剪力与弯矩的计算方法

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.剪力和弯矩

根据作用在梁上的已知载荷,求出静定梁的支座反力以后,梁横截面上的内力可利用前面讲过的“截面法”来求解,如图7-8a所示简支梁在外力作用下处于平衡状态,现在讨论距支座距离为的截面上的内力。

图7-8 简支梁指定截面的剪力、弯矩计算

根据截面法计算内力的基本步骤“切、代、平”,计算梁的内力的步骤为:

①、首先根据静力平衡方程求支座反力和,为推导计算的一般过程,暂且用和

代替。

②、用截面假想沿处把梁切开为左、右两段,如图7-8b、7-8c所示,取左段梁

为脱离体,因梁原来处于平衡状态,所以被截取的左段梁也同样保持平衡状态。从图7-8b中可看到,左段梁上有一向上的支座反力、向下的已知力作用,要使左段梁不发生竖向移动,则在截面上必定存在一个竖直方向的内力与之平衡;同时,、对截面形心点有一个力矩,会引起左段梁转动,为了使其不发生转动,在截面上必须有一个力偶矩与之平衡,才能保持左段梁的平衡。和即为梁横截面上的内力,其中内力使横截面有被剪开的趋势,称为剪力;力偶矩将使梁发生弯曲变形,称为弯矩。

由于外载荷的作用线垂直于梁的轴线,所以轴力为零,通常不予考虑。

剪力和弯矩的大小可由左段梁的静力平衡方程来求解。

2.剪力与弯矩的正负号规定

从上面的分析可知,用截面法将梁切开分成两段,同一截面上的内力,取左段梁为脱离体和取右段梁为脱离体所得结果虽然数值相等,但方向却是相反的,为此根据剪力和弯矩引起梁的变形情况来规定它们的正负号。

图7-9 剪力、弯矩的符号规定

①、剪力正负号的规定如图7-9a、7-9b所示,在横截面处,从梁中取出一微段,若剪力使微段顺时针方向转动,则该截面上的剪力为正;反之为负。

②、弯矩正负号的规定如图7-9c、7-9d所示,在横截面处,从梁中取出一微段,若弯矩使微段产生向下凸的变形,即上部受压,下部受拉,则该截面上的弯矩为正;反之为负。

为方便起见,在计算时通常将剪力和弯矩假设成正方向,它的实际方向根据最后计算结果的正负号来确定,如果计算结果为正,则说明实际方向与假设方向相同;否则,相反。

1.用截面法求指定截面上的内力

下面举例说明用截面法求梁指定截面上的内力。

例7-1 如图7-10a所示外伸梁,试计算1-1、2-2和3-3截面上的剪力和弯矩。

图7-10 外伸梁指定截面的内力计算

2.计算剪力、弯矩的简便方法

利用上面的关系,可以直接根据作用在梁上的外力计算出任意截面的剪力、弯矩,从而省去取脱离体列平衡方程的步骤,使计算过程简化。

直接由梁上的外力计算内力的简便方法,其实质仍然是截面法,应熟练掌握。

相关文档
最新文档