人教版高二数学选修2-1椭圆专项基础测试卷

合集下载

高中数学 专题2.2.1 椭圆及其方程测试(含解析)新人教A版选修2-1(2021年整理)

高中数学 专题2.2.1 椭圆及其方程测试(含解析)新人教A版选修2-1(2021年整理)

高中数学专题2.2.1 椭圆及其方程测试(含解析)新人教A版选修2-1 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学专题2.2.1 椭圆及其方程测试(含解析)新人教A版选修2-1)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学专题2.2.1 椭圆及其方程测试(含解析)新人教A版选修2-1的全部内容。

椭圆及其方程(时间:25分,满分55分)班级姓名得分一、选择题1.设F1,F2为定点,|F1F2|=6,动点M满足|MF1|+|MF2|=6,则动点M的轨迹是( ) A.椭圆B.直线C.圆D.线段[答案] D2.中心在原点,焦点在坐标轴上,且过两点(4,0)、(0,2)的椭圆方程为() A.错误!+错误!=1 B。

错误!+错误!=1C。

错误!+错误!=1 D。

错误!+错误!=1[答案]D[解析]解法一:验证排除:将点(4,0)代入验证可排除A、B、C,故选D.解法二:设椭圆方程为mx2+ny2=1(m〉0,n>0),∴错误!,∴错误!,故选D。

3.椭圆ax2+by2+ab=0(a〈b〈0)的焦点坐标是()A.(±错误!,0)B.(±错误!,0)C.(0,±错误!)D.(0,±错误!)[答案]D[解析] ax2+by2+ab=0可化为错误!+错误!=1,∵a〈b〈0,∴-a>-b>0,∴焦点在y轴上,c=-a+b=错误!,∴焦点坐标为(0,±错误!).4.“1<m〈2”是“方程错误!+错误!=1表示的曲线是焦点在y轴上的椭圆”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件[答案]C[解析] 方程错误!+错误!=1表示的曲线是焦点在y轴上的椭圆,∴错误!,∴1<m<2,故选C。

高中数学人教A版选修2-1椭圆基础小练

高中数学人教A版选修2-1椭圆基础小练

高中数学学习材料(灿若寒星精心整理制作)椭圆基础小练(一)1.椭圆2212516x y+=上一点P到其一个焦点的距离为3,则点P到另一个焦点的距离为(C)A.2 B.3 C.7 D.52.椭圆221259x y+=与221(09)925x ykk k+=<<--的关系为(B)A.有相等的长、短轴B.有相等的焦距C.有相等的焦点D.有相等的离心率3.若椭圆的焦距长等于它的短轴长,则椭圆的离心率等于(B)A.12B.22C.2D.24.椭圆221259x y+=上的点P到椭圆左焦点的最大距离和最小距离分别是(D)A.8,2 B.5,4 C.5,1 D.9,15.直线:220l x y-+=过椭圆的左焦点1F和一个顶点B,该椭圆离心率为(D)A.15B.25C.55D.2556.已知椭圆的一个顶点是(02),,离心率12e=,坐标轴为对称轴的椭圆的标准方程是(A)A.2231164x y+=或22143y x+=B.22143y x+=C.2231164x y+=D.22184x y+=或22143x y+=7.①平面内到两定点距离的和等于定长的点的轨迹不一定是椭圆:②若点()M x y,满足2222(3)(3)6x y x y++++-=,则点M的轨迹是椭圆;③椭圆22221x ya b+=中的参数ba不能刻画椭圆的扁平程度,而ca能刻画椭圆的扁平程度;④已知椭圆的中心在原点,经过两点(02)A ,和132B ⎛⎫ ⎪⎝⎭,的椭圆的标准方程是唯一确定的.把以上各小题正确的答案填在横线上 ①④ .8.短轴长为5,离心率23e =的椭圆的两焦点为12F F ,,过1F 作直线交椭圆于A B ,两点,则2ABF △的周长是 .69.如果椭圆的短轴端点与两焦点的连线互相垂直,那么它的离心率e = .2210.椭圆221259x y +=上的一点M 到焦点1F 的距离为2,N 是1MF 的中点,则 ON = 4 .11.经过点(23)-,且与椭圆229236x y +=有共同焦点的标准方程为 2211015+=x y . 12.直线1y x =+被椭圆2224x y +=所截得的弦的中点的坐标是 .2133⎛⎫- ⎪⎝⎭, 13.已知椭圆2214x y +=的左、右焦点分别为12F F ,,过原点作直线与椭圆交于A B ,两点,若2ABF △的面积为3,求直线的方程.解:设过原点的直线方程为x ky =,交椭圆于 1122()()A x y B x y ,,,, 把它代入2214x y +=,得2244y k =+,224y k =±+. 所以12244y y k -=+, 由图可知,21212ABF AF BF S S =△12121122F F y y =⨯-·21423344k =⨯⨯=+. 解得0k =.∴所求直线方程为0x =。

高中数学人教A版选修2-1第一学期高二椭圆专题检测

高中数学人教A版选修2-1第一学期高二椭圆专题检测

高中数学学习材料金戈铁骑整理制作青岛一中2010学年第一学期高二椭圆专题检测一、 选择题:(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中有只有一项是符合题目要求的.) 1.椭圆63222=+y x 的焦距是( )A .2B .)23(2-C .52D .)23(2+2.F 1、F 2是定点,|F 1F 2|=6,动点M 满足|MF 1|+|MF 2|=6,则点M 的轨迹是 ( ) A .椭圆 B .直线 C .线段 D .圆3.若椭圆的两焦点为(-2,0)和(2,0),且椭圆过点)23,25(-,则椭圆方程是 ( )A .14822=+x yB .161022=+x yC .18422=+x yD .161022=+y x4.方程222=+ky x 表示焦点在y 轴上的椭圆,则k 的取值范围是 ( )A .),0(+∞B .(0,2)C .(1,+∞)D .(0,1)5. 过椭圆12422=+y x 的一个焦点1F 的直线与椭圆交于A 、B 两点,则A 、B 与椭圆的另一焦点2F 构成2ABF ∆,那么2ABF ∆的周长是( )A. 22B. 2C. 2D. 16.若椭圆两准线间的距离等于焦距的4倍,则这个椭圆的离心率为( )A .41 B .22 C .42 D .21 7. 已知k <4,则曲线14922=+y x 和14922=-+-ky k x 有( ) A. 相同的准线 B. 相同的焦点 C. 相同的离心率 D. 相同的长轴8.已知P 是椭圆13610022=+y x 上的一点,若P 到椭圆右准线的距离是217,则点P 到左焦点的距离是( )A .516B .566C .875D .8779.若点P 在椭圆1222=+y x 上,1F 、2F 分别是椭圆的两焦点,且 9021=∠PF F ,则21PF F ∆的面积是( )A. 2B. 1C.23D. 2110.椭圆1449422=+y x 内有一点P (3,2)过点P 的弦恰好以P 为中点,那么这弦所在直线的方程为( )A .01223=-+y xB .01232=-+y xC .014494=-+y xD . 014449=-+y x11.椭圆141622=+y x 上的点到直线022=-+y x 的最大距离是 ( )A .3B .11C .22D .1012.在椭圆13422=+y x 内有一点P (1,-1),F 为椭圆右焦点,在椭圆上有一点M ,使|MP|+2|MF|的值最小,则这一最小值是( )A .25 B .27 C .3D .4二、 填空题:(本大题共4小题,每小题4分,共16分,把答案填在题中横线上.)13.椭圆2214x y m+=的离心率为12,则m = 。

高中数学人教A版选修2-1高二年级数学椭圆单元测试卷

高中数学人教A版选修2-1高二年级数学椭圆单元测试卷

河南省安阳市二中2013届高二年级数学椭圆单元测试卷班级 姓名一.选择题1.离心率为32,长轴长为6的椭圆的标准方程是() A .15922=+y x B .15922=+y x 或19522=+y x C .1203622=+y x D .1203622=+y x 或1362022=+y x 2.平面内有定点A 、B 及动点P ,设命题甲是“|PA|+|PB|是定值”,命题乙是“点P 的轨迹是以A 、B 为焦点的椭圆”,那么甲是乙的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.已知ABC ∆的周长是16,)0,3(-A ,B )0,3(则动点的轨迹方程是()A .1162522=+y xB .)0(1162522≠=+y y xC .1251622=+y xD .)0(1251622≠=+y y x 4.若椭圆19922=++m y x 的离心率是21,则m 的值等于() A .49-B .41C .49-或3D .41或3 5.已知椭圆的对称轴是坐标轴,一个焦点是(0,-7),一个顶点是(9,0),则该椭圆的方程是 []A +y =1B +x =1C +y =1D +x =12222....x y x y 22228132813213081130816.椭圆192522=+y x 上有一点P ,它到左准线的距离是25,则点P 到右焦点是距离是() A .8B .825C .29D .815 7.短轴长为5,离心率为32,两个焦点分别为1F 、2F 的椭圆,过1F 作直线交椭圆于A 、B 两点,则2ABF ∆的周长为()A .24B .12C .6D .38.椭圆12222=+b y a x 和12222=-+-λλb y a x )0(22>>>λb a 的关系是() A .有相同的长、短轴B .有相同的离心率C .有相同的准线D .有相同的焦点9.直线)(1R k kx y ∈+=与椭圆1522=+my x 恒有公共点,则m 的取值范围是() A .5>m B .50<<m C .1>m D .1≥m10.以椭圆上一点和两个焦点为顶点的三角形的最大面积为1,则长轴长的最小值为()A .1B .2C .2D .2211.设P 为椭圆12222=+by a x )0(>>b a 上一点,F 1、F 2为焦点,如果ο7521=∠F PF ,ο1512=∠F PF ,则椭圆的离心率为()A .22B .23C .32D .36 12.椭圆12222=+by a x )0(>>b a 与圆222)2(c b y x +=+(c 为椭圆半焦距)有四个不同交点,则椭圆离心率e 的取值范围是()A .5355<<e B .153<<e C .155<<e D .530<<e 二.填空题 13.过椭圆2222=+y x 的焦点引一条倾斜角为ο45的直线与椭圆交于A 、B 两点,椭圆的中心为O ,则AOB ∆的面积为14.椭圆的长轴的一个顶点与短轴的两个端点构成等边三角形,则此椭圆的离心率等于15.椭圆1422=+y m x 的焦距是2,则m 的值为 16.到椭圆192522=+y x 右焦点的距离与到直线6=x 的距离相等的轨迹方程是 三.解答题17.求以直线01243=-+y x 和两坐标轴的交点为顶点和焦点的椭圆的标准方程。

高中数学选修2-1《椭圆》综合练习含答案

高中数学选修2-1《椭圆》综合练习含答案

椭圆一、以考查知识为主试题 【容易题】1.椭圆22194x y k+=+的离心率为45,则k 的值为( ) (A )-21 (B )21 (C )1925-或21 (D )1925或21【答案】C2.焦点在x 轴上,长、短半轴长之和为10,焦距为45,则椭圆的方程为( )A.x236+y216=1 B.x216+y236=1 C.x26+y24=1 D.y26+x24=1 【答案】A3. 若焦点在x 轴上的椭圆x22+y2m =1的离心率为12,则m 等于( )A.3 B.32 C.83 D.23【答案】B4. 已知1F 、2F 分别为椭圆C 的两个焦点,点B 为其短轴的一个端点,若12BF F ∆为等边三角形,则该椭圆的离心率为( )AB .12C .2D 【答案】B5. 若以椭圆上一点和两个焦点为顶点的三角形的最大面积为1,则长轴长的最小值为 ( )A.1B.2C.2D.22【答案】D6. 椭圆221123x y +=的一个焦点为1F ,点P 在椭圆上且线段1PF 的中点M 在y 轴上,则点M 的纵坐标为 ( ) A.3± B.3± C.2± D.34±【答案】A7.过椭圆左焦点F 且斜率为3的直线交椭圆于A 、B 两点,若|FA|=2|FB|,则椭圆的离心e=__ 【答案】328.椭圆 )0(12222>>=+b a by a x 的左、右顶点分别是A,B,左、右焦点分别是F 1,F 2。

若1AF ,21F F ,B F 1 成等比数列,则此椭圆的离心率为_____________.【答案】559.设F1,F2分别是椭圆22x y 12516+=的左、右焦点,P 为椭圆上一点,M 是F1P 的中点,|OM|=3,则P 点到椭圆左焦点距离为_________. 【答案】410.已知椭圆22195x y +=的右焦点为F , P 是椭圆上一点,点(0,A ,当点P 在椭圆上运动时, APF ∆的周长的最大值为____________ . 【答案】1411.若椭圆上一点到两个焦点的距离之和为 ,则此椭圆的离心率为__________.【答案】312.设 , 为椭圆 :的焦点,过 所在的直线交椭圆于 , 两点,且 ,则椭圆 的离心率为__________.13.已知椭圆的左、右焦点分别为 、 ,且 ,点 在椭圆上,, ,则椭圆的离心率 等于__________.二、以考查技能为主试题 【中等题】14. 椭圆2222:1(0)x y C a b a b+=>>的左右焦点分别为12,F F ,若椭圆C 上恰好有6个不同的点P ,使得△F1F2P 为等腰三角形,则椭圆C 的离心率的取值范围是_________ 【答案】111(,)(,1)32215.已知椭圆方程,椭圆上点M 到该椭圆一个焦点F 1的距离是2,N 是MF 1的中点,O 是椭圆的中心,那么线段ON 的长是________ 【答案】416.已知椭圆2222:1(0)x y C a b a b+=>>的左焦点为,F C 与过原点的直线相交于,A B 两点,连接,AF BF ,若410,6,cos ABF 5AB AF ==∠=,则C 的离心率e =______. 【答案】5717.如果椭圆的对称轴为坐标轴,短轴的一个端点与两焦点组成一正三角形,焦点在x 轴上,且a c - =3, 那么椭圆的方程是 .【答案】191222=+y x18.如图,椭圆C :(Ⅰ)求椭圆C 的方程;(Ⅱ)设n 是过原点的直线,l 是与n 垂直相交于P 点、与椭圆相交于A,B 两点的直线,是否存在上述直线l 使成立?若存在,求出直线l 的方程;若不存在,请说明理由。

人教版高二数学选修21椭圆专项基础测试卷

人教版高二数学选修21椭圆专项基础测试卷

人教版高二数学选修2-1椭圆专项基础测试卷
1 / 1 椭圆同步测试3
1.已知椭圆116
252
2=+y x 上的一点P ,到椭圆一个焦点的距离为3,则P 到另一焦点距离为_______
2.中心在原点,焦点在横轴上,长轴长为4,短轴长为2,则椭圆方程是_____
3.与椭圆9x 2+4y 2=36有相同焦点,且短轴长为45的椭圆方程是_____
4.椭圆
2255x ky -=的一个焦点是(0,2),那么k 等于_____
5.若椭圆短轴上的两顶点与一焦点的连线互相垂直,则离心率等于_____
6.椭圆两焦点为 1(4,0)F -,2(4,0)F ,P 在椭圆上,若 △12PF F 的面积的最大值为12,则椭圆方程为______
7.椭圆的两个焦点是F 1(-1, 0), F 2(1, 0),P 为椭圆上一点,且|F 1F 2|是|PF 1|与|PF 2|
的等差中项,则该椭圆方程是(_______)。

8.椭圆22
1259
x y +=上的点M 到焦点F 1的距离是2,N 是MF 1的中点,则|ON |为____
9.已知△ABC 的顶点B 、C 在椭圆x 23+y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另
外一个焦点在BC 边上,则△ABC 的周长是 ______
10.设(5,0)M -,(5,0)N ,△MNP 的周长是36,则MNP ∆的顶点P 的轨迹______。

高二数学选修2-1椭圆分层练习题及答案--教师版

高二数学选修2-1椭圆分层练习题及答案--教师版

椭圆基础训练题编号: 年级:高二、高三 知识点:圆锥曲线 分知识点:椭圆 题型:选择题 难度:易题目:1.已知椭圆长半轴与短半轴之比是5:3,焦距是8,焦点在x 轴上,则此椭圆的标准方程是( )(A )5x 2+3y 2=1(B )25x 2+9y 2=1 (C )3x 2+5y 2=1 (D )9x 2+25y 2=1答案:B编号: 年级:高二、高三 知识点:圆锥曲线 分知识点:椭圆 题型:选择题 难度:易题目:2.椭圆5x 2+4y 2=1的两条准线间的距离是( )(A )52 (B )10 (C )15 (D )350答案:B编号: 年级:高二、高三 知识点:圆锥曲线 分知识点:椭圆 题型:选择题 难度:易题目:3.以椭圆短轴为直径的圆经过此椭圆的焦点,则椭圆的离心率是( )(A )21(B )22(C )23(D )33答案:B编号: 年级:高二、高三 知识点:圆锥曲线 分知识点:椭圆 题型:选择题 难度:中等题目:4.椭圆25x 2+9y 2=1上有一点P ,它到右准线的距离是49,那么P 点到左准线的距离是( )。

(A )59 (B )516 (C )441 (D )541 答案:D编号: 年级:高二、高三 知识点:圆锥曲线 分知识点:椭圆 题型:选择题 难度:易题目:5.已知椭圆x 2+2y 2=m ,则下列与m 无关的是( )(A )焦点坐标 (B )准线方程 (C )焦距 (D )离心率 答案:D编号: 年级:高二、高三 知识点:圆锥曲线 分知识点:椭圆 题型:选择题 难度:易题目:6.椭圆mx 2+y 2=1的离心率是23,则它的长半轴的长是( ) (A )1 (B )1或2 (C )2 (D )21或1答案:B编号: 年级:高二、高三 知识点:圆锥曲线 分知识点:椭圆 题型:选择题 难度:中等题目:7.椭圆的中心为O ,左焦点为F 1,P 是椭圆上一点,已知△PF 1O 为正三角形,则P 点到右准线的距离与长半轴的长之比是( )(A )3-1 (B )3-3 (C )3 (D )1 答案:C编号: 年级:高二、高三 知识点:圆锥曲线 分知识点:椭圆 题型:填空题 难度:易题目:8.若椭圆my 12m 3x 22-+=1的准线平行于y 轴,则m 的取值范围是 。

高中数学人教A版选修2-1椭圆基础训练

高中数学人教A版选修2-1椭圆基础训练

椭圆基础训练一、选择题1.()已知椭圆1162522=+y x 上的一点P 到椭圆一个焦点的距离为3,则P 到另一焦点距离为 A .2B .3C .5D .7D 点P 到椭圆的两个焦点的距离之和为210,1037a =-= 2.()若椭圆的对称轴为坐标轴,长轴长与短轴长的和为18,焦距为6,则椭圆的方程为A .116922=+y x B .1162522=+y x C .1162522=+y x 或1251622=+y x D .以上都不对 C 2222218,9,26,3,9,1a b a b c c c a b a b +=+====-=-=得5,4a b ==,2212516x y ∴+=或1251622=+y x 3.()如果222=+ky x 表示焦点在y 轴上的椭圆,那么实数k 的取值范围是A .()+∞,0B .()2,0C .()+∞,1D .()1,0D 焦点在y 轴上,则2221,20122y x k k k +=>⇒<< 4.()21,F F 是椭圆17922=+y x 的两个焦点,A 为椭圆上一点,且∠02145=F AF ,则 Δ12AF F 的面积为A .7B .47C .27D .257C 1212216,6F F AF AF AF AF =+==- 222022112112112cos 4548AF AF F F AF F F AF AF =+-⋅=-+2211117(6)48,,2AF AF AF AF -=-+=177222S =⨯⨯= 5.()椭圆1244922=+y x 上一点P 与椭圆的两个焦点1F 、2F 的连线互相垂直,则△21F PF 的面积为A .20B .22C .28D .24D 222212121214,()196,(2)100PF PF PF PF PF PF c +=+=+==,相减得12121296,242PF PF S PF PF ⋅==⋅= 二、填空题6.椭圆22189x y k +=+的离心率为12,则k 的值为______________。

高中数学选修2—1椭圆测试卷

高中数学选修2—1椭圆测试卷

高中数学选修2-1《圆锥曲线》2.2—2.3阶段训练(椭圆) 时间120分钟 总分150分一、选择题(本大题共10小题,每小题5分,共50分) 1.已知椭圆2222:1(0)x y C a b ab+=>>的离心率为32,过右焦点F 且斜率为(0)k k >的直线与C 相交于A B 、两点.若3AF FB =,则k =A 1B 2C 3 D2 【答案】B 2.已知椭圆C :22221x y ab+=(a>b>0)的离心率为32,过右焦点F 且斜率为k (k>0)的直线于C 相交于A 、B 两点,若3AF FB =。

则k =A1 B 2 C 3 D2 【答案】B3.到两互相垂直的异面直线的距离相等的点,在过其中一条直线且平行于另一条直线的平面内的轨迹是A. 直线B. 椭圆C. 抛物线D. 双曲线 【答案】 D解析:排除法 轨迹是轴对称图形,排除A 、C ,轨迹与已知直线不能有交点,排除B 4.椭圆22221()x y a b ab+=>>0的右焦点F ,其右准线与x 轴的交点为A ,在椭圆上存在点P 满足线段AP 的垂直平分线过点F ,则椭圆离心率的取值范围是A 20,2⎛⎤⎥ ⎝⎦B 10,2⎛⎤ ⎥⎝⎦C)21,1⎡-⎣ D 1,12⎡⎫⎪⎢⎣⎭【答案】D5.若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是 A.54 B.53 C.52 D.51【答案】B6.若点O 和点F 分别为椭圆22143xy+=的中心和左焦点,点P 为椭圆上的任意一点,则O P FP的最大值为A .2B .3C .6D .8【答案】C 7.椭圆()222210x y a ab+=>b >的右焦点为F ,其右准线与x 轴的交点为A .在椭圆上存在点P 满足线段AP 的垂直平分线过点F ,则椭圆离心率的取值范围是 A (0,22] B (0,12] C[21-,1) D[12,1)【答案】D 8.椭圆141622=+yx上的点到直线022=-+y x 的最大距离是( )A .3B .11C .22D .10【答案】D 9.在椭圆13422=+yx内有一点P (1,-1),F 为椭圆右焦点,在椭圆上有一点M ,使|MP|+2|MF|的值最小,则这一最小值是( )A .25 B .27C .3D .4【答案】C10.过点M (-2,0)的直线m 与椭圆1222=+yx交于P 1,P 2,线段P 1P 2的中点为P ,设直线m 的斜率为k 1(01≠k ),直线OP 的斜率为k 2,则k 1k 2的值为 ( )A .2B .-2C .21 D .-21【答案】D二、填空题(本大题共5小题,每小题5分,共25分) 11.离心率21=e ,一个焦点是()3,0-F 的椭圆标准方程为 ___________ .【答案】1273622=+xy12.与椭圆4 x 2 + 9 y 2 = 36 有相同的焦点,且过点(-3,2)的椭圆方程为_______________. 【答案】1101522=+yx13.已知()y x P ,是椭圆12514422=+yx上的点,则y x +的取值范围是________________ .【答案】]13,13[-14.已知椭圆E的短轴长为6,焦点F到长轴的一个端点的距离等于9,则椭圆E的离心率等于__________________. 【答案】5415.已知椭圆的对称轴为坐标轴,离心率32=e ,短轴长为58,求椭圆的方程____________. 【答案】18014422=+yx或18014422=+xy.三、解答题(本大题共6题,16—18每小题12分,19—21题每小题13分,共75分) 16.已知A 、B 为椭圆22ax +22925ay =1上两点,F 2为椭圆的右焦点,若|AF 2|+|BF 2|=58a ,AB中点到椭圆左准线的距离为23,求该椭圆方程.【答案】设A(x 1,y 1),B(x 2,y 2),,54=e 由焦半径公式有a -ex 1+a -ex 2=a58,∴x 1+x 2=a21,即AB 中点横坐标为a41,又左准线方程为ax 45-=,∴234541=+a a ,即a =1,∴椭圆方程为x 2+925y 2=1.17.过椭圆4:),(148:220022=+=+yx O y x P yxC 向圆上一点引两条切线PA 、PB 、A 、B 为切点,如直线AB 与x 轴、y 轴交于M 、N 两点. (1)若0=⋅PB PA ,求P 点坐标; (2)求直线AB 的方程(用00,y x 表示); (3)求△MON 面积的最小值.(O 为原点) 【答案】(1)PBPA PB PA ⊥∴=⋅0∴OAPB 的正方形由843214882020202020==⇒⎪⎩⎪⎨⎧=+=+x y x y x 220±=∴x ∴P 点坐标为(0,22±)(2)设A (x1,y1),B (x2,y2)则PA 、PB 的方程分别为4,42211=+=+y y x x y y x x ,而PA 、PB 交于P (x0,y0) 即x1x0+y1y0=4,x2x0+y2y0=4,∴AB 的直线方程为:x0x+y0y=4(3)由)0,4(4000x M y y x x 得=+、)4,0(0y N||18|4||4|21||||21000y x y x ON OM S MON ⋅=⋅=⋅=∆22)48(22|222|24||20200000=+≤⋅=y x y x y x 22228||800=≥=∴∆y x S MON当且仅当22,|2||22|m in00==∆MONS y x 时.18.椭圆12222=+by ax (a>b >)0与直线1=+y x 交于P 、Q 两点,且OQ OP ⊥,其中O为坐标原点. (1)求2211ba+的值;(2)若椭圆的离心率e 满足33≤e ≤22,求椭圆长轴的取值范围.【答案】设),(),,(2211y x P y x P ,由OP ⊥ OQ ⇔ x 1 x 2 + y 1 y 2 = 0 ① 01)(2,1,121212211=++--=-=x x x x x y x y 代入上式得: 又将代入x y-=112222=+by ax 0)1(2)(222222=-+-+⇒b a x a x b a ,,2,022221ba ax x +=+∴>∆222221)1(ba b a x x +-=代入①化简得21122=+ba.(2) ,3221211311222222222≤≤⇒≤-≤∴-==ab ab ab ac e又由(1)知12222-=a ab26252345321212122≤≤⇒≤≤⇒≤-≤∴a aa,∴长轴 2a ∈ [6,5].19.一条变动的直线L 与椭圆42x+2y2=1交于P 、Q 两点,M 是L 上的动点,满足关系|MP|·|MQ|=2.若直线L 在变动过程中始终保持其斜率等于1.求动点M 的轨迹方程,并说明曲线的形状.【答案】设动点M(x ,y),动直线L :y=x +m ,并设P(x 1,y 1),Q(x 2,y 2)是方程组⎩⎨⎧=-++=042,22y x m x y的解,消去y ,得3x 2+4m x +2m 2-4=0,其中Δ=16m 2-12(2m 2-4)>0,∴-6<m<6,且x 1+x 2=-3m 4,x 1x 2=34m22-,又∵|MP|=2|x -x 1|,|MQ|=2|x -x 2|.由|MP||MQ|=2,得|x-x 1||x -x 2|=1,也即 |x 2-(x 1+x 2)x +x 1x 2|=1,于是有.13423422=-++mmx x∵m=y -x ,∴|x2+2y 2-4|=3.由x 2+2y 2-4=3,得椭圆172722=+x x夹在直线6±=x y 间两段弧,且不包含端点.由x 2+2y 2-4=-3,得椭圆x 2+2y 2=1.20.椭圆的中心是原点O ,它的短轴长为22,相应于焦点F (c ,0)(0>c )的准线l 与x轴相交于点A ,|OF|=2|FA|,过点A 的直线与椭圆相交于P 、Q 两点 .(1)求椭圆的方程及离心率;(2)若0=⋅OQ OP ,求直线PQ 的方程;(3)设AQ AP λ=(1>λ),过点P 且平行于准线l 的直线与椭圆相交于另一点M ,证明FQ FM λ-=.(14分) 【答案】(1)由题意,可设椭圆的方程为)2(12222>=+a yax .由已知得⎪⎩⎪⎨⎧-==-).(2,2222c c ac c a 解得2,6==c a,所以椭圆的方程为12622=+yx,离心率36=e .(2)解:由(1)可得A (3,0) .设直线PQ的方程为)3(-=x k y .由方程组⎪⎩⎪⎨⎧-==+)3(,12622x k y yx 得062718)13(2222=-+-+k x k x k ,依题意0)32(122>-=∆k ,得3636<<-k .设),(),,(2211y x Q y x P ,则13182221+=+kk x x , ①136272221+-=kk x x . ②,由直线PQ 的方程得)3(),3(2211-=-=x k y x k y .于是]9)(3[)3)(3(2121221221++-=--=x x x x k x x k y y. ③∵0=⋅OQOP ,∴02121=+y y x x. ④,由①②③④得152=k ,从而)36,36(55-∈±=k.所以直线PQ 的方程为035=--y x 或035=-+y x .(2)证明:),3(),,3(2211y x AQ y x AP-=-=.由已知得方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=-=-.126,126,),3(3222221212121y x y x y y x x λλ注意1>λ,解得λλ2152-=x ,因),(),0,2(11y x M F -,故 ),1)3((),2(1211y x y x FM -+-=--=λ),21(),21(21y y λλλλ--=--= .而),21(),2(222y y x FQ λλ-=-=,所以FQ FM λ-=.21.在平面直角坐标系xoy中,如图,已知椭圆15922=+yx的左、右顶点为A 、B ,右焦点为F 。

高中数学人教A版选修2-1椭圆测试卷(二)

高中数学人教A版选修2-1椭圆测试卷(二)

椭圆(二)一.选择题:(5×12=60分)1.设0,2πα⎛⎫∈ ⎪⎝⎭,方程221sin cos x y αα+=表示焦点在x 轴上椭圆,则α∈ ( ) A.0,4π⎛⎤ ⎥⎝⎦ B.,42ππ⎛⎫ ⎪⎝⎭ C.0,4π⎛⎫⎪⎝⎭D.,42ππ⎡⎫⎪⎢⎣⎭2.椭圆的一个顶点和一个焦点在直线360x y +-=上,则此椭圆的标准方程是 ( )A.221404x y += B.2213640x y += C.22221140363640x y x y +=+=或 D.2222114043640x y x y +=+=或 3.椭圆2214x y m +=的焦距为2,则m 的值等于 ( ) A.5或3 B.5 C.8 D.164.直线1y kx =+与椭圆2215x y m+=恒有公共点,则m 的取值范围是 ( ) A.()0,1 B.()0,5 C.[)()1,55,+∞ D.()1,+∞5.过点M(-2 0)的直线l 与椭圆2212x y +=交于1p , 2p 两点,线段12p p 中点为p ,设直线l 斜 率为11(0)k k ≠,直线op 斜率为2k ,则12k k 等于 ( ) A.2 B.–2 C.12 D.12- 6.已知F 为椭圆222222(b x a y a b a b +=>0)>一个焦点,PQ 是过其中心的一条弦,记22c a b =+,则P Q F ∆面积最大值 ( ) A.12ab B.ab C.ac D.bc 7.已知一定圆C 及其内一异于圆心C 的定点A ,过点A 且与圆C 相切的动圆圆心M 的轨迹是( )A.直线B.线段C.圆D.椭圆8.已知12,F F 是椭圆221169x y +=两焦点,过2F 的直线交椭圆于,A B 两点且5AB =,则 11AF BF += ( )A.11B.10C.9D.69.已知椭圆221169x y +=左右两焦点分别为12,F F ,点P 在椭圆上,若12,,P F F 是一个直角三角 形的三个顶点,则点P 到x 轴距离为 ( ) A.95 B.3 C.977D.94 10.若椭圆22228925100mx y x y +=+=与的焦距相等,则m = ( )A.9B.11C.9917或 D.91711.把圆229x y +=上每个点横坐标不变,纵坐标缩短为原来14,则所得曲线方程为 ( )A.221916x y += B.2219144x y += C.2216199x y += D.22199x y += 12.给定四条曲线①2252x y +=②22194x y +=③2214y x +=④2214x y +=,其中与直线 50x y +-=仅有一个交点的曲线是 ( ) A.①②③ B.①③④ C.②③④ D.①②④二.填空题:(5×4=20分)。

人教版A选修2-1椭圆检测试题卷

人教版A选修2-1椭圆检测试题卷
|BF|=5- ×4= ,|CF|=5- x2,故 成等差数列
(5- x1)+(5- x2)=2× 故选A
二填空题
10、
11、解:已知 为所求;
12、③④13、
14、解析:如图,把椭圆 的长轴 分成 等份,过每个分点作 轴的垂线交椭圆的上半部分于 七个点, 是椭圆的一个焦点,则根据椭圆的对称性知, ,同理其余两对的和也是 ,又 ,∴ =35
解:(I)
圆过点O、F,
圆心M在直线 上。
设 则圆半径
由 得 解得
所求圆的方程为
(II)设直线AB的方程为
代入 整理得
直线AB过椭圆的左焦点F, 方程有两个不等实根。
记 中点 则
的垂直平分线NG的方程为 令 得
点G横坐标的取值范围为
17点评:本小题主要考查直线、圆和椭圆等平面解析几何的基础知识,考查综合运用数学知识进行推理运算的能力和解决问题的能力。
依题意,计算点B到圆心Q的距离与半径的差
- =( -2)2+( )2- [(x1-x2)2+(y1-y2)2]
=(x1-2) (x2-2)+y1y1
又直线AP的方程为y= ,直线BP的方程为y= ,
而点两直线AP与BP的交点P在准线x=4上,
∴ ,即y2=
又点M在椭圆上,则 ,即
于是将、代入,化简后可得 - = .
A. B.
C. D.
9设 是右焦点为 的椭圆 上三个不同的点,则“ 成等差数列”是“ ”的
(A)充要条件(B)必要不充分条件
(C)充分不必要条件(D)既非充分也非必要
二填空题
10.若椭圆长轴长与短轴长之比为2,它的一个焦点是 ,则椭圆的标准方程是__________.
11已知椭圆中心在原点,一个焦点为F(-2 ,0),且长轴长是短轴长的2倍,则该椭圆的标准方程是.

人教版高二数学选修2-1椭圆专项基础测试卷

人教版高二数学选修2-1椭圆专项基础测试卷

2.点A ),(00y x 在椭圆1323622=+y x 上,若点A 到右焦点的距离等于20x ,则0x = 3.已知椭圆1162522=+y x 上的一点P ,到椭圆一个焦点的距离为3,则P 到另一焦点距离为( ) A .2 B .3 C .5 D .74.中心在原点,焦点在横轴上,长轴长为4,短轴长为2,则椭圆方程是( ) A. 22143x y += B. 22134x y += C. 2214x y += D. 2214y x += 5.与椭圆9x 2+4y 2=36有相同焦点,且短轴长为45的椭圆方程是( ) A 1858014520125201202522222222=+=+=+=+y x D y x C y x B y x 6.椭圆2255x ky -=的一个焦点是(0,2),那么k 等于( ) A. 1- B. 1 C. 5D. 7.若椭圆短轴上的两顶点与一焦点的连线互相垂直,则离心率等于( ) A. 12B.C. D. 2 8.椭圆两焦点为 1(4,0)F -,2(4,0)F ,P 在椭圆上,若 △12PF F 的面积的最大值为12,则椭圆方程为( ) A. 221169x y += B . 221259x y += C . 2212516x y += D . 221254x y += 9.椭圆的两个焦点是F 1(-1, 0), F 2(1, 0),P 为椭圆上一点,且|F 1F 2|是|PF 1|与|PF 2|的等差中项,则该椭圆方程是( )。

A. 221169x y += B 16x 2+12y 2=1 C 4x 2+3y 2=1 D 3x 2+4y 2=1 10.椭圆的两个焦点和中心,将两准线间的距离四等分,则它的焦点与短轴端点连线的夹角为( )(A)450 (B)600 (C)900 (D)120011.椭圆221259x y +=上的点M 到焦点F 1的距离是2,N 是MF 1的中点,则|ON |为( ) A. 4 B . 2 C. 8 D .23 12.已知△ABC 的顶点B 、C 在椭圆x 23+y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是 ( )(A )2 3 (B )6 (C )4 3 (D )12 13.椭圆两焦点为 1(4,0)F - 、2(4,0)F ,P 在椭圆上,若 △12PF F 的面积的最大值为12,则椭圆方程为( )A . 221169x y += B .221259x y += C .2212516x y += D .221254x y += 14.椭圆 220(0)ax by ab a b ++=<< 的焦点坐标是 ( )A .( B .(0, C .( D .D .(0,15.到定点(2,0)与到定直线x=8( ) A .2211612x y += B .2211216x y += C .2228560x y x ++-= D .22328630x y x +-+= 16、椭圆141622=+y x 上的点到直线022=-+y x 的最大距离是( ) (A )3 (B )11 (C )22 (D )1017.方程221||12x y m +=-表示焦点在y 轴的椭圆时,实数m 的取值范围是________ 18.过点(2,3)-且与椭圆229436x y +=有共同的焦点的椭圆的标准方程为_______ 19.设(5,0)M -,(5,0)N ,△MNP 的周长是36,则M N P ∆的顶点P 的轨迹_________ 20.以椭圆229436x y +=的长轴端点为短轴端点,且过点(-4,1)的椭圆标准方程是 。

数学选修2-1椭圆练习题含答案

数学选修2-1椭圆练习题含答案

数学选修2-1椭圆练习题含答案学校:__________ 班级:__________ 姓名:__________ 考号:__________1. 下图是圆锥曲线的知识结构图,在空白处应填入( )A.圆B.直线C.共轭双曲线D.椭圆2. 过原点作直线AB 与椭圆C :x 220+y 24=1交于不同两点A ,B ,点F 为椭圆左焦点,则|AF|+|BF|的值为( ) A.√5 B.2√5 C.3√5 D.4√53. 双曲线3x 2−4y 2=−12的焦点坐标为( ) A.(±5, 0) B.(0, ±√5) C.(±√7, 0) D.(0, ±√7)4. 若椭圆mx 2+ny 2=1与y =1−x 交于A ,B 两点,过原点与线段AB 中点连线的斜率为√2,则mn 的值等于( ) A.√33 B.√22C.√3D.√25. 已知椭圆的方程为x 2a 2+y 225=1(a >5),它的两个焦点分别为F 1,F 2,且|F 1F 2|=8,弦AB 过F 1,则△ABF 2的周长为( ) A.10 B.20 C.2√41 D.4√416. 设F 1,F 2分别是椭圆C:x 2a 2+y 2b 2=1的左,右焦点,过点F 1的直线交椭圆C 于M ,N 两点,若MF 1→=3F 1N →,且cos ∠MNF 2=45,则椭圆C 的离心率为( ) A.√22 B.√33C.√2−12D.√2−137. 如图,F1、F2是椭圆x2a2+y2b2=1的两个焦点,O为坐标原点,P是椭圆上的一点,且满足|F1F2|=2|OP|,若∠PF2F1=5∠PF1F2,则椭圆的离心率为()A.√32B.√63C.√22D.√238. 已知F1,F2分别是椭圆E:x2a2+y2b2=1(a>b>0)的左、右焦点,点(1,√22)在椭圆上,且点(−1,0)到直线PF2的距离为4√55,其中点P(−1,−4),则椭圆E的标准方程为( )A.x2+y24=1 B.x24+y2=1 C.x2+y22=1 D.x22+y2=19. 如果椭圆x236+y29=1的弦被点(4, 2)平分,则这条弦所在的直线方程是()A.x−2y=0B.5x+2y−4=0C.x+2y−8=0D.2x+3y−12=010. 如果x2+ky2=2表示焦点在y轴上的椭圆,那么实数k的取值范围是( )A.(0, +∞)B.(0, 2)C.(1, +∞)D.(0, 1)11. 已知椭圆x29+y25=1的两个焦点分别是F1、F2,△MF1F2的重心G恰为椭圆上的点,则点M的轨迹方程为________.12. 椭圆x23+y24=1的离心率是________.13. 在空间中,取直线l为轴,直线l′与l相交于点O,其夹角为α(α为锐角),l′围绕l旋转得到以O为顶点,l′为母线的圆锥面,任取平面π,若它与轴l交角为β(π与l平行时,记β=0),则:当π2>β>α时,平面π与圆锥面的交线为________.14. 已知椭圆C:x 216+y 212=1,F 1,F 2分别为椭圆的两焦点,点P 椭圆在椭圆上,且|PF 2|=3,则△PF 1F 2的面积为________.15. 已知F 1,F 2分别为椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,若直线x =a 2c上存在点P ,使△PF 1F 2为等腰三角形,则椭圆离心率的范围是________.16. 已知F 1,F 2是椭圆C:x 2a +y 2b =1(a >0,b >0)的左、右焦点,A 是C 的左顶点,点P在过A 且斜率为√36的直线上,△PF 1F 2为等腰三角形,∠F 1F 2P =120∘,则C 的离心率为________.17. 已知椭圆x 2m +y 29=1的离心率是13,则实数m 的值是________.18. 已知中心在原点的椭圆C 的一个焦点F 恰为圆F:x 2+y 2−10√2y =0的圆心,直线l:y =3x −2截C 所得弦AB 的中点的横坐标为12,则C 的短轴长为_________.19. 过点(2, −3)且与椭圆9x 2+4y 2=36有共同的焦点的椭圆的标准方程为________.20. 过点M(1, 1)且与椭圆x 216+y 24=1交于A ,B 两点,则被点M 平分的弦所在的直线方程为________.21. 已知椭圆M 的中心原点O ,点F(−1, 0)是它的一个焦点,直线L 过点F 与椭圆M 交于P 、Q 两点,当直线L 的斜率不存在时,OP →⋅OQ →=12.(1)求椭圆M 的方程;(2)设A 、B 、C 是椭圆M 上的不同三点,且OA →+OB →+OC →=0,证明直线AB 与OC 的斜率之积为定值.22. 已知离心率为√22的椭圆x 2a 2+y 2b 2=1,(a >b >0)经过抛物线x 2=−4y 的焦点F ,斜率为1的直线l 经过(1,0)且与椭圆交于C ,D 两点. (1)求△COD 面积;(2)动直线m 与椭圆有且仅有一个交点,且与直线x =1,x =2分别交于A ,B 两点,F 2为椭圆的右焦点,证明|AF 2||BF 2|为定值.23. 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0) 的离心率为√22,一个焦点为 (−2,0). (1)求椭圆C 的长轴长、短轴长和焦距;(2)求椭圆C 的方程.24. 已知以椭圆短轴的一个端点和两个焦点为顶点的三角形为正三角形,并且焦点到椭圆的最短距离为3,求椭圆的标准方程.25. 设 F 1 ,F 2为椭圆 C:x 29+y 25=1 的两个焦点,M 为C 上一点, 且M 在第一象限,若△MF 1F 2 为等腰三角形,则 M 的坐标为________.26. 已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率e =√63,焦距是2√2. (1)求椭圆的方程;(2)若直线y =kx +2(k ≠0)与椭圆交于C ,D 两点,|CD|=6√25,求k 的值.27. 在①C 的一个焦点与短轴的两个端点的连线互相垂直,且焦距为8,②长轴长与短轴长之和为6,焦距为2√3;③离心率为√32,点M(2,√3)在C 上这三个条件中任选一个,补充在下面问题中并解答.问题:已知椭圆C:x 2a 2+y 2b 2=1(a >b >0),________,求C 的标准方程. 注:如果选择多个条件分别解答,按第一个解答计分.28. 已知椭圆C:4x 2+y 2=16. (1)求椭圆C 的长轴长和短轴长 ;(2)求椭圆C 的焦点坐标和离心率;(3)直线l:y =−2x +4与椭圆C 相交于A ,B 两点,求AB 的长. 29. 椭圆x 24+y 23=1的左焦点为F 1,过右焦点F 2的直线与椭圆相交于点A ,B ,则△AF 1B 的周长是________.30. 椭圆C 的中心在原点,左焦点F 1(−1, 0),长轴为2√2. (1)求椭圆C 的标准方程(2)过左焦点F 1的直线交曲线C 于A ,B 两点,过右焦点F 2的直线交曲线C 于C ,D 两点,凸四边形ABCD 为菱形,求直线AB 的方程.31. 根据下列条件,求椭圆的标准方程.(1)两个焦点的坐标分别为(−4, 0)和(4, 0),且椭圆经过点(5, 0);(2)中心在原点,焦点在坐标轴上,且经过(2, 0)和(0, 1)两点;(3)经过点(2, −3)且与椭圆9x 2+4y 2=36有共同的焦点.32. 求下列椭圆的标准方程:(1)焦点在x 轴上,离心率e =35,且经过点A(5√32,−2);(2) 以坐标轴为对称轴,且长轴长是短轴长的3倍,并且过点P(3, 0).33. 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),离心率e =12,直线l 与椭圆相交于A ,B 两点,当直线l垂直于x轴且垂足为(√2a2,0)时,△AOB的面积为4√3(O为坐标原点).(1)求椭圆C的标准方程;(2)若△AOB的面积为定值4√3,求弦AB中点的轨迹方程.34. 如图,B,A是椭圆C:x24+y2=1的左、右顶点,P,Q是椭圆C上都不与A,B重合的两点,记直线BQ,AQ,AP的斜率分别是k BQ,k AQ,k AP.(1)求证:k BQ⋅k AQ=−14;(2)若直线PQ过定点(65,0),求证:k AP=4k BQ.35. 中心在原点O、焦点在坐标轴上的椭圆与直线x+y−1=0交于A,B两点,C是AB的中点,若以AB为直径的圆过圆点,且OC的斜率为12,求椭圆的方程.36. 在平面直角坐标系xOy中,已知椭圆C:y2a +x2b=1(a>b>0)的离心率为√22,两个焦点分别为F1,F2,右顶点为M,且△MF1F2的面积为1.(1)求椭圆C的方程;(2)若椭圆C上存在A,B两点关于直线l:x+ky=12(k≠0)对称,求实数k的取值范围.37. 如图,我区新城公园将在长34米、宽30米的矩形地块内开凿一个“挞圆”形水池,水池边缘由两个半椭圆x 2a2+y2b2=1(x≤0)和y2b2+x281=1(x≥0)组成,其中a>b>9,“挞圆”内切于矩形(即“挞圆”与矩形各边均有且只有一个公共点).(1)求“挞圆”的方程;(2)在“挞圆”形水池内建一矩形网箱养殖观赏鱼,若该矩形网箱的一条边所在直线方程为y=t(t∈(0.15),求该网箱所占水面面积的最大值.38.如图,A,B是椭圆C:x 2a2+y2b2=1(a>b>0)的左右顶点,M是椭圆上异于A,B的任意一点,直线l是椭圆的右准线.(1)若椭圆C的离心率为12,直线l:x=4,求椭圆C的方程;(2)设直线AM交l于点P,以MP为直径的圆交MB于Q,若直线PQ恰好过原点,求椭圆C 的离心率.39. 已知椭圆的焦点为F1(−t, 0),F2(t, 0),(t>0),P为椭圆上一点,且|F1F2|是|PF1|,|PF2|的等差中项.(1)求椭圆方程;(2)如果点P在第二象限且∠PF1F2=120∘,求tan∠F1PF2的值.40. 过椭圆C:x225+y29=1右焦点F的直线l交C于两点A(x1, y1),B(x2, y2),且A不在x轴上.(Ⅰ)求|y1y2|的最大值;(Ⅱ)若|AF||FB|=14,求直线l的方程.参考答案与试题解析数学选修2-1椭圆练习题含答案一、选择题(本题共计 10 小题,每题 3 分,共计30分)1.【答案】D【考点】圆锥曲线的实际背景及作用【解析】此题暂无解析【解答】解:圆锥曲线包括椭圆、双曲线和抛物线.故选D.2.【答案】D【考点】椭圆的简单几何性质椭圆的定义【解析】设F1为椭圆的右焦点,由椭圆对称性可知|AF|+|BF|=12(|AF|+|BF|+|AF1|+|BF1|),再结合椭圆定义,则|AF|+|AF1|=2a,|BF|+|BF1|=2a,即可求解.【解答】解:设F1为椭圆的右焦点,则由椭圆的对称性以及定义可得:|AF|+|BF|=12(|AF|+|BF|+|AF1|+|BF1|)=12(|AF|+|AF1|+|BF|+|BF1|)=12(2a+2a)=2a.由椭圆方程可知a2=20,所以a=2√5.即|AF|+|BF|=4√5.故选D.3.【答案】D【考点】圆锥曲线的实际背景及作用双曲线的特性【解析】把双曲线3x2−4y2=−12化为标准方程,然后利用双曲线的基本性质求解即可.【解答】解:把双曲线3x2−4y2=−12化为标准方程:y23−x24=1,∴a2=3,b2=4,c=√7,∴双曲线3x2−4y2=−12的焦点坐标是(0, ±√7).故选:D.4.【答案】D【考点】与椭圆有关的中点弦及弦长问题【解析】设A(x,y1)B(x2,y2),线段AB的中点M(x0,y0)由题意可得y1+y2x1+x2=y2x0=√2y2−y1x2−x1=−1(1)因为A,B在椭圆上所以mx12+ny12=1mx22+ny22=1两式相减可得m(x1−x2)(x1+x2)+n(y1−y2)(y1+y2)=0(2)(1)(2)联立可得mn=√2.【解答】解:设A(x1,y1),B(x2,y2),线段AB的中点M(x0,y0),由题意可得y1+y2x1+x2=y0x0=√2,y2−y1x2−x1=−1①,因为A,B在椭圆上所以mx12+ny12=1,mx22+ny22=1,两式相减可得m(x1−x2)(x1+x2)+n(y1−y2)(y1+y2)=0②,①②联立可得mn=√2.故选D.5.【答案】D【考点】椭圆的定义【解析】求得椭圆的a,b,c,由椭圆的定义可得△ABF2的周长为|AB|+|AF2|+|BF2|=4a,计算即可得到所求值.【解答】解:由题意得:b=5,c=4,则a=√b2+c2=√41.由椭圆的定义可得:|AF 1|+|AF 2|=|BF 1|+|BF 2|=2a . 即有△ABF 2的周长为: |AB|+|AF 2|+|BF 2|=|AF 1|+|AF 2|+|BF 1|+|BF 2| =4a =4√41. 故选D . 6.【答案】 A【考点】 椭圆的离心率 【解析】设|NF 1|=m ,因为MF 1→=3F 1N →,及由椭圆的定义可得|MF 1|,|MF 2|,|NF 2|的值,在两个三角形中由余弦定理可得a ,c 的关系,进而求出椭圆的离心率. 【解答】设|NF 1|=m ,因为MF 1→=3F 1N →,所以|MF 1|=3m ,由椭圆的定义可得|MF 2|=2a −3m ,|NF 2|=2a −m ,在△MNF 2中,由余弦定理可得|MF 2|2=|MN|2+|NF 2|2−2|MN|⋅|NF 2|cos ∠MNF 2,即(2a −3m)2=(4m)2+(2a −m)2−2⋅4m ⋅(2a −m)⋅45,整理可得m =a3①在△NF 1F 2中,由余弦定理可得:|F 1F 2|2=|NF 1|2+|NF 2|2−2|NF 1|⋅|NF 2|⋅cos ∠MNF 2,即(2c)2=m 2+(2a −m)2−2m ⋅(2a −m)⋅45, 即4c 2=a 29+25a 29−2a 3⋅5a 3⋅45,整理可得:c 2a 2=12,所以椭圆的离心率e =ca =√22, 7.【答案】B【考点】 椭圆的定义 【解析】根据题意可知∠F 1PF 2=90∘,∠PF 1F 2=5∠PF 2F 1,进而求得∠PF 1F 2和∠PF 2F 1,在Rt △PF 1F 2分别表示出|PF 1|和|PF 2|,进而根据椭圆的定义表示出a ,进而求得a 和c 的关系,即椭圆的离心率. 【解答】解:∵ |F 1F 2|=2|OP|,O 是F 1F 2的中点, ∴ ∠F 1PF 2=90∘∵ ∠PF 1F 2=5∠PF 2F 1,∴ ∠PF 1F 2=15∘,∠PF 2F 1=75∘∴ |PF 1|=|F 1F 2|sin ∠PF 2F 1=2c ⋅sin 75∘, ∴ |PF 2|=|F 1F 2|sin ∠PF 1F 2=2c ⋅sin 15∘, ∴ 2a =|PF 1|+|PF 2|=2c ⋅sin 75∘+2c ⋅sin 15∘=4c sin 45∘cos 30∘=√6c , ∴ a =√62c , ∴ e =c a=√63. 故选B . 8.【答案】 D【考点】椭圆的标准方程 【解析】左侧图片未给出解析. 【解答】解:设F 2的坐标为(c,0)(c >0), 则k PF 2=4c+1,故直线PF 2的方程为y =4c+1(x −c), 即4c+1x −y −4c c+1=0,点(−1,0)到直线PF 2的距离 d =|−4c+1−4c c+1|√(4c+1)2+1=√(4c+1)2+1=4√55,即(4c+1)2=4,解得c =1或c =−3(舍去), 所以a 2−b 2=1,① 又点(1,√22)在椭圆E 上, 所以1a 2+12b 2=1,②由①②可得{a 2=2,b 2=1,所以椭圆E 的标准方程为x 22+y 2=1.故选D . 9. 【答案】 C【考点】与椭圆有关的中点弦及弦长问题 【解析】设这条弦的两端点为A(x 1, y 1),B(x 2, y 2),则{x 1236+y 129=1x 2236+y 229=1,两式相减再变形得x 1+x236+ky 1+y 29=0,又由弦中点为(4, 2),可得k =−12,由此可求出这条弦所在的直线方程.【解答】解:设这条弦的两端点为A(x 1, y 1),B(x 2, y 2),斜率为k ,则{x 1236+y 129=1,x 2236+y 229=1,两式相减再变形得x 1+x 236+ky 1+y 29=0,又弦中点为(4, 2),故k =−12,故这条弦所在的直线方程y −2=−12(x −4), 整理得x +2y −8=0;故选C . 10.【答案】 D【考点】椭圆的标准方程 椭圆的定义【解析】利用椭圆的定义求解. 【解答】解:∵ x 2+ky 2=2表示焦点在y 轴上的椭圆, 把x 2+ky 2=2转化为椭圆的标准方程,得x 22+y 22k=1,∴ 2k >2,解得0<k <1.∴ 实数k 的取值范围是(0, 1). 故选D .二、 填空题 (本题共计 10 小题 ,每题 3 分 ,共计30分 ) 11.【答案】x 281+y 245=1(x ≠±9) 【考点】椭圆的标准方程圆锥曲线的实际背景及作用 椭圆的应用 【解析】设重心(x 1, y 1),M(x 0, y 0) 而F 1(2, 0),F 2(−2, 0)由重心坐标公式得x 1=2+(−2)+x 03=x 03,y 1=y 03,因为重心在椭圆上,所以(x 03)29+(y 03)25=1,由此可知M 的轨迹方程.【解答】解:设重心(x 1, y 1),M(x 0, y 0) 而F 1(2, 0),F 2(−2, 0)由重心坐标公式得 x 1=2+(−2)+x 03=x 03,y 1=y 03,∵ 重心在椭圆上. ∴x 129+y 125=1,所以(x 03)29+(y 03)25=1,即x 0281+y 0245=1, 所以M 的轨迹方程为:x 281+y 245=1(x ≠±9).答案:x 281+y 245=1(x ≠±9). 12. 【答案】12【考点】 椭圆的定义圆锥曲线的实际背景及作用 【解析】先根据由椭圆的标准方程求的a 和b ,再根据c =√a 2−b 2求得c ,进而根据离心率的公式求得答案. 【解答】解:由椭圆的标准方程x 23+y 24=1可知,a =2,b =√3,∴ c =√a 2−b 2=1 ∴ e =ca =12. 故答案为:12.13.【答案】 椭圆 【考点】平面与圆锥面的截线圆锥曲线的实际背景及作用【解析】根据平面π与圆锥的轴成角的大小,利用从不同角度截圆锥体得到的截面的形状,判断出相应的不可能的截面即可. 【解答】解:不同倾角的截面截割圆锥,无论是两个对顶的圆锥,还是一个单个的圆锥,都有下面的关系:(1)β>α,平面π与圆锥的交线为椭圆;(2)β=α,平面π与圆锥的交线为抛物线;(3)β<α,平面π与圆锥的交线为双曲线.由于题中条件:π2>β>α,故平面π与圆锥面的交线为椭圆.故答案为:椭圆.14.【答案】6【考点】椭圆的定义【解析】本题考查了椭圆的标准方程、椭圆的简单性质以及根据一些性质求面积,利用椭圆的定义,结合|PF1|+|PF2|=8,|PF2|=3可得|PF1|,进而|PF2|⊥|F1F2|,则△PF1F2的面积可求.【解答】解:由题意椭圆C:x 216+y212=1,a=4,|PF1|+|PF2|=8,∵|PF2|=3,∴|PF1|=5,∵|F1F2|=4,∴PF2⊥F1F2,∴△PF1F2的面积为12×4×3=6,故答案为:6.15.【答案】(√33,1)【考点】椭圆的离心率【解析】由已知P(a 2c ,y),可得F1P的中点Q的坐标,求出斜率,利用k F1P⋅k F2Q=−1,可得y2=2b2-b4c2,由此可得结论。

人教新课标版数学高二-数学选修2-1专项训练 椭圆的简单几何性质(1)

人教新课标版数学高二-数学选修2-1专项训练 椭圆的简单几何性质(1)

1.已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率等于( ) A.13 B.33 C.12D.32解析:选D.由题意知,2a =4b ,又b 2=a 2-c 2, 得到4c 2=3a 2,e 2=34,e =32.2.两个正数1、9的等差中项是a ,等比中项是b 且b >0,则曲线x 2a +y 2b =1的离心率为( )A.105B.2105C.25D.35解析:选A.∵a =9+12=5,b =1×9=3,∴e =25=105.3.若中心在原点,焦点在x 轴上的椭圆的长轴长为18,且两个焦点恰好将长轴三等分,则此椭圆的方程是( )A.x 281+y 272=1B.x 281+y 29=1 C.x 281+y 245=1 D.x 281+y 236=1 解析:选A.由已知得a =9,2c =13·2a ,于是c =13a =3.又∵焦点在x 轴上,∴椭圆方程为x 281+y 272=1.4.椭圆的两个焦点与它的短轴的两个端点是一个正方形的四个顶点,则椭圆的离心率为( )A.22B.32C.53 D.63解析:选A.易知b =c ,又a 2=b 2+c 2=2c 2, ∴c 2a 2=12,e =22. 5.椭圆x 225+y 29=1与x 29-k +y 225-k =1(0<k <9)的关系为( )A .有相等的长、短轴B .有相等的焦距C .有相同的焦点D .有相同的顶点解析:选B.a 2-b 2=(25-k )-(9-k )=25-9=16=c 2, ∴c 1、c 2相等.6.离心率e =12,一个焦点是F (0,-3)的椭圆标准方程为__________.解析:依题意c a =12,c =3,所以a =6,b =27,焦点在y 轴上,所以椭圆标准方程为y 236+x 227=1. 答案:y 236+x 227=17.已知椭圆x 25+y 2m =1的离心率e =105,则m 的值为________.解析:若m <5,则5-m 5=105,∴m =3. 若m >5,则m -5m=105,∴m =253.答案:3或2538.若椭圆的短轴长为6,焦点到长轴的一个端点的最近距离是1,则椭圆的离心率为________.解析:依题意,得b =3,a -c =1. 又a 2=b 2+c 2,解得a =5,c =4, ∴椭圆的离心率为e =c a =45.答案:459.求适合下列条件的椭圆的标准方程. (1)椭圆过(3,0),离心率e =63; (2)在x 轴上的一个焦点,与短轴两个端点的连线互相垂直,且焦距为8. 解:(1)若焦点在x 轴上,则a =3,∵e =c a =63,∴c =6,∴b 2=a 2-c 2=9-6=3.∴椭圆的方程为x 29+y 23=1.若焦点在y 轴上,则b =3, ∵e =c a=1-b 2a2=1-9a 2=63, 解得a 2=27.∴椭圆的方程为y 227+x 29=1.综上,所求椭圆的方程为x 29+y 23=1或y 227+x 29=1.(2)设椭圆方程为x 2a 2+y 2b2=1(a >b >0).如图所示,△A 1FA 2为等腰直角三角形,OF 为斜边A 1A 2的中线(高),且|OF |=c ,|A 1A 2|=2b ,∴c =b =4,∴a 2=b 2+c 2=32,故所求椭圆的方程为x 232+y 216=1.10.设椭圆方程为mx 2+4y 2=4m ,其离心率为12,试求椭圆的长轴的长和短轴的长,焦点坐标及顶点坐标.解:椭圆方程可化为x 24+y 2m =1.(1)当0<m <4时,a =2,b =m ,c =4-m .∴e =c a=4-m 2=12, ∴m =3,∴b =3,c =1.∴椭圆的长轴的长和短轴的长分别是4,23,焦点坐标为F 1(-1,0),F 2(1,0),顶点坐标为A 1(-2,0),A 2(2,0),B 1(0,-3),B 2(0,3).(2)当m >4时,a =m ,b =2, ∴c =m -4,∴e =ca=m -4m=12,解得m =163, ∴a =433,c =233,∴椭圆的长轴的长和短轴的长分别为833,4,焦点坐标为F 1⎝⎛⎭⎫0,-233,F 2⎝⎛⎭⎫0,233,顶点坐标为A 1⎝⎛⎭⎫0,-433,A 2⎝⎛⎭⎫0,433,B 1(-2,0),B 2(2,0).1.过椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点F 1作x 轴的垂线交椭圆于点P ,F 2为右焦点,若∠F 1PF 2=60°,则椭圆的离心率为( )A.22 B.33C.12D.13解析:选B.法一:将x =-c 代入椭圆方程可解得点P (-c ,±b 2a ),故|PF 1|=b 2a ,又在Rt △F 1PF 2中∠F 1PF 2=60°,所以|PF 2|=2b 2a ,根据椭圆定义得3b 2a =2a ,从而可得e =c a =33.法二:设|F 1F 2|=2c ,则在Rt △F 1PF 2中, |PF 1|=233c ,|PF 2|=433c .所以|PF 1|+|PF 2|=23c =2a ,离心率e =c a =33.2.在平面直角坐标系中,椭圆x 2a 2+y 2b 2=1(a >b >0)的焦距为2c ,以O 为圆心,a 为半径作圆,过点⎝⎛⎭⎫a 2c ,0作圆的两切线互相垂直,则离心率e =________.解析:如图,切线PA 、PB 互相垂直,半径OA 垂直于PA , 所以△OAP 是等腰直角三角形, 故a 2c =2a , 解得e =c a =22.答案:223.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率e =63,过点A (0,-b )和B (a,0)的直线与原点的距离为32,求椭圆的标准方程. 解:e =ca=a 2-b 2a =63, ∴a 2-b 2a 2=23.∴a 2=3b 2,即a =3b .过A (0,-b ),B (a,0)的直线为x a -yb =1,把a =3b 代入,即x -3y -3b =0. 又由点到直线的距离公式得 |-3b |1+(-3)2=32,解得:b =1,∴a = 3. ∴所求方程为x 23+y 2=1.4.如图所示,F 1,F 2分别为椭圆的左,右焦点,椭圆上点M 的横坐标等于右焦点的横坐标,其纵坐标等于短半轴长的23,求椭圆的离心率.解:设椭圆的长半轴,短半轴,半焦距长分别为a ,b ,c . 则焦点为F 1(-c,0),F 2(c,0), M 点的坐标为(c ,23b ),则△MF 1F 2为直角三角形. 在Rt △MF 1F 2中, |F 1F 2|2+|MF 2|2=|MF 1|2, 即4c 2+49b 2=|MF 1|2.而|MF 1|+|MF 2| =4c 2+49b 2+23b =2a ,整理得3c 2=3a 2-2ab .又因为c 2=a 2-b 2,所以3b =2a , 所以b 2a 2=49,所以e 2=c 2a 2=a 2-b 2a 2=1-b 2a 2=59, 所以e =53.。

高二数学选修2-1椭圆练习含答案人教实验A版

高二数学选修2-1椭圆练习含答案人教实验A版

2013高二数学(选修2-1)椭圆练习(含答案人教实验A版)2.2椭圆同步练测建议用时实际用时满分实际得分45分钟100分一、选择题(每小题5分,共20分)1.已知椭圆的中心在原点,焦点在轴上,且长轴长为,离心率为,则椭圆的方程是()A.B.C.D.2.如果一个椭圆的长轴长是短轴长的2倍,那么这个椭圆的离心率为()A.B.C.D.3.若AB是过椭圆(a>b>0)中心的一条弦,M是椭圆上任意一点,且AM,BM与坐标轴不平行,kAM,kBM分别表示直线AM,BM的斜率,则kAMkBM=()A.B.C.D.4.“-3m5”是“方程表示椭圆的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件二、填空题(每小题5分,共10分)5.如果椭圆的离心率是,那么实数k的值为.6.已知点,是圆(为圆心)上一动点,线段的垂直平分线交于,则动点的轨迹方程为.三、解答题(共70分)7.(15分)已知点A(-2,0)、B(2,0),过点A作直线l交以A、B为焦点的椭圆于M、N两点,线段MN的中点到y轴的距离为45,且直线l与圆x2+y2=1相切,求该椭圆的方程8.(20分)如图,设P是圆x2+y2=25上的动点,点D 是点P在x轴上的投影,M为PD上一点,且|MD|=45|PD|.(1)当P在圆上运动时,求点M的轨迹C的方程;(2)求过点(3,0)且斜率为45的直线被轨迹C所截线段的长度9.(15分)已知椭圆:的右焦点为,离心率为.(1)求椭圆的方程及左顶点的坐标;(2)设过点的直线交椭圆于两点,若△PAB的面积为,求直线的方程10.(20分)已知椭圆C:(a>b>0)的离心率e=,左、右焦点分别为F1、F2,点P的坐标为(2,),点F2在线段PF1的中垂线上.(1)求椭圆C的方程(2)(2)设直线l:y=kx+m与椭圆C交于M、N两点,直线F2M与F2N的倾斜角分别为,,且+=,求证:直线l 过定点,并求该定点的坐标一、选择题1.D解析:由长轴长为12,离心率为,可得,所以.又焦点在轴上,所以椭圆的方程为.2.B解析:∵a=2b,故选B.3.B解析:设A(x1,y1),M(x0,y0),则B(x1,y1),则kAMkBM=.∵A,M在椭圆上,∴,两式相减,可得kAMkBM=,故选B.4.B解析:由方程表示椭圆知即-3m5且m≠1.故选B.二、填空题5.4或-解析:①当焦点在x轴上时,,,∴=k-10.∴k1且e====.解得k=4.②当焦点在y轴上时,=9,=k+80,∴=9-k-8=1-k0.∴-8k1且e====.解得k=-.6.解析:由题意可得.又,所以点的轨迹是椭圆,其中,,所以椭圆方程为.三、解答题7.解:易知直线l与x轴不垂直,设直线l的方程为y=k(x+2).①又设椭圆方程为(a24).②因为直线l与圆x2+y2=1相切,故=1,解得k2=13. 将①代入②整理,得(a2k2+a2-4)x2+4a2k2x+4a2k2-a4+4a2=0,而k2=13,即(a2-3)x2+a2x-34a4+4a2=0.设M(x1,y1),N(x2,y2),则x1+x2=,由题意有=2×45(a23),求得a2=8.经检验,此时&#8710;0.故所求的椭圆方程为.8.解:(1)设点M的坐标为(x,y),点P的坐标为(xP,yP),由已知得∵点P在圆上,∴x2+2=25,即轨迹C的方程为x225+y216=1.(2)过点(3,0)且斜率为45的直线方程为y=45(x-3),设直线与椭圆C的交点为A(x1,y1),B(x2,y2),将直线方程y=45(x-3)代入椭圆C的方程,得x225+&#61480;x-3&#61481;225=1,即x2-3x-8=0.∴x1=3-412,x2=3+412.∴线段AB的长度为|AB|=&#61480;x1-x2&#61481;2+&#61480;y1-y2&#61481;2=1+1625&#61480;x1-x2&#61481;2=4125×41=415.9.解:(1)由题意可知,,所以.所以.所以椭圆的标准方程为,左顶点的坐标是.(2)根据题意可设直线的方程为,,由可得.所以&#8710;所以△PAB的面积.因为△PAB的面积为,所以.令,则.解得(舍去),.所以.所以直线的方程为或.10.解:(1)由椭圆C的离心率e=,得,其中c=.∵椭圆C的左、右焦点分别为F1(c,0),F2(c,0),又点F2在线段PF1的中垂线上,∴|F1F2|=|PF2|,∴(2c)2=()2+(2-c)2,解得c=1,a2=2,b2=1.∴椭圆的方程为+y2=1.(2)由题意,知直线MN存在斜率,其方程为y=kx+m.由消去y,得(2k2+1)x2+4kmx+2m22=0.设M(x1,y1),N(x2,y2),则x1+x2=,x1x2=,且,由已知α+β=π,得即化简,得∴整理得m=2k.(3)∴直线MN的方程为y=k(x2),因此直线MN过定点,该定点的坐标为(2,0)。

高中数学人教A版选修2-1椭圆基础小练.docx

高中数学人教A版选修2-1椭圆基础小练.docx

高中数学学习材料鼎尚图文*整理制作椭圆基础小练(一)1.椭圆2212516x y+=上一点P到其一个焦点的距离为3,则点P到另一个焦点的距离为(C)A.2 B.3 C.7 D.52.椭圆221259x y+=与221(09)925x ykk k+=<<--的关系为(B)A.有相等的长、短轴B.有相等的焦距C.有相等的焦点D.有相等的离心率3.若椭圆的焦距长等于它的短轴长,则椭圆的离心率等于(B)A.12B.22C.2D.24.椭圆221259x y+=上的点P到椭圆左焦点的最大距离和最小距离分别是(D)A.8,2 B.5,4 C.5,1 D.9,15.直线:220l x y-+=过椭圆的左焦点1F和一个顶点B,该椭圆离心率为(D)A.15B.25C.55D.2556.已知椭圆的一个顶点是(02),,离心率12e=,坐标轴为对称轴的椭圆的标准方程是(A)A.2231164x y+=或22143y x+=B.22143y x+=C.2231164x y+=D.22184x y+=或22143x y+=7.①平面内到两定点距离的和等于定长的点的轨迹不一定是椭圆:②若点()M x y,满足2222(3)(3)6x y x y++++-=,则点M的轨迹是椭圆;③椭圆22221x ya b+=中的参数ba不能刻画椭圆的扁平程度,而ca能刻画椭圆的扁平程度;④已知椭圆的中心在原点,经过两点(02)A ,和132B ⎛⎫ ⎪⎝⎭,的椭圆的标准方程是唯一确定的.把以上各小题正确的答案填在横线上 ①④ .8.短轴长为5,离心率23e =的椭圆的两焦点为12F F ,,过1F 作直线交椭圆于A B ,两点,则2ABF △的周长是 .69.如果椭圆的短轴端点与两焦点的连线互相垂直,那么它的离心率e = .2210.椭圆221259x y +=上的一点M 到焦点1F 的距离为2,N 是1MF 的中点,则 ON = 4 .11.经过点(23)-,且与椭圆229236x y +=有共同焦点的标准方程为 2211015+=x y . 12.直线1y x =+被椭圆2224x y +=所截得的弦的中点的坐标是 .2133⎛⎫- ⎪⎝⎭, 13.已知椭圆2214x y +=的左、右焦点分别为12F F ,,过原点作直线与椭圆交于A B ,两点,若2ABF △的面积为3,求直线的方程.解:设过原点的直线方程为x ky =,交椭圆于 1122()()A x y B x y ,,,, 把它代入2214x y +=,得2244y k =+,224y k =±+. 所以12244y y k -=+, 由图可知,21212ABF AF BF S S =△12121122F F y y =⨯-·21423344k =⨯⨯=+. 解得0k =.∴所求直线方程为0x =。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

……………………………………………………………最新资料推
荐…………………………………………………
椭圆同步测试3
1.已知椭圆116
252
2=+y x 上的一点P ,到椭圆一个焦点的距离为3,则P 到另一焦点距离为_______
2.中心在原点,焦点在横轴上,长轴长为4,短轴长为2,则椭圆方程是_____
3.与椭圆9x 2+4y 2=36有相同焦点,且短轴长为45的椭圆方程是_____
4.椭圆
2255x ky -=的一个焦点是(0,2),那么k 等于_____ 5.若椭圆短轴上的两顶点与一焦点的连线互相垂直,则离心率等于_____
6.椭圆两焦点为 1(4,0)F -,2(4,0)F ,P 在椭圆上,若 △12PF F 的面积的最大值为12,则椭圆方程为______
7.椭圆的两个焦点是F 1(-1, 0), F 2(1, 0),P 为椭圆上一点,且|F 1F 2|是|PF 1|与|PF 2|的等差中项,则该椭圆方程是(_______)。

8.椭圆22
1259
x y +=上的点M 到焦点F 1的距离是2,N 是MF 1的中点,则|ON |为____ 9.已知△ABC 的顶点B 、C 在椭圆x 23+y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另
外一个焦点在BC 边上,则△ABC 的周长是 ______
10.设(5,0)M -,(5,0)N ,△MNP 的周长是36,则MNP ∆的顶点P 的轨迹______。

相关文档
最新文档