几何辅助线的添加方法
平行线中添辅助线的方法
平行线中添辅助线的方法在几何学中,平行线是指在同一个平面内,永远不会相交的线。
平行线可以用于解决许多几何问题。
有时,为了更好地理解和解决问题,我们可能需要在已知的平行线中添加辅助线。
这篇文章将介绍一些经常在平行线中添加辅助线的方法,以及如何利用这些辅助线解决几何问题。
方法一:创建平行线之间的等距线段这是最常见的方法之一,可以通过创建平行线之间的等距线段来添加辅助线。
这个方法可以在几何证明中使用,以创建所需的形状或角度。
下面是一个例子:假设有两个平行线AB和CD,在这两条平行线上选择两个等距点E和F。
然后,通过连接EF,你就创建了一个辅助线,使得EF平行于AB和CD。
这样,你就可以利用这个平行四边形来证明或解决其他几何问题。
方法二:使用交叉线段这个方法涉及到在平行线上选择一个点,并通过它绘制一条与其他平行线相交的线段。
这种方法通常用于证明几何性质。
例如,假设有两个平行线AB和CD,我们可以在AB上选择一个点E,并通过它绘制一条线段EF与CD相交。
然后,通过观察EF与AB的关系,可以证明一些三角形的性质或者其他几何关系。
方法三:利用平行线之间的相似三角形利用平行线之间的相似三角形是另一种常用的方法。
通过观察平行线和与它们相交的第三条线,可以找到相似的三角形。
然后,利用这些相似三角形的性质来解决几何问题。
例如,假设有两个平行线AB和CD,以及一条与它们相交的第三条线EF。
通过观察,可以发现三角形ADE与三角形BCF相似。
这意味着可以使用相似三角形的性质来计算未知角度或线段的长度。
方法四:利用中位线和对角线这个方法通常涉及到在平行线形成的平行四边形中绘制中位线或对角线。
中位线是连接平行四边形两对相对顶点的线段,对角线是连接两对非相邻顶点的线段。
这些辅助线可以帮助我们找到形状的性质,或计算线段的长度。
例如,假设有一个平行四边形ABCD,你可以通过绘制对角线AC来创建两个互相重叠的三角形ABC和ADC。
通过观察这些三角形的性质,可以得出许多结论,例如它们的面积相等或角度相等。
新初三数学:添加几何辅助线方法整理,总结很全,抓紧掌握!
【学整理】新初三数学:添加几何辅助线方法整理,总结很全,抓紧掌握!写在前面:暑假不仅仅是用来放松玩耍的,更是用来“弯道赶超”的。
暑假先人一步,开学领跑一路!开学不想落后他人,暑假抓紧预习起来。
今天小高老师和大家分享的是新初三数学:添加几何辅助线方法整理,总结很全,抓紧掌握!三角形中常见辅助线的添加1. 与角平分线有关的(1)可向两边作垂线(2)可作平行线,构造等腰三角形(3)在角的两边截取相等的线段,构造全等三角形2. 与线段长度相关的(1)截长:证明某两条线段的和或差等于第三条线段时,经常在较长的线段上截取一段,使得它和其中的一条相等,再利用全等或相似证明余下的等于另一条线段即可。
(2)补短:证明某两条线段的和或差等于第三条线段时,也可以在较短的线段上延长一段,使得延长的部分等于另外一条较短的线段,再利用全等或相似证明延长后的线段等于那一条长线段即可。
(3)倍长中线:题目中如果出现了三角形的中线,方法是将中线延长一倍,再将端点连结,便可得到全等三角形。
(4)遇到中点:考虑中位线或等腰等边中的三线合一等知识。
3. 与等腰等边三角形相关的(1)考虑三线合一;(2)旋转一定的度数,构造全都三角形,等腰一般旋转顶角的度数,等边旋转60 °四边形常见辅助线的添加特殊四边形主要包括平行四边形、矩形、菱形、正方形和梯形。
在解决一些和四边形有关的问题时往往需要添加辅助线。
下面介绍一些辅助线的添加方法。
1. 和平行四边形有关的辅助线作法平行四边形是最常见的特殊四边形之一,它有许多可以利用性质,为了利用这些性质往往需要添加辅助线构造平行四边形。
(1)利用一组对边平行且相等构造平行四边形;(2)利用两组对边平行构造平行四边形;(3)利用对角线互相平分构造平行四边形;2. 与矩形有辅助线作法(1)计算型题,一般通过作辅助线构造直角三角形借助勾股定理解决问题。
(2)证明或探索题,一般连结矩形的对角线借助对角线相等这一性质解决问题。
全等三角形辅助线添加方法
全等三角形辅助线添加方法全等三角形是指具有相同形状和大小的两个三角形。
要证明两个三角形全等,我们通常使用SAS(两边和夹角),ASA(两角和边),SSS(三边)等条件来进行证明。
为了证明这些条件,我们可以添加一些辅助线来简化问题。
以下是几种常见的全等三角形辅助线添加方法:1.中位线法中位线是连接一个三角形的一个顶点和对边中点的线段。
在证明两个三角形全等时,可以通过连接两个三角形的对应顶点及对边中点来添加中位线。
这样,原来的两个三角形就分解成了两个平行四边形,从而简化了证明过程。
2.高线法高线是从一个顶点垂直于对边的线段。
在证明两个三角形全等时,可以添加一条高线,从而将一个三角形分解成两个直角三角形。
这样,我们可以利用直角三角形的性质来进行证明。
3.角平分线法角平分线是从一个角的顶点分别平分两个相邻边的线段。
在证明两个三角形全等时,可以通过连接两个三角形的对应顶点和相邻边的角平分线来添加辅助线。
这样,原来的两个三角形就分解成了两个高度相等的直角三角形。
4.旁切线法旁切线是从一个角的顶点切线到对边的线段。
在证明两个三角形全等时,可以添加一条旁切线,从而将一个三角形分解成两个全等的直角三角形。
这样,我们可以利用直角三角形的性质来进行证明。
5.等腰三角形法等腰三角形是指具有两个边相等的三角形。
在证明两个三角形全等时,如果我们发现其中一个三角形是等腰三角形,可以添加一条辅助线,将该等腰三角形分成两个全等的直角三角形。
这样,我们可以利用直角三角形的性质来进行证明。
通过添加这些辅助线,我们可以改变问题的形式,简化证明过程,并帮助我们找到更多的全等条件。
但是需要注意的是,辅助线的添加要符合几何图形的性质,不能改变原有图形的形状和大小。
总之,在证明两个三角形全等时,辅助线的添加是一个常用的方法,可以帮助我们简化证明过程,找到更多的全等条件,提高证明的效率和准确性。
需要根据具体问题来选择合适的辅助线添加方法,灵活运用几何定理和性质来进行证明。
名师点睛:初中几何常见辅助线的添加技巧和方法
附:初中几何常见辅助线的添加技巧和方法★说明:在几何的教学中,添加辅助线既是难点也是重点,如果能帮助学生梳理常规辅助线的添法,再配上经典的试题,往往就能让学生形成正确的添线“直觉”,体会到数学解题中的“对立”和“统一”,提高解题效率。
一、添加辅助线的方法1. 注意题目中背景图案的处理2. 注意题目中特征条件的处理3. 注意题目中所求结论的处理①线段和差——截长补短或面积法注意:截的端点不同、线段不同,补的方向不同、线段不同,方法很多,注意筛选出能形成基本图形解题的方法。
与高有关的线段,可借助面积转化出线段之间的等量关系。
② 倍分问题——加倍或折半注意:方法很多,注意筛选出能形成基本图形解题的方法。
4. 注意图形运动的处理●旋转:①正确作图(关注旋转中心、旋转图形、旋转方向、旋转角度,有时方向和角度条件隐含在落点条件之中,反复审题提炼。
②旋转全等,相等边、角条件均可转化,注意筛选每一组等边、等角条件后结合已知生成新的基本图形。
③利用旋转角相等、对称点到旋转中心的距离相等,旋转后易形成相似的等腰三角形。
●翻折:①正确作图(对称轴垂直平分对称点的连线段,可作垂直、截相等)②翻折全等,等边、角条件均可转化,注意筛选每一组等边、等角条件后结合已知生成新的基本图形。
③翻折对称性,对称轴垂直平分对称点的连线段,垂直条件易形成直角三角形,平分条件可转化出线段之间的等量关系,联中垂线上的点易得等腰三角形。
④特殊情况:翻折后常隐有角平分线的条件,遇上平行,易形成等腰三角形。
二、添线注意点1.题目中给定标准尺寸的重新画图,借助标准图形分析问题、寻求突破;题目中没有给定标准尺寸的用原图,不能准确定位图形的可先尝试着画出大致图形,根据已知再作不断的调整。
2.几何问题就是研究所呈现每个图形的边、角、边角所具有的特征,不要为了添线而添线,添线后要把所添加的辅助线回归整体图形,力争筛理出每个图形,继而叠加组合后生成新的结论解决问题。
(完整word版)八年级数学上几何证明中的辅助线添加方法
八年级数学(上)几何证明中的辅助线添加方法数学组 田茂松八年级数学的几何题, 有部分题需要做出辅助线才能完成。
有的时候, 做不出恰当的辅助线,或者做不出辅助线, 就没有办法完成该题的解答。
为了能够更好的让学生在做几何题时得心应手, 现在将八年级数学中几何题的辅助线添加方法总结如下。
常见辅助线的作法有以下几种:1.遇到等腰三角形, 可作底边上的高, 利用“三线合一”的性质解题, 思维模式是全等变换中的“对折”。
2.遇到三角形的中线, 倍长中线, 使延长线段与原中线长相等, 构造全等三角形, 利用的思维模式是全等变换中的“旋转”。
3.遇到角平分线, 可以自角平分线上的某一点向角的两边作垂线, 利用的思维模式是三角形全等变换中的“对折”, 所考知识点常常是角平分线的性质定理或逆定理.4.过图形上某一点作特定的平分线, 构造全等三角形, 利用的思维模式是全等变换中的“平移”或“翻转折叠”。
5.截长法与补短法, 具体做法是在某条线段上截取一条线段与特定线段相等, 或是将某条线段延长, 是之与特定线段相等, 再利用三角形全等的有关性质加以说明.这种作法, 适合于证明线段的和、差、倍、分等类的题目。
6.特殊方法:在求有关三角形的定值一类的问题时, 常把某点到原三角形各顶点的线段连接起来, 利用三角形面积的知识解答。
常见辅助线的作法举例:例. 如图1, , . 求证: .分析:图为四边形, 我们只学了三角形的有关知识, 必须把它转化为三角形来解决。
证明: 连接 (或 )∵//AB CD , //AD BC (已知) ∴∠1=∠2, ∠3=∠4 (两直线平行, 内错角相等) 在ABC ∆与CDA ∆中⎪⎩⎪⎨⎧∠=∠=∠=∠)(43)()(21已证公共边已证CA AC ∴ABC ∆≌CDA ∆(ASA ) ∴AD BC =(全等三角形对应边相等)例. 如图2,在 中, , , , 的延长于 .求证: .分析: 要证 , 想到要构造线段 , 同时 与 的平分线垂直, 想到要将其延长。
初中平面几何常见添加辅助线的方法
初中平面几何常见添加辅助线的方法平面几何是数学中的一个重要分支,通过在平面上描述和研究几何图形之间的关系和性质。
在解决平面几何问题中,添加辅助线是一种常见且有效的方法,可以帮助我们更好地理解和分析问题。
下面是初中平面几何常见的添加辅助线的方法:1.使用垂直辅助线:垂直辅助线是指与已知线段垂直的辅助线,可以用来分割和构造几何图形。
比如,在矩形中,可以通过连接矩形的对角线来构造一条垂直辅助线,从而将矩形分割为两个等腰直角三角形。
2.使用平行辅助线:平行辅助线是指与已知线段平行的辅助线,可以用来帮助构造平行线段和证明平行性质。
例如,在平行四边形中,可以通过连接相邻顶点和平行线段的端点来构造平行辅助线,从而证明平行四边形的对边相等。
3.使用角平分线:角平分线是指将一个角平分为两个等角的辅助线。
在解决涉及角的等分、相等或相似性质问题时,添加角平分线是非常有用的方法。
例如,在等腰三角形中,可以通过连结底边中点和顶角顶点的直线来构造角平分线,从而证明等腰三角形的顶角相等。
4.使用中线:中线是指连接一个几何图形的两边中点的辅助线。
在解决涉及几何图形的中点、平行四边形和三角形性质问题时,添加中线是一种常见的方法。
例如,在四边形中,可以通过连接相对边的中点来构造中线,从而证明中线互相平分。
5.使用高线:高线是指从多边形的一个顶点向对边所引的垂线。
在解决多边形的高、重心、垂心和外心问题时,添加高线是非常有用的方法。
例如,在三角形中,可以通过从一个顶点向对边引垂线来构造高线,从而证明高线汇聚于三角形的垂心。
6.使用辅助图形:有时,我们可以通过在平面上添加一些辅助图形来辅助解决几何问题。
例如,在求解平行四边形的面积时,可以通过添加一个垂直边和一个三角形来将平行四边形划分为两个高度相等的矩形,从而方便计算面积。
在实际应用中,我们可以根据具体问题的要求来灵活地选择合适的辅助线方法。
添加辅助线不仅可以帮助我们更好地理解和分析问题,还可以提高解题效率和准确性。
浅谈初中几何题中如何添加辅助线
浅谈初中几何题中如何添加辅助线几何题中,辅助线的添加五花八门。
本文从四个方面着手阐述辅助线的添加方法,期望能够对其有个概述,能够降低添加辅助线的难度。
标签:辅助线题目条件解证结果在解证初中几何题时,我们为了能够将题目条件和最后结果顺利联系到一起,通常会采用添加辅助线的方法。
那么,如何添加辅助线才能对我们解题有帮助呢?这里,我总结了几个方法。
一、观察题目条件,由题目条件找出辅助线添加位置。
有的时候,特殊的题目条件能够给予我们一些添加辅助线的线索。
比如下面一题:如下图已知正方形ABCD的边长为1,连接AC、BD,CE平分∠ACD交BD于点E,求DE的长度。
在这一题目条件中我们可以看到有一个“角平分线”的条件,由于角平分线有个性质:角平分线上的任意一点到角的两边距离相等。
如此,我们便可以考虑将这“距离”添加出来。
结合图形我们选择过E点做CD的垂线。
显然这条垂线段的长度也等于点E到这个正方形对角线交点的距离。
而这一题也因为这条辅助线的添加多出许多已知条件从而难度降低。
二、观察题目要解证的结果,分析推测出辅助线添加的方法。
当从题目条件得不到提示的话,我们可以从要解证的结果去倒推出我们需要的条件,根据这些条件而去判断辅助线添加的方法。
例如:如图正方形ABCD 的边长为12,将其折叠使点B落在边AD上,折痕为GF,已知AE=5。
求GF 的长。
在这一题中,看过题目之后,很自然得就会猜测要求的线段GF的长会不会和线段BE相等呢?显然BE的长度是很好求出来的。
那么想要证明两个线段相等最常用的就是三角形全等了,这里BE所在的三角形很好锁定是Rt△ABE,而GF并不是某个三角形的边,这时我们就很容易想到过G点做GH⊥CD,这样自然就出现一个Rt△HGF。
而证明出Rt△ABE≌Rt△HGF之后自然就能得到GF 的长。
三、将题目条件和要解证的结果两相对照,从而找出辅助线的位置。
在我们做题过程中有时并不是单看题目条件或解证结果就能得到辅助线添加的灵感的,更多时候要两相结合才能看出端倪。
初二几何辅助线添加方法
初二几何辅助线添加方法几何辅助线是在解决几何问题时,通过添加额外的线段或线条来帮助我们更好地理解和解决问题。
在初二阶段的几何学中,辅助线的使用是非常重要的,可以帮助我们找到问题的关键点,简化问题的分析和解决过程。
下面将介绍几个常见的初二几何辅助线添加方法。
第一种方法是绘制垂直辅助线。
在解决一些关于垂直关系的问题时,我们可以通过添加垂直辅助线来辅助解题。
例如,在求两条平行直线之间的距离时,我们可以通过在两条直线上分别取一点,然后通过添加垂直辅助线来构建一个直角三角形,从而求出距离。
第二种方法是绘制平行辅助线。
在求两条直线平行或相交关系时,我们可以通过添加平行辅助线来辅助解题。
例如,在求两条平行线之间的距离时,我们可以通过添加一条与两条平行线相交的直线,然后构建一个平行四边形,从而求出距离。
第三种方法是绘制角平分线。
在解决涉及到角度的问题时,我们可以通过添加角平分线来辅助解题。
例如,在求一个角的角平分线时,我们可以通过画出这个角的两条边的延长线,然后通过它们的交点来构建角平分线。
第四种方法是绘制对称线。
在求对称形状或对称位置的问题时,我们可以通过添加对称线来辅助解题。
例如,在求一个图形的对称轴时,我们可以通过添加对称线来找到对称轴的位置。
除了上述介绍的四种常见的几何辅助线添加方法外,还有许多其他的方法。
例如,绘制中垂线来求三角形的垂心和外心,绘制角的角平分线来求多边形的内角和,等等。
每个问题都有其特定的解题方法和特定的辅助线添加方法。
总结起来,初二几何辅助线的添加方法是非常多样的。
通过合理地添加辅助线,可以帮助我们更好地理解和解决几何问题。
在解题过程中,我们应该根据问题的特点和要求,选择合适的辅助线添加方法。
同时,多进行几何练习,多掌握不同的辅助线添加方法,可以提高我们的解题能力和思维灵活性。
初中数学14种方法教会你给三角形加辅助线!
初中数学14种方法教会你给三角形加辅助线!1.垂线:对于任意三角形ABC,可以从顶点A引一条垂线AD,垂足D位于BC边上。
通过垂线可以将三角形分成两个直角三角形,进而使用直角三角形的性质解决问题。
2.中线:对于任意三角形ABC,可以从任意两个顶点A和B引两条中线CD和EF,其中C和D是AB边的中点,E和F是AC边和BC边的中点。
通过中线可以将三角形分成三个等边三角形,进而使用等边三角形的性质解决问题。
3.角平分线:对于任意三角形ABC,可以从顶点A引一条角平分线AD,使得∠CAD=∠BAD。
通过角平分线可以将一个角平分成两个相等的角,从而使用相等角的性质解决问题。
4.内切圆:对于任意三角形ABC,可以画出其内切圆,该圆与三角形的三条边都相切。
通过内切圆可以获得三个切点,进而使用切点的性质解决问题。
5.外切圆:对于任意三角形ABC,可以画出其外切圆,该圆与三角形的三条边都相切。
通过外切圆可以获得三个切点,进而使用切点的性质解决问题。
6.高线:对于任意三角形ABC,可以从顶点A引一条高线AH,垂足H位于BC边上。
通过高线可以将三角形分成两个直角三角形,进而使用直角三角形的性质解决问题。
7.中位线:对于任意三角形ABC,可以从任意两个顶点A和B引两条中位线CD和EF,其中C和D是AB边的中点,E和F是AC边和BC边的中点。
通过中位线可以将三角形分成三个面积相等的三角形,进而使用面积相等的性质解决问题。
8.三角形的对称性:对于任意三角形ABC,可以观察到三个顶点关于其中一条边的对称性,根据这种对称性可以找到一些相等的角或边,从而简化问题的解决。
9.倒错:对于任意三角形ABC,可以考虑将这个三角形倒转或翻转,从而改变三角形的位置和形态,进而简化问题的解决。
10.几何图形的组合:对于给定的三角形ABC,可以考虑将它与其他几何图形进行组合,例如,与一个正方形、矩形或平行四边形组合,从而改变问题的形式,解决新问题。
平面几何中常见的辅助线添加方法.doc
平面几何中常见的辅助线添加方法李振基山东省平度市古幌镇古幌中学266742一、依据定义和性质添加辅助线1.证明线段与线段的相互垂直位置关系时,我们可以根据垂直的定义, 延长这两线段使其相交,然后证明它们所成的角为90度。
2.证明线段或角的和差倍半关系时,常采取延长较短的线段为原来的2 倍,然后证明这条线段等于另外一条线段。
证明角之间的倍数关系也是如此。
3.含有角的平分线的题目,常以角平分线为对称轴,利用角平分线的性质和题中的条件,构造出全等三角形,从而利用全等三角形的知识解决问题。
角平分线具有两条性质:(1)对称性;(2)角平分线上的点到角两边的距离相等。
对于有角平分线的辅助线的作法,一般有两种:①从角平分线上一点向两边作垂线;②利用角平分线,构造对称图形(如在一侧的长边上截取短边)。
通常情况下,出现了直角或是垂直等条件时,一般考虑作垂线;其它情况下考虑构造对称图形。
至于选取哪种方法,要结合题目图形和己知条件。
4.证明圆的有关问题时,通常要根据圆的有关定义、性质添加辅助线。
(1)见弦作弦心距,从而达到运用垂径定理沟通题设和结论o (2)见直径出现直径与半圆上的点,添90度的圆周角;出现90度的圆周角则添它所对弦一一直径,作其所对的圆周角,利用“直径所对的圆周角是直角”这一性质、直角三角形的有关特点解决具体问题。
(3)见切线作过切点的半径,利用“圆的切线垂直于过切点的半径”的切线性质构造直角三角形。
(4)两圆相交作公切线。
在两圆相切题目中,采取经过切点作两圆的公切线,从而构造直角三角形、矩形或者与圆有关的角,使两圆的关系更加密切、条件更为集中。
(5)两圆相交作公共弦,然后运用这条公共弦所对的圆周角或圆心角,在两圆之间架起角与角关系的桥梁。
二、基本图形(直线、三角形、平行四边形)辅助线的添加平面几何中的复杂图形都是由基本图形构成的,而这些图形在题设中却又常常是不完整的,这就需要通过添加辅助线构造基本图形。
几何证明例题及常见的添加辅助线方法
几何证明例题及常见的添加辅助线方法几何证明是数学中的一个重要分支,通过使用几何定理和性质,以及一些常见的辅助线方法,来证明几何命题的正确性。
下面将提供几个几何证明的例题,并介绍一些常见的添加辅助线方法:1.证明等边三角形的高线与垂直平分线重合。
添加辅助线方法:连接等边三角形的顶点与底边的中点,将三角形分为两个等腰三角形。
然后,通过利用等腰三角形的性质,可以证明三角形的高线与垂直平分线重合。
2.证明等腰梯形的对角线垂直。
添加辅助线方法:在等腰梯形的两个腰上各取一个点,使得这两个点与梯形的底边相连,形成两个等边三角形。
通过证明这两个等边三角形的高线与底边的中线相垂直,可以得出对角线垂直的结论。
3.证明一个四边形是平行四边形的充要条件是其对角线互相垂直。
添加辅助线方法:对四边形的两个对角线进行延长,连接延长线的交点与四边形的两个相邻顶点,形成两个三角形。
通过证明这两个三角形是直角三角形,可以得出对角线互相垂直的结论。
4.证明正方形的对角线互相垂直。
添加辅助线方法:连接正方形的相邻顶点,形成两个等腰三角形。
通过证明这两个等腰三角形的高线与底边的中线相垂直,可以得出对角线互相垂直的结论。
5.证明一个三角形的内心到三边的距离和边长的乘积是相等的。
添加辅助线方法:通过从三角形的顶点向内切圆引垂线,连接垂足与内心,形成三个小三角形。
通过证明这三个小三角形是相似三角形,可以得出内心到三边的距离和边长的乘积相等的结论。
以上是几个常见的几何证明例题及其对应的添加辅助线方法。
在几何证明中,添加辅助线是一种常用的方法,可以将原始图形分解成更简单的图形,以便于应用几何定理和性质进行证明。
但需要注意的是,添加辅助线时应选择合适的位置和方式,以确保辅助线的添加不会引入其他不必要的情况,更好地辅助证明目标命题的正确性。
高中几何添加辅助线的常用技巧
高中几何添加辅助线的常用技巧
高中几何学习中,添加辅助线是解决许多问题的有效方法。
以下是几种常用的几何辅助线技巧:
1、平移辅助线:通过将线段或图形平移,将其移动到更方便处理的位置来简化问题。
比如,对于一条直线外一点的角平分线,我们可以通过平移这条直线,使该点与角的顶点重合,然后再画出该点到角两边的垂线,这样就可以得到角平分线。
2、垂线辅助线:通过向一条直线引垂线来解决问题。
比如,对于一条直线上一点到另一条直线的垂线,我们可以通过在该点处引垂线使两条直线相交,然后再利用垂线的性质来解题。
3、相似三角形辅助线:利用相似三角形的性质来解决问题。
比如,对于一条直线外一点到两条平行线的距离,我们可以利用相似三角形的性质,构造出一个相似三角形,然后利用相似三角形的对应边比相等的性质来求出所需的距离。
4、角平分线辅助线:通过构造角平分线来解决问题。
比如,对于一个三角形的内角平分线,我们可以通过构造该角的外角平分线,然后利用外角和内角的性质来求出该角的内角平分线。
5、中垂线辅助线:通过构造线段中点的垂线来解决问题。
比如,对于一个三角形的垂心,我们可以通过构造三角形三边的中垂线,然后利用中垂线的性质来求出垂心的位置。
这些技巧可以帮助学生更好地理解几何概念和解题思路,提高几何水平。
几种证明全等三角形添加辅助线的方法
几种证明全等三角形添加辅助线的方法在几何证明中,证明两个三角形全等是常见的任务之一、为了证明两个三角形全等,可以利用几何性质和辅助线的方法。
以下是几种常见的证明全等三角形添加辅助线的方法。
方法一:辅助线连接两个三角形的顶点和中点。
假设有两个三角形ABC和DEF,我们要证明它们全等。
我们可以通过在两个三角形中选择一对对应的顶点,然后通过连接这对顶点和中点来添加辅助线。
例如,可以连接点A和B的中点M,以及连接点D和E的中点N。
通过连接辅助线MN,我们可以观察到三角形AMN和DMN是全等的,因为它们具有相等的边MN和相等的边角(由三角形ABC和DEF的边和角的性质可得)。
由于三角形AMN和DNM的对应边和对应角也相等,我们可以得出结论,三角形ABC和DEF是全等的。
方法二:辅助线连接两个三角形的顶点和底边中点。
假设有两个三角形ABC和DEF,我们要证明它们全等。
我们可以通过在两个三角形中选择一对对应的顶点,然后通过连接这对顶点和底边的中点来添加辅助线。
例如,可以连接点A和D的中点M,以及连接点B和E 的中点N。
通过连接辅助线MN,我们可以观察到三角形AMN和DMN是全等的,因为它们具有相等的边MN和相等的边角(由三角形ABC和DEF的边和角的性质可得)。
由于三角形AMN和DNM的对应边和对应角也相等,我们可以得出结论,三角形ABC和DEF是全等的。
方法三:辅助线连接两个三角形的对应角的角平分线。
假设有两个三角形ABC和DEF,我们要证明它们全等。
我们可以通过连接每个三角形对应角的角平分线来添加辅助线。
通过连接辅助线,我们可以得到一些相似的三角形。
根据相似三角形的性质,我们可以得到一些相等的边和角。
通过观察这些相等的边和角,我们可以得出结论,三角形ABC和DEF是全等的。
方法四:辅助线连接两个三角形的中垂线。
假设有两个三角形ABC和DEF,我们要证明它们全等。
我们可以通过连接每个三角形的边的中点,然后连接这些中点的垂线来添加辅助线。
几何辅助线的常见做法
初中数学辅助线的添加浅谈人们从来就是用自己的聪明才智创造条件解决问题的,当问题的条件不够时,添加辅助线构成新图形,形成新关系,使分散的条件集中,建立已知与未知的桥梁,把问题转化为自己能解决的问题,这是解决问题常用的策略。
一.添辅助线有二种情况:1按定义添辅助线:如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。
2按基本图形添辅助线:每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循。
举例如下:(1)平行线是个基本图形:当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等第三条直线(2)等腰三角形是个简单的基本图形:当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。
出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。
(3)等腰三角形中的重要线段是个重要的基本图形:出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。
(4)直角三角形斜边上中线基本图形出现直角三角形斜边上的中点往往添斜边上的中线。
出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。
(5)三角形中位线基本图形几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。
初中数学几何图形辅助线添加方法大全
初中数学添加辅助线的方法汇总作辅助线的基本方法一:中点、中位线,延长线,平行线。
如遇条件中有中点,中线、中位线等,那么过中点,延长中线或中位线作辅助线,使延长的某一段等于中线或中位线;另一种辅助线是过中点作已知边或线段的平行线,以达到应用某个定理或造成全等的目的。
二:垂线、分角线,翻转全等连。
如遇条件中,有垂线或角的平分线,可以把图形按轴对称的方法,并借助其他条件,而旋转180度,得到全等形,,这时辅助线的做法就会应运而生。
其对称轴往往是垂线或角的平分线。
三:边边若相等,旋转做实验。
如遇条件中有多边形的两边相等或两角相等,有时边角互相配合,然后把图形旋转一定的角度,就可以得到全等形,这时辅助线的做法仍会应运而生。
其对称中心,因题而异,有时没有中心。
故可分“有心”和“无心”旋转两种。
四:造角、平、相似,和、差、积、商见。
如遇条件中有多边形的两边相等或两角相等,欲证线段或角的和差积商,往往与相似形有关。
在制造两个三角形相似时,一般地,有两种方法:第一,造一个辅助角等于已知角;第二,是把三角形中的某一线段进行平移。
故作歌诀:“造角、平、相似,和差积商见。
”托列米定理和梅叶劳定理的证明辅助线分别是造角和平移的代表)五:两圆若相交,连心公共弦。
如果条件中出现两圆相交,那么辅助线往往是连心线或公共弦。
六:两圆相切、离,连心,公切线。
如条件中出现两圆相切(外切,内切),或相离(内含、外离),那么,辅助线往往是连心线或内外公切线。
七:切线连直径,直角与半圆。
如果条件中出现圆的切线,那么辅助线是过切点的直径或半径使出现直角;相反,条件中是圆的直径,半径,那么辅助线是过直径(或半径)端点的切线。
即切线与直径互为辅助线。
如果条件中有直角三角形,那么作辅助线往往是斜边为直径作辅助圆,或半圆;相反,条件中有半圆,那么在直径上找圆周角——直角为辅助线。
即直角与半圆互为辅助线。
八:弧、弦、弦心距;平行、等距、弦。
如遇弧,则弧上的弦是辅助线;如遇弦,则弦心距为辅助线。
几何证明辅助线添加技巧
初中数学几何证明辅助线添加技巧一、添辅助线有二种情况:1.按定义添辅助线:如证明二直线垂直可延长使它们相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线(还可以利用等腰三角形顶角的外角是底角的两倍添加辅助线)。
2.按基本图形添辅助线:每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循。
举例如下:(1)平行线是个基本图形:当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的第三条直线。
(2)等腰三角形是个简单的基本图形:当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。
出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形(这个图形很重要!)。
(3)等腰三角形中的重要线段(即三线合一线,往往是加高用中点)是个重要的基本图形:出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形(这个图形很重要!)中的重要线段的基本图形。
(4)直角三角形斜边上中线基本图形出现直角三角形斜边上的中点往往添斜边上的中线。
出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。
(5)三角形中位线基本图形几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。
(6)全等三角形(好好琢磨下这段文字,还是很有道理的):全等三角形有轴对称形,中心对称形,旋转形与平移形等;如果出现两条相等线段或两个档相等角关于某一直线成轴对称就可以添加轴对称形全等三角形:或添对称轴,或将三角形沿对称轴翻转。
几何证明 辅助线 添加技巧(全面,有用)
初中数学几何证明辅助线添加技巧(全面,有用)文中所列举的方法确实是最常用的方法,值得保存辅助线对于同学们来说都不陌生,解几何题的时候经常用到。
当题目给出的条件不够时,我们通过添加辅助线构成新图形,形成新关系,使分散的条件集中,建立已知与未知的桥梁,把问题转化为自己能解决的问题,这便是辅助线的作用。
一条巧妙的辅助线常常使一道难题迎刃而解。
所以我们要学会巧妙的添加辅助线。
一、添辅助线有二种情况:1.按定义添辅助线:如证明二直线垂直可延长使它们相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线(还可以利用等腰三角形顶角的外角是底角的两倍添加辅助线)。
2.按基本图形添辅助线:每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循。
举例如下:(1)平行线是个基本图形:当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的第三条直线。
(2)等腰三角形是个简单的基本图形:当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。
出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形(这个图形很重要!)。
(3)等腰三角形中的重要线段(即三线合一线,往往是加高用中点)是个重要的基本图形:出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形(这个图形很重要!)中的重要线段的基本图形。
(4)直角三角形斜边上中线基本图形出现直角三角形斜边上的中点往往添斜边上的中线。
出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。
(5)三角形中位线基本图形几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。
全等三角形添加辅助线的方法
全等三角形添加辅助线的方法全等三角形是指具有相等边长和相等内角的两个三角形。
在解决几何问题中,我们经常需要证明或利用全等三角形的性质。
为了更方便地使用全等三角形,我们可以使用辅助线来帮助我们找到全等三角形。
接下来,我将详细介绍几种添加辅助线的方法。
1.中点连线法:在一个三角形中,我们可以通过连接两个边的中点来构造一个平行边。
如果两个三角形的对应边都是平行的,并且两个三角形的第三边相等,那么这两个三角形是全等的。
因此,通过画出中点连线,我们可以找到两个全等的三角形。
例如,在一个三角形ABC中,我们可以通过连接边AB和AC的中点D和E来构造一个平行四边形DCBE。
然后,我们可以继续连接BE和CD,并连接AD和CE,这样就构成了两个全等三角形ADE和CDE。
通过使用这种方法,我们可以更方便地证明或利用全等三角形的性质。
2.高度法:对于一个三角形ABC,我们可以通过作其高来构造两个全等的三角形。
三角形ABC的高是指从顶点到对边的垂直线段。
如果两个三角形的高相等,并且它们的底边相等,那么这两个三角形是全等的。
因此,通过作两个三角形的高,我们可以找到两个全等的三角形。
例如,在一个三角形ABC中,我们可以通过作高AD和高BE来构造两个全等的三角形ABD和ACE。
通过使用这种方法,我们可以更方便地证明或利用全等三角形的性质。
3.角平分线法:对于一个三角形ABC,我们可以通过作角平分线来构造两个全等的三角形。
三角形ABC的角平分线是指从角的顶点到对边的线段,将角分为两个相等的角。
如果两个三角形的相应角相等,并且它们的底边相等,那么这两个三角形是全等的。
因此,通过作两个三角形的角平分线,我们可以找到两个全等的三角形。
例如,在一个三角形ABC中,我们可以通过作角平分线AD和角平分线BE来构造两个全等的三角形ADC和BEC。
通过使用这种方法,我们可以更方便地证明或利用全等三角形的性质。
4.相似三角形法:对于两个相似的三角形ABC和DEF,如果它们的对应边比例相等,那么它们是全等的。
梯形中添加辅助线的六种常用技巧
梯形中添加辅助线的六种常用技巧在几何学中,梯形是一种具有两条平行边的四边形。
为了解决梯形问题,往往需要在梯形中添加辅助线。
下面介绍六种常用的技巧。
1.连接两个对角线:首先,连接梯形的两个非平行边的中点,形成一条对角线。
然后,连接梯形的两个对角线中点,即可形成两个等腰三角形。
这样,可以通过等腰三角形性质来得到有关角度和边长的信息。
2.连接平行边的中点:将梯形的两条平行边的中点相连,可以形成一条平行于两条平行边的线段。
这条线段将梯形分成两个平行四边形,从而可以根据平行四边形的性质来解决问题。
3.连接一条平行边的中点和另一条边的中点:将梯形的一条平行边的中点和与之相对的边的中点连接,可以形成一条平行于梯形的底边的中线。
这样,可以通过中线分割线段的性质来得到有关线段和平行边的信息。
4.连接底边的中点和非平行边的中点:将梯形的底边的中点和非平行边的中点连接,可以形成一条平行于两条平行边的线段。
这样,可以根据平行四边形的性质来推导出梯形内部各部分的关系。
5.连接两个顶点和底边上的中点:将梯形的两个顶点和底边上的中点相连,可以得到两个等腰三角形。
利用等腰三角形的性质,可以推导出梯形的各个部分的角度和边长关系。
6.连接梯形的顶点和对角线交点:将梯形的两个顶点和另一条对角线的交点相连,可以形成一个三角形。
根据三角形的性质,可以得到角度和边长的关系,进而解决梯形问题。
这些添加辅助线的技巧可以帮助我们更好地理解和解决梯形问题。
通过巧妙地添加辅助线,可以将原来复杂的问题转化为简单的几何形状,从而更容易得到解答。
在解决梯形问题时,我们可以根据具体情况选择适合的添加辅助线的技巧,以便更加高效地解决问题。
初中几何辅助线添加方法——延长
二、延长
【方法说明】
把一条线段往一个方向延长一定的长度的辅助线添加方法叫做延长.通过延长来构造我们需要的图形也是最常用的辅助线添加方法之一,其中最具代表性的有“截长补短”和“倍长中线”两类(这两个部分内容请看后面的章节的详述).通常,延长之后还要用连接来组成一个完整的图形.
【方法归纳】
1、如图,通过延长构建邻补角.
2、如图,通过延长构建三角形.
3、如图,通过延长构建三角形的外角.
4、如图,梯形中延长两条腰来构建三角形.
5、如图,通过延长半径得到直径并连接成圆周角.
6、如图,对角互补(∠ABC+∠ADC=180°)的四边形,可以延长一边构建全等三角形,实现边和角的转化.
7、如图,图中若有连接两平行线之间的线段的中点时,可以连接中点并延长至与另一平行线相交构建全等三角形.
【典型例题】
1.如图,⊙O的内接四边形ABCD中,AB=AD,∠BAD=30°,AC=4,
(1)求∠BCD的度数;
(2)求四边形ABCD的面积.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
几何辅助线的添加方法学生:科目:数学第阶段第次课教师:谭前富课题几何辅助线的添加方法教学内容知识框架一.添辅助线有二种情况:1按定义添辅助线:如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。
2按基本图形添辅助线:每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循。
举例如下:(1)平行线是个基本图形:当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等第三条直线(2)等腰三角形是个简单的基本图形:当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。
出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。
(3)等腰三角形中的重要线段是个重要的基本图形:出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。
(4)直角三角形斜边上中线基本图形出现直角三角形斜边上的中点往往添斜边上的中线。
出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。
(5)三角形中位线基本图形几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。
(6)全等三角形:全等三角形有轴对称形,中心对称形,旋转形与平移形等;如果出现两条相等线段或两个档相等角关于某一直线成轴对称就可以添加轴对称形全等三角形:或添对称轴,或将三角形沿对称轴翻转。
当几何问题中出现一组或两组相等线段位于一组对顶角两边且成一直线时可添加中心对称形全等三角形加以证明,添加方法是将四个端点两两连结或过二端点添平行线(7)相似三角形:相似三角形有平行线型(带平行线的相似三角形),相交线型,旋转型;当出现相比线段重叠在一直线上时(中点可看成比为1)可添加平行线得平行线型相似三角形。
若平行线过端点添则可以分点或另一端点的线段为平行方向,这类题目中往往有多种浅线方法。
(8)特殊角直角三角形当出现30,45,60,135,150度特殊角时可添加特殊角直角三角形,利用45角直角三角形三边比为1:1:√2;30度角直角三角形三边比为1:2:√3进行证明(9)半圆上的圆周角出现直径与半圆上的点,添90度的圆周角;出现90度的圆周角则添它所对弦---直径;平面几何中总共只有二十多个基本图形就像房子不外有一砧,瓦,水泥,石灰,木等组成一样。
【基本图形的辅助线的画法】一:中点、中位线,延线,平行线。
如遇条件中有中点,中线、中位线等,那么过中点,延长中线或中位线作辅助线,使延长的某一段等于中线或中位线;另一种辅助线是过中点作已知边或线段的平行线,以达到应用某个定理或造成全等的目的。
二:垂线、分角线,翻转全等连。
如遇条件中,有垂线或角的平分线,可以把图形按轴对称的方法,并借助其他条件,而旋转180度,得到全等形,,这时辅助线的做法就会应运而生。
其对称轴往往是垂线或角的平分线。
三:边边若相等,旋转做实验。
如遇条件中有多边形的两边相等或两角相等,有时边角互相配合,然后把图形旋转一定的角度,就可以得到全等形,这时辅助线的做法仍会应运而生。
其对称中心,因题而异,有时没有中心。
故可分“有心”和“无心”旋转两种。
四:造角、平、相似,和、差、积、商见。
如遇条件中有多边形的两边相等或两角相等,欲证线段或角的和差积商,往往与相似形有关。
在制造两个三角形相似时,一般地,有两种方法:第一,造一个辅助角等于已知角;第二,是把三角形中的某一线段进行平移。
故作歌诀:“造角、平、相似,和差积商见。
”托列米定理和梅叶劳定理的证明辅助线分别是造角和平移的代表)五:两圆若相交,连心公共弦。
如果条件中出现两圆相交,那么辅助线往往是连心线或公共弦。
六:两圆相切、离,连心,公切线。
如条件中出现两圆相切(外切,内切),或相离(内含、外离),那么,辅助线往往是连心线或内外公切线。
七:切线连直径,直角与半圆。
如果条件中出现圆的切线,那么辅助线是过切点的直径或半径使出现直角;相反,条件中是圆的直径,半径,那么辅助线是过直径(或半径)端点的切线。
即切线与直径互为辅助线。
如果条件中有直角三角形,那么作辅助线往往是斜边为直径作辅助圆,或半圆;相反,条件中有半圆,那么在直径上找圆周角——直角为辅助线。
即直角与半圆互为辅助线。
八:弧、弦、弦心距;平行、等距、弦。
如遇弧,则弧上的弦是辅助线;如遇弦,则弦心距为辅助线。
如遇平行线,则平行线间的距离相等,距离为辅助线;反之,亦成立。
如遇平行弦,则平行线间的距离相等,所夹的弦亦相等,距离和所夹的弦都可视为辅助线,反之,亦成立。
有时,圆周角,弦切角,圆心角,圆内角和圆外角也存在因果关系互相联想作辅助线。
九:面积找底高,多边变三边。
如遇求面积,(在条件和结论中出现线段的平方、乘积,仍可视为求面积),往往作底或高为辅助线,而两三角形的等底或等高是思考的关键。
如遇多边形,想法割补成三角形;反之,亦成立。
另外,我国明清数学家用面积证明勾股定理,其辅助线的做法,即“割补”有二百多种,大多数为“面积找底高,多边变三边”。
三角形中作辅助线的常用方法举例一、在利用三角形三边关系证明线段不等关系时,若直接证不出来,可连接两点或延长某边构成三角形,使结论中出现的线段在一个或几个三角形中,再运用三角形三边的不等关系证明,如: 例1:已知如图1-1:D 、E 为△ABC 内两点,求证:AB +AC >BD +DE +CE.证明:(法一)将DE 两边延长分别交AB 、AC 于M 、N ,在△AMN 中,AM +AN > MD +DE +NE;(1)在△BDM 中,MB +MD >BD ; (2) 在△CEN 中,CN +NE >CE ; (3) 由(1)+(2)+(3)得:AM +AN +MB +MD +CN +NE >MD +DE +NE +BD +CE∴AB +AC >BD +DE +ECA B C D E N M 11-图A B C D E F G 21-图(法二:)如图1-2,延长BD交 AC于F,延长CE交BF于G,在△ABF和△GFC和△GDE中有:AB+AF> BD+DG+GF(三角形两边之和大于第三边)(1)GF+FC>GE+CE(同上) (2)DG+GE>DE(同上) (3)由(1)+(2)+(3)得:AB+AF+GF+FC+DG+GE>BD+DG+GF+GE+CE +DE∴AB+AC>BD+DE+EC。
二、在利用三角形的外角大于任何和它不相邻的内角时如直接证不出来时,可连接两点或延长某边,构造三角形,使求证的大角在某个三角形的外角的位置上,小角处于这个三角形的内角位置上,再利用外角定理:例如:如图2-1:已知D为△ABC内的任一点,求证:∠BDC>∠BAC。
分析:因为∠BDC 与∠BAC 不在同一个三角形中,没有直接的联系,可适当添加辅助线构造新的三角形,使∠BDC 处于在外角的位置,∠BAC 处于在内角的位置; 证法一:延长BD 交AC 于点E ,这时∠BDC 是△EDC 的外角,∴∠BDC >∠DEC ,同理∠DEC >∠BAC ,∴∠BDC >∠BAC证法二:连接AD ,并延长交BC 于F∵∠BDF 是△ABD 的外角∴∠BDF >∠BAD ,同理,∠CDF >∠CAD∴∠BDF +∠CDF >∠BAD +∠CAD即:∠BDC >∠BAC 。
注意:利用三角形外角定理证明不等关系时,通常将大角放在某三角形的外角位置上,小角放在这个三角形的内角位置上,再利用不等式性质证明。
三、有角平分线时,通常在角的两边截取相等的线段,构造全等三角形,如: 例如:如图3-1:已知AD 为△ABC 的中AD E G 12-图A E F N线,且∠1=∠2,∠3=∠4,求证:BE +CF >EF 。
分析:要证BE +CF >EF ,可利用三角形三边关系定理证明,须把BE ,CF ,EF 移到同一个三角形中,而由已知∠1=∠2,∠3=∠4,可在角的两边截取相等的线段,利用三角形全等对应边相等,把EN ,FN ,EF 移到同一个三角形中。
证明:在DA 上截取DN =DB ,连接NE ,NF ,则DN =DC ,在△DBE 和△DNE 中: ∵⎪⎩⎪⎨⎧=∠=∠=)()(21)(公共边已知辅助线的作法ED ED DB DN∴△DBE ≌△DNE (SAS )∴BE =NE (全等三角形对应边相等) 同理可得:CF =NF在△EFN 中EN +FN >EF (三角形两边之和大于第三边)∴BE +CF >EF 。
注意:当证题有角平分线时,常可考虑在角的两边截取相等的线段,构造全等三角形,然后用全等三角形的性质得到对应元素相等。
四、有以线段中点为端点的线段时,常延长加倍此线段,构造全等三角形。
例如:如图4-1:AD 为△ABC 的中线,且∠1=∠2,∠3=∠4,求证:BE +CF >EF 证明:延长ED 至M ,使DM=DE ,连接CM ,MF 。
在△BDE 和△CDM中,∵⎪⎩⎪⎨⎧=∠=∠=)()(1)(辅助线的作法对顶角相等中点的定义MD ED CDM CD BD∴△BDE ≌△CDM (SAS )又∵∠1=∠2,∠3=∠4 (已知) ∠1+∠2+∠3+∠4=180°(平角的定义) ∴∠3+∠2=90°,即:∠EDF =90° ∴∠FDM =∠EDF =90° 在△EDF 和△MDF 中 ∵⎪⎩⎪⎨⎧=∠=∠=)()()(公共边已证辅助线的作法DF DF FDM EDF MD ED14-图ABCDEFM1234∴△EDF ≌△MDF (SAS )∴EF =MF (全等三角形对应边相等) ∵在△CMF 中,CF +CM >MF (三角形两边之和大于第三边) ∴BE +CF >EF注:上题也可加倍FD ,证法同上。
注意:当涉及到有以线段中点为端点的线段时,可通过延长加倍此线段,构造全等三角形,使题中分散的条件集中。
五、有三角形中线时,常延长加倍中线,构造全等三角形。
例如:如图5-1:AD 为 △ABC 的中线,求证:AB +AC >2AD 。
分析:要证AB +AC >2AD ,由图想到: AB +BD >AD,AC+CD >AD ,所以有AB +AC + BD +CD >AD +AD=2AD ,左边比要证结论多BD +CD ,故不能直接证出此题,而由2AD 想到要构造2AD ,即加倍中线,把所要证的线段转移到同一个三角形中去。