存在不是有理 数的数,你能列举几个吗?
3.除了本课所认识的非有理数的数 以外,你还能找到吗?
读一读
无理数的发现(教材第23页)
作业布置 习题2.2 1,3
赛一赛
下图是由五个单位正方形组成的纸片, 请你把它剪成三块,然后拼成一个正 方形,你会吗?试试看!
第一章 整式的乘除
4 整式的乘法(第1课时)
3、在你探索单项式乘法运算法则的过 程中,运用了哪些运算律和运算法则?
探索规律:
单项式乘法的法则: 单项式与单项式相乘,把它们的系
数、相同字母的幂分别相乘,其余字母 连同它的指数不变,作为积的因式。
例题解析:
例1 计算:
(1)2 xy 2 ( 1 xy ) 3
(2) 2a2b3 (3a)
(3)7xy2z(2xyz)2
(4)单项式乘以单项式,结果仍为单项式。
完成课本15页:随堂练习
延伸拓展:
一家住房的结构如图
y
2y
示,房子的主人打算把 卧室以外的部分全都铺
卫生间
卧室
上地砖,至少需要多少
x
厨房
4x
平方米的地砖?如果某
种地砖的价格是a元/平 2x
客厅
方米,那么购买所需地
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正整数:如:1,2,3,… 零:0 负整数:如-1,-2,-3,…
正分数:如 负分数如
1 1 , ,5.2, … 2 3 , ,-3.5,…
1 5 56
;
回顾 & 思考
☞
l 有理数:整数和分数统称为有理数。
l 分数与有限小数和无限循环小数可以互化 所以我们把有限小数和无限循环小数都看作分数
分数
有限小数 无限循环小数
解 :因 为 AB 是 C正三 ,且 A角 D B形 C A
所B 以 D D,则 C B D A B
由勾股定 :h理 得
h
h不可能是整数; h也不可能是分数。
B
D
C
20
;
生活中真的有很多不是有理数的数吗?
1:右图是由16个边长为1的小 正方形拼成的,任意连接这些小 正方形的若干个顶点,可得到一 些线段。试分别找出两条长度是 有理数的线段和两条长度不是有 理数的线段。
24
;
无理数:无限不循环小数
25
;
课堂小结 1.在生活中确实存在既不是整数也不是分数的数,即:不是有理数的数。
2.无理数在现实生活中是大量存在的。
3.学完本节后你有什么感受?
26
;
17
;
a
a既不是整数又不是分数,所以a一定不是 。
有理数
18
;
巧妙的组合
(1)图4-2中,以直角三角形的斜边为 边的正方形的面积是多少? (2)设该正方形的边长为b,b满足什么 样条件? (3)b是有理数吗?
b2=5
19
S=5
S ?
2b 1
图4-2 ;
随堂练习
1.如图,正三角形的边长为2,高为h,h可能是整 数吗?可能是分数吗?
1
1
1
1
1
1
1
12
11 22
1
1
2
2
11 11
;
问题与思考 (1)设大正方形的边长为a,a满足什么条件? 因为正方形的面积为2
a
所以
13
a
;
a可能是整数吗?
12 1,
a2 2
22 4,
32 9,
越来越大, 所以a不可能是整数
14
;
a可能是以2为分母的分数吗?
,
3 3 9 ..... 2 2 4,
1.经历无理数产生的实际背景,感知生活中存在不同于有理 数的数。
2.能够运用有理数的知识判断给出的数是否为有理数。
教学难点
对拼图得出的面积为2的正方形边长a是个什么样的数的探究 过程。
5
;
复习引入
1、我们学过的数有哪些? 2、什么是有理数?
6
;
回顾 & 思考
☞
什么叫有理数?
整数 有 理 数
分数
7
a
结果都为分数,所以a不可能是以2为分母的分数。
15
;
a可能是以3为分母的分数吗?
,
,
a
, ...... ,
结果都为分数,所以a不可能是以3为分母的分数。
16
;
a可能是分数吗? 试说出原因。
a
两个相同的最简分数的乘积仍然是分数,所以a不可能是分数。
数学家寄语 1
知在
道数
——
学
天
地
里
,
重
要
的
不
是
毕 达 哥 拉 斯
我 们 知 道 什 么
,
而
是
我
们
怎
么
;
△ABC的位置如图所示,已知每一个小正方形 的边长都是1,试判断△ABC的三条边a ,b, c的大小关系.
b
a
c
c4 b5 a 呢?
a2 17 b2 25 c2 16
c<a<b
2
;
无理数(1)
3
例如:
1 3
•
0.33 3 30.3
4 5
0.8
1
8
32 0.03125
;
拼图活动
有两个边长为1的小正方形,剪一剪,拼一拼,设法得到一个大的正方形。看 看能有几种拼法?
1
1
1
1
完美的正 方形
9
;
a2 2 a
10
;
拼图: 变 化 的 世 界
11
1
1
奇 妙 的 组 合
;
11 11
1
1
1
1
1
;
运用有理数的有关知识,通
知识与技能: 过逻辑推理判断一个数是否 为有理数,发展逻辑推理能
力; 教 学 目 标
通过拼图活动,感受无理 过程与方法: 数存在的必要性和合理性;
情感态度与 价值观:
通过动手操作、小组合作培 养合作和探究精神,锻炼克 服困难的意志,建立自信心, 提高学习热情。
4
;
教学重点
21
;
例如:
由勾股定理知: 线段AB,DE,AE的长 能用有理数表示; 线段AC,CE,BE的长 不能用有理数表示。
C
AB
22
E
D
;
思考: 在
a 2 中的2a,到底是什么样的数呢?
b2 5 h2 3
23
;
数学故事
无理数的发现
毕达哥拉斯学派认为,宇宙间的一切现象都可用有理数去描述。学派的成员希伯索斯 发现有的数不能用有理数来表示,因此他被投入了大海,为真理而献出了宝贵的生 命。不是希伯索斯无理,学派这些人的做法才是“无理之举”。人们为了纪念这位 为真理献身的学者,把这种数称为 “无理数”。