(整理)冰川地貌与冻土地貌
《地貌学--冰川冻土》05-06
3)峡湾:分布在高纬度沿海地区,冰川下游入海继续 刷深、拓宽冰床,形成谷底宽阔,深度很大的海湾,称 为峡湾或峡口。 4)羊背石和鲸背石 羊背石是冰床上由冰蚀作用形成的石质小丘,常 成群分布。 鲸背石是迎冰面与背冰面均作流线型的冰蚀丘陵。 二 冰川搬运、堆积作用与冰碛地貌 1 冰川的搬运和堆积作用 冰川在运动过程中,不仅有巨大的侵蚀力,而且 还携带冰蚀作用产生的岩屑物质,不加分选地随冰川一 起向下运动。这些大小不等的碎屑物称为冰碛物、其中 巨大的石块叫漂砾,冰碛物一般没有分选,大小混杂。
三 、冻融作用 1 冻融作用:随着冻土区温度同期性地发生正负变化, 冻土层中水分相应地出现相变与迁移,导致岩石的破 坏,沉积物受到分选与干扰,冻土层发生变形,产生 冻胀、融陷和流变等一系列复杂过程,称为冻融作用, 它包括融冻风化,融冻扰动和融冻泥流作用。 2 冻融作用的三种类型及其作用 1)冻融风化:冻土中的水分因温度周期性变化而引起 冻结和融化的交替出现,造成地面土(岩)层破碎松 解,这种作用称为冻融风化。 作用:冻融风化,形成大量碎屑物质,并可产生冰 楔、土楔、沙楔。
石河是以细粒土或碎土为中心,边缘为粗粒的围 绕的石质多边形土。多发育在较平坦而湿润的地形部 位,如河漫滩、洪积、扇边缘等。 3 、冻胀丘与冰丘 冻胀丘是活动层内的地下水,在冬季汇聚并冻结膨 胀时所隆起的小丘。其表层为冬冻的泥沙层,中间是 纯冰透镜体,基底为永冻层。 冰丘是结冰的小丘,形成过程与冻胀丘相似。 4 、热融地貌 常见的有热融漏斗、融陷浅洼地、融陷盆地(积水 后成热陷湖),在山坡上有热融滑坡,泻流等地貌形 态。
五 冻土工程建设与冻土退化问题
1 冻害
2 冻土工程建设中冻害防治、排水、冻结法施工、悬 空法建筑、高路堤
3 冻土退化问题
冰川地貌与冻土地貌伍光和重点总结
冰川在高纬和高山等气候寒冷地区,如果降雪的积累大于消融,积雪将逐年加厚。
在一系列物理过程下,积雪就变为冰川。
一、成冰作用成冰作用指积雪»粒雪»再经变质作用»冰川冰的过程。
雪是一种晶体,而任何晶体都具有使其内部包含的自由能趋向最小,以保持晶体稳定的性质,这就是最小自由能原则。
因此,在外界环境条件稳定时,雪晶力图向球形体转变。
这一过程称为自动圆化或粒雪化。
粒雪化过程可以分为冷型和暖型两类。
前者没有融化和在冻结现象,过程缓慢。
直径通常不足1m;暖型粒雪化过程进行的较快,雪粒直径比较大。
粒雪中含有贯通孔隙,当其进一步变化,全部孔隙被封闭后就变成冰川冰。
成冰作用也分为冷型和暖型。
冷型变质过程中,粒雪只能依靠其巨大厚度造成的压力加密而形成重结晶冰。
这种冰密度小,气泡多且气泡内的压力大。
冷型成冰过程历时很长。
暖型成冰作用有融水参与,并因融水数量不同而分别形成渗浸-重结晶冰、渗浸冰和渗浸-冻结冰。
当粒雪很薄而夏季气温较高时,粒雪可以完全融化,而后在冰川冷储作用下,在冰川表面重新冻结成冰。
重结晶、渗浸和冻结成冰,是成冰作用的三个基本类型。
渗浸重结晶及渗浸冻结作用则是两个过渡类型。
上述各种冰是成冰作用初期的原生沉积变质冰,它们仅仅分布于冰川表层。
冰川冰的绝大部分是沉积变质冰在运动中经受压力形成的动力变质冰。
其中最常见的是冰川塑性流动状态下形成的次生重结晶冰。
动力变质冰具有一般变质岩的特点,如片理、褶皱和冰晶的定向排列等。
冰川冰最初形成时是乳白色的,经过漫长的岁月,冰川冰变得更加致密坚硬,里面的气泡也逐渐减少,慢慢地变成晶莹透彻,带有蓝色的水晶一样的老冰川冰。
二、冰川分类与分布按冰川发育的气候条件和冰川温度状况,分为海洋性冰川和大陆性冰川。
①海洋性冰川(暖冰川)发育在降水充沛的海洋性气候区,粒雪线在年降水2000-3000mm地区附近,冰川的形成以暖渗浸再结晶成冰过程为特征,冰川的温度接近压力熔点,液态水可以从冰川表面分布到底部。
冰川与冻土地貌
冰川与冻土地貌冰川与冻土是地球上重要的自然地貌现象,它们对于地球表面的形成和变化起着至关重要的作用。
本文将探讨冰川与冻土地貌的形成原因、特征及其对环境的影响。
一、冰川地貌冰川是由厚厚的冰雪层覆盖而成的地貌特征,其形成与温度、降水等多种因素有关。
冰川地貌主要分为山地冰川和冰原冰川两种类型。
1. 山地冰川山地冰川位于高山地区,受到地形的限制,形成的冰川呈现出壮丽的峡谷和冰川舌。
冰川的形成主要依靠积雪的堆积和气温的变化。
在冷雪季节,冰川融化的速度减慢,积雪会逐渐堆积成冰川,而在暖和的季节,融化的冰川会形成冰川舌。
2. 冰原冰川冰原冰川分布在高纬度的地区,由多年累积的积雪形成。
它们的面积巨大,对地表地貌的改变也非常显著。
冰原冰川表面呈现出光滑平坦的特征,其下方则形成了复杂的冰川融水通道和冰川蚀积地貌。
二、冻土地貌冻土地貌是位于高寒地区的一种地貌类型,主要由冻土的分布和特征所决定。
冻土受到气温和湿度的影响,可以分为两种类型:永久冻土和季节冻土。
1. 永久冻土永久冻土分布在极地和高山地区,地下冻结层的厚度很大,一般在2米以上。
它对于土壤和地表水分的循环起着重要的控制作用。
在永久冻土环境下,土壤的活动性受到限制,植物的生长也受到影响。
2. 季节冻土季节冻土分布在温带和亚寒带地区,地下冻结层的厚度一般较小,会在冬季的低温时期出现,夏季则会逐渐融化。
季节冻土的变化对于生态系统的稳定性和土地利用具有重要意义。
三、冰川与冻土地貌的影响冰川和冻土地貌的变化对于环境和人类活动都有着重要的影响。
1. 环境影响冰川融化和冻土变暖会导致水资源供应不稳定,容易引发洪水、泥石流等自然灾害。
此外,冰川融化还会加剧全球气温上升的速度,进一步加剧气候变化的问题。
2. 人类活动影响冰川和冻土地貌对人类的居住和经济活动有着重要的影响。
高山地区的冰川是重要的淡水资源,为河流的形成和农业灌溉提供了水源。
此外,冰川景观也吸引大量的旅游者,成为当地经济的重要支柱。
自然地理学 第四章 冰川与冰缘地貌
羊背石
磨
3. 冰碛地貌(Glacial Depositional Landforms)
冰碛丘陵 侧碛堤 终碛堤 鼓丘 ……
支流冰川
底碛、中碛、侧碛与终碛
中碛
侧碛
消融区
底碛
终碛
侧碛与中碛
Different kinds of moraines on and near Gornergletscher, Valais, Switzerland: 1 - lateral moraines, 2 - middle moraines, 3 - terminal moraine (this moraine was deposited during the Little Ice age by the small cirque glacier
二、冰川的分布与雪线 Distribution of glaciers and snow line
Rongbuk 珠穆朗玛峰
慕士塔格峰
冰川分布高度与雪线高度的关系
➢ 雪线 (snow liБайду номын сангаасe):多年积雪区与季节积雪 区间的界线.
➢ 冰川发育在雪线以上高寒地区 。但冰川的 分布下限低于雪线。
……
冰斗 Cirque
The cirque of Cwm Cau on the peak of Cadair Idris, Snowdonia National Park, Wales.
刃脊
Arête
Matterhorn
角峰
Glacial horn
Hanging valley below Mitre Peak, Milford Sound, New Zealand.
冰川地貌与冻土地貌
d.冰砾埠阶地
在冰川两侧,由于岩壁和侧碛吸热较多,且冰川两侧的冰 面要比中间来的低,所以冰融水就汇集在这,形成冰侧河流, 并帶来冰水物质,等到冰水消后,这些物质就堆积在冰川谷两 侧,形成冰砾埠阶地,它只发育在山谷冰川中。
精选课件
e.锅穴<冰穴>:
冰水平原上常有一种园形洼地,称为锅穴。其形成是由于 冰川耗损时,有些残冰被孤立而埋入冰水沈积物中,等到冰融 化后引起塌陷,而造成锅穴。
精选课件
冰川流出粒雪盆
精选课件
冰川的侵蚀力量
冰川是一种巨大的侵蚀力量。冰岛的冰源河流含沙量为非冰川河流的五倍, 侵蚀力可能超过一般河流的10—20倍。冰川主要是依靠冰内尤其是冰川底部 所含的岩石碎块对地表进行侵蚀。在冰川滑动过程中,它们不断锉磨冰川床, 这种作用通常称为磨蚀(刨蚀)作用。另外,冰川下面因节理发育而松动了 的岩块和冰冻结在一起,冰川运动时岩块被拔起带走,这就是拔蚀(掘蚀) 作用。
第五节 冰川地貌与冻土地貌
精选课件
在高纬和高山等气候寒冷地区,如果降雪的积累大于消融,积雪将 逐年加厚。在一系列物理过程影响下,积雪就变为冰川。冰川本 身就是一种地貌,也是寒冷地区重要的地貌营力,可塑造一系列 冰川地貌。
但在降水量少的条件下,地表不能积雪成冰川。在这种地区土层的 上部常发生周期性的冻融,下部则长期处于冻结状态,成为多年 冻土。多年冻土层中发生的冻融精选作课件用,可塑造一系列冻土地貌。
精选课件
(4)峡湾:
在高纬度地区,冰川常能伸入海洋,在岸边侵蚀成一些很 深的U型谷,当冰退以后,海水可以沿谷进入很远,原来的冰 谷便成峡湾。
挪威峡湾,风光无限。粗看颇似峡江--长江三峡。
精选课件
精选课件
(5)悬谷:
地理学第五章第五节冰川地貌与冰缘地貌
2分类:按其处于冻结状态的
时间长短,可以分为季节冻土
和多年冻土两类。
3特征:地下冰的存在
组织冰
4分布 我国多年冻土分为高 纬度和高海拔多年冻 土。
分布规律: 平面分布服从纬度地 带性规律,即往约往 纬度高的地方冻土厚 度越厚。 垂直分布受当地海拔 高度的控制。
中国冻土分布
(二)冻土地貌
冻融作用:由于温度周期性地发生正负变化,冻土层 中的地下冰和地下水不断发生相变和位移,使土层产 生冻胀、融沉、流变等一系列应力变形,这一复杂过 程称为冻融作用。
石海 (王绍令摄于青藏高原风火山垭口)
2。构造土
泥质构造土是土层冻结之 后,温度继续降低,引起 地面收缩,或土层干缩, 产生裂隙而成。
泥质构造土
石带(摄于青藏高原唐古拉山南麓
石环
石质构造土中最典型的是石环。 在颗粒大小混杂而又饱含水分的松散土层中,冻融作用产生的垂 直分选和水平分选。
3.冻胀丘与冰椎
冰川地貌与冻土地貌
要求: 了解冰川作用, 掌握冰川地貌的主要类型, 了解冻融作用, 掌握冻土地貌的类型
高纬、高山地 区,年均温多 在0℃以下,降 雪量大于消融 量
积雪区
极地\亚极地以 及中低纬的高山 区,气温在0℃或 0℃以下,降水很 少.
冻土区
冰川作用
冰
粒雪盆
流速慢,年数十至数百 米。
地下冰的冻胀而使地面形成丘状的冻胀丘。冻胀丘多分布在地下水位较 高、地形较平缓、土层较厚、土质较细的地区。
冰椎是在寒冷季节流出封冻地表和冰面的地下水或河水冻结后形成的丘 状或椎状冰体。
冻胀丘
4.热融地貌
热融地貌是指由热融作用产生的地貌。热融地貌分为热融滑 塌和热融沉陷两种。
第四纪冰川及冰冻土地貌
底碛丘陵、鼓丘
(2)侧碛堤、中碛堤 (3)终碛堤
第四纪冰川及冰冻土地貌
底碛:当气候转暖,冰运物随着冰前的后退 广泛堆积在冰床上,这部分冰碛称为底碛。
终碛堤:当气候条件稳定时,冰川将冰运物 源源输送到冰前堆积,形成弧形的垅岗,称 为终碛堤或终碛垅。
侧碛堤:山谷冰川的两侧在冰川退缩时,可 堆积成侧碛堤。
第四纪冰川及冰冻土地貌
(3 )结构构造
岩块和砾石无定向排列,杂乱无章,亦无 层理。 有时具有粗略的分层:下部为致密的滞碛 ,上部为松散的含较大砾石的消融碛。 冰川的融水造成的透镜状层理、斜层理。
第四纪冰川及冰冻土地貌
(4 )砾石的磨圆度
冰川中的碎屑颗粒彼此不相磨擦、碰 撞,故冰碛物磨圆度极差,以棱角状 、次棱角状为主,少数具有较好的磨 圆。圆砾石产生的原因:主要是早期 河床圆砾石或冰川中的冰水砾石进入 冰川在沉积的结果。
第四纪冰川及冰冻土地貌
1、冰碛的成因分类
(3)融出碛:冰川在停顿过程中,冰消 融,在表面或下面沉积下来的碎屑物质。常 压下堆积而成无沉积构造。
第四纪冰川及冰冻土地貌
第四纪冰川及冰冻土地貌
2、冰碛物的基本特征
(1)岩性 (2)粒度 (3)结构构造 (4)砾石磨圆度 (5)砾石形状及表面特征 (6)石英砂表面特征
三、冰川堆积物
(一)冰碛物及冰碛地貌 (二)冰水沉积物及冰水堆积地貌
第四纪冰川及冰冻土地貌
三、冰川堆积物
由冰川直接形成的沉积物称为冰碛物。 冰雪融化后形成的水流称为冰水,经冰 水搬运后,沉积在冰川内部或附近的堆积 物,称为冰水沉积物。
第四纪冰川及冰冻土地貌
(一)冰碛物及冰碛地貌
1、冰碛的成因分类 2、冰碛物的基本特征 3、冰碛的形态类型及冰碛地貌
第四章 冰川与冻土
➢ 终碛堤外以冰水堆积地貌为主,尤以冰水冲积扇平原 为代表。
冰水堆积地貌平面图
锅穴
蛇形丘
冰砾阜
Gangotri Glacier, India
A chief source of the Holy Ganges River
History of retreat since 18th century
Rate of retreat is modest but accelerating, typical of most alpine glaciers.
Acceleration is inconsistent with a delayed re-sponse to end of Little Ice Age
成冰作用:指积雪转化为粒雪,再经过变质作 用形成冰川冰的过程。包括粒雪化过程和成冰 过程。
➢ 新雪粒雪 冰川冰冰川 ➢ 粒雪化过程包括固相的重结晶作用,气相的升华、
凝华作用,和液相的再冻结作用三种方式。 ➢ 成冰过程有重结晶,渗浸和冻结三种类型。
粒雪
ice crystal
Prominent layering in the firn is visible in the wall of a large crevasse on Weissmiesgletscher, Switzerland.
多年冻土的分布:具有明显的纬度地带性和 垂直地带性。
(1) 从高纬向低纬方向,厚度变薄,而且由 连续的冻土带过渡到不连续冻土带。
(2) 海拔越高,冻土层越厚,多年冻结层的 顶面埋藏深度减小。
(3)还与其它自然条件有关。
❖ 海陆分布 ❖ 岩性 ❖ 坡向和坡度 ❖ 植被与雪盖
冰川和冻土地貌及堆积物
冰川和冻土地貌及堆积物
第二节 冻土地貌及堆积物(了解)
• 一、冻土的一般特征
1、冻土的概念 冻土是指在气温寒冷的地区,含有冰的土层
或岩层。
据冻土在不同季节中的变化,分为多年冻土、 季节冻土和瞬(短)时冻土
冻土的形成受气候、岩性、地层、含水性、地 形、植被、地下水运动等因素影响。
冰川和冻土地貌及堆积物
• 2、冻土的结构与分布
活动层:冬季冻结,夏季融化 永冻层:终年不融化
冻土分布具纬向性和垂向性, 纬度和海拔越高冻土越发育; 从低纬度到高纬度,从低海 拔到高海拔冻土层增厚。
冰川和冻土地貌及堆积物
3、冻融作用
• 概念:在气温周期性变化的影响下,土层中的水 反复冻结和融化,造成土层的膨胀、开裂、变形、 扰动、流动等复杂变化,形成一系列的冻土地貌 和次生构造的过程。
• 冰帽:随着积雪的增加,冰原将进一步扩大,它 的表面开始上凸发展成冰帽。
• 冰盖(冰盾):当冰川面积超过5万多平方千米, 就是冰盖了。
冰川和冻土地貌及堆积物
二、冰川剥蚀地貌
• 1、冰川的剥蚀作用(刨蚀作用)
概念:冰川在运动过程中,以自身的动力和冻结其中 的砾石对冰床表面和两侧基岩所产生的破坏作用。
冰川和冻土地貌及堆积物
• 2、冰碛物及其分类
冰川侵蚀产生的大量松散岩屑和由山坡上崩落下来的碎 屑,进入冰体后,随着冰川运动向下游搬运,这些被搬运 的碎屑物称为冰碛物。
冰川和冻土地貌及堆积物
据冰碛物的相对位置,冰碛物可进一步分为(表6-1)
➢表碛:出露于冰川表面的冰碛物; ➢内碛:夹在冰川裂隙中的冰碛物; ➢侧碛:冰川边缘的冰碛物; ➢岸碛:冰川完全消融,堆积在谷地两侧稳定下来的侧碛; ➢中碛:两支冰川汇合后侧碛合并的冰碛物; ➢终碛:冰川所搬运和夹带的内碛、底碛和表碛在冰川融解
6第六章冰川和冻土地貌与堆积物
贡普冰川的冰舌景观
我国第三大冰川 ?
天山托木尔冰川 (长36.7公里)我国第三大冰川
我国第二大冰川?
喀喇昆仑山乔戈里峰 音苏盖提 冰川 (长42公里)
我国第一大冰川? 南依诺勒切期 我国最长的冰川是天山库 马里河上游的南依诺勒切 期冰川,长63.5km。
世界之脊
积雪盖顶的喜马拉雅山脉东部的山顶和山脊与中国西 南部的河流形成了一个白红相间的拼凑图案。喜马拉雅山 脉是由三个平行山脉构成的,其延伸总长度超过了2900 公里。
冰川冰在上部冰雪压力和本身的重力作用下而运动
(冰川)
新雪 粒雪
粒状冰
冰川冰 冰川
(一)冰川的形成和冰川运动
2.成冰作用
甘孜(风一光 )冰川的形成和冰川运动
2.成冰作用
新雪(表层)
(一)冰川的形成和冰川运动
2.成冰作用
粒状冰
(一)冰川的形成和冰川运动
2.成冰作用
雀儿山风光
冰川冰
甘孜风光
(一)冰川的形成和冰川运动
布洛阿特峰(8047)
作为世界上山岳冰川最为发达的山系,克勒青 河谷成为观看冰川地貌最佳的地域
克勒青河谷
加舒布鲁姆冰川
加舒布鲁姆冰川
克勒青河谷
(一)冰川的形成和冰川运动 • 冰川的推运
世界著名的也是我国规模最大的海洋性冰川群落
卡钦冰川是我国最大的海洋性冰川,长35公里
贡普
卡钦
若果
我国第四大冰川,
南迦巴瓦峰西坡则隆弄冰川
两次跃动冰体均直抵雅鲁藏布大峡谷,迫使江 水断流,曾在大峡谷入口处形成高达数十米的 冰坝,殃及周围村庄。
冰川跃动
雅鲁藏布大峡谷
(一)冰川的形成和冰川运动 3.冰川的运动
冻土和冰川地貌
冻土地貌冻土及冰川地貌地质工程1004班1009040424伊磊2013/1/1冻土地貌摘要:冻土在地球上的分布具有明显的纬度地带性和高度地带性。
在水平方向和垂直方向上,多年冻土带都可分出连续多年冻土带和不连续多年冻土带。
研究冻土地貌,是解决水资源紧缺的重要途径。
关键词:冻土,冰川,冻土地貌,冰川地貌,实际意义。
一、引言在高纬度及高山地区,年平均温度在0℃以下,大气降水多为固体状态,形成长年不化的积雪,且逐年增厚。
地表一定厚度的积雪,经过一系列物理变化称为具可塑性的冰川冰。
冰川可在其本身的压力及重力作用下流动,这种运动的冰川冰称为冰川。
冰川是塑造地表形态的巨大外力之一,冰川进退引起海平面升降,造成海陆轮廓的巨大变化,冰川流经地区由于受到冰川侵蚀、搬运和堆积作用,以及冰川消失或退缩,形成一系列独特的冰川地貌。
二.冻土冻土概述凡处于零温或负温,并含有冰的各种土(岩),统称冻土。
冻土按其冻结时间的长短,可分为季节冻土和多年冻土两类。
前者指冬季冻结,夏季融化的土层。
后者指冻结持续多年,甚至可达数万年的土层。
冬季冻结,一、二年内不融化的土层称为隔年冻土。
隔年冻土是季节冻土和多年冻土的过渡类型。
多年冻土可分为上下两层,上层为夏融冬冻的活动层,下层为多年冻土层。
活动层在冬季冻结时与多年冻土层能完全衔接起来,称衔接多年冻土,活动层在冬季冻结时不与多年冻结层衔接,其间隔有一层未冻结的土层,则称为不衔接多年冻土。
如今夏融化深度小于去年冻结深度,结果便在活动层与多年冻土层之间出现一薄层(一般厚0-20cm)隔年冻土层。
隔年层可以保留一年或数年。
冻土层的温度是随着气温而变化的,地温变化的幅度以地表最大,随着深度加大而减小,至某一深度,其值等于零。
这个深度称地温年变化深度。
在此温度下地温不发生年变化,而在地热影响下,随着深度的增加地温又逐渐增加。
地温年变化深度处的地温值称年平均地温,在多年冻土地区,其值为负值,其值越低,则冻土越厚。
冰川与冻土地貌
◆ 冰川搬运作用 冰川搬运作用:冰川侵蚀下来的松散碎屑以及由 山坡崩落下来的碎屑,进入冰川体后随冰川运动 向下游搬运。
☼ 冰川搬运作用的碎屑物称为冰碛物,按位置可 分为:表碛、内碛、底碛、侧碛,终碛。两条 冰川合并侧碛成为中碛。 ☼巨大的砾石为漂砾。
漂 砾
冰川沉积运作用
冰川消融后,以各种形式被搬运的物质, 堆积下来,形成各类冰碛物。
冰川槽谷
冰川槽谷,冰川运动形成或改造而成的
槽形谷地。 通常横剖面呈U型,谷肩发育典型,谷壁 平直。 纵剖面通常由岩槛和洼地交替呈阶梯状 平面形态通常中上游宽深而下游窄浅 主冰川谷深宽、支冰川谷浅窄,主支谷 交汇处往往呈悬交状态,被称为悬谷。
刃脊与角峰
相邻冰斗之
间的山脊, 通常由于冰 斗壁的后退 呈刀刃状, 因此为刃脊。 几个冰斗所 交汇形成的 山峰,称为 角峰。
冰楔
裂隙被地表水周期性的注入冻结,使裂隙扩大
并为冰体填充,剖面成楔状,称为冰楔。
沙楔
当气温转暖,冰楔融化被松散沙土填充 就成为沙楔。
石环、石圈、石带
在颗粒大小混杂而又饱含水分的松散土层中,
冻融作用产生的垂直分选和水平分选,使砾石 由地下被抬升到地面,再集中到边缘,并呈环 状分布,而细粒土或碎石则位于中间。 冻融分选在重力和融冻泥流作用的参与下,石 环过渡到椭圆形的石圈,石圈再过渡到狭长形 的石带。
石环
石圈
冰核丘
土溜阶坎
热融地貌,由于热融作用产生的地貌形 态,有热融滑塌和热融沉陷。 热融滑塌发生在斜坡上的底冰融化,土 体在重力作用下沿冻融界面发生滑塌, 平坦地面上由于底冰融化,导致地表沉 陷形成漏斗或洼地。
三、几个问题
1. 冻土地貌发育的空间规律
5.5 冰川地貌与冻土地貌1
运到千里以外。冰川的搬运方式很特殊:有在冰床上 被冰川推移的,有夹持在冰川内或叠置在冰面上随着 冰川的运动而一起被搬运的。
凡被冰川搬运的物质统称为冰碛物。其中巨大的砾石
称为漂砾。按冰碛物所处的位置不同而分为6种冰碛: 出露在冰面上的冰碛物称为表碛;夹带在冰内称之为 内碛;在冰川底部的称为底碛;由冰床二侧侵蚀的称 为侧碛,由二条冰川侧碛汇合而成的称为中碛(垂直分 布);环绕冰舌末端的叫终碛(前碛)
在高纬地区,古代大陆冰川伸人海岸时产生的
冰流,其厚度大,流速快,侵蚀力强,因此形 成了较深的冰川谷。冰退后,受海浸影响,形 成两侧平直、崖壁峭拔、谷底宽阔、深度很大 的海湾,称为峡湾或峡江。挪威海岸有一个峡 湾长达220千米,南美巴塔哥尼亚海岸的峡湾 深度达1288米
当支冰川流入主冰川时,
终碛垄
分布在冰川舌前端的弧形垄岗,其中大陆冰川
的终碛垄较长,可达几百公里,但高度较低, 约30—50m。而山岳冰川的终碛垄相反,长度 不大,但高度较大,可达百米以上。 终碛垄由二种堆积作用形成,第一是冰川前进 时,像推土机一样,把冰前沙砾挖起并向前挤 压隆起;第二是因冰川舌的剪切断裂作用,将 底碛、中碛和里碛沿剪切面推举至冰面,后又 沿冰舌斜坡滚落在冰舌前方,叠加在挤压冰碛 物之上,共同组成终碛垄
以下尚未冻结而含水的融土,在上部季节冻土 及下部永冻层的挟逼下,发生塑性变形,造成 各种褶曲,称为融冻扰动。 另外,活动层碎屑物中的孔隙水在冬季(或夜 间)冻结后,往往产生垂直性的冰针,它膨胀时 可将上覆的砾石托起,当夏季(或白天)冰针融 化时,被托起的砾石则不能恢复原位。这个过 程如果反复进行,冻土内的砾石就逐渐被抬升 (在地下)和侧移(在地面)。这是冻土碎屑物质 进行分选和缓慢迁移的一种重要形式
冰川与冻土地理
冰川与冻土地理冰川与冻土地理是地理学中一个重要的分支领域,它研究的是冰川和冻土在地球表面的分布、形态、演化以及对环境和人类社会的影响。
冰川和冻土是地球上独特的地貌现象,它们的形成与气候、地形、水文等因素密切相关,对于地球的气候变化和环境演化具有重要意义。
一、冰川地理冰川是由大量的积雪经过长时间压实而形成的巨大冰体。
它们主要分布在高山地区和极地地区。
冰川地理研究的内容包括冰川的形态、动态、分布以及与气候、水文等因素的关系。
冰川的形态可以分为冰川舌、冰川盆地和冰川谷等不同类型。
冰川舌是冰川延伸到海洋或湖泊的部分,冰川盆地是冰川在山谷中形成的冰川湖泊,冰川谷则是冰川侵蚀形成的U型谷地。
冰川的动态包括冰川的流动和冰川的融化。
冰川的流动是由于冰川的重力作用和冰川内部的塑性变形导致的。
冰川的融化则受到气候变化的影响,全球变暖导致冰川的融化速度加快,进而影响到水资源的供应和水文循环。
冰川的分布与气候、地形、水文等因素密切相关。
气候的寒冷和降雪量的多少是冰川形成的关键因素。
地形的高低和坡度也会影响冰川的形成和流动。
水文因素则包括降雨和融雪水的供应,对冰川的形态和动态起着重要的影响。
二、冻土地理冻土是指地下温度低于冰点的土壤或岩石层。
冻土地理研究的内容包括冻土的分布、厚度、性质以及与气候、地形等因素的关系。
冻土的分布主要集中在高纬度地区和高海拔地区,如北极地区、高山地区和高原地区。
冻土的厚度因地域和季节而异,冬季厚度较大,夏季则会出现融化。
冻土的性质与土壤的组成和温度有关。
冻土的含水量较高,冻结后形成冻结土壤。
冻土的存在对土地利用和工程建设有一定的影响,如冻土融化会导致地面下陷和建筑物的损坏。
冻土的分布与气候、地形等因素密切相关。
气候的寒冷和降雪量的多少是冻土形成的关键因素。
地形的高低和坡度也会影响冻土的分布和性质。
三、冰川与冻土的影响冰川和冻土对环境和人类社会产生重要影响。
首先,冰川的融化会导致海平面上升和水资源的减少,对沿海地区和水资源供应造成威胁。
冰川与冻土地貌
冰川与冻土地貌冰川与冻土是地球地貌中非常重要的两类地形类型。
他们在地表积累了大量的冰雪和冰冻的土壤,对地球的气候和生态环境具有很大的影响。
本文将介绍冰川和冻土地貌的形成过程、分布情况以及其对自然环境的影响。
冰川是由大量降水在高寒地区堆积而成的巨大冰雪体。
它们形成于地球高纬度地区的山脉和高原上,也有部分形成于高山峡谷中。
冰川的形成需要丰富的降水和低温条件,在这种条件下,积雪逐渐堆积,经过长时间的压缩和变形,最终形成巨大的冰雪体。
冰川有两种主要类型:陆地冰川和海洋冰川。
陆地冰川主要分布在北极和南极地区,它们是由大量的雪和冻土堆积而成的。
海洋冰川则主要分布在极地地区的海域,是由冰山和冰盖的堆积形成的。
冰川的形成和融化过程是一个动态的循环,受到气候变化的影响很大。
冰川地貌是由冰川运动和冰川侵蚀作用形成的。
冰川运动是指冰川在山谷和高原上的流动和滑移。
在冰川运动过程中,冰川会带走大量的岩石碎屑和土壤,形成冰碛和冰磨地貌。
冰川侵蚀作用主要包括冰川的领蚀和覆蚀。
冰川的领蚀作用是指冰川通过物理和化学的作用,将地表的岩石碎屑和土壤领走;冰川的覆蚀作用是指冰川通过覆盖和压实作用,改变地表地貌的特征。
冰川地貌的特点是地势陡峭、形态复杂、层次分明。
在高山地区,可以见到很多山谷、冰峰和冰崖,形成了壮丽的冰川地景。
在低海拔地区,冰川的主体已经融化,留下了冰碛和冰川湖泊,形成了广阔的冰碛平原。
冻土是指地下土壤在低温条件下,由于水分的冻结而形成的。
冻土地貌主要分布在地球高纬度地区,如北极地区的阿拉斯加和俄罗斯西伯利亚地区。
冻土地貌的形成需要长时间的低温和充足的水分,这些条件在高纬度地区比较常见。
冻土地貌有两种主要类型:冻土平原和冻土丘陵。
冻土平原是由冻土和冰碛堆积形成的广阔平原,是冻土地貌中最常见的类型。
冻土丘陵是由冻土的冻结和融化过程形成的,具有起伏不平的表面。
冻土地貌对自然环境具有重要的影响。
首先,冻土地貌是水源的重要储存库,可以调节降水的排水速度,减少洪水的发生。
5.冰川与冻土地貌
山谷冰川
山谷冰川
山谷冰川
二、冰川的分类
2.山岳冰川 (4)、山麓冰川
巨大的山谷冰川从山地流出,在山麓地带冰舌扩展
或汇合成大片广阔的冰体,叫山麓冰川。现代山麓冰川只 存在于极地或高纬地区,如阿拉斯加、冰岛等。阿拉斯加 的马拉斯平冰川是条著名的山麓冰川,它由12条冰川汇合 而成,山麓部分的冰川面积达2 682平方千米,冰川最厚 达615米。
才会有多余的雪积累起来。年深日久,才能成为永久 积雪和冰川发育的地区。
一、冰川的形成
(一)、雪线与成冰作用
雪线以上的区域,从天空降落的雪和从山坡上 滑下的雪,容易在地形低洼的地方聚集起来。由于 低洼的地形一般都是状如盆地,所以冰川学上称其
为粒雪盆。
粒雪盆
一、冰川的形成
(一)、雪线与成冰作用 粒雪盆是冰川的摇篮。聚积在粒雪盆里的雪, 经过一系列的“变质”作用而形成冰川冰,这个 过程称为成冰作用。
的全部作用功能。山谷冰川具有明显而完整的粒雪盆
和伸人谷地中的长大冰舌,冰川长度达到数千米至数 十千米,冰川厚度为数百米。
二、冰川的分类
2.山岳冰川 (3)、山谷冰川
以雪线为界,山谷冰川具有明显的冰雪积累区和
消融区,分别表现为粒雪盆和长大冰舌。它像河流那 样顺谷而下,沿途还可接纳支冰川汇人,组合为规模 更大的复式山谷冰川、树枝状山谷冰川。
(一)、冰蚀作用 冰蚀作用有人估计可超过河流侵蚀作用的10~ 20倍。估计斯堪的纳维亚半岛在大冰期中平均被挖蚀
去25米厚的岩层,岩屑总量可以填平现在的波罗的海
和它周围的一切湖泊。号称“千湖之国”的芬兰境内 的湖泊,就是由大陆冰川挖掘地面形成的。北美的五 大湖也是如此。
(二)、冰蚀地貌
冰蚀地貌最典型的有冰斗、
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
冰川地貌与冻土地貌在高纬和高山等气候寒冷地区,如果降雪的积累大于消融,积雪将逐年加厚。
在一系列物理过程影响下,积雪就变为冰川。
冰川本身就是一种地貌,也是寒冷地区重要的地貌营力,可塑造一系列冰川地貌。
但在降水量少的条件下,地表不能积雪成冰川。
在这种地区土层的上部常发生周期性的冻融,下部则长期处于冻结状态,成为多年冻土。
多年冻土层中发生的冻融作用,可塑造一系列冻土地貌。
关于冰川作用和冰川类型、分布,在第五章第四节已有介绍。
这里只着重讨论冰川的地貌作用和冰川地貌的特点。
一、冰川作用冰川在运动时能对地表进行侵蚀。
但冰川运动的速度缓慢,每年只有数十米至数百米不等。
冰川各个部分的运动速度并不一致,其中从粒雪盆(雪线以上的积雪盆地,即冰川的补给区)出口到冰舌上部这一段速度最快;在横剖面上则以冰川中部为最快。
实际观察还证明,冰川表面运动速度最快,且自冰面向底部递减。
冰川运动的速度有季节变化和日变化,一般是夏季快,冬季慢;白昼快,夜间慢。
在粒雪盆中冰川有向心运动和下沉运动,在冰舌部分有侧向运动和上升运动。
冰川运动是由可塑带的流动和底部的滑动组成的。
而冰川滑动则是产生侵蚀作用的根本原因。
冰川是一种巨大的侵蚀力量。
冰岛的冰源河流含沙量为非冰川河流的五倍,侵蚀力可能超过一般河流的10—20倍。
冰川主要是依靠冰内尤其是冰川底部所含的岩石碎块对地表进行侵蚀。
在冰川滑动过程中,它们不断锉磨冰川床,这种作用通常称为磨蚀(刨蚀)作用。
另外,冰川下面因节理发育而松动了的岩块和冰冻结在一起,冰川运动时岩块被拔起带走,这就是拔蚀(掘蚀)作用。
冰川的搬运能力是惊人的。
大陆冰川可以把大片基岩搬走;山岳冰川的搬运能力也不小。
喜马拉雅山中即有直径28米,重量超过万吨的大漂砾。
冰川通过磨蚀、拔蚀、雪崩和山坡上的块体运动获得大量碎屑物质。
这些碎屑被冰川携带而下,通称运动冰碛。
其中,出露于冰面的叫表碛;夹带在冰内的叫内碛;在冰川底部的叫底碛;位于冰川两侧的叫侧碛;两支冰川会合则形成中碛。
由于冰川的消融或负荷过多,被搬运的物质就堆积下来成为冰碛物。
冰碛物往往是由漂砾(特大的石块)、砾石、砂和粘土组成的混合堆积物,因此有人把冰碛物称为冰砾泥。
但由于冰川活动区岩性的影响,冰碛物的成分和粒度可有较大的差别。
冰碛物缺乏分选,不显层次,但其中可夹有冰水形成的砂砾透镜体。
冰碛物中常含有大量砾石,磨圆度差,多呈次棱角状。
冰碛石表面常有冰川搬运时砾石与基岩或砾石之间相互刻磨而成的擦痕、刻槽及磨光面。
冰碛物中的石英砂粒棱角尖锐。
在冰川的研磨作用下,颗粒常具贝壳状断口。
有些侧碛有冰川表碛滚落堆积,因而可出现明显向外侧倾斜的现象。
有些冰碛石在运动过程中,适应冰流方向,调整自己的方位,其长轴顺冰流方向延伸。
二、冰川地貌冰川地貌分为冰蚀地貌、冰碛地貌和冰水堆积地貌三类。
(一)冰蚀地貌冰蚀地貌主要有冰斗、冰川谷、羊背石等。
1.冰斗冰斗是山岳冰川作用的结果。
冰斗呈剧场形状或围椅状,三面环以陡峭的岩壁,开口处为一高起的冰槛(岩槛),因而冰斗底部是一个洼地。
山坡集水盆中的多年积雪斑洼地岩石因冻融作用频繁,崩解为岩屑,并在重力和融雪水联合作用下搬运到低处,积雪斑后缘逐渐形成一个陡坎,雪斑下的地面也逐步蚀低成为洼地,这就是雪蚀洼地。
积雪演化为冰川后,冰川对底床的磨蚀作用使底床加深,在前方造成坡向相反的冰槛,陡壁受冰川的拔蚀作用而后退变高,就成为冰斗。
冰斗按其分布位置。
可分为谷源冰斗和谷坡冰斗两种。
相邻冰斗后退可形成刃脊和角峰冰斗发育于雪线附近,因而具有指示雪线的意义。
2.冰川谷冰川谷是冰川下蚀和展宽形成的槽谷,谷底自上游向下游变窄,谷地两侧常有谷肩和冰川切削山嘴而成的三角面,横剖面呈U形或槽形,故又称U形谷或槽谷。
冰床上常有冰川差别侵蚀形成的冰坎与冰盆。
这种差别侵蚀与冰床基岩的岩性、节理、构造及冰前期河床纵剖面的原始起伏有关。
在支冰川注入主冰川的汇合处,常在谷肩出现悬谷。
这是由于主冰川厚度较大,侵蚀深度也较大,而其两侧支冰川,则因厚度较小,侵蚀力较弱,冰床深度不大,故冰川退却后,支冰川谷常高悬在主冰川谷的谷底之上,形成悬谷。
峡湾是冰川谷的一种特殊形式。
在大陆冰川或岛屿冰盖入海处常形成许多峡湾,它是过去溢出冰川的通道。
目前峡湾仍在海面以下。
3.羊背石在冰床的表面,由冰川侵蚀形成一些似羊背的石质小丘,称羊背石。
羊背石的迎冰川面因受磨蚀而平缓,布满磨光面、擦痕、刻槽等微形态;背冰川面因受拔蚀多为参差不齐的陡坎。
(二)冰碛地貌冰碛地貌可分为冰碛丘陵、侧碛堤和终碛堤等。
1.冰碛丘陵(基碛丘陵)冰碛丘陵是冰川后退过程中,由于冰体的逐渐消融,原来的表碛、内碛、中碛都堆积在底碛之上形成的,表面丘陵起伏,洼地常常积水。
冰碛丘陵以大陆冰川区分布最广,高度由数十米至百余米。
大规模的山岳冰川区也能形成冰碛丘陵,分布在冰川谷的底部,高度较小。
2.侧碛堤(侧碛垅)与中碛堤(中碛垅)侧碛堤位于山谷冰川的两侧,常成条状岗地,两条侧碛会合形成中碛堤,它位于冰川谷的中间。
3.终碛堤(终碛垅)终碛堤又称前碛堤,位于冰川末端,呈弧形,常与侧碛堤相连。
终碛堤是冰川补给与消融处于相对平衡时,冰舌末端位置变动不大,大量冰碛物在此堆积而形成的。
如果冰川后退是断续进行的,则可形成数道终碛堤。
故根据终碛堤的分布及条数,可以确定与此相应的冰川作用范围及冰川退缩的阶段性和冰期的次数。
4.鼓丘鼓丘是高数十米、长几百米的流线型丘陵。
平面上呈蛋形,长轴与冰流方向平行。
迎冰面(后坡)陡,背冰面(前坡)缓,大部分鼓丘完全由冰碛物组成,有的则有一基岩核心。
鼓丘成群分布在大陆冰川终碛堤内侧不远的地方。
山岳冰川区则很少见。
(三)冰水堆积地貌冰水是冰川的融水,因此冰水与冰川的动态息息相关。
同时冰水又具有流水作用的一般特征。
冰水作用主要是将冰碛物进行再搬运和再堆积,因此冰水堆积物有的具冰川作用的痕迹。
堆积物经分选,形成层理,其中砾石磨圆度较好。
冰水堆积地貌主要有冰水扇、冰水排泄平原、季候泥、蛇形丘等。
冰融水从冰川两侧和底部流到冰川末端,汇成冰前河流。
冰前河流将大量碎屑物质堆积于终碛堤的外围,形成冰水扇,许多冰水扇联合成外冲平原;在山谷中形成冰水排泄平原,经后期切割则成冰水阶地。
在冰川区域,湖泊往往是冰川作用的产物。
其中有的是冰蚀作用形成的;有的是冰积物堆积阻塞局部冰融水的结果。
冰水湖泊中的沉积,有明显的季节变化,夏天冰融水增多,携带颗粒较粗的泥沙入湖沉积,颜色变浅;秋季冰融水骤减,冬季湖泊封冻,悬浮的粘土胶粒沉淀,颜色较深。
这样就形成季候泥,亦称纹泥,它不仅象树木年轮一样,可据以计算沉积物形成的年代,而且因其中含有孢粉,能为该地区的植物和气候演变提供线索。
蛇形丘是一种狭长而曲折的岗地,蜿蜒伸展如蛇形,故名蛇形丘。
蛇形丘两坡对称,丘脊狭窄。
大的蛇形丘长达数十公里,有的还爬上高坡。
这主要是冰下河道中的沉积,当冰川融化后,沉积物便显露出来,成为蛇形丘。
组成物质几乎全部是大致成层的砂砾,偶夹冰碛透镜体。
蛇形丘主要分布在大陆冰川地区。
冰川地貌类型具有明显的组合规律。
山岳冰川地貌由山顶至山麓,地貌组合依次为:①冰斗、刃脊、角峰带位于雪线以上,为冰蚀地貌带。
②冰川谷、侧碛堤和冰碛丘陵带位于雪线以下,终碛堤以上,为冰蚀-冰积地貌带。
③终碛堤带位于山谷冰川末端,为冰积地貌带。
④冰水扇和外冲平原带位于终碛堤以外,为冰水堆积地貌带。
大陆冰川地貌组合以终碛堤为界,堤内以冰碛地貌为主,以冰碛丘陵为代表;堤外以冰水堆积地貌为主,以冰川外冲平原为代表。
三、冻土与冻土地貌(一)冻土凡处于零温或负温,并含有冰的各种土(或岩),称为冻土。
温度状况相同但不含冰的,则称为寒土。
冻土按其处于冻结状态的时间长短,可以分为季节冻土和多年冻土两类。
一两年之内不融化的土层称为隔年冻土,是上述两类冻土之间的过渡类型。
多年冻土可分为上下两层,上层为夏融冬冻的活动层,下层为多年冻结层。
活动层在冬季冻结时,能和下部的多年冻结层完全连接起来的,称为衔接多年冻土。
在这种情况下,活动层又称季节融化层。
活动层在冬季冻结时不与下部多年冻结层衔接,中间隔着一层融土的,则称为不衔接多年冻土。
在这种情况下,活动层又称季节冻结层。
多年冻结层距地表的深度,称为多年冻土的上限。
多年冻土在地球上的分布表现出明显的纬度地带性和垂直地带性规律。
无论在水平方向或垂直方向上,多年冻土带都可以分出连续冻土带和不连续冻土带。
在北半球,多年冻土从中纬向极地厚度不断增加,上限逐渐缩小。
北纬48°附近的多年冻土南界,地温接近0℃,冻土层厚度仅1—2米。
连续多年冻土带南部,年平均地温约为-3—5℃,冻土厚度可达100米。
北极附近岛屿的年平均地温降至-15℃,冻土厚度达到1000米以上,上限趋近地面。
中低纬高山高原区冻土的分布,则表现为随海拔高度而变化。
海拔愈高,地温愈低,则冻土愈厚,而上限深度愈小。
地下冰的存在是冻土的最基本特征。
冻土中的地下冰,根据成因和埋藏形式可以分为组织冰、洞脉冰、埋藏冰等类型。
土层中的水分冻结所形成的组织冰是分布最广、含量最多、但冰的聚合体最小的一类地下冰。
洞脉冰是地表水注入土、岩垂直裂隙和洞穴冻结形成的,可分为脉冰和洞穴冰两种。
由于地表水周期性注入,因而在裂隙中多次重复冻结,这样形成的脉冰叫做复脉冰。
它具有垂直条带状构造,每一条带代表一个年层,常伸入到多年冻土层内,年代愈长,裂隙愈扩大,所以复脉冰也被称为冰楔。
埋藏冰是地表冰体(冰椎、河冰、湖冰、冰川冰等)被堆积物掩埋后形成的,通常呈透镜体。
我国多年冻土区地下冰分布很广泛,有的地方地下冰厚度很大,如青藏公路风火山最厚单层地下冰可达5米,昆仑山垭口夹于沉积层中的冰透镜体,最厚可达10余米。
地下冰的数量、分布及其与土中其他组成要素的位置关系不同,形成不同的冻土构造类型。
除地下冰外,冻土中还有一部分液态的地下水。
根据地下水与冻土层的位置关系,多年冻土区的地下水可以分为冻结层上水、冻结层间水和冻结层下水三类。
地下水与整个冻土层有密切的关系,一方面冻土影响着地下水的运动,另方面地下水的存在对冻土的温度、厚度变化也产生明显影响。
(二)冻土地貌由于温度周期性地发生正负变化,冻土层中的地下冰和地下水不断发生相变和位移,使土层产生冻胀、融沉、流变等一系列应力变形,这一复杂过程称为冻融作用。
冻融作用是寒冷气候条件下特有的地貌营力,它使岩石遭受破坏,松散堆积物受到分选和干扰,冻土层发生变形,从而塑造出各种类型的冻土地貌。
冻土地貌也可称为冰缘地貌。
冰缘原指冰川边缘地区,现已泛指所有不被冰川覆盖的气候严寒地区,大致与多年冻土区相当。
1.石海与石河基岩经过剧烈的冻融风化,岩石崩解,产生大片巨砾岩屑,堆积在平缓的地面上,形成石海。
石海线与雪线有密切的关系,这是因为雪线附近气温在0℃上下波动频繁,有利于岩石的冻融崩解。