专升本第四章 不定积分

合集下载

《高等数学》第四章 不定积分(电子讲稿)

《高等数学》第四章 不定积分(电子讲稿)

140 第四章 不定积分一般来说,在数学中一种运算的出现都伴随着它的逆运算.在第二章中,我们学习了导数与微分,导数与微分运算是否有逆运算?即已知函数()f x 的导数或微分,能否求出()f x ?这是我们这一章要讨论的问题.第一节 不定积分的概念与性质一、原函数与不定积分的概念如果在区间I 上,可导函数()F x 的导数为()f x ,即对任意x I ∈,都有()()F x f x '= 或 d ()()d F x f x x =,则称()F x 为()f x 在区间I 上的原函数.例如,因为,x R ∀∈(sin )cosx x '=,所以sin x 是cos x 的一个原函数;(1,1)x ∀∈-,(arcsin )x '=arcsin x(1,1)-内的一个原函数.由此可见,微分学的逆问题是:已知导函数()F x ',求原函数()F x .事实上,研究原函数需要解决下面两个问题:(1)满足何种条件的函数存在原函数?(2)如果原函数存在,它是否唯一?关于第一个问题,我们用原函数存在定理回答.(原函数存在定理) 如果函数()f x 在区间I 上连续,则()f x 在区间I 上一定有原函数,即存在区间I 上的可导函数()F x ,使得对任一x ∈I ,有()()F x f x '=.将在第五章给出此定理的证明.这个定理简单地说就是:连续函数一定有原函数. 关于第二个问题的答案是如果原函数存在则不唯一.设()F x 是函数()f x 的一个原函数,即()()F x f x '=,则[()]()F x C f x '+=,其中C 是任意常数.这就是说,原函数存在的话,则有无穷多个.不妨假设()F x 与()G x 是函数()f x 的任意两个原函数, 则有()()F x f x '=,()()G x f x '=.从而有(()())0F x G x '-=,即()()F x G x C -=.因此,()f x 的任意两个原函数之间只相差一个常数.换句话说()f x 的原函数的全体可表示为()F x C +,其中C 为任意常数.据此,我们给出下述定义.在区间I 上,()f x 的带有任意常数项的原函数,称为()f x 在区间I 上的不定积分,记作()d f x x ⎰.其中记号⎰称为积分号,()f x 称为被积函数,()d f x x 称为被积表达式,x 称为积分变量.由不定积分的定义,如果()F x 为()f x 的一个原函数,则()d ()f x x F x C =+⎰ (C 为任意常数).●●例1 因为 32()3x x '=,所以233d x x x C =+⎰.141●●例2 因为当0x >时,1(ln )x x '=;当0x <时,11[ln()]()x x x x ''-=-=-,所以1(ln ||)x x'=,因此有1d ln ||x x C x=+⎰.●●例3 设曲线过点2(e ,3),且其上任一点处的斜率等于该点横坐标的倒数,求此曲线 的方程.解 设所求曲线方程为()y f x =,其上任一点(,)x y 处切线的斜率为d 1d y x x=,从而 1d ln ||y x x C x==+⎰,由2(e )3f =,得1C =,因此所求曲线方程为ln ||1y x =+.在直角坐标系中,()f x 的任意一个原函数()F x 的图形我们称为()f x 的一条积分曲线,不定积分()d f x x ⎰在几何上表示一簇积分曲线,这些积分曲线可由某一条积分曲线沿y 轴方向平移得到,它们在横坐标相同点处的切线有相同的斜率,因而切线相互平行.●●例4 一物体由静止开始作直线运动,t 秒末的速度是23t (m /s ),问:(1)在3s 末,物体与出发点之间的距离是多少?(2)物体走完216m 需多少时间?解 设物体的位置函数为()s s t =,则d ()d s v t t =,即2d 3d st t=,从而23d s t t =⎰=3t C +,由(0)0s =,得0C =,于是有3s t =.当3t =时,物体与出发点之间的距离3(3)27s t ==(m); 当216s =时,6t =(s).由原函数与不定积分的概念可得:d()d ()d f x x f x x =⎰或 d ()d ()d f x x f x x =⎰; ()d ()F x x F x C '=+⎰ 或 d ()()F x F x C =+⎰.由此可见,微分运算与不定积分运算互为逆运算,对函数()f x 先积分再微分,作用互相抵消;对函数()F x 先微分再积分,其结果只差一个常数.二、基本积分表因为不定积分运算是导数运算的逆运算,所以不难从导数公式得到相应的积分公式.现将一些基本积分公式罗列如下,通常称之为基本积分公式表.(1) d k x kx C =+⎰ (k 为常数),(2) 1d 1x x x C μμμ+=++⎰ (1μ≠-), (3) d ln ||xx C x =+⎰, (4) 2d arctan 1xx C x =++⎰,(5) arcsin x C =+, (6) cos d sin x x x C =+⎰, (7) sin d cos x x x C =-+⎰, (8) 22d sec d tan cos x x x x C x ==+⎰⎰, (9) 22d csc d cot sin xx x x C x==-+⎰⎰, (10)sec tan d sec x x x x C =+⎰,142 (11) csc cot d csc x x x x C =-+⎰, (12)e d e x x x C =+⎰, (13) d ln xxa a x C a=+⎰,(14)sh d ch x x x C =+⎰,(15) ch d sh x x x C =+⎰.以上公式可以联系求导公式记忆,且要求能够灵活运用.三、不定积分的性质根据不定积分的定义,可以得到下列性质. 性质1 设函数()f x 及()g x 的原函数存在,则[()()]d ()d ()d f x g x x f x x g x x ±=±⎰⎰⎰.证 因为([()()]d )()()f x g x x f x g x '±=±⎰,[()d ()d ]f x x g x x '±=⎰⎰[()d ][()d ]f x x g x x ''±⎰⎰=()()f x g x ±.由不定积分及原函数的定义,性质1得证.性质1可以推广到有限个函数的情形.性质2 设函数()f x 的原函数存在,k 为非零常数,则()d ()d kf x x k f x x =⎰⎰. 证 与性质1的证明类似,从略.利用基本积分表和不定积分的两个性质,通过对被积函数作恒等变形,可以求出一些简单的不定积分,这种求积分的方法通常叫直接积分法.●●例5求解4133d 3x x xC C --=-+=+⎰.●●例6求5)d x x .解3225)d (5)d x x x x x =-⎰322d 5d x x x x =-⎰⎰532123x x C =-+3123x x C =-. 检验积分结果是否正确,只要对结果求导,看它的导数是否等于被积函数,相等时结果是正确的,否则结果是错误的.●●例7 求32(1)d x x x +⎰. 解 33222(1)331d d x x x x x x x x ++++=⎰⎰2313d x x x x ⎛⎫=+++ ⎪⎝⎭⎰ 211d 3d 3d d x x x x x x x=+++⎰⎰⎰⎰21133ln ||2x x x C x =++-+. ●●例8 求221d (1)x x x x x -++⎰.143解 22221(1)d d (1)(1)x x x x x x x x x x -++-=++⎰⎰211d d 1x x x x =-+⎰⎰ln||arctan x x C =-+. ●●例9 求23e d x x x ⎰.解 23e d xxx =⎰9e d xxx ⎰(9e)d xx =⎰(9e)ln(9e)x C =+23e 12ln3x xC =++. ●●例10 求2cot d x x ⎰.解 22cot d (csc 1)d x x x x =-⎰⎰2csc d d x x x =-⎰⎰cot x x C =--+.●●例11 求2cos d 2xx ⎰.解 2cos d 2x x ⎰1cos d 2x x +=⎰11d cos d 22x x x =+⎰⎰1(sin )2x x C =++.●●例12 设 1,1,()1,2,x x f x x x +≤⎧=⎨>⎩求()d f x x ⎰.解 因为当1x ≤时,()1f x x =+,即21()d ;2x f x x x C =++⎰当1x >时,()2f x x =,此时22()d f x x x C =+⎰.又因为()f x 的原函数在(,)-∞+∞上每一点都连续,所以211lim 2x x x C -→⎛⎫++= ⎪⎝⎭221lim()x x C +→+ 从而有121112C C ++=+,即1212C C +=.记1C C =,则 22,1,2()d 1, 1.2x x C x f x x x C x ⎧++≤⎪⎪=⎨⎪++>⎪⎩⎰由例12可知,当被积函数是一个分段连续函数时,它的原函数必定为连续函数,可以先分别求出各区间段上的不定积分,再由原函数的连续性确定各积分常数之间的关系,注意不定积分中只含有一个任意的常数.习 题 4-11.求下列不定积分:(1) 5d x -⎰; (2) 2(23)d x x x +⎰;(3) 221d (1)x x x x x +++⎰;(4) 2cot d x x ⎛⎫⎪⎭⎰;(5) 3102d x x x ⎰;(6) 2sin d 2xx ⎰;144 (7) cos2d cos sin xx x x+⎰;(8) 22cos2d cos sin xx x x⎰;(9) sec (sec tan )d x x x x -⎰; (10){}max ||,1d x x ⎰. 2.设某曲线上任意点处的切线的斜率等于该点横坐标的立方,又知该曲线通过原点,求此曲线方程.3.验证函数21sin 2x ,21cos 2x -,1cos 24x -是某同一函数的原函数.第二节 换元积分法应用不定积分的性质和基本积分公式只能计算出一些简单的函数的不定积分,对计算较复杂的函数的不定积分,根据函数的不同形式,需要一定的计算技巧.本节与下节所讲的换元积分法和分部积分法是计算不定积分最基本、最常用的两种方法.一、第一类换元积分法设函数()F u 为函数()f u 的原函数,即()()F u f u '=或()d ()f u u F u C =+⎰.如果()u x ϕ=,且()x ϕ可微,则d[()]()()()()[()]()d F x F u x f u x f x x xϕϕϕϕϕ''''===. 即[()]F x ϕ为[()]()f x x ϕϕ'的原函数,从而()()[()]()d [()][()][()d ]u x u x f x x x F x C F u C f u u ϕϕϕϕϕ=='=+=+=⎰⎰.因此有如下定理:设()f u 存在原函数,()u x ϕ=可微,则()[()]()d [()d ]u x f x x x f u u ϕϕϕ='=⎰⎰ (1) 公式(1)称为第一类换元积分公式.由此定理可见,被积表达式中的d x 也可以当作变量x 的微分来看待.如何应用公式(1)来求不定积分呢?为了求不定积分()d g x x ⎰,把它凑成如下的形式[()]()d f x x x ϕϕ'⎰,作代换()u x ϕ=,于是得()d f u u ⎰,若()d f u u ⎰=()F u C +,再代回原来的变量x ,就求得积分()d [()]g x x F x C ϕ=+⎰.由于在积分过程中,将()x ϕ'与d x 凑成d ()x ϕ,所以第一类换元积分法也叫凑微分法.●●例1 求2sin 2d x x ⎰. 解 令2u x =,有2sin 2d sin 2(2)d sin d cos x x x x x u u u C '===-+⎰⎰⎰,将2u x =回代,得2sin 2d x x ⎰cos 2x C =-+.●●例2 求1d 12x x-⎰.145解 11111d (2)d (12)d 12212212x x x x x x x '=--=-----⎰⎰⎰11d(12)212x x=---⎰, 令12u x =-,得1d 12x x =-⎰111d ln ||22u u C u -=-+⎰1ln |12|2x C --+=. ●●例3求x . 解x =2)d x x '--2)x =-- 令21u x =-,则xu =-1122d 2u u u C -=-=-+=-⎰1222(1)x C -+. 对换元法熟练后,可直接凑微分,省去换元、还原中间变量步骤. ●●例4 求22e d x x x ⎰.解 22e d x x x ⎰=22e ()d x x x '⎰222e d()e x x x C ==+⎰. ●●例5 求tan d x x ⎰.解 tan d x x ⎰=sin 1d d(cos )ln |cos |cos cos x x x x C x x=-=-+⎰⎰. 类似可求得cot d x x =⎰ln |sin |x C +. ●●例6 求221d (0)x a a x ≠+⎰.解 22222111111d d d arctan 11x x x x C a x a a a aa x x a a ⎛⎫===+ ⎪+⎝⎭⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭⎰⎰⎰.类似地可求得arcsin xC a =+ (0)a >. ●●例7 求221d (0)x a x a ≠-⎰. 解 221111d d 2x x x a a x a x a ⎛⎫=- ⎪--+⎝⎭⎰⎰111[d()d()]2x a x a a x a x a=--+-+⎰⎰ 1[ln ||ln ||]2x a x a C a =--++ 1ln ||x a C x a -=++. ●●例8求x . 解xx =⎰2=⎰C =-.●●例9 求x .146 解xarcsin x x =⎰21arcsin d(arcsin )(arcsin )2x x x C ==+⎰.●●例10求x .解x1221d (arctan )d(arctan )1x x x x ==+⎰322(arctan )3x C =+. ●●例11 求2ed 1e x xx +⎰. 解 2e d 1exx x +⎰21e d 1e xx x =⋅+⎰21d(e )1(e )x x =+⎰arctan(e )x C =+. ●●例12 求1d ln x x x ⎰.解 1d ln x x x ⎰111d d(ln )ln |ln |ln ln x x x C x x x=⋅==+⎰⎰.下面积分的过程中,往往要用到一些三角恒等式.●●例13 求csc d x x ⎰.解 11csc d d d sin 2sin cos 22x x x x x x x ==⎰⎰⎰=21d 2tan cos 22x x x ⎰1d tan 2tan 2x x ⎛⎫= ⎪⎝⎭⎰=ln |tan |2x C +,因为tan 2x =2sin 2sin 1cos 22csc cot sin sin cos 2x x x x x x x -===-,所以 csc d x x =⎰ln |csc cot |x x C -+.●●例14 求sec d x x ⎰.解 sec d x x ⎰ππcsc()d()22x x =++⎰ππln csc()cot()22x x C =+-++ln |sec tan |x x C =++.●●例15 求5cos d x x ⎰.解 5cos d x x ⎰=4cos cos d x x x ⋅=⎰4cos d(sin )x x =⎰22(1sin )d(sin )x x -⎰=24(12sin sin )d(sin )x x x -+⎰=3521sin sin sin 35x x x C -++.●●例16 求33tan sec d x x x ⎰.解 33tan sec d x x x ⎰22tan sec tan sec d x x x x x =⋅⎰22tan sec d(sec )x x x =⎰22(sec 1)sec d(sec )x x x =-⎰42(sec sec )d(sec )x x x =-⎰5311sec sec 53x x C =-+.147●●例17 求2cos d x x ⎰.解 21cos21cos d d [d cos2d ]22x x x x x x x +==+⎰⎰⎰⎰ 11cos2d(2)sin 22424x x x x x C =+=++⎰. ●●例18 求4sec d x x ⎰. 解 4sec d x x ⎰=2222sec sec d sec d(tan )(tan 1)d(tan )x x x x x x x ⋅==+⎰⎰⎰31tan tan 3x x C =++. ●●例19 求24tan sec d x x x ⎰.解 24tan sec d x x x ⎰=222tan sec sec d x x x x ⋅⎰22tan sec d(tan )x x x =⎰22tan (tan 1)d(tan )x x x =+⎰42(tan tan )d(tan )x x x =+⎰5311tan tan 53x x C =++. ●●例20 求sin sin3d x x x ⎰.解 利用积化和差公式:1sin sin [cos()cos()]2αβαβαβ=-+--,sin sin3d x x x ⎰1[cos4cos(2)]d 2x x x =---⎰11cos4d cos2d 22x x x x =-+⎰⎰ 11cos4d(4)cos2d(2)84x x x x =-+⎰⎰ 11sin 4sin 284x x C =-++. 二、第二类换元积分法有些积分采用前面所学的积分方法来计算很困难甚至无法计算,而要采用下面将要介绍的所谓第二类换元积分法来求积分.设()x t ϕ=是单调的可导函数,且()0t ϕ'≠.又设[()]()f t t ϕϕ'具有原函数,则有换元公式()d f x x ⎰1()[[()]()d ]t x f t t t ϕϕϕ-='=⎰, (2) 其中1()t x ϕ-=为()x t ϕ=的反函数.证 设[()]()f t t ϕϕ'的原函数为()t Φ,记1[()]()x F x ϕ-Φ=,利用复合函数及反函数的求导法则,得d d ()d d tF x t xΦ'=⋅=1[()]()()f t t t ϕϕϕ'⋅'[()]()f t f x ϕ==, 即()F x 是()f x 的一个原函数.所以有()d ()f x x F x C =+=⎰1[()]x C ϕ-Φ+1()[[()]()d ]t x f t t t ϕϕϕ-='=⎰公式(2)称为第二类换元积分公式. ●●例21求x (0)a >.148 解 令sin x a t =,ππ()22t -<<cos a t =,d cos d x a t t =,因此有cos cos d x a t a t t =⎰22cos d a t t =⎰21cos2d 2t a t +=⎰22sin 224a a t t C =++22sin cos 22a a t t t C =++ . 因为sin x a t =,ππ()22t -<<,所以sin x t a=,arcsin ,xt a =cos t =于是x21arcsin 22a x C a =+.●●例22求 (0)a >.解 令tan x a t =,ππ22t -<<sec a t =,2d sec d x a t t =,因此有2111sec d sec d sec ln |sec tan |a t t t t a txt t C C a===++=+⎰⎰ln |x C =+其中1ln C C a =-.为了把新变量t 还原为x 的函数,可以根据tan xt a=作辅助三角形,俗称小三角形还原法,如图4-1所示.●●例23求(0a >).解 被积函数的定义域为x a >和x a <-两个区间,故在两个区间分别求不定积分.(1) 当x a >时,设πsec (0)2x a t t =<<,则tan a t ,且d sec tan d x a t t t =.故sec tan d sec d tan a t tt t ta t==⎰⎰ln(sec tan ).t t C =++为了把sec t 及tan t 换成x 的函数,依据sec xt a=作辅助三角形(图4-2),得tan t =,所以,1ln x C a ⎛=+ ⎝⎭ln(,x C =+其中1ln .C C a =- (2)当x a <-时,令x u =-,那么u a >,由以上分析有(1ln u C=-=-++1ln(x C=--+1C=+(ln x C=-+,其中12ln.C C a=-综合以上(1)与(2)两种分析情况,把以上两个结果合起来,可写成ln|x C=+.sinx a t=去根号;当被积时,作代换secx a t=换tanx a t=去根号.时,为了去根号,还可用公式22ch sh1t t-=,采用双曲代换sh,chx a t x a t==来去根号.如例22中,可设shx a t=,==cha t,即可去根号.有些积分的计算可采用所谓的倒代换.●●例24求.解设1,xt=那么21d dx tt=-,于是21d t-==-(arcsin)t C=-±+1arcsin||Cx=-+.在本节的几个例题中,有几个积分是以后经常会遇到的,所以它们也常被当作公式来使用,现罗列如下:(16)tan d ln|cos|x x x C=-+⎰, (17)cot d ln|sin|x x x C=+⎰, (18)sec d ln|sec tan|x x x x C=++⎰, (19)csc d ln|csc cot|x x x x C=-+⎰,(20)22d1arctanx xCa x a a=++⎰, (21)22d1ln2x x aCx a a x a-=+-+⎰, (22)arcsinxCa=+, (23)ln(x C=++, (24)ln x C=+.●●例25 求2d23xx x++⎰.解22d1d23212xxx x x x=+++++⎰⎰1)x=+,利用公式(20)便得2d23xCx x=++⎰.149150 ●●例26求解==利用公式(23)便得ln(1x C =+++ln(1x C =++.●●例27求解1d x ⎛⎫- ⎪=利用公式(22)便得21arcsin 3x C -=+. 习 题 4-21.填空:(1) 21d d()x x=;(2) 1d d()x x=;(3) e d d()x x =; (4) 2sec d d()x x =; (5) sin d d()x x =;(6) cos d d()x x =;d()x =;d()x =; (9) tan sec d d()x x x =;(10) 21d d()1x x =+;d()x =;(12) d d()x x =.2.求下列不定积分:(1) x ; (2)4ln d x x x⎰;(3) 12ed xx x ⎰;(4)23(e 2e 2)e d x x x x ++⎰;(5) ;(6)21ln d (ln )xx x x +⎰;(7) 1d ln lnln x x x x ⎰;(8)1d e ex xx -+⎰;(9) x ; (10) 32d 3x x x+⎰;151(11) x ;(12) 21d 2x x x --⎰;(13) 2sin ()d t t ωϕ+⎰;(14) x ;(15) ln cot d sin 2xx x⎰;(16) x ;(17) 4cos d x x ⎰;(18)x ; (19)3cos d x x ⎰(20)arccos xx ;(21)x(22)x ; (23)35sin cos d x x x ⎰ (24)35tan sec d x x x ⎰; (25)cos5sin 4d x x x ⎰; (26)34tan sec d x x x ⎰;(27)x; (28)x(29);(30)x ;(31)2x ; (32)21d 323x x x ++⎰(33)x ;(34)x第三节 分部积分法前面一节我们利用复合函数的求导法则得到了换元积分法,利用它可以求出一些函数的积分,但是对于形如e d x x x ⎰、ln d x x x ⎰、sin d x x x ⎰等的积分,用直接积分法或换元积分法都无法计算. 这些积分的被积函数都有共同的特点,即都是两种不同类型函数的乘积,这就启发我们把两个函数乘积的微分法则反过来用于求这类不定积分,这就是另一个基本的积分方法:分部积分法.设函数()u u x =、()v v x =具有连续导数,则有[()()]()()()()u x v x u x v x u x v x '''=+, 两端求不定积分,得()()()()d ()()d u x v x u x v x x u x v x x ''=+⎰⎰,移项得 ()()d ()()()()d u x v x x u x v x u x v x x ''=-⎰⎰, 或()d ()()()()d ()u x v x u x v x v x u x =-⎰⎰,152 为方便起见,简记为d d u v x u v vu x ''=-⎰⎰ (1) 或d d u v u v v u =-⎰⎰ (2) 公式(1)或(2)称为不定积分的分部积分公式.当()()d u x v x x '⎰不容易积分,但()()d u x v x x '⎰容易积分时,我们就可以用分部积分把不容易积分的()()d u x v x x '⎰计算出来. ●●例1 求sin d x x x ⎰.解 令u x =,sin (cos )v x x ''==-,代入分部积分公式得sin d d(cos )x x x x x =-⎰⎰cos cos d x x x x =---⎰cos sin x x x C =-++.值得注意,如在例1中,若是令sin u x =,22x v x '⎛⎫'== ⎪⎝⎭,代入分部积分公式得2sin d sin d()2x x x x x =⎰⎰22sin d(sin )22x x x x =-⎰22sin cos d 22x x x x x =-⎰.上式最后一个积分比原来的积分还复杂,由此可知,若u v 、的选取不当,可能使积分计算很复杂甚至计算不出来. ●●例2 求2e d x x x ⎰.解 22222e d d(e )e e d()e 2e d x x x x x x x x x x x x x x ==-=-⎰⎰⎰⎰22e 2de e 2(e e d )x x x x x x x x x x =-=--⎰⎰2e 2e 2e .x x x x x C =-++从例1和例2可以看出,当被积函数是幂函数与正弦(余弦)函数乘积或是幂函数与指数函数乘积,分部积分时,取幂函数为u ,其余部分凑为d v . ●●例3 求ln d x x x ⎰.解 22211ln d ln d()ln d(ln )22x x x x x x x x x ⎡⎤==-⎣⎦⎰⎰⎰()22222111ln d ln 22211ln .24x x x x x x x C x x x C ⎛⎫=-=-+ ⎪⎝⎭=-+⎰ ●●例4 求arctan d x x x ⎰.解 22211arctan d arctan d()arctan d(arctan )22x x x x x x x x x ⎡⎤==-⎣⎦⎰⎰⎰ 222221arctan d 2111arctan 1d 21x x x x x x x x x ⎛⎫=- ⎪+⎝⎭⎡⎤⎛⎫=-- ⎪⎢⎥+⎝⎭⎣⎦⎰⎰153()21arctan arctan 2x x x x C =-++. 从例3和例4可以看出,当被积函数是幂函数与对数函数乘积或是幂函数与反三角函数函数乘积,分部积分时,取对数函数或反三角函数为u ,其余部分凑为d v . ●●例5 求arcsin d x x ⎰.解 arcsin d x x ⎰arcsin d(arcsin )x x x x =-⎰arcsin x x x =-21arcsin )2x x x =+-arcsin x x C =.●●例6 求ln d x x ⎰.解 ln d x x ⎰ln d(ln )x x x x =-⎰1ln d x x x x x=-⋅⎰ln d x x x =-⎰ln x x x C =-+.从例5和例6可以看出,当某些被积函数(如对数函数、反三角函数)是单个函数时,可选v x =直接用分部积分法求积分. ●●例7 求e sin d x x x ⎰.解 e sin d sin de e sin e d(sin )x x x x x x x x x ==-⎰⎰⎰e sin e cos d e sin cos d(e )e sin [e cos e d(cos )]e sin e cos e sin d ,x x x x xxxx x x x x x x x x x x x x x x =-=-=--=--⎰⎰⎰⎰因此得 1e sin d e (sin cos )2x x x x x x C =-+⎰.●●例8 求3sec d x x ⎰.解 3sec d sec d tan sec tan tan d(sec )x x x x x x x x ==-⎰⎰⎰2233s e c t a n t a n s e c d s e c t a n (s e c 1)s e c d s e c t a n s e c ds e c ds e c t a n l n |s e ct a n |s e cd ,x x x x x x x x x x x x x x x x x x x x x x =-=--=-+=++-⎰⎰⎰⎰⎰因此得()31sec d sec tan ln |sec tan |2x x x x x x C =+++⎰ ●●例9 求22d ()n nxI x a =+⎰(n 为正整数).解 用分部积分法,当1n >时,有154 222122122d 2(1)d ()()()n n n x x x n x x a x a x a --=+-+++⎰⎰22212212212(1)d ()()()n n n x a n x x a x a x a --⎛⎫=+-- ⎪+++⎝⎭⎰, 即2112212(1)()()n n n n xI n I a I x a ---=+--+, 于是122211(23)2(1)()n n n xI n I a n x a --⎡⎤=+-⎢⎥-+⎣⎦. 以此作递推公式,并由11arctan xI C a a=+,即可得n I .在积分过程中,有时分部积分法与其他方法结合使用,会更加容易积分. ●●例10求x ⎰.解 令t =,则 2x t =,d 2d x t t =,因此e 2d 2e d 2de 2(e e )t t t t t x t t t t t t C ====-+⎰⎰⎰⎰1)C =+.习 题 4-3求下列积分: (1) sin 2d x x x ⎰; (2) e d x x x -⎰; (3) 2ln d x x x ⎰; (4) arccos d x x ⎰; (5) 2cos d x x x ⎰; (6) e sin 2d x x x -⎰; (7) 2arctan d x x x ⎰;(8) 2cos d x x x ⎰; (9)x ;(10)23e d x x x ⎰; (11)cosln d x x ⎰;(12)()d xf x x ''⎰.第四节 几种特殊类型函数的积分我们已知道,任何一个初等函数的导数仍为初等函数,而相当多的初等函数虽然也存在原函数,但它们的原函数却不是初等函数,也就是通常说的“这个不定积分积不出来”.例如,sin d x x x ⎰, 2sin d x x ⎰,2e d x x -⎰.这些不定积分都积不出来.下面再举几个著名的积不出来的不定积分:x ,2d (1sin )x k x +⎰(01)k <<.155分别称为第一、二、三种椭圆积分.它们是在计算椭圆弧长时碰到的,故由此而得名.法国数学家刘维尔(Liouville)曾证明了它们的积分不能用初等函数表示,故积不出来.下面介绍几类特殊类型函数的不定积分.一、有理函数的积分形如10111011()()n n n nm m m ma x a x a x a P x Q xb x b x b x b ----++++=++++ (1)的函数称为有理函数.其中012,,,,n a a a a 及012,,,,m b b b b 为常数,且00a ≠,00b ≠.如果(1)式中多项式()P x 的次数n 小于多项式()Q x 的次数m ,则称此分式为真分式;如果多项式()P x 的次数n 大于或等于多项式()Q x 的次数m ,称分式为假分式.利用综合除法(带余除法)可得,任意一个假分式可转化为多项式与真分式之和.例如:422212111x x x x x x +++=-+++, 因此,我们只需研究真分式的积分.根据多项式理论,任一多项式()Q x 在实数范围内能分解为一次质因式和二次质因式的乘积,即220()()()()()Q x b x a x b x px q x rx s αβλμ=--++++(2)其中2240,,40p q r s -<-<.如果(1)的分母多项式分解为(2)式,则(1)式可分解为如下部分分式之和:121211()()()()()()()()B A A A B B P x Q x x a x a x a x b x b x b βαααββ--=+++++++++------11222212()()()M x N M x N M x N x p x q x p x q x p x qλλλλ-++++++++++++++ 11222212()()()R x S R x S R x S x rx s x rx s x rx s μμμμ-+++++++++++++(3)其中,,,,,i i i i i A B M N ,R 及i S 均为常数.例如 22221(1)(1)(1)x x x x x ++++1A x =+21A x +32(1)A x +++1121M x N x ++2221M x N x x ++++3322(1)M x N x x ++++. 把真分式写成部分分式的代数和时,每个k 重因子(一次或二次)一定要有k 项;每个一次因子所对应的部分分式分子是常数,每个二次质因式所对应的分式的分子是一次因式,含两个常数,分式中的常数可以用“待定系数法”或“赋值法”来确定.我们用具体例子来说明.●●例1 将真分式232(1)(2)x x x ++-分解为最简分式.解 设 231213232(1)(2)1(1)(1)2A A AB x x x x x x x +=++++-+++-,通分整理后,有156 ********(2)(1)(2)(1)(2)(1)x A x A x x A x x B x +=-++-++-++(4)3211213211()(3)(33)A B x A B x A A A B x =++++--+3211(222)A A A B +---+比较两端同类项系数,得方程组1121321132110313302222A B A B A A A B A A A B +=⎧⎪+=⎪⎨--+=⎪⎪---+=⎩解得 129A =-, 213A =, 31A =-, 129B =.或者在(4)式中应用赋值法,更简单些. 令1x =-,得 333A =-,31A =-.令2x =, 得 1627B =,129B =.令0x =, 得 32112222A A A B =---+.(5) 令1x =, 得 32113248A A A B =---+.(6)联立(5)与(6)式, 得129A =-,213A =,于是232322112(1)(2)9(1)3(1)(1)9(2)x x x x x x x +=-+-++-+++-.●●例2 求22d 23x x x x -++⎰.解 由于分母已为二次质因式,而且分子可写为12(22)32x x -=+-21(23)32x x '=++-,于是22222221(22)322d d 23231(23)d d 3223231d(23) 3223x x x xx x x x x x xx x x x x x x x x +--=++++'++=-++++++=-++⎰⎰⎰⎰⎰21ln(23)2x x C =+++. ●●例3 求44d 1x x -⎰.解 因为4241121111x x x x =----++,所以 424112d d 1111x x x x x x =----++⎰⎰2112d d d 111x x x x x x=---++⎰⎰⎰1572112d(1)d(1)d 111x x x x x x=--+--++⎰⎰⎰1ln 2arctan 1x x C x -=-++. 由上面的例子可知,把真分式分解为部分分式的代数和,并用待定系数法或赋值法求出分解式中的常数后,求有理函数的不定积分,可归结为求下列部分分式的不定积分A x a -,()kA x a -,2()k Mx N x px q +++ 前两类函数的不定积分我们都能求.关键是第三类函数的不定积分,下面讨论它的计算.把分母中的二次质因式配方,得22224p p x px q x q ⎛⎫++=++- ⎪⎝⎭,令2p x t +=,则d d x t =,并记222x px q t a ++=+,Mx N Mt b +=+,其中224p a q =-,2Mpb N =-,于是有 22222d d d ()()()n n n Mx N Mt t b tx x px q t a t a +=+++++⎰⎰⎰,当1n =时,有222222d d d 2ln()arctan .2Mx N Mt t b tx xpx q t a t a px M bx px q C aa +=++++++=++++⎰⎰⎰ 当1n >时,有222122d d ()2(1)()()n n n Mx N M tx b x px q n t a t a -+=-+++-++⎰⎰, 上式最后一个积分的求法见本章第三节例9.总之,有理函数的积分,理论上总可以积出来,它的原函数是初等函数,即有理函数的积分是初等函数.●●例4 求2221d (22)x x x x +-+⎰. 解 在本题中,由于被积函数的分母只有单一因式,因此,部分分式分解能被简化为2222221(22)(21)(22)(22)x x x x x x x x +-++-=-+-+222121.22(22)x x x x x -=+-+-+ 现分别计算部分分式的不定积分如下:122d d(1)arctan(1).22(1)1x x x C x x x -==-+-+-+⎰⎰158222221(22)1d d (22)(22)x x x x x x x x --+=-+-+⎰⎰222d(22)(22)x x x x -+=+-+⎰22d(1)(1)1x x -⎡⎤-+⎣⎦⎰2221d(1)22(1)1x x x x --=+-+⎡⎤-+⎣⎦⎰, 令1x t -=, 由递推公式,求得22d(1)(1)1x x -=⎡⎤-+⎣⎦⎰2222d 1d (1)2(1)21t t t t t t =++++⎰⎰ 2211arctan(1).2(22)2x x C x x -=+-+-+ 于是得到2222133d arctan(1)(22)2(22)2x x x x C x x x x +-=+-+-+-+⎰,其中12C C C =+. 二、可化为有理函数的积分举例由函数()u x 、()v x 及常数经过有限次四则运算所得的函数称为关于()u x 、()v x 的有理式,并用((),())R u x v x 来表示. 例如,(sin ,cos )d R x x x ⎰是关于sin x 、cos x 的有理式的不定积分.通过代换tan 2xu =(ππx -<<),可把这种类型的积分化为以u 为变量的有理函数的积分,因为22222sin cos 2tan2222sin 2sin cos ,221sin cos 1tan 222x x x x x u x x x x u ====+++ 2222222222cos sin 1tan 1222cos cos sin ,221sin cos 1tan 222x x x x x u x u ---=-===+++22d d(2arctan )d 1x u u u==+. 所以 2222212d (sin ,cos )d (,)111u u uR x x x R u u u -=+++⎰⎰. ●●例5 求1sin d sin (1cos )xx x x ++⎰. 解 作变量代换 tan 2xu =,可得22sin 1u x u =+,221cos 1u x u -=+,22d d 1x u u =+,159因此得22222211sin 2111d d (2)d sin (1cos )1221111ux u x u u u x x uu u u u u +++=⋅=++++⎛⎫-+ ⎪++⎝⎭⎰⎰⎰ 21(2ln ||)22u u u C =+++211tan tan ln |tan |42222x x xC =+++.●●例6 求cot d sin cos 1xx x x ++⎰.解 作变量代换 tan 2xu =,可得22sin 1u x u =+,221cos 1u x u -=+,22d d 1x u u =+, 因此得2221cot 22d d 21sin cos 11111u x u x u u u x x u u u -=⋅-+++++++⎰⎰1111d (d d )(ln ||)222u u u u u u C u u -==-=-+⎰⎰⎰1(ln tan tan )222x xC =-+. 一些简单的无理函数的积分可以通过变量代换化为有理函数的积分. ●●例7求解u =,得 32x u =-,2d 3d x u u =,代入得2223111d 3d 31d 111 3(ln |1|)2u u u u u u u u u uu u C-+⎛⎫===-+ ⎪+++⎝⎭=-+++⎰⎰⎰3ln |1C =+. ●●例8 求.解令16t x =,得5d 6d x t t =,代入得2563226d 1116d 6d ()1t t t t t tt t t t t t ⋅⎛⎫===-⎪+++⎝⎭⎰⎰⎰6[ln ln(1)]ln 1)t t C x C =-++=-+.●●例9 求x .解 t =,则2211t x t-=+,224d d (1)t x t t -=+;代入得160 x 2224d (1)(1)t t t t -=-+⎰2222d 11t t t ⎛⎫=+ ⎪-+⎝⎭⎰1ln2arctan 1t t C t -=+++C =+.例8、例9式为u ,这样的变换具有反函数,且反函数为有理函数,从而可将原积分化为有理函数的积分.习 题 4-4求下列不定积分:(1)3d 1x x x -⎰;(2)5438d x x x x x +--⎰; (3)2222213d (2)(1)x x x x x ++-+⎰; (4)226114d (1)x x x x x -+-⎰; (5)32d 1xx x x x -+-⎰; (6)2dx⎰;(7)x ; (8)x . 第五节 积分表的使用通过前面的讨论可以看出,积分的计算要比导数的计算显得更加灵活、复杂,我们会遇到更多不同类型的不定积分的计算问题,为了应用上的方便,把常用的积分公式汇集成表,这种表叫做积分表.积分表是按照被积函数的类型来排列的,求积分时,可根据被积函数的类型直接或经过简单的变形后,在表内查得所需的结果. 本书末附录4是一份简单的积分表,可供查阅.●●例1 求2d (1)xx x +⎰. 解 被积函数含有a bx +,在积分表(二)中查得公式(4)()221d ln x a x a bx C b a bxa bx ⎛⎫=+++ ⎪+⎝⎭+⎰, 现在1a =,1b =,于是21d ln 1(1)1x x x C x x =+++++⎰.●●例2求.解这个积分不能在表中直接查到,需要先进行变量代换.令2x u=2ux=,dd2ux=,于是1d2u==⎰34)1Ca=-+,现在2a=,x相当于u,于是有12C=-,再把2u x=代入,最后得到12C=.●●例3 求4sin d x x⎰.解在积分表(八)中查到公式(50)12sin cos1sin d sin dnn nx x nx x x xn n---=-+⎰⎰,现在4n=,于是有342sin cos3sin d sin d44x xx x x x=-+⎰⎰,对积分2sin d x x⎰,利用公式(48),得21sin d sin224xx x x C=-+⎰,从而所求积分为34sin cos31sin d sin24424x x xx x x C⎛⎫=-+-+⎪⎝⎭⎰.一般说来,查积分表可以节省计算积分的时间,但只有掌握了前面学习过的基本积分公式才能灵活地使用积分表,而且对一些比较简单的积分,应用基本积分法来计算比查表更快些,例如23sin cos dx x x⎰,用变换sinu x=很快就可得到结果,所以求积分时,究竟是直接计算,还是查表,或两者结合使用,应该具体问题具体分析,从而选择一个更快捷的方式.习题4-5利用积分表计算下列不定积分:(1);(2)3ln d x x⎰;(3)221d(1)xx+⎰;(4);161162 (5)x x ⎰; (6)(7) 6cos d x x ⎰;(8)2e sin3d x x x -⎰.第六节 数学模型●●例 (石油的消耗量)近年来,世界范围内每年的石油消耗率呈指数增长,增长指数大约为0.07. 1970年初,消耗率大约为每年161亿桶.设()R t 表示从1970年起第t 年的石油消耗率,则0.07()161e t R t =(亿桶).试用此式估算从1970年到1990年间石油消耗的总量.解 设()T t 表示从1970年起(0t =)直到第t 年的石油消耗总量.我们要求从1970年到1990间石油消耗的总量,即求(20)T .由于()T t 是石油消耗的总量,所以()T t '就是石油消耗率()R t ,即()()T t R t '=,那么()T t 就是()R t 的一个原函数.0.070.070.07161()()d 161e d e 2 300e 0.07t tt T t R t t t C C ===+=+⎰⎰. 因为 (0)0T =,所以, 2 300C =-,得 0.07() 2 300(e 1)t T t =-.从1970年到1990年间石油的消耗总量为:0.0720(20) 2 300(e 1)7 027T ⨯=-≈(亿桶).第七节 数学实验利用Matlab 软件中的函数int 可以对不定积分进行符号计算,其调用格式和功能如下说明:在初等函数范围内,不定积分有时是不存在的,也就是说,即使()f x 是初等函数,但是不定积分()d f x x ⎰却不一定是初等函数.例如,2e x -,sin xx ,e x x,1log a x 是初等函数,而2ed x x -⎰,sin d x x x ⎰,e d xx x⎰,1d log a x x ⎰却不能用初等函数表示出来.比如,输入程序: >> syms x>> F=int(sin(x)/x) 运行后屏幕显示:F =sinint(x)其中sinint(x)是非初等函数,称作积分正弦函数.在使用int 函数求不定积分时,读者要注意这种情况.●●例1 求2sin dx x x⎰.解用符号积分命令int计算此积分,Matlab程序为>> syms x;>> int(x^2*sin(x))结果为ans =-x^2*cos(x)+2*cos(x)+2*x*sin(x) 如果用微分命令diff验证积分正确性,Matlab程序为>> diff(-x^2*cos(x)+2*cos(x)+2*x*sin(x))结果为ans =x^2*sin(x)●●例2 求下列函数的一个原函数:(1);(2)sec(sec tan)x x x-;(3)11cos2x+;(4(5)2arctanx x;(6)223310xx x++-解(1)相应的Matlab程序为>> clear all;>> syms x;>> f=x*sqrt(x);>> int(f,x)结果为ans =2/5*x^(5/2);(2)相应的Matlab程序为>> clear all>> syms x;>> f=sec(x)*(sec(x)-tan(x));>> int(f,x)结果为ans =sin(x)/cos(x)-1/cos(x);(3)相应的Matlab程序为>> clear all>> syms x;>> f=1/(1+cos(2*x));>> int(f,x)结果为ans =1/2*tan(x);(4)相应的Matlab程序为>> clear all>> syms x;>> f=log(x+1)/sqrt(x+1);>> int(f,x)结果为ans =2*log(x+1)*(x+1)^(1/2)-4*(x+1)^(1/2);(5)相应的Matlab程序为163164 >> clear all >> syms x ;>> f=x^2*atan(x); >> int(f,x)结果为ans =1/3*x^3*atan(x)-1/6*x^2+1/6*log(x^2+1);(6)相应的Matlab 程序为 >> clear all >> syms x ;>> f=(2*x+3)/(x^2+3*x-10); >> int(f,x)结果为ans =log(x^2+3*x-10).●●例3 设曲线通过点(1,2),且其切线的斜率为2329x x +-,求此曲线的方程并绘制其图像.解 设所求的曲线方程为()y f x =,根据题意,2329y x x '=+-,所以2d (329)d y y x x x x '==+-⎰⎰相应的Matlab 程序为 >> syms x C ;>> f=3*x^2+2*x-9; >> F=int(f)+C ; >> y=simple(F)结果为y =x^3+x^2-9*x+C.即斜率为2329x x +-的曲线方程为329y x x x C =+-+.又因为曲线通过点(1,2),代入曲线方程,得9C =.于是,所求曲线方程为3299y x x x =+-+. 作曲线图,输入程序 >> clear>> x=-5:0.1:5; f=3*x.^2+2*x-9;y=x.^2+x.^3-9*x+9; >> x0=1;y0=2;>> plot(x0,y0,'ro',x,f,'g*',x,y,'b-') >> grid>> legend('点(1,2)','函数f=3x^2+2x-9的曲线','函数f=3x^2+2x-9过点(1,2)的积分曲线')运行结果如图4-3.函数2329f x x =+-过点(1,2)的积分曲线图4-3165本章复习题A一、填空1. 已知()F x 是sin xx的一个原函数,则2d[()]F x = . 2. 已知函数()y f x =的导数为2y x '=,且1x =时2y =,则此函数为 . 3. 如果()d ln f x x x x C =+⎰,则()f x = .4.已知()d sin f x x x x C =++⎰,则e (e 1)d xxf x +⎰= . 5.如果 2(sin )cos d sin f x x x x C =+⎰,则()f x = .二、求下列不定积分1. 21cos d 1cos2x x x ++⎰;2.d 1e xx+⎰; 3.2352d 4x xx x ⋅-⋅⎰;4.2(arcsin )d x x ⎰;5.;6.322d (1)x x x +⎰;7.8.x ; 9.54tan sec d x x x ⎰;10.;11.23e d x x x ⎰;12.ln ln d x x x⎰.三、设 1,0,()1,01,1,2,x f x x x x x <⎧⎪=+≤≤⎨⎪>⎩求()d f x x ⎰.四、若I tan d ,n n x x =⎰,,3,2 =n 证明121I tan I 1n n n x n --=--. 本章复习题B一、填空1.已知()F x 是2e x -= . 2.若22(sin )cos f x x '=,则()f x = .3.设()f x '=,则(1)d f x x -⎰= .4.已知()f x 的一个原函数是2e x -,则()d xf x x '⎰= . 二、求下列不定积分1.2arctan e d e xxx ⎰;2.d sin 22sin xx x+⎰;。

专转本第四章不定积分41

专转本第四章不定积分41

4
5
5 上一页 下一页
如果F(x)是f(x)的一个原函数, 则 f (x)dx F (x) C .
1 例 2 例 2. 求函数 f (x) 的不定积分. x 1 解 : x>0 时, (ln x) , 解:当 x 1 dx ln x C (x>0) x 1 1 当 x<0 时, [ln(x)] (1) , x x 1 dx ln(x) C (x<0). x 合并得: 1 dx ln | x| C (x0). x
证明: 由导数的线性运算法则和不定积分的定义
( f ( x)dx) ' ( g ( x)dx) ' ( ( x)dx) '
10 上一页 下一页
f ( x) g ( x)
所以,有:
( x)
[ f ( x) g ( x)
( x)dx f ( x)dx g ( x)dx
上一页
6 下一页
不定积分的几何意义 若F(x)是f (x)的一个原函数, 则称F(x)的图形为f (x)的一条积分 曲线, F(x)+c的图形是由F(x)的图 形沿 y 轴平移c(任意的)所得 积分曲线组成的曲线轴.
如图f (x)=2x的积分曲线图 结论:
2x的积分曲线
函数f (x)的不定积分在几何上表示f (x)的全部积 分曲线所组成的平行曲线族
f (x)dx F (x) C .
结论:求f (x)的不定积分只要求它的一个原函数F(x) 再加任意常数C.
4 上一页 下一页
如果F(x)是f(x)的一个原函数, 则 f (x)dx F (x) C . 例1 求

专接本 数学不定积分基本公式(很有用)

专接本 数学不定积分基本公式(很有用)

不定积分基本公式设F(x)是函数f(x)的一个原函数,我们把函数f(x)的所有原函数F(x)+C(C为任意常数)叫做函数f(x)的不定积分。

记作∫f(x)dx。

其中∫叫做积分号,f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积式,C叫做积分常数,求已知函数的不定积分的过程叫做对这个函数进行积分。

由定义可知:求函数f(x)的不定积分,就是要求出f(x)的所有的原函数,由原函数的性质可知,只要求出函数f(x)的一个原函数,再加上任意的常数C,就得到函数f(x)的不定积分。

也可以表述成,积分是微分的逆运算,即知道了导函数,求原函数.由不定积分定义,若F'(x)=f(x),则∫f(x)dx=F(x)+C不定积分几何意义F(x)+C为无穷多条曲线,通常称为f(x)的积分曲线族。

由[F(x)+C]'=F'(x)=f(x)可知,在点x处,积分曲线族中每条曲线有相同的导数,按导数的几何意义,由相同的切线斜率,即切线平行,于是有:∫f(x)dx表示一族曲线,族中每条曲线在点x处有平行的切线.常见不定积分公式1)∫0dx=c2)∫x^udx=(x^u+1)/(u+1)+c3)∫1/xdx=ln|x|+c4))∫a^xdx=(a^x)/lna+c5)∫e^xdx=e^x+c6)∫sinxdx=-cosx+c7)∫cosxdx=sinx+c8)∫1/(cosx)^2dx=tanx+c9)∫1/(sinx)^2dx=-cotx+c10)∫1/√(1-x^2) dx=arcsinx+c11)∫1/(1+x^2)dx=arctanx+c12)∫1/(a^2-x^2)dx=(1/2a)ln|(a+x)/(a-x)|+c13)∫secxdx=ln|secx+tanx|+c14)∫1/(a^2+x^2)dx=1/a*arctan(x/a)+c15)∫1/√(a^2-x^2) dx=arcsin(x/a)+c16) ∫sec^2 x dx=tanx+c;17) ∫shx dx=chx+c;18) ∫chx dx=shx+c;19) ∫thx dx=ln(chx)+c;1. ∫adx = ax+C (a 为常数)2. ∫sin(x)dx = -cos(x)+C3. ∫cos(x)dx = sin(x)+C4. ∫tan(x)dx = -log e |cos(x)|+C = log e |sec(x)|+C5. ∫cot(x)dx = log e |sin(x)|+C6. ∫sec(x)dx = log e |sec(x)+tan(x)|+C7. ∫sin 2(x)dx= 1 (x-sin(x)cos(x))+C 2= 1 x - 1 sin(2x)+C 2 49. ∫cos 2(x)dx= 1 (x+sin(x)cos(x))+C 2= 1 x + 1 sin(2x)+C 2 411.∫tan 2(x)dx = tan(x)-x+C12.∫cot 2(x)dx = -cot(x)-x+C13.∫sin(ax)sin(bx)dx= sin((a-b)x) - sin((a+b)x) +C 2(a-b) 2(a+b)14.∫sin(ax)cos(bx)dx= - cos((a-b)x) - cos((a+b)x) +C 2(a-b) 2(a+b)15.∫cos(ax)cos(bx)dx= sin((a-b)x) + sin((a+b)x) +C 2(a-b) 2(a+b)16.∫xsin(x)dx = sin(x)-xcos(x)+C17.∫xcos(x)dx = cos(x)+xsin(x)+C18.∫x 2sin(x)dx = (2-x 2)cos(x)+2xsin(x)+C19.∫x 2cos(x)dx = (x 2-2)sin(x)+2xcos(x)+C20.∫e x dx = e x +C21.∫ a dx = a log |x| (a 为常数) x。

《高等数学》专升本教学大纲

《高等数学》专升本教学大纲

专升本《高等数学》课程教学大纲一、适用对象适用于网络教育、成人教育学生二、课程性质高等数学是大学各专业的公共基础课,在培养高素质人才中具有独特的、不可替代的重要作用。

通过本门课程的学习,要使学生获得高等数学的基本理论、基本方法和基本运算技能,为学习后续课程和进一步获得数学知识奠定基础。

前序课程:初等数学、高等数学前三章三、教学目的通过各个教学环节逐步培养学生具有抽象概括问题的能力、逻辑推理能力、空间想象能力、创造性思维能力和自学能力,还要特别注意培养学生具有比较熟练的运算能力和综合运用所学数学知识分析问题和解决问题的能力。

四、教材及学时安排教材:《高等数学》电子科技大学出版社,2014年学时安排:五、教学要求第四章不定积分教学要求:1、理解原函数与不定积分的概念;2、了解不定积分的性质;3、灵活运用基本积分公式及方法;4、灵活运用换元积分法、分部积分法求不定积分;5、掌握简单的有理函数的积分法。

内容要点:4.1:原函数与不定积分的概念4.2:不定积分的性质和基本积分公式4.3:换元积分法4.4:分部积分法第五章定积分及其应用教学要求:1、理解定积分概念与性质;2、掌握积分上限函数及其导数,掌握牛顿-莱布尼兹公式;3、灵活运用换元积分法、分部积分法求定积分;4、掌握定积分的几何应用。

内容要点:5.1:定积分概念与性质5.2:微积分基本公式5.3:定积分的换元法与分部积分法5.5:定积分的应用第六章常微分方程教学要求:1、了解常微分方程及其解、通解、初始条件和特解等概念;2、掌握可分离变量方程及一阶线性方程的解法;内容要点:6.1:微分方程的基本概念6.2:一阶微分方程。

专升本高数不定积分的求解技巧

专升本高数不定积分的求解技巧

专升本高数不定积分的求解技巧高等数学中的不定积分是一个非常重要的概念,它是求解函数的原函数的方法之一。

由于不定积分的求解过程相对于定积分更加灵活,所以在专升本高数考试中,不定积分的求解技巧也是非常重要的。

下面我将为你介绍一些常用的不定积分求解技巧。

技巧一:常数项的处理在求解不定积分的时候,往往会出现一个常数项。

此时,我们可以将常数项视为一个新的常数,直接对函数进行积分即可。

例如对于f(x) = x^2 + 2x + 1来说,我们可以将其不定积分表示为F(x) = x^3/3 + x^2 + x + C,其中C是常数项。

技巧二:换元法换元法是不定积分中最常用的一种求解方法。

所谓换元法,就是通过变量的代换,将原函数转化为一个新的函数,使得新的函数更容易求解。

具体而言,我们可以通过以下步骤进行换元法求解积分:1.将被积函数中的某个变量用一个新的变量来代替,使得被积函数中的求导和化简更加容易。

2.求出新变量关于原变量的导数,并将原变量用新变量表达式表示出来。

3.将被积函数中的原变量全部用新变量表示出来,并求出新变量对应的极限。

4.将积分上下限转化为新变量的上下限,并对新变量进行积分。

技巧三:分部积分法分部积分法又称为“乘法法则的逆运算”,它可以将一个复杂的不定积分转化为两个简单的不定积分。

具体而言,我们可以通过以下步骤进行分部积分法求解积分:1.根据乘法法则将被积函数中的两个函数进行拆分,并选择其中一个函数进行求导。

2.将求导后的函数与未求导的函数相乘,得到新的积分表达式。

3.将新的积分表达式进行化简,并对其进行求解。

4.根据分部积分法的公式,将原来的积分表达式拆分,并分别进行求解。

技巧四:有理函数的部分分式分解有理函数的部分分式分解是将一个有理函数分解为一系列分式的和的过程,从而可以更方便地对原函数进行求解。

具体而言,我们可以通过以下步骤进行有理函数的部分分式分解:1.将有理函数进行因式分解。

2.对于每个不可约的因子,确定其分解式的形式。

黑龙江统招专升本高等数学第四章不定积分

黑龙江统招专升本高等数学第四章不定积分

黑龙江统招专升本高等数学第四章不定积分一、考试范围(1)不定积分的概念:原函数与不定积分的定义、原函数存在定理、不定积分的性质、不定积分几何意义(2)不定积分性质(2)基本积分公式(3)换元积分法:第一换元法(凑微分法)第二换元法(三角代换、简单根式代换)(4)分部积分法(5)一些简单有理函数的积分二、学习达到目标(1)理解原函数与不定积分概念及关系,掌握不定积分性质,了解原函数存在定理。

(2)熟练掌握不定积分的基本公式。

(3)熟练掌握不定积分第一换元法,掌握第二换元法(限于三角代换与简单的根式代换)。

(4)熟练掌握不定积分的分部积分法。

(5)会求简单有理函数的不定积分。

三、常用基础公式基本积分公式()()()()112,1113,ln 04,,1ln 5,u ux xx x kdx kx C k x x dx C u u dx x C x xa a dx C a o a ae dx e C+=+=+≠-+=+≠=+>≠=+⎰⎰⎰⎰⎰,为常数 22226,sin cos 7,cos sin 8,sec tan 9,csc cot 10,sec tan sec 11,csc cot csc 12,arcsin 1113,arctan 114tan ln cos 15,cot ln sin 16,sec xdx x C xdx x C xdx x C xdx x C x xdx x C x xdx x C dx x Cx dx x Cx xdx x C xdx x C=-+=+=+=-+=+=-+=+-=++=-+=+⎰⎰⎰⎰⎰⎰⎰⎰⎰,()()()222222222222222ln sec tan 17csc ln csc cot ln tan 21118,arctan 1119,ln 220,arcsin 021,arcsin 02222,ln 0xdx x x C xxdx x x C C xdx C a x a a a xdx Ca x a a xxdx C a a a x a x x a x dx a x C a a dx x x a C a x a =++=-+=+=+++=+--=+>--=+-+>=+±+>±⎰⎰⎰⎰⎰,三、历年命题趋势研判2014 2015 2016 2017 2018 2019 平均分 题号选择题(13、14) 计算题(24)选择题(13、14) 计算题(24)选择题(12、13、14)计算题(24)选择题(12、13、14)计算题(24)选择题(7、13、14、15) 计算题(24)选择题(7、12、13、14、15)计算题(24)分值 18 18 22 22 263023命题趋势:这几年对不定积分的考察有所提升。

专升本高数不定积分基础题

专升本高数不定积分基础题

专升本高数不定积分基础题
本文以专升本高数不定积分基础题为核心,旨在帮助专升本考生对不定积分的基本概念和相关解题策略有更深入的认识。

首先,让我们明确一下,什么是不定积分?不定积分是微积分的一种,它涉及新变量的概念,试图求出一个函数的定积分在某一点的值,即某个函数的不定积分的值。

一般来说,不定积分可以用一定的解析函数来解决。

其次,我们来介绍一下,专升本考生应如何计算不定积分?在计算不定积分时,专升本考生实际上应当掌握以下基础知识:首先,要熟悉不同函数的不定积分计算公式;其次,要懂得在实际应用中如何利用不定积分解题;最后,要牢记常见函数的不定积分表达式,以及这些函数的特殊情况下的不定积分计算公式。

此外,专升本考生在计算不定积分时,还应当学会运用不定积分中的数学变换技巧,即将不定积分的计算表达式转换成可以进行定积分计算的表达式,以便进行更加准确的计算。

最后,专升本考生应在练习不定积分计算时,采用梳理发散、小步进行的方法,在计算中不要急于求解答案,而是先熟悉题干中出现的函数,再针对计算公式进行分析,只有熟悉基本概念和步骤,才能正确解答题目,取得良好的成绩。

综上所述,不定积分是专升本考生在备考过程中必须掌握的重要知识点,对考生来说,掌握不定积分基本概念和解题策略,并积极进行练习,才能在考试中取得理想的成绩。

2024重庆专升本高数考纲

2024重庆专升本高数考纲

2024重庆专升本高数考纲考试科目:高等数学考试时间:3小时考试形式:闭卷考试考试范围:根据2024年重庆专升本高数考纲的要求,考试范围涵盖以下内容:第一章:函数与极限1. 函数的概念与性质2. 三角函数与反三角函数3. 极限的概念与性质4. 极限计算5. 极限存在准则第二章:导数与微分1. 导数的概念与性质2. 基本导数公式3. 已知函数及其导数求其他函数导数4. 高阶导数5. 微分的概念与性质第三章:积分与不定积分1. 定积分与不定积分的概念与性质2. 不定积分的计算3. 定积分的计算4. 牛顿—莱布尼茨公式5. 曲线的面积与弧长第四章:微分方程1. 微分方程的基本概念与解法2. 一阶线性微分方程3. 可分离变量的微分方程4. 高阶线性微分方程第五章:级数1. 级数的概念与性质2. 正项级数的审敛法3. 收敛级数的性质4. 幂级数的收敛域与展开式5. 泰勒展开与函数的应用考试要求:1. 考生需熟练掌握每个章节的基本概念、定理和公式,具备基本的计算能力和问题解决能力。

2. 考生需要理解数学概念的几何意义和实际应用,并能够将数学知识应用到实际问题中。

3. 考试重点关注对基本概念的理解与应用能力,能够熟练计算各种题型,并正确使用公式和定理解决问题。

4. 考试中会出现应用题,要求考生能够将数学知识与实际情况结合,并能清晰表达解题思路和方法。

5. 考试要求考生在规定时间内完成试卷,要求答案准确、清晰、简洁。

答案中需要有必要的计算过程和推理过程。

考试评分:1. 考试总分为150分,按照难易程度和题型的权重划分分值。

2. 题型包括选择题、计算题和应用题,每种题型的分值占比根据考试题目而定。

3. 考试评分以答案的准确性、清晰度和完整度为主要评判标准。

考生在答题时应严格按照要求书写答案,注意排版整洁美观,并标明计算过程和推理过程。

希望广大考生能够充分准备,理解并掌握2024年重庆专升本高数考纲的要求,提前复习并解决潜在的问题,以取得优异的成绩。

(专升本)第四章不定积分

(专升本)第四章不定积分

第四章不定积分【考试要求】1.理解原函数与不定积分的概念及其关系,掌握不定积分的性质,了解原函数存在定理.2.熟练掌握不定积分的基本公式.3.熟练掌握不定积分的第一类换元法,掌握第二类换元法(限于三角代换与简单的根式代换).4.熟练掌握不定积分的分部积分法.【考试内容】一、原函数与不定积分的概念1.原函数的定义如果在区间I上,可导函数()F x 的导函数为()f x ,即对任一x I∈,都有()()F x f x '=或()()dF x f x dx =,那么函数()F x 就称为()f x (或()f x dx )在区间I 上的原函数.例如,因(sin)cos x x '=,故sin x 是cos x 的一个原函数.2.原函数存在定理如果函数()f x 在区间I 上连续,那么在区间I 上存在可导函数()F x ,使对任一x I ∈都有()()F x f x '=.简单地说就是,连续函数一定有原函数.3.不定积分的定义在区间I 上,函数()f x 的带有任意常数项的原函数称为()f x (或()f x dx )在区间I 上的不定积分,记作()f x dx ⎰.其中记号⎰称为积分号,()f x 称为被积函数,()f x dx 称为被积表达式,x 称为积分变量.如果()F x 是()f x 在区间I 上的一个原函数,那么()F x C +就是()f x 的不定积分,即()()f x dx F x C =+⎰,因而不定积分()f x dx ⎰可以表示()f x 的任意一个原函数.函数()f x 的原函数的图形称为()f x 的积分曲线.4.不定积分的性质(1)设函数()f x 及()g x 的原函数存在,则[()()]()()f x g x dx f x dx g x dx ±=±⎰⎰⎰.(2)设函数()f x 的原函数存在,k 为非零常数,则()()kf x dx k f x dx =⎰⎰.5.不定积分与导数的关系(1)由于()f x dx ⎰是()f x 的原函数,故()()d f x dx f x dx ⎡⎤=⎣⎦⎰或()()d f x dx f x dx⎡⎤=⎣⎦⎰.(2)由于()F x 是()F x '的原函数,故()()F x dx F x C'=+⎰或()()dF x F x C=+⎰.二、基本积分公式1.kdx kx C=+⎰(k 是常数)2.11x x dx C μμμ+=++⎰(1μ≠-)3.1ln dx x C x =+⎰4.21arctan 1dx x Cx =++⎰5.arcsin dx x C=+⎰6.cos sin xdx x C =+⎰7.sin cos xdx x C=-+⎰8.221sec tan cos dx xdx x Cx ==+⎰⎰9.221csc cot sin dx xdx x Cx ==-+⎰⎰10.sec tan sec x xdx x C=+⎰11.csc cot csc x xdx x C =-+⎰12.xxe dx e C =+⎰13.ln xxa a dx C a=+⎰*14.tan ln cos xdx x C =-+⎰*15.cot ln sin xdx x C =+⎰*16.sec ln sec tan xdx x x C =++⎰*17.csc ln csc cot xdx x x C =-+⎰*18.2211arctan xdx C a x a a=++⎰*19.2211ln 2x adx Cx a a x a -=+-+⎰*20.arcsinx dx C a=+⎰*21.ln(x C =++⎰*22.ln dx x C=+⎰说明:带“*”号的公式大家可以不记住,但必须会推导.三、第一类换元法(凑微分法)1.定理若()f u ,()x ϕ及()x ϕ'都是连续函数,且()()f u du F u C =+⎰,则[()]()[()]f x x dx F x C ϕϕϕ'=+⎰.2.常用凑微分公式(1)1()()dxd x b d ax b a=+=+(a ,b 均为常数且0a ≠)(2)11()1aa x dx d xb a +=++(a ,b 均为常数且1a ≠-)2211()()22xdx d x d x b ==+2dx d =(3)1(ln )(ln )dx d x d x b x==+(4)()()xx x edx d e d e b ==+(5)11()()ln ln xx x adx d a d a b a a==+(6)sin (cos )(cos )xdx d x d x b =-=-+(7)cos (sin )(sin )xdxd x d x b ==+(8)2sec (tan )(tan )xdx d x d x b ==+(9)2csc(cot )(cot )xdx d x d x b ==+(10(arcsin )(arcsin )dx d x d x b ==+(11)21(arctan )(arctan )1dx d x d x b x==++(12)22211[ln(1)][ln(1)]122x dx d x d x b x =+=+++四、第二类换元法定理:设()f x 连续,()x t ϕ=及()t ϕ'都是连续函数,()x t ϕ=的反函数1()t x ϕ-=存在且可导,并且[()]()()f t t dt F t C ϕϕ'=+⎰,则1()[()]f x dx F x Cϕ-=+⎰.说明:第二类换元法常见是三角代换,三角代换的目的是化掉根式,一般有如下情形:(1sin x a t =;(2,可令tan xa t =;(3sec x a t =.五、分部积分法1.公式的推导设函数()uu x =及()v v x =具有连续导数,那么两个函数乘积的导数公式为()uv u v uv '''=+,移项,得()uv uv u v '''=-,对这个等式两边求不定积分,得uv dx uv u vdx ''=-⎰⎰,为简便起见,上述公式也写为udv uv vdu=-⎰⎰.2.注意事项(1)如果被积函数是幂函数和正(余)弦函数或幂函数和指数函数的乘积,就可以考虑用分部积分法,并设幂函数为u ,这样用一次分部积分法就可以使幂函数的幂次降低一次(这里假定幂指数是正整数).(2)如果被积函数是幂函数和对数函数或幂函数和反三角函数的乘积,就可以考虑用分部积分法,并设对数函数或反三角函数为u (有时也可利用变量代换).(3)根据范围I 的边界值与()f x '的情况,导出所需要证明的不等式即可.六、简单有理函数的不定积分分子分母均为x 的多项式的分式函数称为有理函数,简单有理函数可通过适当变换如加项、减项等分解为可求不定积分的简单函数.或u ,由于这样的变换具有反函数,且反函数是u 的有理函数,因此原积分即可化为有理函数的积分.【典型例题】【例4-1】计算下列不定积分.1.2x xedx ⎰.解:222211()22x x x xe dx e d x e C ==+⎰⎰.2.21xdx x +⎰.解:2222111(1)ln(1)1212x dx d x x C x x =+=++++⎰⎰.3.221(1)x x dx x x +++⎰.解:2222221111(1)(1)(1)1x x x x dx dx dx dxx x x x x x x x +++=+=+++++⎰⎰⎰⎰⎰arctan ln x x C =++.4.ln x dx x ⎰.解:2ln 1ln (ln )ln 2x dx xd x x Cx ==+⎰⎰.5.1ln dx x x ⎰.解:11(ln )ln ln ln ln dx d x x C x x x ==+⎰⎰.6.sec (sec tan )x x x dx -⎰.解:2sec (sec tan )sec sec tan x x x dx xdx x xdx-=-⎰⎰⎰tan sec x x C =-+.7.2sin xdx ⎰.解:21cos 211sin cos 2222x xdx dx dx xdx-==-⎰⎰⎰⎰11sin 224x x C =-+.8.2cos xdx ⎰.解:21cos 211cos cos 2222x xdx dx dx xdx +==+⎰⎰⎰⎰11sin 224x x C =++.9.2tan xdx ⎰.解:222tan (sec 1)sec tan xdx x dx xdx dx x x C =-=-=-+⎰⎰⎰⎰.10.2cot xdx ⎰.解:222cot (csc 1)csc cot xdx x dx xdx dx x x C=-=-=--+⎰⎰⎰⎰.11.11x dx e +⎰.解:11(1)1111x x x xx x x x e e e e dx dx dx dx dx e e e e +-==-=-++++⎰⎰⎰⎰⎰1(1)ln(1)1x xxdx d e x e C e=-+=-+++⎰⎰.12.21825dx x x -+⎰.解:22211114825(4)99()13dx dx dxx x x x ==--+-++⎰⎰⎰211414()arctan 43333()13x x d C x --==+-+⎰.13.25sin cos x xdx ⎰.解:原式2242sincos (sin )sin (1sin )(sin )x xd x x x d x ==-⎰⎰246(sin 2sin sin )(sin )x x x d x =-+⎰357121sin sin sin 357x x x C =-++.14.cos3cos 2x xdx ⎰.解:111cos3cos 2(cos cos5)sin sin 52210x xdx x x dx x x C =+=++⎰⎰.【例4-2】计算下列不定积分.1.cos x xdx ⎰.解:cos (sin )sin sin sin cos x xdx xd x x x xdx x x x C ==-=++⎰⎰⎰.2.x xe dx ⎰.解:()(1)x x x x x x xxe dx xd e xe e dx xe e C x e C ==-=-+=-+⎰⎰⎰.3.ln x xdx ⎰.解:222221ln ln ()ln (ln )ln 22222x x x x x x xdx xd x d x x dx x==-=-⋅⎰⎰⎰⎰222ln ln 2224x x x x x dx x C =-=-+⎰.说明:此题也可用变量代换解,即令lnx t =,则t x e =,t dx e dt =,故原式2222111()222tttt t te t e dt te dt td e dt =⋅⋅===-⎰⎰⎰⎰2222221111ln ln 242424t t x x te e C x x x C x C =-+=⋅-+=-.4.arctan x xdx ⎰.解:222arctan arctan ()arctan (arctan )222x x x x xdx xd x d x ==-⎰⎰⎰22222111arctan (1)221221x x x x dx x dx x x =-⋅=--++⎰⎰211arctan arctan 222x x x x C =-++.5.ln xdx ⎰.解:1ln ln (ln )ln ln xdx x x xd x x x x dx x x x Cx =-=-⋅=-+⎰⎰⎰.6.arctan xdx ⎰.解:2arctan arctan (arctan )arctan 1xxdx x x xd x x x dx x=-=-+⎰⎰⎰2221(1)1arctan arctan ln(1)212d x x x x x x C x +=-=-+++⎰.7.cos x e xdx ⎰.解:原式(sin )sin sin sin (cos )x x x x xe d x e x x e dx e x e d x ==-⋅=+⎰⎰⎰sin cos cos x x x e x e x x e dx =+-⋅⎰,所以1cos (sin cos )2xx e xdx e x x C =++⎰.8.sin(ln )x dx ⎰.解:1sin(ln )sin(ln )cos(ln )x dx x x x x dx x =-⋅⎰⎰sin(ln )x x =-1cos(ln )sin(ln )cos(ln )[sin(ln )]x dx x x x x x x dx x =-+-⋅⎰⎰sin(ln )cos(ln )sin(ln )x x x x x dx =--⎰,故1sin(ln )sin(ln )cos(ln )]2x dx x x x x C=-+⎰.说明:此题也可用变量代换法求解,即令ln t x =,则t x e =,t dx e dt =,则原式sin sin ()sin cos t t t tt e dt td e e t e tdt=⋅==-⎰⎰⎰sin cos ()sin cos (sin )t t t t t e t td e e t e t e t dt=-=-+-⎰⎰,故原式11(sin cos )[sin(ln )cos(ln )]22t t e t e t C x x x x C =-+=-+.【例4-3】计算下列不定积分.1.2156x dx x x +-+⎰.解:被积函数的分母分解成(2)(3)x x --,故可设215632x A Bx x x x +=+-+--,其中A 、B 为待定系数.上式两端去分母后,得1(2)(3)x A x B x +=-+-,即1()23x A B x A B +=+--.比较此式两端同次幂的系数,即有1A B +=,231A B +=-,从而解得4A =,3B =-,于是2143(4ln 33ln 25632x dx dx x x Cx x x x +=-=---+-+--⎰⎰.2.22(21)(1)x dx x x x ++++⎰.解:设222(21)(1)211x A Bx Cx x x x x x ++=+++++++,则22(1)()(21)x A x x Bx C x +=+++++,即22(2)(2)x A B x A B C x A C +=++++++,有20,21,2,A B A B C A C +=⎧⎪++=⎨⎪+=⎩解得2,1,0.A B C =⎧⎪=-⎨⎪=⎩于是2222()(21)(1)211x xdx dxx x x x x x +=-++++++⎰⎰22221(21)11(1)1ln 21ln 211321212()24x d x x dxx dx x x x x x x +-++=+-=+-++++++⎰⎰21ln 21ln(1)2x x x C =+-+++.3.1x dx x⎰.解:为了去掉根号,可以设u =,于是21x u =+,2dx udu =,故222211222(1)111u u dx udu du du x u u u=⋅==-+++⎰⎰⎰⎰2(arctan )arctan u u C C=-+=+.4.⎰.解:为了去掉根号,可以设u =,于是32x u =-,23dx u du =,故22313(1)3(ln 1)112u u du u du u u C u u ==-+=-+++++⎰⎰3ln 1C =-+.【例4-4】设()arcsin xf x dx x C =+⎰,求1()dx f x ⎰.解:对等式()arcsin xf x dx x C=+⎰两边对x求导,可得()xf x =则()f x =,故211()(1)()2dx x f x ==--⎰⎰⎰332222121()(1)(1)233x C x C =-⋅-+=--+.【例4-5】已知sin xx是()f x 的一个原函数,求()xf x dx '⎰.解:因为sin xx是()f x 的一个原函数,所以2sin cos sin ()()x x x xf x x x -'==且sin ()xf x dx C x=+⎰,故根据不定积分的分部积分法可得2cos sin sin ()()()()x x x xxf x dx xdf x xf x f x dx x C x x-'==-=⋅+⎰⎰⎰cos sin sin 2sin cos x x x x xC x C x x x-=-+=-+.【历年真题】一、选择题1.(2009年,1分)下列等式中,正确的一个是()(A )()()f x dx f x '⎡⎤=⎣⎦⎰(B )()()df x dx f x ⎡⎤=⎣⎦⎰(C )()()F x dx f x '=⎰(D )()()d f x dx f x C ⎡⎤=+⎣⎦⎰解:选项(A )正确;()()d f x dx f x dx ⎡⎤=⎣⎦⎰,故选项(B )和选项(D )均不正确;()()F x dx F x C '=+⎰,故选项(C )错误.故选(A ).2.(2007年,3分)设21()f x x'=(0x >),则()f x =()(A )2x C +(B )ln x C +(C)C +(DC +解:令2xt =,因0x >,故x =21()f x x'=变为()f t '=,该式两边对x取不定积分得,()f t C ==⎰,即()f x C =+.选(C ).3.(2006年,2分)若11()xxf x edx eC --=+⎰,则()f x =()(A )1x(B )1x -(C )21x(D )21x-解:等式11()xxf x edx eC--=+⎰两边对x 求导得,1121()xxf x ee x--=⋅,故21()f x x=.选项(C )正确.4.(2005年,3分)ln sin tan xd x =⎰()(A )tanln sin x x x c -+(B )tanln sin x x x c++(C )tan ln sin cos dx x x x-⎰(D )tan ln sin cos dxx x x+⎰解:ln sin tan tan ln sin tan (ln sin )xd x x x xd x =-⎰⎰cos tan ln sin tan tan ln sin sin xx x xdx x x x C x=-=-+⎰.选项(A )正确.二、填空题1.(2010年,2分)不定积分()df x =⎰.解:根据不定积分与微分的关系可得,()()df x f x C =+⎰.2.(2009年,2分)设()xf x e-=,则(ln )f x dx x'=⎰.解:由题意,()x f x e -=,则()x f x e -'=-,那么ln 1(ln )x f x e x-'=-=-,于是2(ln )11f x dx dx C x x x'==-+⎰⎰.三、计算题1.(2010年,5分)求不定积分2ln 1x dx x -⎰.解:2ln 11ln 11(ln 1)()()(ln 1)x x dx x d d x x x x x --=--=----⎰⎰⎰21ln 11ln 1ln x x xdx C C x x x x x--=+=-+=-+⎰.2.(2009年,5分)求不定积分⎰.解:ln (ln )xd x x ==-⎰⎰⎰x x C =-=-⎰.3.(2006年,4分)若2()f x dx x C =+⎰,求2(1)xf x dx -⎰.解:等式2()f x dx x C=+⎰两边对x 求导,可得()2f x x =,则22(1)2(1)f x x -=-,从而223241(1)2(1)(22)2xf x dx x x dx x x dx x x C-=-=-=-+⎰⎰⎰.4.(2005年,5分)求不定积分12cos dx x +⎰.解:2222sec 2(tan )11222cos 12cos 2sec 3tan222x xd dx dx dx x x x x ===++++⎰⎰⎰⎰令tan 2xt =,则原式22222233[1]]dt dt t t ===+++⎰⎰⎰tan 2x C C ⎛⎫ ⎪=+=+ ⎝⎭.四、应用题或综合题1.(2008年,8分)设()f x 的一个原函数为ln x ,求()()f x f x dx '⎰.解:因ln x 是()f x 的一个原函数,故1()(ln )f x x x '==,211()()f x x x''==-,从而2321111()()()2f x f x dx dx dx Cx x x x'=⋅-=-=+⎰⎰⎰.说明:此题也可用分部积分解之,步骤如下.因2()()()()()()()f x f x dx f x df x f x f x f x dx ''==-⎰⎰⎰,故2221111()()()222f x f x dx f x C C Cx x⎛⎫'=+=+=+ ⎪⎝⎭⎰.。

河南省普通专升本高等数学教材

河南省普通专升本高等数学教材

河南省普通专升本高等数学教材高等数学教材第一章:函数与极限1.1 函数的概念函数是一种特殊的关系,它将一个自变量映射到一个因变量上。

函数的定义域、值域、图像等基本概念要通过例题进行说明和讲解。

1.2 函数的性质与运算介绍函数的奇偶性、周期性、单调性等基本性质,并讲解函数的四则运算、复合运算等。

1.3 极限的概念与性质引入极限的概念,重点讲解极限的局部有界性、保序性、保号性等基本性质,同时介绍重要的极限定理和计算极限的方法。

第二章:导数与微分2.1 导数的概念与几何意义介绍导数的定义及其几何意义,包括切线与函数图像的关系等。

2.2 导数的基本公式与性质讲解导数的基本运算法则,如四则运算、复合运算、反函数的导数等。

2.3 高阶导数与相关公式深入研究高阶导数的概念和计算方法,并介绍莱布尼茨公式等相关公式。

第三章:微分中值定理与应用3.1 罗尔中值定理详细讲解罗尔中值定理的假设、结论以及证明思路,并通过实例解释应用。

3.2 拉格朗日中值定理介绍拉格朗日中值定理的条件和结论,包括柯西中值定理的特殊情况。

3.3 应用题解析通过一些实际问题,例如曲线的凹凸性、最值问题等,来解释中值定理的应用。

第四章:不定积分与定积分4.1 不定积分的定义与基本性质介绍不定积分的概念与基本性质,讲解几个常用的不定积分法则。

4.2 定积分的概念与性质引入定积分的概念,介绍黎曼积分的定义、性质和存在性。

4.3 定积分的计算方法讲解定积分的计算方法,包括换元积分法、分部积分法和分段积分法等。

第五章:微分方程基本概念与常微分方程5.1 微分方程的概念与基本性质介绍微分方程的定义、分类及基本性质,例如线性微分方程和常系数线性微分方程。

5.2 常微分方程的解法讲解一阶常微分方程和二阶常微分方程等基本类型的解法,包括常数变易法、齐次线性微分方程的解法等。

5.3 应用问题分析通过一些实际问题,例如生物衰变问题和弹簧振动问题,来引入微分方程解的应用。

专转本中不定积分的解题思路和方法

专转本中不定积分的解题思路和方法

专转本中不定积分的解题思路和方法专转本中不定积分的解题思路和方法&ldquo;专转本&rdquo;作为构建人才成长立交桥的重要组成部分,为高职高专学生转入本科学习深造架起了通道,这对提高高职教育的地位、调动学生的学习积极性有极大的益处。

目前高等数学是每个理工科学生专转本必考的科目,也是容易拉分的科目。

而专转本中一元函数微积分的比重较大,占60%左右,不定积分又是一元函数微积分中比重最大的部分,也是容易失分的部分。

根据多年的教学经验,笔者认为只要掌握了专转本高等数学考试对不定积分考点的要求,掌握其中的规律,提高考试成绩也并非难事。

下面笔者就近4年的专转本高等数学试卷中一元函数不定积分部分来具体谈谈如何掌握考试技巧。

一、不定积分定义的考查专转本高等数学首先对不定积分考查的是不定积分的定义。

实际上f(x)的不定积分就是求f(x)的所有原函数,一般用F(x)+c 表示,其中c为常数,F&prime;(x)=f(x)。

如2009第5题:设F (x)=ln(3x+1)是函数f(x)的一个原函数,求?蘩f&prime;(2x+1)dx。

我们解答这道题目的要点就是不定积分的定本文由收集整理义,?蘩f&prime;(2x+1)dx=■?蘩f&prime;(2x+1)d(2x+1)=■f(2x+1)+c,f(x)=F&prime;(x)=■,&there4;?蘩f&prime;(2x+1)dx=■+c 论文网再如2011年第15题:设f(x)的一个原函数为x2sinx,求不定积分?蘩■dx。

根据不定积分的定义易知f(x)=(x2sinx)&prime;=2xsin x+x2cosx。

所以?蘩■dx=?蘩(2sin x+xcos x)dx=-2cos x+?蘩xd(sin x)=-2cos x+xsin x-cosx+c二、不定积分的常用求解方法的考查不定积分的常用求解方法有第一类换元积分法、第二类换元积分法和分部积分法。

高等数学第四章《不定积分》

高等数学第四章《不定积分》

第四章 不定积分 一、基本内容(一)主要定义【定义4.1】 若在()f x 的定义区间M 上均满足()()F x f x '=,则称函数()F x 是()f x 在M 上的一个原函数.【定义4.2】 ()f x 的原函数的一般表达式()F x C +称为 ()f x 的不定积分,记成()().f x dx F x C =+⎰(二)性质与定理【定理4.1】 设()f x 在(,)a b 上连续,则必存在原函数. 性质 以下均假设()f x 和()g x 在所讨论的区间上连续,则 1、 (())()f x dx f x '=⎰, ()()d f x dx f x dx =⎰.2、 ()()f x d xf x C '=+⎰,()()df x f x C =+⎰. 3、 (()())()()f x g x d x f x d xg x d x±=±⎰⎰⎰. 4、()(),kf x dx k f x dx =⎰⎰ 常数0.k ≠(三) 基本积分公式 1、11(1)1x dx x C αααα+=+≠-+⎰, 2、1ln ,dx x C x=+⎰ 3、(0,1)ln xxa a dx C a a a=+>≠⎰, 4、,x x e dx e C =+⎰ 5、sin cos xdx x C =-+⎰ 6、cos sin xdx x C =+⎰7、tan ln cos xdx x C =-+⎰ 8、cot ln sin ,xdx x C =+⎰9、sec ln sec tan xdx x x C =++⎰ 10、csc ln csc cot ,xdx x C =-+⎰11、2sec tan xdx x C =+⎰ 12、2csc cot ,xdx x C =-+⎰13、2211tan x dx arc C a a a x =++⎰ 14、2211ln ,2a xdx C a a xa x +=+--⎰15、arcsinx C a =+ 16、ln .dx x C =+ (四)基本积分方法 第一类换元法(凑微分法)(())()(())()f x x dx f x d x φφφφ'=⎰⎰ 令()u x φ=()()(())f u du F u C F x C φ==+=+⎰常见的几种凑微分形式: 1、1()()(),0f ax b dx f ax b d ax b a a +=++≠⎰⎰2、2221()(2)()(),f ax bx c ax b dx f ax bx c d ax bx c a +++=++++⎰⎰3、1(ln )(ln )ln ,dx f x f x d xx a =⎰⎰ 4、2f f =⎰⎰ 5、(sin )cos (sin )sin ,f x xdx f x d x =⎰⎰ 6、(cos )sin (cos )cos ,f x xdx f x d x =-⎰⎰ 7、2(tan )sec (tan )tan ,f x xdx f x d x =⎰⎰8、(sin (sin )sin ,f arc x f arc x darc x =⎰⎰9、2(tan )(tan )tan .1dxf arc x f arc x darc x x=+⎰⎰ 第二类换元积分法设()f x 连续,()x t φ=具有连续导数()t φ',且()0,t φ'≠则()()()((())())t x f x dx x t f t t dt ψφφφ='=⎰⎰其中右边表示对t 积分后再以()x t φ=的反函数()t x ψ=代回成x 的函数. 常见的几种类型的换元法: 以下式子中,(,)R u v 表示,u v 的有理函数.1、(,(R x dx R x dx ⎰⎰型,0a >含,令sin ,cos ;x a t dx a tdt == 含 ,令tan ,x a t =2sec ;dx a tdt =含 ,令sec ,sec tan ;x a t dx a t tdt ==2、(R x dx ⎰型,0a ≠令1,,.mn mn t b mn t x dx t dt a a--===3、(R x dx ⎰型.2222(),,,()dt b a ad bc t t x dx dt a ct a ct --===--其中设0.ad bc -≠ 4、(sin ,cos )R x x dx ⎰型.令tan ,2x t =则2222212sin ,cos ,.111t t x x dx t t t -==+++ 分部积分法设()()u x v x 、均有连续导数,则()()()()()()u x dv x u x v x v x du x =-⎰⎰分部积分法的关键就是选择好()()u x v x 与,其中()u x 的选取顺序为对数函数、反三角函数、幂函数、指数函数、三角函数这五种函数位置靠前者.如3xx e dx ⎰首先变形为3x x de⎰再用公式计算.二、典型例题解析(一) 填空题 【例4.1】= 解=C =+.C . 【例4.2】(98,数二)= .解1=2arcsin 2x C -=+. 解2===2arcsin 2C +. 故应填2arcsin2x C -+ 或2arcsin 2C +. 【例4.3】= . 解1=dx C =+=+⎰解2 令t =22(3)t dt =+⎰312(3)3t t C =++122(3)(6)3x x C =-++故应填122(3)(6)3x x C -++C . 【例4.4】 2xx e dx =⎰解2x x e dx =⎰2x x de ⎰22x x x e xde =-⎰222x x x x e xe e dx =-+⎰2(22)x e x x C =-++,故应填 2(22)x e x x C -++.【例4.5】2ln 1x dx x -=⎰ 解 2l n 1x dx x -=⎰1(l n 1)x d x --⎰2l n 1x d x x x -=-+⎰ln xC x=-+, 故应填. ln xC x-+ 【例4.6】()xf x dx ''=⎰解()xf x dx ''=⎰()xdf x '⎰()()xf x f x dx ''=-⎰. 故应填 ()()x f x f x C'-+ 【例4.7】22156x dx x x -=-+⎰ . 解 22156x dx x x -=-+⎰53()32dx x x ---⎰5l n 33l n 2x x C=---+ 53(3)ln (2)x C x -=+- 故应填 53(3)ln (2)x C x -+-. 【例4.8】(99,数二)25613x dx x x +=-+⎰ .解 25613x dx x x +=-+⎰21(26)82613x dx x x -+-+⎰2221(613)(3)82613(3)4d x x d x x x x -+-=+-+-+⎰⎰ 213ln(613)4arctan 22x x x C -=-+++ 故应填 213ln(613)4arctan22x x x C --+++. 【例4.9】x dx =⎰解 由于 ,0,0x x x x x ≥⎧=⎨-<⎩,所以x dx =⎰2122,02,02x C x x C x ⎧+≥⎪⎪⎨⎪-+<⎪⎩,由于x 是连续的,则存在可导的原函数,从而原函数在0x =连续,固12C C C ==. 从而x dx =⎰12x x C +,故应填 12x x C +. 【例4.10】 设2sin x 是()f x 的一个原函数,则2()x f x dx =⎰解1 ()f x 22(sin )2cos x x x '==,则2()x f x dx =⎰322cos x x dx ⎰22sin x d x =⎰222sin 2sin x x x x dx =-⎰222sin cos x x x C =++,解2 由于2sin x 是()f x 的一个原函数,则2()x f x dx =⎰22sin x d x ⎰222sin 2sin x x x x dx =-⎰222sin cos x x x C =++, 故应填 222s i n c o s x x x C ++(二)选择题【例4.11】 下列结论正确的是 [ ] (A) 21x -在(1,1)-上的原函数为1x ;(B)121arctan ,1dx x C x -=-++⎰ 2211arctan ,1dx C xx -=++⎰ 即1arctan ,arctan x x-为同一个函数的原函数,彼此差一常数.(C) 符号函数sgn x 在(,)-∞+∞上存在原函数.(D )112sin cos ,0()0,0x x f x x xx ⎧-≠⎪=⎨⎪=⎩ 在(,)-∞+∞存在原函数,所以不连续函数也可以存在原函数.解 若()f x 在区间I 内有原函数()F x ,则()F x 在I 内一定是连续函数, ()f x 在I 内却不一定连续.(A )中函数1x 在0点不连续;(B )中函数1arctan x在0点不连续,因而与arctan x 不是同一函数的原函数;(C )中符号函数在(,)-∞+∞上不存在原函数;(D )中()f x 的原函数为21sin ,0()0,0x x F x xx ⎧≠⎪=⎨⎪=⎩,故选答案D. 【例4.12】 设()ln f x dx x x C =+⎰,则()f x = [ ](A )ln 1x + (B )ln x . (C )x (D )ln x x解 由不定积分定义()(ln )ln 1,f x x x C x '=+=+故选A.【例4.13】 设()F x 是()f x 的一个原函数,则等式成立的是 [ ] (A) (())()d f x dx F x =⎰ (B)()()F x dx f x C '=+⎰(C)()()F x dx F x '=⎰(D)(())()df x dx f x dx=⎰ 解 由不定积分的性质选答案D .【例4.14】 已知21f x x ⎛⎫'= ⎪⎝⎭,则下列式子中正确的是 [ ](A) 21()f x x d x C x ⎛⎫==-+ ⎪⎝⎭⎰ (B)3213x f x dx C x ⎛⎫==+ ⎪⎝⎭⎰,所以31()3f x C x =+(C) ()21,f x x'=211()f x dx C x x ==-+⎰ (D) 32()3x f x x dx C ==+⎰解 令1,t x =,则由题设有()21f t t '=,即()21,f x x'=因而选C. 【例4.15】 设()x f x e -=,则(ln )f x dx x '=⎰ [ ](A) x C + (B) x C -+ (C) 1C x+ (D) 2ln x C +解 (l n )f x dx x '=⎰(l n )(l n f x d x '⎰1(l n )f x C x==+,故选C.【例4.16】 若xe 在(,)-∞+∞上的不定积分是()F x C +,则 [ ](A) ,0(),0x x e C x F x e C x -⎧+≥=⎨-+<⎩ (B) ,0()2,0x x e C x F x e C x -⎧+≥=⎨-++<⎩(C) ,0()2,0x x e x F x e x -⎧≥=⎨-+<⎩ (D) ,0(),0x x e x F x e x -⎧≥=⎨-<⎩解 本题与[例4.9]类似,应选C .【例4.17】 (05,数二)设()F x 是连续函数()f x 的一个原函数,“M N ⇔”表示“M 的充要条件是N ”,则必有 [ ].(A) ()F x 是偶函数⇔()f x 是奇函数 (B) ()F x 是奇函数⇔()f x 是偶函数 (C) ()F x 是周期函数⇔()f x 是周期函数(D) ()F x 是单调函数⇔()f x 是单调函数 解 (B) 2()f x x =为偶函数,31()13F x x =+非奇非偶(C) ()sin f x x =为周期函数,cos 1,sin 0()cos 1,sin 0x x F x x x -+>⎧=⎨+<⎩不是周期函数(D) ()2f x x =为单调函数,但2()F x x =不是单调函数.故选A.注 当问题直接证明不易解答时,采用反例是非常有效的方法. (三)主观题 1.第二类换元法【例4.18】求下列积分 (1)d x a x -⎰; (2)d ln x x x ⎰; (3)x x ⎰.解 (1) d d()ln .x a -x a x C a x a x =-=--+--⎰⎰ (2) d d(ln )ln ln ln ln x x x C x x x==+⎰⎰.(3) 333332211221)(1)(1).3339xx x x C x C =+=⋅++=++⎰【例4.19】 求(1)(2)(ln(1)ln ).(1)x x dx x x +-+⎰ (3).⎰解 (1) 原式22.C ===+⎰(2) 原式()1111ln ln ln ln(1)1x x dx d x x x x x x ++⎛⎫⎛⎫⎛⎫=⋅-=⋅-+⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎰⎰ 21111ln ln ln .2x x x d C x x x +++⎛⎫⎛⎫⎛⎫=-⋅=-+⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎰(3)原式22211()(arctan )(1)(1)x x x xx ==-=-++=3221(arctan ).3C x-+被积函数中含有xe 时,通常有效的方法是分子、分母同时乘以xe 或.xe -【例4.20】 求 (1)(1).(1)x x dx x xe ++⎰ (2)21.x xdx e e +⎰解 (1)原式(1)()11()()(1)(1)1x x xx x x x x x x e d xe dx d xe xe xe xe xe xe xe +===-+++⎰⎰⎰ ln .1x xxe C xe=++ (2)原式22222222()111xx x x xx x x e eeedx dx d e ee e --------⋅===-+++⎰⎰⎰2212(1)()1x x d e e--=--+⎰2222ln(1).x x e eC --=-+++以指数函数为基本元素且底不尽相同的被积函数式一般首先将被积函数式化为同底数幂的形式.【例4.21】 求 (1) 23.94x xxxdx -⎰ (2) 112510x x x dx +--⎰解 (1) 原式2212223ln 13233ln .2(ln 3ln 2)32221133xx x x x x x xd dx C ⎛⎫⎪⎛⎫⎝⎭ ⎪-⎝⎭===+-+⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭⎰⎰ (2) 原式12525xx dx dx --=-⎰⎰=2152ln 55ln 2x xC ---++. 被积函数为三角函数,利用凑微分法积分时,通常“奇化偶,偶降幂,中间穿插恒等式”.【例4.22】 求 (1)3sin xdx ⎰. (2)6sec xdx ⎰(3)3sin cos dxx x ⎰解 (1) 原式222sin sin sin cos (1cos )cos x xdx xd x x d x ==-=--⎰⎰⎰=31cos cos 3x x C -++ (2) 原式 22222(sec )sec (1tan )tan x xdx x d x ==+⎰⎰24(12tan tan )tan x x d x =++⎰=3521tan tan tan 35x x x C +++. (3) 原式223sin cos sin cos x xdx x x+=⎰=32sin 1cot cos cos x dx x dx x x +⎰⎰ =21(tan )2cos tan d x x x +⎰21ln tan 2cos x C x=++. 2.变量代换法形如(,(,0R x dx R x dx a >⎰⎰的积分含 ,令sin ,cos ;x a t dx a tdt ==含 ,令2tan ,sec ;x a t dx a tdt ==含,令sec ,sec tan ;x a t dx a t tdt ==【例4.23】 求 (1)2.dx x⎰(2) 5. (3)解 (1)令sin x t =,则cos dx tdt =,原式2222cos cos 1sin csc cot sin sin t t t dt dt tdt t t t C t t⋅-===-=--+⎰⎰⎰arcsin .x C =-+(2) 令tan ,x t =则2sec dx tdt =,原式5422tan sec tan sec (sec 1)sec t tdt td t t d t ===-⎰⎰⎰5224121sec sec sec (843.5315t t t C x x C =-++=-+ 注t =更简单;还可以分部积分将5x 的次数降低求解. (3) 令sec ,x t =则sec tan dx t tdt =,原式sec tan 1arccos .sec tan t t dt tdt t C C t t x==±=+=+⎰⎰ 注此题还可分别令1x cht t x t===、求出相应的解. 【例4.24】 求下列积分(1); (2)解 (1)(法一)原式=2sec sec 2sec t dt tdt t ==sec tan 2C tt =++212C x =++.(法二)原式2122x C ==+++21x C =+++. (2)原式2===arcsin(21)x C =-+.【例4.25】 求解1,u =则222ln(1),.1ux u dx u =-=-原式2112ln ln .11u du C C u u -==+=++-⎰ 解2原式222xx--===-22ln(xeC -=-++.3.分部积分法分部积分法的关键就是选择好()()u x v x 与,其中()u x 的选取顺序为对数函数、反三角函数、幂函数、指数函数、三角函数这五种函数位置靠前者.【例4.26】 求 (1)3xx e dx ⎰. (2)2tan x xdx ⎰(3)()2arctan x x dx ⎰解 (1) 原式33232336x x x x x xx de x e x de x e x e xde ==-=-+⎰⎰⎰32366.x x x xx e x e xe e C =-+-+(2) 原式=2(sec 1)x x dx -⎰21tan 2xd x x =-⎰ 21tan tan 2x x x xdx =--⎰ 21tan ln cos 2x x x x C =-+++. (3) 原式()221arctan 2x d x ⎛⎫= ⎪⎝⎭⎰()2222111arctan arctan 21x x x x dx x +-=-+⎰ ()221arctan arctan 2x x xdx =-⎰21arctan 1x dx x +⋅+⎰ ()2221arctan arctan 21x x x x x dx x ⎛⎫=-- ⎪+⎝⎭⎰arctan arctan xd x +⎰ ()()22211arctan arctan ln 122x x x x x =-++()21arctan 2x C ++【例4.27】 求322ln .(1)x xdx x+⎰解原式ln xd ⎛⎫=-=+⎰=+1ln .C x ⎛=-++ ⎝【例4.28】求.x解1原式222x ===⎰,u =则222ln(2),,2ux u dx du u =+=+22222u du u C u ==-++⎰原式2.C =解2,u =则222ln(2),,2ux u dx du u =+=+ 原式222ln(2)(2)2(2)u u udu u u ++⋅=+⎰ 222222ln(2)2ln(2)22u u du u u du u =+=+-+⎰⎰22l n (2)42a n u uu C =+-+22a r 1.C = sin ,cos x x e xdx e xdx ⎰⎰型, 连续用两次分部积分公式,移项解方程可得.注 对于分部积分也可用下列快速计算表格法:uu 'u ''v 'vv⎰......++-(1)n-(1)n u +1(1)(1)n n nu v++-⎰⎰⎰⎰v⎰⎰()n u nv⎰⎰⎰上一行代表对u 不断求导,下一行代表对v 不断积分,斜线代表两个函数相乘,竖线代表两函数乘积后再积分,连线上符号代表乘积后的符号,上表格用式子写出来即为(1)()()()(1)(1)()(1)(2)(2)()(1)(2)1(1)d d d d (1)d n n n n n n n n n n n n n n n uvx uv u v x uv u v u v xuv u v u v u v x uv u v u v u v x+-------++''''=-=-+'''''' =-+-''' ==-+-+-⎰⎰⎰⎰⎰常用于以下类型的分部积分:①d ,sin d ,kxx e x x kx x μμ⎰⎰一般设u x μ=②ln d ,arctan d ,x x x x x x μμ⎰⎰一般设()n v x μ=③sin d ,xekx x μ⎰,u v 可以任意设.对于含多项式的积分,如类型①②,须求导至0或易积分时为止,而对于循环类型③,须求导至上下函数乘积与原积分函数相同时为止.【例4.29】求32(2)d xx x e x -+⎰.解 取32u x x =-+原式2321111[(2)(31)66]24816x e x x x x C =-+--+⋅-⋅+2321(4627)8xe x x x C =-+++ 【例4.30】求cos 2d xe x x ⎰.解 取cos 2u x =32x x -+231x -6x 2xe 212x e 214x e ++--2116x e 218xe 6cos 2x2sin 2x -4cos 2x-2xe 212xe 4x e +-+22211cos 2d (cos 2sin 2)cos 2d 22x x xe x x e x x e x x =+-⎰⎰ 原式21(cos 2sin 2)4xe x x =+. 【例4.31】 求sin(ln )x dx ⎰解s i n (l n )x d x⎰s i n (l n )c o s (l n x x x d x=-⎰ sin(ln )cos(ln )sin(ln )x x x x x dx =--⎰故s i n (l n )x d x⎰[s i n (l n )c o s (l n )].2xx x C =-+ *【例4.32】 设sin n n dxI x =⎰,试建立递推公式.解 221sin sin sin n nx xI dx x-+=⎰ 22cos sin n n xdx I x-=+⎰2111cos ()1sin n n xd I n x --=-+-⎰ 2211cos 11sin 1n n n x I I n x n ---=--+--211cos 21sin 1n n x n I n x n ---=-+-- *【例4.33】 求22,()n n dxI x a =+⎰其中n 为正整数.解 当1n >时,有21221221222212(1)()()()()n n n n n dx x x dx xI n x a x a x a x a ----==+-=++++⎰⎰ 2212212222112(1)2(1)()()()()n n n n n a xn dx n I a I x a x a x a ---⎡⎤+--=+--⎢⎥+++⎣⎦⎰ 122211(23)2(1)()n n n xI n I a n x a --⎡⎤∴=+-⎢⎥-+⎣⎦1221arctan dx xI C x a a a==++⎰.【例4.34】 已知()f x 的一个原函数是2,x e -求().xf x dx '⎰解 原式()()()xdf x xf x f x dx ==-⎰⎰2222()(21)x x x x e e C x e C ---'=-+=--+注 这类问题一般直接用分部积分,而不是先求出()f x '后代原积分求解. 4.有理函数的积分【例4.35】 求 (1)422331.1x x dx x +++⎰ (2)4611x dx x ++⎰ 解 (1) 原式=23213arctan .1x dx dx x x C x =+=+++⎰⎰ (2) 原式=422611x x x dx x -+++⎰22232332()113()11()x x dx dx x x -+=+++⎰⎰ 321arctan 31dx x x =++⎰31arctan arctan 3x x C =++. 注 拆项求解有理函数的积分是一种简洁有行之有效的方法. 【例4.36】 求2(1)dxx x +⎰.解 设221(1)1A Bx C x x x x +=+++,去分母221(1),A x Bx Cx =+++比较多项式系数得1,1,0A B C ==-=.故22211ln ln(1)2(1)1dx xdx dx x x C x x x x =-=-++++⎰⎰⎰l .C =+ 注 比较系数法可以与赋值法同时使用.如上例代入0x =直接可得 1.A = 【例4.37】 求42.21dxx x -+⎰解 设422222111121(1)(1)(1)(1)A B C Dx x x x x x x x ==+++-+-+-+-+上式两边乘以21(1),1,4x x C -→=并令得; 上式两边乘以21(1),1,4x x +→-=并令得D ;上式两边乘以,,0x x →+∞=并令得A +B ; 用0x =代入上式得1,2B A -=从而11,44A B =-=. 原式1111ln .4111x C x x x ⎛+⎫=+-+ ⎪--+⎝⎭幂次较高的有理函数积分一般采用降幂或恒等变形凑微分法.【例4.38】 求 (1)91088x dx x x -+⎰ (2)7.(1)dx x x +⎰ (3)2100.(1)x dxx -⎰ 解 (1) 原式998(8)x dx x x -=+⎰9899(8)(8)x x dx x x -=+⎰9999912(8)9(8)x x dx x x -+=+⎰92ln 8ln 9x x C =+-+ (2) 原式6777771(1)7(1)x dx dx x x x x ==++⎰⎰ 77771()7(1)dx dx x x =-+⎰⎰771ln 71x C x =++. 变形方法不唯一,也可为()()87777111711dx x dx d x x x x x ----+==-+++⎰⎰⎰71ln 17x C -=-++ (3) 原式210099100111(1)(1)(1)(1)x x d x dx dx x x x -++-==-----⎰⎰⎰ 989999121(1)(1)99(1)dx dx x x x =-+---⎰⎰979899121.97(1)98(1)99(1)C x x x =-++--- 5.三角有理式的积分形如(sin ,cos )R x x dx ⎰的积分,原则上令tan 2xt =利用万能公式做变换.但计算中由于此法复杂,通常采用三角恒等式变形.【例4.39】 求sin 1sin cos xdx x x ++⎰ 解1 令tan 2xt =,原式=22(1)(1)tdt t t ++⎰2111t dt dt t t +=-++⎰⎰21arctan ln(1)ln 12t t t C =++-++ =ln sec ln 1tan 222x x xC +-++. 解2 原式=22sin cos 222sin cos 2cos 222x x dx x x x +⎰sin2sin cos22xdx x x =+⎰(sin cos )(cos sin )22222sin cos22x x x x x d x x +--=+⎰ (sin cos )222sin cos22x x d x x x +=-+⎰ =ln sin cos 222x x xC -++. 解3 原式分子分母同乘1(sin cos )x x -+, 原式=sin (1sin cos )2sin cos x x x dx x x ---⎰1(1sin cos )2cos x x dx x--=-⎰11sin 1ln ln cos 41sin 22x x x C x -=--+++ 【例4.40】 求 (1) 21cos dx x +⎰ (2) 1tan dx x +⎰ (3) cos()4sin cos x dx x xπ+⎰ 解 (1)原式222tan .cos (1sec )2tan dx d x C x x x ===+++⎰⎰ (2) 原式 cos 1cos sin cos sin cos sin 2cos sin xdx x x x xdxx x x x++-==++⎰⎰ 1(cos sin )22cos sin x d x x x x +=++⎰1ln cos sin .22x x x C =+++ (3)原式=sin )2sin cos x x dx x x -⎰11()sin cos dx x x=-⎰csc cot ln sec tan )x x x x C =++++. 形如sin cos mx nxdx ⎰,sin sin mx nxdx ⎰或cos cos mx nxdx ⎰的积分,一般用积化和差公式先将被积函数变形后再积分.【例4.41】 求sin sin 2sin 3x x xdx ⎰. 解 sin sin 2sin 3x x x ()1cos3cos sin 32x x x =-- 1(sin 3cos3cos sin 3)2x x x x =--1111sin 6sin 4sin 22222x x x ⎛⎫=-++ ⎪⎝⎭()1sin 6sin 4sin 24x x x =-++原式()1sin 6sin 4sin 24x x x dx =-++⎰111cos 6cos 4cos 224168x x x C =+++ 形如s i n c o s s i n c o sa xb xdx c x d x ++⎰的三角函数有理式的积分可采用拆项的方法,拆成(s i n c o s )(s i n c o s )s i n c o s s i n c o s A c x d x B c x d x d x d x c x d x c x d x+++++⎰⎰通过待定系数法确定的,A B 值.【例4.42】 求3sin 2cos 2sin 3cos x x dx x x ++⎰解 设3sin 2cos (2sin 3cos )(2sin 3cos )x x x x x x αβ'+=+++, 解得 125,1313αβ==- . 原式12(2sin 3cos )125ln 2sin 3cos .132sin 3cos 1313x x dx dx x x x C x x '+=-=-+++⎰⎰ 形如(sin ,cos )R x x dx ⎰的三角有理式的积分,若满足(sin ,cos )(sin ,cos )R x x R x x -=-,则可设cos t x =; 若满足(sin ,cos )(sin ,cos )R x x R x x -=-,则可设sin t x =; 若满足(sin ,cos )(sin ,cos )R x x R x x --=,则可设tan t x =.【例4.43】 求 (1)254cos (2cos )sin xdx x x ++⎰ (2) 66sin 2sin cos xdx x x +⎰解 (1) 令cos t x =,则原式=2254(2)(1)t dt t t +-+-⎰2222(2)(1)(2)(1)t t dt t t ++-=-+-⎰2211(2)dt dt t t =---+⎰⎰111ln 212t C t t -=++++111c o sln 2s 21cos x C co x x-=++++. (2) 令2tan ,sec ,t x dt xdx ==则原式2242222131()24tdt dt C t t t ⎛⎫===+-+-+⎰⎰21r c t a .C =+ 6.无理函数的积分形如(R x dx ⎰;(,0.R x dx a ≠⎰的积分,分别令2222(),,,()dt b a ad bc tt x dx dt a ct a ct --===--其中设0ad bc -≠;,t = 1,mn mn t b mn x dx t dt a a--==【例4.44】 求 (1)(2)(3).dx解 (1)令t =则321,3x t dx t =-=原式22211333(ln(1)).1112t dt t t dt t t C t t t ⎛⎫-==+=-+++ ⎪+++⎝⎭⎰⎰3ln(1.C =+++(2)原式=, 令t =3211x t =+-原式=3322dt t C -=-+⎰.C = (3) 令65,6x t dx t dt ==,则原式211666ln .11()dt t dt C C t t t t t ⎛⎫==-=+=+ ⎪+++⎝⎭⎰⎰【例4.45】 求 (1). (2)解 (1)原式=(x x dx ⎰3211(1)32x x =-- 332211(1)33x x C =--+.(2) 原式==332221(31)(21)93x x C =++++.注 当分母是无理式时,有时分母有理化会简化计算. 7.综合杂例【例4.46】 设1,01(ln ),1x f x x x ≤≤⎧'=⎨<<+∞⎩求(),(ln )f t f x .解 令ln t x =,则1,0(),0tt f t e t -∞<<⎧'=⎨<<+∞⎩,,0(),0t t C t f t e D t +-∞<≤⎧=⎨+<<+∞⎩, 由()f t 的连续性得1C D =+,因此有1,0(),0tt D t f t e D t ++-∞<≤⎧=⎨+<<+∞⎩, l n 1,01(l n ),1x D t f x x D x ++<≤⎧=⎨+<<+∞⎩.【例4.47】 设()f x 的导函数为()f x '开口向下的二次抛物线,且()f x 的极小值为2,极大值为6,试求()f x .解()(2),(0)f x ax x a '=-<,所以32()(2)()3x f x ax x dx a x C =-=-+⎰由(0)0,(2)0f f ''==,且(0)0,(2)0f f ''''><,故()f x 的极小值为(0)2,f C ==极大值322(2)(2)26,33f a a =-+=⇒=-,所以32()32f x x x =-++.【例 4.48】设()F x 是()f x 的一个原函数,(1)4F =,若当0x >时有()()f x F x =,试求()f x .解 由于()F x 是()f x 的一个原函数,()()F x f x '=()()F x F x '=()()F x dF x =⎰,221()2F x C =+,又(1)4F =,所以0C =,()F x =故 ()f x =.【例4.49】 设()y y x =是由22()y x y x -=所确定的隐函数,求2dx y ⎰.解 令y tx =,则由22()y x y x -=可得211,(1)(1)x y t t t t ==--,3223(1)tdx t t -+=- 原式=23t dt t -+⎰32ln t t C =-+32ln y yC x x=-+. 注 这种隐函数的不定积分一般通过变量代换将x 和y 用另一个变量表示,然后求解.三、综合测试题综合测试题A 卷一、填空题(每小题4分,共20分) 1、函数2x为 的一个原函数.2、已知一阶导数 (())f x dx '=⎰,则(1)f '= 3、若()arctan xf x dx x C =+⎰,则1()dx f x ⎰=4、已知()f x 二阶导数()f x ''连续,则不定积分()xf x dx ''⎰=5、不定积分cos cos ()xxd e ⎰=二、选择题(每小题4分,共20分)1、已知函数2(1)x +为()f x 的一个原函数,则下列函数中是()f x 的原函数的是 [ ] (A) 21x - (B) 21x + (C) 22x x - (D) 22x x + 2、已知()sin x x e f x dx e x C =+⎰,则()f x dx ⎰= [ ] (A) sin x C + (B) cos x C + (C) cos sin x x C -++ (D) cos sin x x C ++ 3、若函数ln xx 为()f x 的一个原函数,则不定积分()xf x dx '⎰= [ ] (A)1ln x C x -+ (B) 1ln xC x ++ (C)12ln x C x -+ (D) 12ln xC x++ 4、已知函数()f x 在(,)-∞+∞内可导,且恒有()f x '=0,又有(1)1f -=,则函数()f x = [ ](A) -1 (B) -1 (C) 0 (D) x5、若函数()f x 的一个原函数为ln x ,则一阶导数()f x '= [ ](A)1x (B) 21x- (C) ln x (D) ln x x 三、解答题 1、(7分)计算22(1)dxx x +⎰. 2、(7分)计算1x dx e +⎰.3、(7分)计算 321x dx x +⎰. 4、(7分)计算 254dxx x ++⎰.5、(8分)计算.6、(7分)计算23xx e dx ⎰.7、(8分)已知222(sin )cos tan 01f x x xx '=+<< ,求()f x .8、(9分)计算 cos ax I e bxdx =⎰.综合测试题A 卷答案 一、填空题1、2ln 2x2 3、241124x x C ++ 4、()()xf x f x C '-+5、cos (cos 1)x ex C -+二、选择题1、D2、C3、C4、A5、B 三、解答题 1、1arctan x C x --+ 2、ln(1)x x e C -++ 3、2211ln(1)22x x C -++4、11ln 34x C x +++5、C6、2221()2x x x e e C -+7、21()ln(1)2f x x x C =---+8、22(sin cos )axe b bx a bx C a b +++综合测试题B 卷一、填空题(20分)1、不定积分(sin d =⎰.2、已知()(),f x dx F x C =+⎰则()()F x f x dx =⎰ .3、若21(ln ),2f x dx x C =+⎰则()f x dx =⎰ .4、1)dx +=⎰ .5、2ln x dx =⎰.二、选择题(25分) 1、若2(),f x dx xC =+⎰则2(1)xf x dx -=⎰ [ ](A) 222(1)x C --+ (B) 222(1)x C -+ (C) 221(1)2x C --+ (D) 221(1)2x C -+ 2、设()2,x f x dx x C =++⎰则()f x '= [ ](A) 2l n 22x x C ++ (B) 2l n 21x + (C) 22l n 2x (D) 22l n 21x + 3、11dx x =-⎰ [ ](A )ln 1x C -+ (B ) l n (1)x C -+ (C )ln (1)x C -++ (D )ln 1x C --+4、存在常数A 、B 、C ,使得21(1)(2)dx x x =++⎰ [ ](A )2()12A B dx x x +++⎰ (B ) 2()12Ax Bx dx x x +++⎰ (C )2()12A Bx C dx x x ++++⎰ (D )2()12Ax B dx x x +++⎰5、若xe 在(,)-∞+∞上的不定积分是()F x C +,则 [ ](A) ,0(),0x x e C x F x e C x -⎧+≥=⎨-+<⎩(B) ,0()2,0x xe C x F x e C x -⎧+≥=⎨-++<⎩ (C) ,0()2,0x x e x F x e x -⎧≥=⎨-+<⎩ (D) ,0(),0x x e x F x e x -⎧≥=⎨-<⎩三、计算题(48分) 1、(7分)求积分2arccos x . 2、(7分)求.3、(7分)2(1)dx x x +⎰. 4、(01,数二,8分)求.5、(8分)求积分1sin cos dx x x ++⎰.6、(06,数二,11分)求arcsin xxe dx e⎰. 四、(7分)计算2ln sin sin x dx x ⎰综合测试题B 答案 一、填空题1、C 2、2()2F x C + 3、xe C + 4、335222353x x x x C +--+ 5、2ln 2x x x C -+ 二、选择题1、C2、C3、D4、C5、C 三、计算题1、2arccos 1102ln10xC -+ 2、1)C + 3、221ln .21x C x ++ 4、C =+ 5、ln 1tan 2x C =++6、解 arcsin x x e dx e⎰arcsin arcsin x x x x x xe de e e e ---=-=-+⎰⎰a r c s i n x xxee --=-+a r c s i n xx xe e --=-- s e cx t e -=令s e c t a n a r c s i n t a n xxt tdt e e t-=--⎰a r c s i n s e c x xe e tdt -=--⎰a r c s i n l n s e c t a n x xe e t t C -=--++a r c s i n l n 1x x x e e e C--=--+ 四、 2ln sin sin xdx x ⎰cot ln sin cot x x x x C =-⋅--+.。

专升本《高等数学(一)》课程考试大纲

专升本《高等数学(一)》课程考试大纲

专升本《高等数学(一)》课程考试大纲一、考试对象参加专升本考试的各工科专业专科学生。

二、考试目的《高等数学(一)》课程考试旨在考核学生对本课程知识的掌握和运用能力,包括必要的高等数学基础知识和基本技能,一定的抽象概括问题的能力、逻辑推理能力、空间想象能力、自学能力,比较熟练的运算能力和综合运用所学知识去分析问题和解决问题的能力等。

三、考试的内容要求第一章 函数、极限与连续1. 函数(1)理解函数的概念,掌握函数的表示法,会建立简单应用问题中的函数关系。

(2)了解函数的有界性、单调性、周期性和奇偶性。

(3)理解复合函数及分段函数的概念,了解隐函数及反函数的概念。

(4)掌握基本初等函数的性质及其图形,理解初等函数的概念。

2.数列与函数的极限(1)理解数列极限和函数极限(包括左极限和右极限)的概念,了解极限的性质与极限存在的两个准则。

(2)掌握极限四则运算法则,会应用两个重要极限。

3.无穷小与无穷大(1)理解无穷小的概念,掌握无穷小的基本性质和比较方法。

(2)了解无穷大的概念及其与无穷小的关系。

4.函数的连续性(1)理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。

(2)了解连续函数的性质和初等函数的连续性,了解闭区间上连续函数的性质(有界性定理、最大值和最小值定理、介值定理)及其简单应用。

第二章 导数与微分1.导数概念理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义。

2.函数的求导法则掌握基本初等函数的导数公式、导数的四则运算法则及复合函数的求导法则,掌握反函数、隐函数及由参数方程所确定的函数的求导法,了解对数求导法。

3.高阶导数理解高阶导数的概念,会求简单函数的高阶导数。

4.函数的微分理解微分的概念,掌握导数与微分之间的关系以及一阶微分形式的不变性,会求函数的微分。

第三章 微分中值定理与导数的应用1.微分中值定理理解罗尔定理和拉格朗日中值定理及其简单应用。

2.洛必达法则掌握用洛必达法则求未定式极限的方法。

知乎教育-2017浙江专升本高数第四章:不定积分

知乎教育-2017浙江专升本高数第四章:不定积分

第四章 不定积分本章是一元函数积分学的主要内容之一, 其蕴涵的求不定积分的方法和技巧是计算一元、多元函数定积分的基础。

在研究生入学考试中,本章是《高等数学一》至《高等数学四》的考试内容。

通过这一章的学习,我们认为应达到如下要求: 1、理解原函数、不定积分的概念。

2、掌握不定积分的基本性质,牢记基本积分公式,了解并能灵活应用若干常用积分公式。

3、理解不定积分的换元积分法和分部积分法的基本思想并能熟练运用于不定积分的计算。

4、掌握有理函数、三角函数有理式和简单无理函数的不定积分的计算方法和技巧。

一、知识网络图分积定不⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧某些无理函数积分三角函数有理式积分有理函数积分特殊函数的积分查表法分部积分法第二换元积分法凑微分法第一换元积分法换元积分法直接积分法计算方法基本积分公式不定积分的性质性质与公式不定积分的几何意义不定积分原函数基本概念.4)(.3.2.1 二、典型错误分析例1.给出||x e y =,求y 的一个原函数。

[错解] y 是一个分段函数:⎩⎨⎧<≥=-00x e x e y x x ,故其一个原函数为⎩⎨⎧<-≥=-00)(x e x e x F x x .[分析] 根据原函数的定义,若)(x F 是||x e y =的原函数,则)(x F 至少应连续。

但上述给出的)(x F 在0=x 处间断,所以上述)(x F 不能作为||x e y =的原函数。

注意到若)(x F 是原函数,C x F +)(也是原函数,故只要适当选取C ,使)(x F 的两个分支在0=x 处连续,就可找到所需的原函数。

[正确解] 令⎩⎨⎧<-≥=-020)(x ex e x F xx ,容易验证)(x F 的两个分支在0=x 处连续,且||)(x e x F =',故)(x F 可以作为||x e y =的一个原函数。

专升本高等数学课程考试大纲-湖南工程学院教务处

专升本高等数学课程考试大纲-湖南工程学院教务处

专升本《高等数学(一)》课程考试大纲一、考试对象参加专升本考试的各工科专业专科学生。

二、考试目的《高等数学(一)》课程考试旨在考核学生对本课程知识的掌握和运用能力,包括必要的高等数学基础知识和基本技能,一定的抽象概括问题的能力、逻辑推理能力、空间想象能力、自学能力,比较熟练的运算能力和综合运用所学知识去分析问题和解决问题的能力等。

三、考试的内容要求第一章 函数、极限与连续1. 函数(1)理解函数的概念,掌握函数的表示法,会建立简单应用问题中的函数关系。

(2)了解函数的有界性、单调性、周期性和奇偶性。

(3)理解复合函数及分段函数的概念,了解隐函数及反函数的概念。

(4)掌握基本初等函数的性质及其图形,理解初等函数的概念。

2.数列与函数的极限(1)理解数列极限和函数极限(包括左极限和右极限)的概念,了解极限的性质与极限存在的两个准则。

(2)掌握极限四则运算法则,会应用两个重要极限。

3.无穷小与无穷大(1)理解无穷小的概念,掌握无穷小的基本性质和比较方法。

(2)了解无穷大的概念及其与无穷小的关系。

4.函数的连续性(1)理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。

(2)了解连续函数的性质和初等函数的连续性,了解闭区间上连续函数的性质(有界性定理、最大值和最小值定理、介值定理)及其简单应用。

第二章 导数与微分1.导数概念理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义。

2.函数的求导法则掌握基本初等函数的导数公式、导数的四则运算法则及复合函数的求导法则,掌握反函数、隐函数及由参数方程所确定的函数的求导法,了解对数求导法。

3.高阶导数理解高阶导数的概念,会求简单函数的高阶导数。

4.函数的微分理解微分的概念,掌握导数与微分之间的关系以及一阶微分形式的不变性,会求函数的微分。

第三章 微分中值定理与导数的应用1.微分中值定理理解罗尔定理和拉格朗日中值定理及其简单应用。

2.洛必达法则掌握用洛必达法则求未定式极限的方法。

转本高数第四章第二节 不定积分的基本性质与基本积分公式

转本高数第四章第二节 不定积分的基本性质与基本积分公式

4x 2 x 9x 6 C ln4 ln6 ln9
2x e C (4) e 2 x dx (e 2 ) x dx (e2 ) x / lne2 C 2
5
例2 求下列不定积分
(1 x )2 1 2x x2 (1) dx dx x x
(x
(cos x sin x ) dx sin x cos x C
2 2 1 sin x cos x ( 3) 2 d x dx 2 2 2 sin x cos x sin x cos x
(sec x csc x ) dx tan x cot x C
第二节
不定积分的基本性质 与基本积分公式
一、不定积分的基本性质
(1)

[ f ( x ) g( x )] dx f ( x ) dx g( x ) dx ;
[ f ( x ) dx g( x ) dx ]
[ f ( x ) dx ] [ g( x ) dx ] f ( x ) g( x ) .
2 2
9
例3 求下列不定积分
cos2 x cos2 x sin2 x ( 4) dx dx cos x sin x cos x sinx
(cos x sin x ) dx sin x cos x C
( 5)
2 2 (sec x 1) dx tan x x C tan x d x
2 3 2 (1) (4 x 2 x x 1) dx x x x x C 3 3
( 2)
( 3)
x 2 sin x ( sin x 2 cos x e ) d x cos x e C

专升本-不定积分

专升本-不定积分

x)
1
1
1
x
C1
2(1
x)2
C2
1
1
x
2(1
1
x)2
C
.
例5 求
a2
1
x 2 dx .

a2
1
x 2 dx
1 a2
1
1
x a2
2dx
1 a
1
1
x a
2
d
x a
1 arctan a
x a
C.
例6

x
2
1 8x
dx. 25

x2
1 8x
dx 25
1
( x 4)2
dx 9
1 32
cos
3
x
cos
2 xdx
1 2
(cos
x
cos
5
x)dx
1 sin x 1 sin 5x C.
2
10
例13 求 csc xdx.
解(一)
csc
xdx
1 sin
x
dx
2sin
1 x cos
x
dx
22
tan
x 2
1 cos
x 2
2
d
x 2
1 tan
x 2
d
tan
x 2
ln tan x C ln(csc x cot x) C. 2

(1
1 x2
)e
x
1 x
dx.

x
1 x
1
1 x2
,
(1
1 x2
)e
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章 不定积分
【知识点1原函数与不定积分的概念】
1. 定义
()()F x f x '=或()()dF x f x dx =⇔()()f x dx F x C =+⎰ ()F x 是()f x 在区间I 上的一个原函数,那么()F x C +就是()f x 的不定积分。

说明(1)函数()f x 在区间I 上连续⇒原函数一定存在;
(2)()f x 的任意两个原函数之间仅相差一个常数。

2. 不定积分与导数的关系
(1)()()d f x dx f x dx ⎡⎤=⎣
⎦⎰ 或 ()()d f x dx f x dx ⎡⎤=⎣⎦⎰ . (2) ()()F x dx F x C '=+⎰ 或 ()()dF x F x C =+⎰ .
1.(2006)若11()x x f x e
dx e c --=+⎰,则()f x =( ) 2.(2009)下列等式中,正确的一个是( ) A ()()f x dx f x '
⎡⎤=⎣⎦⎰ B ()()d f x dx f x ⎡⎤=⎣⎦
⎰ C ()()F x dx f x '=⎰ D ()()d f x dx f x C ⎡⎤=+⎣⎦
⎰ 3.(2010)不定积分()df x =⎰( )
4.(2013)若211(),2()
xf x dx x c dx f x =+=⎰⎰则( ) 5.(2014)设1()arctan ,()xf x dx x c dx f x =+=⎰⎰
则( )
6.(2015)若2(),()x f x dx xe c f x -=+⎰则等于( ),其中c 为常数。

7.(2016)设函数(),()f x g x 均可导,且同为()F x 的原函数,且有(0)5,(0)2,f g ==
()()f x g x -=则( )。

8.(2017)设1()arcsin ,.()
xf x dx x c dx f x =+⎰⎰求( ) 9.(2019)设函数()f x 在区间I 内连续,则()f x 在区间I 内( )
A 必存在导函数
B 必存在原函数
C 必有界
D 必有极值
10.(2019)设函数()f x 在区间(,)-∞+∞内连续,则()d f x dx ⎡⎤=⎣⎦
⎰( ) 【知识点2基本积分公式】
1.(2011)3x x e dx =⎰( )
2.(2019)不定积分3
(2)x x dx +=⎰( ) 【知识点3第一类换元法(凑微分法)】
用来求被积函数含有复合函数的不定积分
()[()]()[()]()()()[()]x u f x x dx f x d x f u du F u C F x C
ϕϕϕϕϕϕ='==+=+=⎰⎰⎰1. (2006)若22(),(1)f x dx x C xf x dx =+-⎰⎰求。

2.(2008)设()f x 的一个原函数是ln x ,求
()()f x f x dx '⎰。

3.(2009)设()x f x e -=,则
(ln )f x dx x '=⎰( ) 4.(2011)求2
3sin cos x xdx ⎰。

5.(2019)求不定积分(12ln )dx x x +⎰。

6.(2019)计算不定积分1x
x
e dx e +⎰。

7.(2019)已知22()sin ,()f x dx x x c x f x dx =+=⎰⎰则( )
8.(2005)求不定积分
12cos dx x +⎰ 9.计算下列不定积分
(1)132dx x
+⎰ (2)(12ln )dx x x +⎰ (3)3sin xdx ⎰ (4)2cos xdx ⎰ (5
)⎰ (6)3sin cos x dx x ⎰ (7

(8.)102
tan sec x xdx ⎰ (9)2
3(2)x dx x +⎰
【知识点4第二类换元法】
用来求被积函数含有根式的不定积分
(1
t =;
(2
sin x a t =;
(3tan x a t =; 三角换元
(4sec x a t =. 1.(2013)求不定积分
322(1)dx x -⎰。

2. 计算下列不定积分
(1)
3222()dx x a +⎰ (2)⎰
【知识点5分部积分法】
用来求被积函数是两个函数相乘的不定积分 uv dx udv uv vdu '==-⎰⎰⎰
注意:选择凑dv 的优先级 ⎫⎧⎬⎨⎭⎩三角函数反三角函数幂函数指数函数对数函数
1.(2005)lnsin tan xd x =⎰( )
A tan lnsin x x x c -+
B tan lnsin x x x c ++
C tan lnsin cos dx x x x
-⎰ D tan lnsin cos dx x x x +⎰ 2.(2009
)求不定积分。

3.(2010)求不定积分2ln 1
x dx x -⎰。

4.(2015)求sin ax e bxdx ⎰。

5.计算下列不定积分
(1)cos x xdx ⎰ (2)x xe dx -⎰
(3)arctan x xdx ⎰(4)arcsin xdx ⎰ (5)sin x e xdx ⎰。

相关文档
最新文档