第三章 微波传输线

合集下载

第三章 微波传输线

第三章  微波传输线

微波技术与天线
第三章 导波与波导
导模
①在导行系统横截面上的电磁场呈驻波分布,且是完全确定的。这一 分布与频率无关,并与横截面在导行系统上的位置无关; ②导模是离散的,具有离散谱,当工作频率一定时,每个导模具有唯 一的传播常数; ③导模之间相互正交,彼此独立,互不耦合; ④具有截止特性,截止条件和截止波长因导行系统和模式而异。
TM:
Z TM
kc 0
p
fc
kc 2
c 2 kc
2 2
2 2 1 fc / f 1 / c
fc d g 1/ 1 1 d f c
kc2 0
2 k 2 kc2 0
c
g
c
1) k 2 kc2

p
rr
rr
g
0 rr
这种导行波的特点是相速大于平面波速,即大于该媒质中的光速,而群速则 小于该媒质中的光速,同时导波波长大于空间波长。这是一种快波。
12:23
电子科技大学电子工程学院
D
2 R0
g pT p f
12:23
电子科技大学电子工程学院
微波技术与天线
第三章 导波与波导
E0t ZTE H0t ez
H0t YTE ez E0t
TE:
Z TE
1 j k ZTEM YTE
1 ZTEM YTM j k
1 2 PTE ZTE 2 2 kc

s
Hz
2
1 2 dS ZTE 2 2 kc

s
H 0 z dS

(四川理工学院)微波技术与天线-第3章 TEM波传输线

(四川理工学院)微波技术与天线-第3章 TEM波传输线

第3章 TEM波传输线理论
电压反射系数与电流反射系数间差一个负号Γ u=-Γ i 。 通常将电压反射系数简称为反射系数, 并记作Γ(z)。
对于无耗传输线 j
Ae jz Zl Z 0 j 2 z ( z ) e jz Be Zl Z0
反射系数与终端位置有关,而且是位置的函数,在终端
d 2 I ( z) 2 I ( z) 0 dz2
第3章 TEM波传输线理论
电压、电流的通解为
U Aez Bez 1 I ( Aez Bez ) Z0
式中,Z0 (R1 jL1 ) /(G1 jC1 )称为传输线的特性阻抗 。
解中的待定常数由边界条件决定 传输线的边界条件通常有以下三种: ① 已知终端电压Ul和终端电流Il ② 已知始端电压Ui和始端电流Ii ③ 已知信源电动势Eg和内阻Zg以及负载阻抗Zl。 在实际工程中,通常选择1类边界条件,因此
vp与频率ω有关,这就称为色散特性。
在微波工程中,特性阻抗Z0对分析TEM传输线的传输特性 具有重要意义,它是表征传输线与前级匹配和后级匹配的重 要参量。
第3章 TEM波传输线理论
3.2 传输线阻抗与反射
传输线与前级源的匹配主要取决于传输线在入端的输入阻 抗,传输线与后级的匹配不仅取决于传输线终端接收机的输入 阻抗,还与传输线本身的特性阻抗有关。它们的这些关系用特
对于时谐电压和电流, 可用复振幅表示为
u(z, t)=Re[U(z)e jωt] i(z, t)=Re[I(z)e jωt] 可得传输线方程在频域的表示为:
dU R1 jL1 I Z1 I dz dI G1 jC1 U Y1U dz
这里Z1 R1 jL1和Y1 G1 jC1分别是传输线单位长度 的串联阻抗和并联导纳 。

精选微波技术基础知识

精选微波技术基础知识
本课内容
1、第三章、微波集成传输线常用集成传输线的种类和主要特点2、第四章介质波导和光波导
1、传播条件和波型2、特性阻抗3、波长,相速4、功率容量5、衰减
了解
微波集成传输线
微波集成传输线的最大特点是 平面化
五种重要的传输线:带状线(Stripline)微带线(Microstrip line)槽线(Slotline)鳍线(Finline)共面线(Coplanar line)
式中
微波集成传输线-带状线
带状线—优缺点和应用
1、改变线宽一个参数就改变电路参数(特性阻抗)。2、在馈线、功分器,耦合器,滤波器,混频器,开关的设计中,体积小,重量轻,大批量生产的重复性好。3、立体电路的设计,适用于多层微波电路,LTCC等,辐射小。4、封闭的电路,调试难。5、电路需要同轴或波导馈入,引入不连续性,需要在设计时补偿。6、在多层电路设计中,存在不同节点常数的介质之间的连接,介质与金属导体的连接,分析方法非常复杂,尤其对3D电路,尚缺少各种不连续性的模型和相关设计公式,采用全波分析法或者准静态场分析。
毫米波鳍线混频器
介质波导和光波导
当毫米波波段→亚毫米波段→太赫兹波段时普通的微带线将出现一系列新问题1)高次模的出现使微带的设计和使用复杂2)金属波导的单模工作条件限制了其横向尺寸不能超过大约一个波长的范围。这在厘米波段和毫米波低频段不成问题。但到毫米波高频段,单模波导的尺寸就显得太小,不仅制造工艺困难,而且随着工作频率的提高,功率容量越来越小,壁上损耗越来越大,衰减大到不能容忍的地步。因此,对毫米波段的高端及来说,封闭的金属波导已不再适用。于是,适合于毫米波高频段、亚毫米波的传输线 —— 介质波导等非封闭式的传输线(或称开波导)便应运而生
微波集成传输线-微带线

(四川理工学院)微波技术与天线-第3章 TEM波传输线

(四川理工学院)微波技术与天线-第3章 TEM波传输线

第3章 TEM波传输线理论
3.1 均匀传输线方程及其解
1、传输线等效为分布参数电路的条件 (1)可以定义唯一的电压和电流 (2)采用极限的方法 (3)采用网络的级联方法
2、均匀传输线方程 (1)TEM波均匀传输线的分布参数电路建模
进行单元分割,单元间级联
分布参数R, L, C, G分别为单位长电阻、 单位长电 感、 单位长电容和单位长漏电导,线上电压、电流随Z的位置 变化而变化
第3章 TEM波传输线理论
z Zg Eg
i(z+ z,t)
Rz
L z +
i(z,t)

~
z l z+ z (a) z 0
Z1
u(z+z,t) -
C z
G z
u(z,t) - z
(b)
(c)
(d )
图 3- 1 均匀传输线及其等效电路
第3章 TEM波传输线理论
设在时刻t, 位置z处的电压和电流分别为u(z, t)和i(z, t), 而在 位置z+Δz处的电压和电流分别为u(z+Δz, t)和i(z+Δz, t)。 应用基
在传输线的终端,如果接收机的接收特性与传输线的传 输特性不一致,接收机将会把部分电磁波反射回传输线。
定义传输线上任意一点z处的反射波电压(或电流)与入 射波电压(或电流)之比为电压(或电流)反射系数, 即 U 反 (Z ) 电压反射系数 U U 入 (Z )
电流反射系数 I反 (Z ) i I 入 (Z )
第3章 TEM波传输线理论
均匀无耗传输线上任意一点的输入阻抗与观察点的位置、
传输线的特性阻抗、终端负载阻抗及工作频率有关, 且一般为
复数, 故不宜直接测量。另外, 无耗传输线上任意相距λ/2处的阻 抗相同, 一般称之为λ/2重复性。

第三章微波传输线平行双线与同轴线

第三章微波传输线平行双线与同轴线
• 对微波集成传输元件的基本要求之一就是 它必须具有平面型结构, 这样可以通过调 整单一平面尺寸来控制其传输特性, 从而 实现微波电路的集成化。
各种微波集成传输线
① 准TEM波传输线, 主要包括微带传输线和共 面波导等(a)-(c);
② 非TEM波传输线, 主要包括槽线、 鳍线等 (d);
③开放式介质波导传输线, 主要包括介质波导、 镜像波导(e-f);
2 从同轴线到金属波导管
• 金属波导:和同轴线比较,波导管除去内 导体,不仅降低了内导体的损耗而且提高 了传输线的功率容量;
• 其缺点是比较笨重、高频下批量成本高、 频带较窄等。
3 微波集成传输线
• 随着航空、航天事业发展的需要, 对微波 设备提出了体积要小、重量要轻、 可靠性 要高、性能要优越、一致性要好、 成本要 低等要求, 这就促成了微波技术与半导体 器件及集成电路的结合, 产生了微波集成 电路。
1
1
c
vp
L0C0


r r
p

2

vp f

0 r r
当同轴线的截面尺寸与工作波长可比 拟时,同轴线内将出现高次模式。 要使同 轴线工作于TEM模式,则同轴线的内外半径 应满足以下条件:
min

1
2
D

d
3 损耗特性
通常同轴线介质损耗很小,其传输 损耗基本上决定于导体的欧姆损失。 同轴线的衰减常数仍可按下式估算
通频带:0~nGHz,语音信号
在实际中,广泛使用不同型号的电缆连 接接头(Cable Connector)以实现电缆的 连接, 尽管其功能相似, 但结构不同。 它们的共同点都是将电缆的内导体和外导 体分别连接起来, 使用时要注意连接头电 气和机械很好的匹配。

微波技术_第三章_传输线和波导

微波技术_第三章_传输线和波导

3.1.1 TEM波
TEM波的特点
Ez 0 H z 0
必然有
kc 0
E0
2 t
k
H 0
2 t
横向场满足的场方程
TEM波横向场与静场一样都满足二维拉普拉斯方程,可用
势函数来表示
0(3.14)
2 t
E t
电流
I H dl (3.16)
假设时谐场沿z轴传播
j z E( x, y, z ) [et ( x, y) ez ( x, y)]e j z H ( x, y, z ) [ht ( x, y) hz ( x, y)]e
假定传输线或波导区域内是无源的,则Maxwell方程可写为:
场积分(利用安培环路定律)求出电流
6、根据定义求出传播常数、特征阻抗等
3.1.2 TE波
TE波的特征 Ez=0,Hz≠0,即磁场有纵向分量,电场无纵向分量,只 有横向分量。 直角坐标系下横向场与纵向场的关系
j H z Hx 2 kc x j H z Ex 2 k c y j H z Hy 2 kc y j H z Ey 2 k c x
H z j H x j E y x
直角坐标下横向场和纵向场的关系
E z H z j H x 2 (3.5a ) kc y x E z H z j H y 2 (3.5b ) kc x y H z j E z Ex 2 k c x y E z H z j Ey 2 kc y x (3.5c ) (3.5d )
均匀波导的理想化假设

微波传输线

微波传输线

第三章 微波传输线
一、矩形波导中传输波型及其场分量
由于矩形波导为单导体的金属管,波导中不可能传输 TEM波,只能传输TE波或TM波。
(一)TM波
d 2 X x dx 2 d 2Y y dy
2 2 kx X x 0 2 ky Y y 0

三、交变电磁场的能量关系 对于一封闭曲面S,电磁场的能量关系满足复功率 定理,即 1 E H ndS P j 2 W W 2
S L m e
第三章 微波传输线
3-3 理想导波系统的一般理论 导波系统中的电磁波按纵向场分量的有无,可分为 以下三种波型(或模): (1) 横磁波(TM波),又称电波(E波): Hz 0, E z 0 (2) 横电波(TE波),又称磁波(H波): (3) 横电磁波(TEM波):
辅助方程
D E B H J E
第三章 微波传输线
场量的瞬时值与复数振幅值之间的关系为
E x , y , z, t E x , y , z cos t Re E x , y , z e j e j t Re E x , y , z e j t
第三章 微波传输线
二、波的传播速度和色散
1. 相速和相波长
相速是指导波系统中传输电磁波的等相位面沿轴向 移动的速度。 dz vp dt 若将等相位面在一个周期T内移动的距离定义为相 波长,则有
p v pT 2 T
第ቤተ መጻሕፍቲ ባይዱ章 微波传输线
对于TEM波,相速为 其相波长为 对于TE波和TM波, 相速为 相波长为

复数表示式为

第三章 微波传输线 1

第三章 微波传输线 1

A+为待定常数, 对无耗波导γ=jβ, 而β为相移常数。 现设Eoz(x, y)=A+Ez(x, y), 则纵向电场可表达为 Ez(x, y, z)=Eoz(x, y)e-jβz 同理, 纵向磁场也可表达为: Hz(x, y, z)=Hoz(x, y)e -jβz
而Eoz(x, y), Hoz(x, y)满足以下方程:
微波传输线 第3章 微波传输线
∇t2 Eoz ( x, y ) + kc2 EOZ ( x, y ) = 0 ∇t2 H oz ( x, y ) + kc2 H OZ ( x, y ) = 0
式中, k2c=k2-β2为传输系统的本征值。 由麦克斯韦方程, 无源区电场和磁场应满足的方程为
k
2 c <0
这时β= k 2 − kc2 > k 而相速vp= ω / β < c ur ε r , 即相速比 无界媒质空间中的速度要慢, 故又称之为慢波。
微波传输线 第3章 微波传输线 3.2 矩形波导 通常将由金属材料制成的、矩形截面的、内充空气的规 则金属波导称为矩形波导, 它是微波技术中最常用的传输系 统之一。 设矩形波导的宽边尺寸为a, 窄边尺寸为b, 并建立如图 2 2 所示的坐标。 1. 矩形波导中的场 矩形波导中的场 由上节分析可知, 矩形金属波导中只能存在TE波和TM 波。下面分别来讨论这两种情况下场的分布。 1)TE波
微波传输线 第3章 微波传输线
图 3 – 1 金属波导管结构图
微波传输线 第3章 微波传输线 ③ 波导管内的场是时谐场。 由电磁场理论, 对无源自由空间电场E和磁场H满足以下矢 量亥姆霍茨方程:
∇2 E + K 2 E = 0
式中, k2=ω2µε。

第三章微波传输线PPT课件

第三章微波传输线PPT课件

Microwave Technology and Antenna
2020/10/1
copyright@Duguohong
16
特性阻抗
有效介电常数εe就是介质微带线的分布电容C1和 空气微带线的分布电容C0之比
v0
1 LC 0
vp
1 LC 1
C 1 eC 0
e
C1 C0
Z0
Z
a 0
e
结论:微带线特性阻抗的计算归结为求空气微带
13
特性阻抗
微带线的特性阻抗
Z0
L 1 C v pC
1 v p LC
Microwave Technology and Antenna
2020/10/1
copyright@Duguohong
14
特性阻抗
空气微带线
Z
a 0
1 v0C0
介质全填充 实际微带线
v0/ r vp v0 C0C1 rC0
2020/10/1
copyright@Duguohong
6
传输模式
边界条件
nˆ (E 2 - E 1 ) 0 nˆ (H 2 - H 1 ) J s nˆ (D 2 - D 1 ) s nˆ (B 2 - B 1 ) 0
Ex1 Ex2,Ez1 Ez2 Hx1 Hx2,Hz1 Hz2
空气与介质分界面上必然存在场的不连续 场沿空气与介质分界面也不均匀
微带线不能传输 纯TEM 模
由于纵向场分量较小 Microwave Technology
an准d AnTtenEnaM模
2020/10/1
copyright@Duguohong
10
传输模式

电磁场课件-第三章微带传输线

电磁场课件-第三章微带传输线
导波速度
在微带线中,导波速度受到介质和导 体材料的影响,不同材料的微带线具 有不同的导波速度。
传播常数与衰减
传播常数
传播常数是描述电磁波在传输线中传播特性的参数,包括相位常数和衰减常数。
衰减
在微带线中,电磁波会因为介质和导体材料的损耗而发生衰减,衰减的大小与传输线的长度和频率有 关。
04 微带线的传输模式
降低介质损耗的方法包括选择低损耗的介质材料、降低介质温度和减小电场强度 等。
色散特性
色散是指不同频率的信号在传输过程中具有不同的相速度和 群速度的现象。在微带线中,色散主要与介质的介电常数和 电导率等因素有关。
了解色散特性对于设计高性能的微带线系统和避免信号失真 非常重要。通过优化微带线的结构和参数,可以减小色散效 应,提高信号传输质量。
03 微带传输线的电气特性
电场分布
电场分布特点
在微带线中,电场主要分布在导体和介质之间,而导体内部 电场强度较小。
电场分布与传输模式
电场的分布与传输模式有关,例如在准TEM模式下,电场主 要分布在导体两侧,而在其他模式下,电场分布可能更加复 杂。
阻抗与导波速度
阻抗计算
微带线的阻抗可以通过其几何尺寸和 介质参数计算得出,阻抗值与传输线 的特性阻抗有关。
微带线的宽度通常在几毫米到几十毫 米之间,根据传输信号的频率和介质 基片的电气性能来选择合适的宽度。
厚度
微带线的厚度通常在几微米到几百微 米之间,较薄的介质基片可以减小线 路的介质损耗,提高传输效率。
介质基片
种类
常用的介质基片有氧化铝、陶瓷、聚四氟乙烯等,根据应用场景和性能要求选 择合适的介质基片。
响。
应用场景
01
02
03

微波技术-传输线和波导

微波技术-传输线和波导

g
2
1
c
2
TE模和TM模特性总结
——波导参数
➢ 相速
➢ 群速(能速)
vp
v
1
c
2
• 其中,v为波导中介质
vg v
1
c
2
➢且
对应的自由空间光速。 即
vg v
vp v
vpvg v2
TE模和TM模特性总结
——传播特性
1)传播模式
• 每一个m和n的组合,都是波导中一个满足边 界条件的独立解,称为波型或模式。m和n称 为波型指数。
全波分析 ➢ 优点:可以进行高阶模、不连续性和色散的分
析 ➢ 缺点:分析过程复杂 • 分离变量法、谱域法、横向谐振法等
3.1.1 TEM波
——分析过程总结(求解拉普拉斯方程法)
1、在合适的坐标系下分离变量,求解电位 的拉普拉斯方程。
2、由导体的边界条件,求出解的常量。 3、由电场和电位的关系,计算出电场。 4、由电场和磁场的关系,计算出磁场。
Z0
V0 I0
L 1 C Cv
C
C V0 2
E E*ds
R
Rs I0 2
H H *dl
C
v 1 1
LC
规则波导中波的一般传输特性总结 ——TE和TM波
场分析 TE波 • 纵向场:
2 t
k
2 c
Hz
0
• 横向场
规则波导中波的一般传输特性总结 ——TE和TM波
3.3.2 TM模
(条件: Hz=0 Ez≠0)
场解
Ez
Bmn
sin
m
a
x sin n
b
y e jz (3.100)

电信传输原理及应用第三章 微波传输线 3微带线

电信传输原理及应用第三章 微波传输线 3微带线
设微带线中波的传播方向为+z方向, 故电磁场的相位因子 为e j(ωt-βz), 而β1=β2=β, ຫໍສະໝຸດ 有∂H y 2 ∂z ∂z
代入上式得
= − jβH Y 2 = − jβH Y 1
∂H y1
∂H Z 1 ∂H z 2 − εr = j β (ε r − 1) H y 2 ∂y ∂y
微波传输线 第3章 微波传输线 同理可得
z0 =
εe
微波传输线 第3章 微波传输线 由此可见, 只要求得空气微带线的特性阻抗Zα0及有效介电 常数εe, 则介质微带线的特性阻抗就可由式(3 - 1 - 25)求得。 可以通过保角变换及复变函数求得Zα0及εe的严格解, 但结果仍为 较复杂的超越函数, 工程上一般采用近似公式。 下面给出一组 实用的计算公式。 (1) 导带厚度为零时的空气微带的特性阻抗Zα0及有效介电常 数εe
we = h
w t 2h + (1 + ln ) h πh t
w t 4π w + (1 + ln ) h πh t
w 1 ≥ h 2π
w 1 ≤ h 2π
微波传输线 第3章 微波传输线
we w 在前述零厚度特性阻抗计算公式中用 h 代替 h , 即可得 非零厚度时的特性阻抗。对上述公式用MATLAB编制计算微带
27.3 ε r 1 ad = GZ 0 = tan δ 2 λ0
微波传输线 第3章 微波传输线 式中, tanδ为介质材料的损耗角正切。由于实际微带只有 部分介质填充, 因此必须使用以下修正公式
ad =
q
27.3 ετ
εe 式中, 为介质损耗角的填充系数。 εr 一般情况下, 微带线的导体衰减远大于介质衰减, 因此一般 可忽略介质衰减。但当用硅和砷化镓等半导体材料作为介质基 片时, 微带线的介质衰减相对较大, 不可忽略。

微波技术原理 第3章 传输线理论(第1-5节)

微波技术原理 第3章 传输线理论(第1-5节)

无失真线的条件 若传输线的损耗较大,β 一般不再是频率的
线性函数,因而相速vp 将随频率变化。即传输过 程中将出现色散,结果会导致传输信号失真。
但如果有损传输线的损耗参量和电抗参量能 满足以下关系:
那么
,就不会出现色散。——无失真线
作业:P118
3.2
§3.4 理想传输线中传输波的特性参量
i ( z , t ) = I(z) e jωt
+
u ( z , t ) = U(z) e jωt
-
Z0 ,β
ZL
-l
0Z
由于电流波和电压波到达终端负载时,都将 发生反射,所以在传输线(Z < 0)中既有入射波 又有反射波,总电压和总电流的波动函数为:
一. 反射系数 定义:反射波电压与入射波电压之比称为电压反
射系数,简称为反射系数,记为:Γ 。

Z0
RL>Z0

Z0
RL<Z0
|U|
|U|,|I|
|U|
|U|,|I|
|I|
|U|max
|I|
z 5λ/4 λ 3λ/4 λ/2 λ/4 O a)
z 5λ/4 λ 3λ/4 λ/2 b)
|U|min λ/4 O
理想传输线终端接纯电阻负载
五. 利用测量线测量终端负载阻抗的方法
P36 图片
θ=?

z
z
λ
z
5λ/4
Z0
u i
|U|
|I|
Zin
3λ/4
λ/2
λ/4
ZL=0 u,i 0 |U|,|I| 0 Zin
0
2. 终端开路(ZL=∞)
在这种情况下,传输线中电流波或电压波也是纯 驻波,终端负载Z=0处为电压波的波腹。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2 1 x z
结论:当εr≠1时, 必然存在纵向分量Ez和Hz, 亦即不存 在纯TEM模。
2018/10/4
Microwave Technology and Antenna copyright@Duguohong
8
传输模式
微带线中的主模
准TEM模
微带传输系统中存在两种边界,一种是金属和介质
间的边界,一种是介质和空气间的边界。因此,微 带线内的介质是非均匀的 空气与介质分界面上必然存在场的不连续 场沿空气与介质分界面也不均匀
14
2018/10/4
Microwave Technology and Antenna copyright@Duguohong
特性阻抗
有效介电常数为εe的介质,均匀填充微带线,保 持它的尺寸和特性阻抗与原来的实际微带线相 同 2 v0 v0 vp
e
v p
e
有效介电常数εe的取值就在1与εr之间, 具体 数值由相对介电常数εr和边界条件决定。
2018/10/4 Microwave Technology and Antenna copyright@Duguohong 15
特性阻抗
有效介电常数εe就是介质微带线的分布电容C1和 空气微带线的分布电容C0之比
v0 vp
1 LC0 1 LC1
C1 eC0 C1 e C0
Z0
微带线
z
2018/10/4
Microwave Technology and Antenna copyright@Duguohong
3
3-1-1 微带线
传输模式 特性阻抗 波导波长 微带线衰减 色散特性
微带线设计 微带元件 应用
2018/10/4
Microwave Technology and Antenna copyright@Duguohong
引言
微波传输线
定向传输微波信号和微波能量的传输线
微波传输线分类
TEM模传输线 (双导线传输线)
平行双线、同轴线、带状线及微带线
TE模和TM模传输线(金属波导传输线)
矩形波导,圆波导、椭圆波导、脊波导
表面波传输线 (混合模)
介质波导,介质镜像线
2018/10/4 Microwave Technology and Antenna copyright@Duguohong 1
10
传输模式
2018/10/4
Microwave Technology and Antenna copyright@Duguohong
11
传输模式
2018/10/4
Microwave Technology and Antenna copyright@Duguohong
12
特性阻抗
微带线的特性阻抗
4
传输模式
y x 无源 Maxwell’s Equations
H jE E jH
2018/10/4
Microwave Technology and Antenna copyright@Duguohong
5
传输模式
边界条件
y 2
ˆ (E2 - E1 ) 0 n ˆ (H2 - H 1 ) J s n ˆ (D2 - D1 ) s n ˆ (B2 - B1 ) 0 n
6
传输模式
H y 2 H z1 H y1 H r ( z2 ) y z y z
H z1 H y1 j0 r Ex1 y z H z 2 H y 2 j0 Ex 2 y z
边界条件
相位因子 e j (t z )
H y1 z H y 2 z
Z 0a
e
结论:微带线特性阻抗的计算归结为求空气微带
线的特性阻抗Z0a和相对等效介电常数εe。
2018/10/4 Microwave Technology and Antenna copyright@Duguohong 16
特性阻抗
导带厚度t=0时,
空气微带的特性阻抗Z0a
8h w 59.952ln w 4h Z 0a 119.904 6 h w 2.42 0.44 w 1 h w h w 1 h w 1 h
L 1 Z0 C v pC 1 vp LC
2018/10/4
Microwave Technology and Antenna copyright@Duguohong
13
特性阻抗
空气微带线
1 Z v0C0
a 0
介质全填充 实际微带线
v0 / r v p v0
C0 C1 r C0
ˆ n
x z
Ex1 Ex 2 , Ez1 Ez 2 H x1 H x 2 , H z1 H z 2
1
yh E y 2 r E y1 H y 2 H y1
2018/10/4
Microwave Technology and Antenna copyright@Duguohong
微带线不能传输 纯TEM 模
由于纵向场分量较小 准TEM模 Microwave Technology and Antenna
2018/10/4 copyright@Duguohong 9
传输模式
2018/10/4
Microwave Technology and Antenna copyright@Duguohong
3-1 微波集成传输线
特点
体积小、重量轻、频带宽 微波集成电路、空间技术 损耗大、功率容量小
微带线(重点)
2018/10/4
Microwave Technology and Antenna copyright@Duguohong
2
3-1-1 微带线
结构
双线的变形
带状导体
带状线
介质 H E y 接地导体 x h
y jH y1 Fra bibliotek j H y 2
2 1 x z
2018/10/4
Microwave Technology and Antenna copyright@Duguohong
7
传输模式
y
H z1 H z 2 r j ( r 1) H y 2 y y
Ez1 Ez 2 1 r j (1 ) E y 2 y y r
相关文档
最新文档