八年级上册数学第二单元实数测试题
北师大版八年级数学上册《第二章实数》单元测试卷-附带答案
北师大版八年级数学上册《第二章实数》单元测试卷-附带答案一、单选题1.我国数学家赵爽用数形结合的方法,运用“弦图”,详细证明了勾股定理,在世界数学史上具有独特的贡献和地位.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b,若24ab=,大正方形的面积为129.则小正方形的边长为()A.7B.8C.9D.102.下列二次根式中属于最简二次根式的是()A14B48C 53D0.13.下列各二次根式中,为最简二次根式的是()A12B14C18D204.一个正方形的面积为32,则它的边长应在()A.3到4之间B.4到5之间C.5到6之间D.6到7之间5.设N为正整数,如果N˂ 65˂N+1,那么N的值是()A.7B.8C.9D.不能确定6.对于实数x,我们规定[x]表示不大于x的最大整数,如[4]=4,[ 3]=1,[-2.5]=-3.现对82进行如下操作:982=9=13823⎡⎤→→→⎢⎢⎢⎥⎣⎦⎣⎣第一次第二次第三次这样对82只需进行3次操作后变为1,类似地,对121只需进行多少次操作后变为1()A.1B.2C.3D.4 7.已知a是有理数,b是无理数,下列算式的结果必定为无理数的是()A .a +bB .abC .a bD 22a b +8. 下列运算正确的是( )A .164-=B 3644-=C ()255-= D .3273=9.下列计算正确的是( )A 42=±B ()233-=- C .(255-= D .(233-=-10.210介于( )A .4和5之间B .5和6之间C .6和7之间D .7和8之间二、填空题11.在 13- , 0 , π ,2 和 0.3245 这五个数中,无理数有 个.12.化简: ()213- = .13.使代数式12x -有意义的实数 x 的取值范围是 .14.对于任何实数a ,可用[]a 表示不超过a 的最大整数,如[4]=4,31=.现对72进行如下操作:72第一次[√72]=8第二次82⎡=⎣第三次21=,类似地,只需进行3次操作后变为1的所有正整数中,最大的是 .三、解答题15.已知x ,y 为实数,且1272273y x x =--,求xy 的平方根。
北师大版八年级上册数学第二章实数单元测试(含答案)
八年级上册数学第二章单元测试一、选择题:本大题共12小题,每小题3分,共36分.在每小题列出的四个选项中,只有一个选项是符合题目要求的.1.在实数227,-6,39,0,π,-25中,无理数的个数是( )A .1B .2C .3D .4 2.下列结论中,正确的有( )①8=4;②179=±34;③-32的平方根是-3;④(-5)2的算术平方根是-5;⑤±76是11336的平方根. A .1个 B .2个 C .3个 D .4个 3.若(a -4)2与a -b +3互为相反数,则a +b 的值为( )A .3B .4C .11D .54.如图,正方形OABC 的边OC 落在数轴上,OC =2,以O 为圆心,OB 长为半径作圆弧与数轴交于点D ,则点D 表示的数是( )A .2 2B .-2 2 C. 2 D .-2 5.若31-2x 与33y -2互为相反数,且y ≠0,则2x +1y 的值是( )A .13B .23 C .2 D .3 6.利用计算器计算出的各数的算术平方根如下: … 0.0625 0.625 6.25 62.5 625 6 250 62 500 … …0.250.79062.57.9062579.06250…根据以上规律,若 1.69=1.3,16.9≈4.11,则 1 690≈( ) A .13 B .130 C .41.1 D .4117.实数a ,b 在数轴上的对应点的位置如图所示,化简(a +1)2+|a -b |+2(1-b)2-|a+b|的结果是()A.2a-b+1 B.a-2b+1 C.-a+2b-1 D.2a+b-18.把(2-x)1x-2的根号外的(2-x)适当变形后移入根号内,得()A.2-x B.x-2 C.-2-x D.-x-2 9.若45+a=b5(b为整数),则a的值可以是()A.15B.27 C.24 D.2010.如图①是第七届国际数学教育大会(ICME-7)的会徽图案,它是由一串有公共顶点O的直角三角形(如图②)演化而成的.如果OA1=A1A2=A2A3=…=A7A8=1,那么OA8的长为()A.10 B.4 C.3 D.22(第10题) (第11题) (第12题) 11.如图,已知△ABC为等腰直角三角形,∠ABC=90°,三角形的顶点在相互平行的三条直线l1,l2,l3上,且l1,l2之间的距离为1 , l2,l3之间的距离为3,则AC的长是()A.4 B.4 2 C.5 D.5 212.将1,2,3三个数按如图所示的方式排列,若规定(a,b)表示第a排第b列的数,则(8,2)与(100,100)表示的两个数的积是()A.1 B. 2 C. 3 D.6二、填空题:本大题共6小题,每小题4分,共24分.13.若式子12x-1在实数范围内有意义,则x的取值范围是____________.14.已知y=x-4+4-x-5,则(x+y)2 023=________.15.定义新运算“△”:a △b =ab +1,则2△(3△5)=__________. 16.一个正数m 的两个平方根分别为1-3a 和a +5,则m 的立方根是__________. 17.=____________.18.“分母有理化”是根式运算的一种化简方法,如:2+3 2-3=(2+3)( 2+3)(2+3) (2-3)=7+43.除此之外,还可以用先平方再开方的方法化简一些有特点的无理数,如要化简4+7-4-7,可以先设x =4+7-4-7,再两边平方,得x 2=(4+7-4-7)2=4+7+4-7-2(4+7)( 4-7)=2,又因为,4+7>4-7,所以x >0,所以x =2,故4+7-4-7=2.根据以上方法,化简 6 -36 +3+8+43-8-43的结果是__________.三、解答题(一):本大题共2小题,每小题8分,共16分. 19.计算:(1)⎝ ⎛⎭⎪⎫-12-1+|3-3|-(π-1)0-27(2)20+55-13×12-(3+2)(2-3).20.已知a,b,c满足a2-42a+8+b-5+|c-32|=0.(1)求a,b,c的值;(2)若a,b,c为三条线段的长,这三条线段能否构成三角形?若能构成三角形,求出三角形的周长;若不能构成三角形,请说明理由.四、解答题(二):本大题共2小题,每小题10分,共20分.21.某农场有一块用铁栅栏围成的面积为700 m2的长方形空地,长方形空地的长与宽的比为7:4.(1)该长方形空地的长与宽分别为多少米?(2)农场打算把长方形空地沿边的方向改造出两块不相连的正方形试验田,两块正方形试验田的边长比为4:3,面积之和为600 m2,并把原来长方形空地的铁栅栏全部用来围两块正方形试验田,请问能改造出这样的两块不相连的正方形试验田吗?如果能,原来的铁栅栏够用吗?22.阅读材料:因为2<6<3,所以6的整数部分为2,小数部分为6-2. 解决下列问题:(1)填空:73的小数部分是 ____________;(2)已知a 是19-4的整数部分,b 是19-4的小数部分,求代数式(a +1)3+(b +4)2的值;(3)已知m 是2+3的整数部分,n 是2+3的小数部分,求m -n 的相反数.五、解答题(三):本大题共2小题,每小题12分,共24分.23.规定新运算符号“☆”:a ☆b =ab +3b -3.例如:(-2)☆1=(-2)×1+31-3=1- 3. (1)求27☆3的值; (2)求(12+3)☆12的值;(3)若[-(2x -1)2]☆⎝ ⎛⎭⎪⎫-13=-3,求x 的值.24.观察下面的式子:S1=1+112+122,S2=1+122+132,S3=1+132+142,…,S n=1+1n2+1(n+1)2.(1)计算:S1=__________,S3=__________,猜想:S n=________(用含n的代数式表示);(2)计算:S=S1+S2+S3+…+S n.(用含n的代数式表示)答案一、1.C2.A3.C4.B5.D6.C7.C8.D 点拨:由1x-2≥0且x-2≠0,得x-2>0,故(2-x)1 x-2=-(x-2)1 x-2=-(x-2)2×1x-2=-x-2.9.D10.D点拨:因为OA1=A1A2=1,所以由勾股定理可得 OA 2=12+12=2,所以OA 3=(2)2+12=3, 所以OA 4=(3)2+12=4=2,…, 所以OA n =n , 所以OA 8=8=2 2. 11.D 12.C 二、13.x >1214.-1 点拨:因为y =x -4+4-x -5,所以x =4, y =-5,所以(x +y )2 023=(-1)2 023=-1. 15.3 16.2 17.10n 点拨:18.3 点拨:设x =8+43-8-43,两边平方,得x 2=(8+43-8-43)2=8+43+8-43-2(8+43)( 8-43)=8, 因为8+43>8-43, 所以x >0, 所以x =2 2. 故原式=6 -36 +3+22=( 6 -3)2( 6 +3)( 6 -3)+22=9-623+22=3-22+22=3.三、19.解:(1)原式=-2+3-3-1-33=-4 3.(2)原式=4+1-4-[22-(3)2]=2+1-2-(4-3)=1-1=0.20.解:(1)因为a2-42a+8+b-5+|c-32|=0,所以(a-22)2+b-5+|c-32|=0,所以a-22=0,b-5=0,c-32=0.所以a=22,b=5,c=3 2.(2)能.因为22+32=52>5,所以能构成三角形,三角形的周长=22+32+5=52+5.四、21.解:(1)设该长方形空地的长为7x m,则宽为4x m,依题意,得7x×4x=700,即x2=25,所以x=5(负值舍去).所以7x=35,4x=20.答:该长方形空地的长为35 m,宽为20 m.(2)设两块正方形试验田的边长分别为4y m,3y m,依题意,有(4y)2+(3y)2=600,即25y2=600,所以y=2 6 (负值舍去),所以4y=86,3y=6 6.因为86+66=146<35,86<20,所以能改造出这样的两块不相连的正方形试验田. 146×4=56 6 (m),(35+20)×2=110(m), 因为566>110,所以原来的铁栅栏不够用. 22.解:(1) 73-8(2)因为4<19<5, 所以0<19-4<1.因为a 是19-4的整数部分,b 是19-4的小数部分, 所以a =0,b =19-4, 所以(a +1)3+(b +4)2 =13+(19)2 =1+19 =20.(3)因为1<3<2,所以3<2+3<4.因为m 是2+3的整数部分,n 是2+3的小数部分, 所以m =3,n =2+3-3=3-1,所以m -n 的相反数为-(m -n )=n -m =3-4. 五、23.解:(1)27☆3=3 3×3+33-3=9. (2)(12+3)☆12 =(12+3)×12+312-3 =12+6+32-3 =18-32. (3)因为[-(2x -1)2]☆⎝ ⎛⎭⎪⎫-13=[-(2x -1)2]×⎝ ⎛⎭⎪⎫-13+3-13-3=-3,所以13(2x -1)2=9, 所以2x -1=±33,所以x=1+332或x=1-332.24.解:(1)32;1312;n(n+1)+1n(n+1)点拨:因为S1=1+112+122=94,所以S1=94=32.因为S2=1+122+132=4936,所以S2=7 6.因为S3=1+132+142=169144,所以S3=13 12,….所以S n=n(n+1)+1 n(n+1).(2)S=S1+S2+S3+…+S n=32+76+1312+…+n(n+1)+1n(n+1)=1+12+1+16+1+112+ (1)1n(n+1)=n+(1-12+12-13+13-14+…+1n-1n+1)=n+1-1 n+1=n2+2n n+1.。
北师大版八年级数学上册《第二章实数》测试卷-带答案
北师大版八年级数学上册《第二章实数》测试卷-带答案学校班级姓名考号一、选择题1.下列式子中,属于最简二次根式的是()A.B.C.D.2.若成立,则x的值可以是()A.-2 B.0 C.2 D.33.下列运算正确的是()A.B.C.D.4.如图所示的数轴被墨迹污染了,则下列选项中可能被覆盖住的数是()A.B.﹣C.﹣D.﹣5.已知,且,则的值为()A.1 B.-7 C.-1 D.1或-76.是某三角形三边的长,则等于()A.B.C.10 D.47.已知,则代数式的值是()A.0 B.C.D.8.如图,长方形ABCD的边AD=2,AB=1,点A在数轴上对应的数是﹣1,以A点为圆心,对角线AC长为半径画弧,交数轴于点E,则点E表示的数是()A.+1 B.﹣1 C.D.1﹣二、填空题9.写出一个在1到4之间的无理数.10.计算:.11.请写出一个正整数m的值使得是整数;.12.已知:,则.13.如果的小数部分为a,的整数部分为b,则的值为.三、计算题14.计算:(1)(2)15.已知:16.已知和.(1)求的值.(2)若x的整数部分是a,y的小数部分是b,求的值.17.已知某正数的两个平方根分别是和,的立方根为-3.(1)求的值.(2)求的立方根.18.我们知道无理数都可以化为无限不循环小数,所以的小数部分不可能全部写出来,若的整数部分为a,小数部分为b,则,且b<1.(1)的整数部分是,小数部分是;(2)若的整数部分为m,小数部分为n,求的值.参考答案:1.【答案】D2.【答案】B3.【答案】C4.【答案】B5.【答案】A6.【答案】D7.【答案】C8.【答案】B9.【答案】10.【答案】611.【答案】812.【答案】13.【答案】114.【答案】(1)原式=﹣()××=﹣=﹣1﹣=﹣1(2)原式=3﹣1﹣3+=﹣115.【答案】解:∴ . ∴原式=16.【答案】(1)解:.(2)解:∵∴∴x的整数部分是,y的小数部分是∴.17.【答案】(1)解:∵某正数的两个平方根分别是和∴∴∵的立方根为-3∴∴∴(2)解:当时∴的立方根为4.18.【答案】(1)4;(2)解:∵∴∴m=5,-5 ∴。
八年级数学上册《第二章实数》单元测试题(含答案)
第二章实数测试题一、选择题(每题3分,共30分)1.有一组数如下:-π,13,|-2|,4,7,39,0.808008…(相邻两个8之间0的个数逐次加1).其中无理数有( )A .4个B .5个C .6个D .7个2.下列说法中,正确说法的个数是( ) ①-64的立方根是-4; ②49的算术平方根是±7; ③127的立方根是13; ④116的平方根是14. A .1 B .2 C .3 D .43.下列各组数中,互为相反数的一组是( )A .-3与3-27B .-3与(-3)2 C .-3与-13D .||-3与34.下列各式计算正确的是( )A .2+3=5B .43-33=1C .23×33=63D .27÷3=35.下列各式中,无论x 为任何数都没有意义的是( )A .-7xB .-1999x 3C .-0.1x 2-1D .3-6x 2-56.若a =15,则实数a 在数轴上的对应点P 的大致位置是( )图17.如图2是一数值转换机,若输出的结果为-32,则输入的x的值为( )图2A.-4B.4C.±4D.±58.若a,b均为正整数,且a>7,b>320,则a+b的最小值是( )A.6 B.5 C.4 D.39.实数a,b在数轴上所对应的点的位置如图3所示,且||a>||b,则化简a2-||a+b 的结果为( )图3A.2a+b B.-2a+bC.b D.2a-b10.已知x=2-3,则代数式(7+4 3)x2+(2+3)x+3的值是( )A.2+3B.2-3C.0 D.7+4 3请将选择题答案填入下表:第Ⅱ卷 (非选择题 共70分)二、填空题(每题3分,共18分) 11.计算:252-242=________.图412.如图4,正方形ODBC 中,OC =1,OA =OB ,则数轴上点A 表示的数是________. 13.用计算器计算并比较大小:39________7.(填“>”“=”或“<”) 14.若|x -y|+y -2=0,则xy -3的值是________.15.若规定一种运算为a ★b =2(b -a),如3★5=2×(5-3)=22,则2★3=________.16.设a ,b 为非零实数,则a |a|+b 2b 所有可能的值为________.三、解答题(共52分)17.(6分)实数a ,b 在数轴上所对应的点的位置如图5所示,试化简:a 2-b 2-(a -b )2.图518.(6分)计算:(1)()-62-25+(-3)2;(2)50×8-6×32;(3)(3+2-1)(3-2+1).19.(6分)已知a ,b 互为相反数,c ,d 互为倒数,x 是2的平方根,求5(a +b )a 2+b 2-2cd +x 的值.20.(6分)如果a 是100的算术平方根,b 是125的立方根,求a 2+4b +1的平方根.21.(6分)某中学要在操场的一块长方形土地上进行绿化,已知这块长方形土地的长为510m ,宽为415m .(1)求该长方形土地的面积(精确到0.1 m 2);(2)如果绿化该长方形土地每平方米的造价为180元,那么绿化该长方形土地所需资金约为多少元?22.(6分)如图6所示,某地有一地下工程,其底面是正方形,面积为405 m2,四个角是面积为5 m2的小正方形渗水坑,根据这些条件如何求a的值?与你的同伴进行交流.图6下面是小康提供的解题方案,根据解题方案请你完成本题的解答过程:①设大正方形的边长为x m,小正方形的边长为y m,那么根据题意可列出关于x的方程为__________,关于y的方程为__________;②利用平方根的意义,可求得x=________(取正值,结果保留根号),y=________(取正值,结果保留根号);③所以a=x-2y=____________=__________(结果保留根号);④答:________________________.23.(8分)如图7,在Rt△OA1A2中,∠A1=90°,OA1=A1A2=1,以OA2为直角边向外作直角三角形,…,使A1A2=A2A3=A3A4=…=A n-1A n=1.(1)计算OA2和OA3的长;(2)猜想OA75的长(结果化到最简);(3)请你用类似的思路和方法在数轴上画出表示-3和10的点.图724.(8分)先阅读材料,再回答问题:因为(2-1)(2+1)=1,所以12+1=2-1;因为(3-2)(3+2)=1,所以13+2=3-2;因为(4-3)(4+3)=1,所以14+3=4- 3.依次类推,你会发现什么规律?请用你发现的规律计算式子12+1+13+2+…+1100+99的值.答案1.A 2.B 3.B 4.D 5.C 6.B 7.C 8.A 9.C 10.A 11.7 12.- 213.< 14.12 15.6-216.±2,017.解:由数轴易知a <0,b >0,|a |<|b |, 所以原式=-a -b -(b -a )=-2b . 18.解:(1)原式=6-5+3=4.(2)原式=5 2×2 2-3 22=20-3=17.(3)(3+2-1)(3-2+1)=[]3+(2-1)[]3-(2-1) =3-(2-1)2=3-3+2 2 =2 2.19.解:由题意知a +b =0,cd =1,x =± 2. 当x =2时,原式=-2+2=0; 当x =-2时,原式=-2-2=-2 2, 故原式的值为0或-2 2.20.[解析] 先根据算术平方根、立方根的定义求得a ,b 的值,再代入所求代数式即可计算.解:因为a 是100的算术平方根,b 是125的立方根, 所以a =10,b =5,所以a2+4b+1=121,所以a2+4b+11=11,所以a2+4b+11的平方根为±11.21.[解析] (1)根据这块长方形土地的长为5 10 m,宽为415 m,直接得出面积即可;(2)利用绿化该长方形土地每平方米的造价为180元,即可求出绿化该长方形土地所需资金.解:(1)该长方形土地的面积为510×415=100 6≈244.9(m2).(2)因为绿化该长方形土地每平方米的造价为180元,所以180×244.9=44082(元).答:绿化该长方形土地所需资金约为44082元.22.解:①x2=405 y2=5②9 5 5③9 5-2 5 7 5④a的值为7 523.解:(1)OA2=12+12=2,OA3=()22+12= 3.(2)OA75=75=5 3.(3)如图所示:24.解:规律:当n是正整数时,1n+1+n=n+1-n,故12+1+13+2+…+1100+99=(2-1)+(3-2)+…+(100-99)=100-1=9.。
八年级数学上册第二章《实数》单元测试卷-北师大版(含答案)
八年级数学上册第二章《实数》单元测试卷-北师大版(含答案)班级:姓名:座号:成绩:一、选择题(30 分)1. 16 的平方根是( )A.4B. ±42.下列各式正确的是( )A.√16 =±4B.±√16 =43. 下列各数中,为无理数的是( )22A. π B 一.74. 下列各数中的无理数是( )1A .0B .25. 下列说法正确的是( )A.所有无限小数都是无理数C.有理数都是有限小数6. 实数9 的算术平方根为( )A.3 B.士37. 下列根式中不是最简二次根式的是(A. √10B. √88. 下列变形正确的是( )C.8D. ±8 C.√(−4)2 =-4 D.3√−27 =-3C. 0D. -2 C. D.B.所有无理数都是无限小数D.不是有限小数就不是有理数C.士 3 D.士3)C.√6D.√2A.√(−16)(−25)= √−16 × √−25B.√161 = √16 × √1 =4×14 4 2C.√(−1) 2 =1D.√252 − 242 =25-24=13 39. 若最简二次根式√2x + 1和√4x − 3能合并,则x 的值为( )A.0.5B.1C.2D.2.510.若将−√2,√6,−√3,√11 四个无理数表示在数轴上,其中能被如图所示的墨迹覆盖的数是( )A . −√2B . √6C . −√3D . √113 8 5二、填空题(28 分)11. 16 的算术平方根是12. 比较大小: 4 3 713. 若已知 a 一3 + (b 一5)2 = 0 ,那么以a ,b 为边长的直角三角形的第三边长为.14. 请写出一个大于1且小于2的无理数:.15.若= 1 + 7 ,则的整数部分是,小数部分是.16. 计算: ( 4) 2-20220 =.17.如图,,,,是数轴上的四个点,这四个点中最适合表示7 的点是 .三、解答题18.计算:(4×4=16分)(1) ﹣2 (2) 8 + 32 一 2(3) (3 + 5)(2 一 5 )(4) (5 一3)219.再计算:(4×4=16分)(1)(2)27 一一2 3 一 3 x(2 一π)0+(一1)20222 3 (4) .20.还是计算:(4×4=16分)1 1(1) 20×(-3 48)÷ 2 (2) 12( 75+33- 48)(3) 27 ×3-182+8(4)√ ( − 3)2-(-1)2023 -(π-1)0+(|(21-121. 阅读下列材料:(6 分)∵√4< √7< √9,即 2 < √7 < 3 ,∴√7请你观察上述的规律后试解下面的问题:的整数部分为2,小数部分为√7 − 2 .如果√5 的小数部分为ᵄ, √13 的小数部分为ᵄ,求ᵄ + ᵄ−√5 的值.(3)22. 阅读理解:1已知a = ,求 2a 2 一 8a +1的值.2 一 3常a 一 2 = 3 .常 一 =,即 a 2 一 4a + 4 = 3 .常a 2 一 4a = 一1 .常2a 2 一 8a +1 = 2(a 2 一 4a) +1 = 2 x (一1) +1 = 一1 .请根据以上解答过程,解决如下问题:(8 分) 1 = .2 +11 3+2 3 (2 (1)计算:(2)计算:(a 2)2 3 1100 + 2 3 ;99 4 + 3 2 3 2 +1+…+ 2+ +11 ,1 +a = = = + 一一 3)(2 + 3)参考答案6 A11. 212. <13. 5 或 714. 2 ( 3 答案不唯一)15. 3 , 7 216. 317. P18. (1)1 (2) 5 2 (3)1 5 (4)28 10 319. (1)2 3 (2) 1 (3)1+ 2 2 (4)10 + 6 220. (1) 2 10 (2)12 (3)4 (4)521. 13 522. (1) 2 1(2) 910B3A 2D4C 7B5B8C9C1B。
八年级数学上册第二章实数单元测试试题
卜人入州八九几市潮王学校八年级数学(上)第二章实数单元测试卷一、选择题〔每一小题3分,一共30分〕 1.91的平方根是〔〕 A.31B.31- C.31± D.811± 2.2)3(-的算术平方根是〔〕A.3±B.3-C.3D.33.以下说法正确是〔〕A.25的平方根是5B.22-的算术平方根是2C.8.0的立方根是2.0D.65是3625的一个平方根 4.64的算术平方根和64-的立方根的和是〔〕 A.0B.6C.4D.4-5.能与数轴上的点一一对应的是〔〕A 整数B 有理数C 无理数D 实数 6.213-=-a ,那么a 的值是〔〕A.1B.2C.3D.4.7.设面积为3的正方形的边长为x ,那么关于x 的说法正确的选项是〔〕A.x 是有理数B.x =3±C.x 不存在D.x 是1和2之间的实数 8.32-的绝对值是〔〕B. C.23- D.32-9.假设x ,y 为实数,且022=-++y x ,那么2010)(yx 的值是〔〕 A.2 B.2-C.1D.1- b a x -=,b a y +=,那么xy 的值是〔〕. A.a 2 B.b 2 C.b a + D.b a -二、填空题〔每一小题3分,一共30分〕11.在4144.1-,2-,722,3π,32-,•3.0, 121111*********.2中,无理数的个数是. 12.81的算术平方根是_________,=-327.13.负数a 与它的相反数的和是,差是.14.在数轴上表示.15.a 是9的算术平方根,而b 的算术平方根是4,那么=+ba . 16.12+x 的平方根是5±,那么45+x 的立方根是.17.一个正数的平方根为m -2与63+m ,那么=m,这个正数是.18.比较以下实数的大小 ①14012②215-5.0; 19.小于15的正整数一共有个,它们的和等于. 20.10的整数局部是a ,小数局部是b ,那么=-b a .三、解方程〔每一小题3分,一共6分〕21.27)1(32=-x ;22.01258133=+x 四、计算题〔每一小题3分,一共18分〕25145203-- 4.2)32(62-+ 2)322)(223(-+ 6.7518278123+-+--27.20513375⨯--28.)35)(35()23()2(1612102--+------- 五、解答题〔29,30两小题各5分,31小题6分〕29.当25+=a ,25-=b 时,求ab 和22b ab a ++的值30.如下列图,在一块半径为cm 40的圆形铁板上,截取一个以圆心为中心的矩形,使其长为宽的2倍,求所截矩形的宽为多少?31.如图,正方形ABCD 的面积是264cm ,依次连接正方形的四边中点E 、F 、G 、H 得到小正方形EFGH .求这个小正方形EFGH 的边长和对角线的长.F图2。
八年级数学上册 第二章 实数单元测试(含答案)
第二章实数单元测试一、选择题.1.下列各数0、4,,3、14,0、80108,π﹣|1﹣π|,0、1010010001…,,0、451452453454…,其中无理数的个数是()A.1B.2C.3D.42.下列各式中正确的是()A.=±4B. =4C. =3D. =53.对于来说()A.有平方根B.只有算术平方根C.没有平方根D.不能确定4.能与数轴上的点一一对应的是()A.整数B.有理数C.无理数D.实数5.的算术平方根是()A.4B.±4C.2D.±26.下列运算中,正确的是()A.=±3B. =2C.(﹣2)0=0D.2﹣1=7.下列说法正确的是()A.(﹣3)2的算术平方根是﹣3B.的平方根是±15.C.当x=2时,x=0D.是分数8.面积为11的正方形边长为x,则x的范围是()A.1<x<3B.3<x<4C.5<x<10D.10<x<1009.下列说法中正确的是()A.实数﹣a2是负数B.C.|﹣a|一定是正数D.实数﹣a的绝对值是a10.如图,在一个由4×4个小正方形组成的正方形网格中,阴影部分面积与正方形ABCD的面积比是()A.5:8B.3:4C.9:16D.1:2二.填空题.11.比较下列实数的大小(填上>或<符号=)①______12;②______0、5;③﹣+1______﹣.12.在数轴上表示﹣的点离原点的距离是______.13.已知|x|的算术平方根是8,那么x的立方根是______.14.若m、n互为相反数,则|m﹣5+n|=______.15.如果的平方根等于±2,那么a=______.16.计算+=______.17.点A在数轴上表示的数为,点B在数轴上表示的数为,则A,B两点的距离为______.18.若0<a<1,且,则=______.三、计算题.19.计算题:(1)+﹣(2)(3)+•(4)3+﹣4.四、求x值:20.求x值(1)2x2=8 (2)x2﹣=0 (3)(2x﹣1)3=﹣8 (4)340+512x3=﹣3.五、解答题21.一个正数a的平方根是3x﹣4与2﹣x,则a是多少?22.已知: =0,求实数a,b的值.六、阅读下列解题过程:23.先阅读下列的解答过程,然后再解答:形如的化简,只要我们找到两个数a、b,使a+b=m,ab=n,使得+=m, =,那么便有:==±(a>b).例如:化简.解:首先把化为,这里m=7,n=12,由于4+3=7,4×3=12即+=7,×=∴===2+.由上述例题的方法化简:.参考答案一、选择题.1.下列各数0、4,,3、14,0、80108,π﹣|1﹣π|,0、1010010001…,,0、451452453454…,其中无理数的个数是()A.1B.2C.3D.4【解答】解:下列各数0、4,,3、14,0、80108,π﹣|1﹣π|,0、1010010001…,,0、451452453454…,无理数是:,0、1010010001…,0、451452453454…,共3个.故选C.2.下列各式中正确的是()A.=±4B. =4C. =3D. =5【解答】解:A、,错误;B、,正确;C、负数没有算术平方根,错误;D、,错误;故选B.3.对于来说()A.有平方根B.只有算术平方根C.没有平方根D.不能确定【解答】解:由题意得:<0,故可得()没有平方根.故选C.4.能与数轴上的点一一对应的是()A.整数B.有理数C.无理数D.实数【解答】解:根据实数与数轴上的点是一一对应关系.5.的算术平方根是()A.4B.±4C.2D.±2【解答】解:∵(±2)2=4=,∴的算术平方根是2.故选C.6.下列运算中,正确的是()A.=±3B. =2C.(﹣2)0=0D.2﹣1=【解答】解:A、=3,故本选项错误;B、=﹣2,故本选项错误;C、(﹣2)0=1,故本选项错误;D、2﹣1=,故本选项正确.故选D.7.下列说法正确的是()A.(﹣3)2的算术平方根是﹣3B.的平方根是±15.C.当x=2时,x=0D.是分数【解答】解:A、(﹣3)2=9,9算术平方根是3,错误;B、=15,15的平方根是±,错误;C、当x=2时,x=0,正确;D、是无理数,错误,故选C8.面积为11的正方形边长为x,则x的范围是()A.1<x<3B.3<x<4C.5<x<10D.10<x<100【解答】解:∵正方形的面积为11,而3<x<4.故选B.9.下列说法中正确的是()A.实数﹣a2是负数B.C.|﹣a|一定是正数D.实数﹣a的绝对值是a【解答】解:A、实数﹣a2是负数,a=0时不成立,故选项错误;B、,符合二次根式的意义,故选项正确,C、|﹣a|一定不一定是正数,a=0时不成立,故选项错误;D、实数﹣a的绝对值不一定是a,a为负数时不成立,故选项错误.故选B.10.如图,在一个由4×4个小正方形组成的正方形网格中,阴影部分面积与正方形ABCD 的面积比是()A.5:8B.3:4C.9:16D.1:2【解答】解:方法1:利用割补法可看出阴影部分的面积是10个小正方形组成的,所以阴影部分面积与正方形ABCD的面积比是10:16=5:8;方法2: =,()2:42=10:16=5:8.故选A.二.填空题.11.比较下列实数的大小(填上>或<符号=)①<12②>0、5③﹣+1 <﹣.【解答】解:① =140,122=144,∵140<144,∴<12.②∵﹣0、5=﹣1>1﹣1=0,∴>0、5.③∵﹣+1<﹣2+1=﹣1,∴﹣+1<﹣1,又∵﹣>﹣1,∴﹣+1<﹣.故答案为:<、>、<.12.在数轴上表示﹣的点离原点的距离是.【解答】解:数轴上表示﹣的点离原点的距离是|﹣|即;故答案为.13.已知|x|的算术平方根是8,那么x的立方根是4或﹣4 . 【解答】解:由题意得:|x|=64,即x=64或﹣64,则64或﹣64的立方根为4或﹣4.故答案为:4或﹣4.14.若m、n互为相反数,则|m﹣5+n|= 5 .【解答】解:m、n互为相反数,|m﹣5+n|=|﹣5|=5,故答案为:5.15.如果的平方根等于±2,那么a= 16 .【解答】解:∵(±2)2=4,∴=4,∴a=()2=16. 故答案为:16.16.计算+= 1 .【解答】解:原式=3π﹣9+10﹣3π =1.故答案为:1.17.点A 在数轴上表示的数为,点B 在数轴上表示的数为,则A ,B 两点的距离为 4 .【解答】解:∵A 在数轴上表示的数为,点B 在数轴上表示的数为,∴A,B 两点的距离是:|3﹣(﹣)|=4, 故答案为:4.18.若0<a <1,且,则= ﹣2 . 【解答】解:∵a+=6,∴(﹣)2=a ﹣2+=6﹣2=4, ∵0<a <1,∴0<<1,>1,∴﹣=﹣=﹣2.故答案为:﹣2.三、计算题.19.计算题:(1)+﹣(2)(3)+•(4)3+﹣4.【解答】解:(1)原式=2+4﹣=5;(2)原式==×=8×9=72;(3)原式=+3×3=;(4)原式=9+﹣2=8.四、求x值:20.求x值(1)2x2=8(2)x2﹣=0(3)(2x﹣1)3=﹣8(4)340+512x3=﹣3.【解答】解:(1)方程变形得:x2=4,开方得:x=2或x=﹣2;(2)方程变形得:x2=,开方得:x=±;(3)(2x﹣1)3=﹣8,开立方得:2x﹣1=﹣2,解得:x=﹣;(4)x3=﹣,开立方得:x=﹣.五、解答题21.一个正数a的平方根是3x﹣4与2﹣x,则a是多少?【解答】解:根据一个正数有两个平方根,它们互为相反数得:3x﹣4+2﹣x=0,即得:x=1,即3x﹣4=﹣1,则a=(﹣1)2=1.22.已知: =0,求实数a,b的值.【解答】解:由题意得,3a﹣b=0,a2﹣49=0,a+7≠0,解得,a=7,b=21.六、阅读下列解题过程:23.先阅读下列的解答过程,然后再解答:形如的化简,只要我们找到两个数a、b,使a+b=m,ab=n,使得+=m, =,那么便有:==±(a>b).例如:化简.解:首先把化为,这里m=7,n=12,由于4+3=7,4×3=12即+=7,×=∴===2+.由上述例题的方法化简:.【解答】解:根据,可得m=13,n=42,∵6+7=13,6×7=42,∴==.。
(典型题)初中数学八年级数学上册第二单元《实数》测试(包含答案解析)
一、选择题1.若用我们数学课本上采用的科学计算器进行计算,其按键顺序如图,则输出结果应为( )A .8B .4C .12D .14 2.下列说法中:①立方根等于本身的是1-,0,1;②平方根等于本身的数是0,1;③两个无理数的和一定是无理数;④实数与数轴上的点是一一对应的;⑤23π-是负分数;⑥两个有理数之间有无数个无理数,同样两个无理数之间有无数个有理数.其中正确的个数是( )A .3B .4C .5D .6 3.已知实数x 、y 满足|x -4|+8y -=0,则以x 、y 的值为两边长的等腰三角形周长是( )A .20或16B .20C .16D .18 4.下列实数227,3π,3.14159,9-,39,-0.1010010001…….(每两个1之间依次多1个0)中无理数有( )A .1个B .2个C .3个D .4个5.如x 为实数,在“(31)-□x ”的“□”中添上一种运算符号(在“+”、“-”、“×”、“÷”中选择),其运算结果是有理数,则x 不可能是( )A .31-B .31+C .33D .13-6.已知 ||3a =,216b =,且0a b +<,则代数式-a b 的值为( ) A .-1或-7B .1或-7C .1或7D .±1或7± 7.下列说法中正确的是( ) A .25的值是±5B .两个无理数的和仍是无理数C .-3没有立方根.D .22-a b 是最简二次根式.8.实数a 、b 在数轴上的位置如图所示,那么()2a b a b -++的结果是( )A .2aB .2bC .2a -D .2b - 9.下列说法正确的是( )A 5B .55C .2<5<3D .数轴上不存在表示5的点10.如图,数轴上有M ,N ,P ,Q 四点,则这四点中所表示的数最接近﹣10的是( )A .点MB .点NC .点PD .点Q11.已知x 5,则代数式x 2﹣x ﹣2的值为( ) A .5B .5 C .5D .512.下列运算正确的是( )A .(x +y )2=x 2+y 2B .(﹣12x 2)3=﹣16x 6C .215-=125D 2(5)-=5二、填空题13.若202120212a b -+=,其中a ,b 均为整数,则符合题意的有序数对(),a b 的组数是______.14.3x -+|2x ﹣y |=0,那么x ﹣y =_____.15.一个数的算术平方根是6,则这个数是_______,它的另一个平方根是_________. 16.计算((2323⨯+的结果是_____.17.一个正方体的木块的体积是3343cm ,现将它锯成8块同样大小的小正方体木块,则每个小正方体木块的表面积是________.18.已知b>032a b -=_____.19.若[)x 表示大于x 的最小整数,如[)56=,[)1.81-=-,则下列结论中正确的有______(填写所有正确结论的序号).①[)01=;②33055⎡⎫-=⎪⎢⎣⎭;③[)0x x -<;④[)1x x x <≤+;⑤存在有理数x 使[)0.2x x -=成立.20.已知:15-=m m,则221m m -=_______. 三、解答题 21.计算.(121483230(223)5; (2)22021021(1)(2)(4)362π-⎛⎫---⨯- ⎪⎝⎭22.计算:(1(2)已知﹣a|=0,求a 2﹣+2+b 2的值.23.计算:21()|12-24.计算:(1))11(2142⎛⎫⨯-- ⎪⎝⎭25.计算:(1(2)2|1(2)+--26.化简(1)+(2【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据2ndf 键是功能转换键列算式,然后解答即可.【详解】14==. 故选:D .【点睛】本题考查了利用计算器进行数的开方,是基础题,要注意2ndf 键的功能. 2.A解析:A【分析】根据平方根和立方根的性质,以及无理数的性质判断选项的正确性.【详解】解:立方根等于本身的数有:1-,1,0,故①正确;平方根等于本身的数有:0,故②错误;的和是0,是有理数,故③错误; 实数与数轴上的点一一对应,故④正确;23π-是无理数,不是分数,故⑤错误; 从数轴上来看,两个有理数之间有无数个无理数,同样两个无理数之间有无数个有理数,故⑥正确.故选:A .【点睛】本题考查平方根和立方根的性质,无理数的性质,解题的关键是熟练掌握这些概念. 3.B解析:B【分析】根据绝对值与二次根式的非负性即可求出x 与y 的值.由于没有说明x 与y 是腰长还是底边长,故需要分类讨论.【详解】由题意可知:x-4=0,y-8=0,∴x=4,y=8,当腰长为4,底边长为8时,∵4+4=8,∴不能围成三角形,当腰长为8,底边长为4时,∵4+8>8,∴能围成三角形,∴周长为:8+8+4=20,故选:B .【点睛】本题考查了算术平方根,以及三角形三边关系,解题的关键是正确理解非负性的意义,以及三角形三边关系,本题属于基础题型.4.C解析:C【分析】根据无理数的概念即可判断.【详解】解:,无理数有:3π,-0.1010010001…….(每两个1之间依次多1个0),共有3个. 故选:C .【点睛】 本题考查了无理数.解题的关键是熟练掌握无理数的概念.5.C解析:C【分析】根据题意,添上一种运算符号后逐一判断即可.【详解】解:A 、1)1)0-=,故选项A 不符合题意;B 、1)1)2⨯=,故选项B 不符合题意;C 1与C 符合题意;D 、1)(10+-=,故选项D 不符合题意.故选:C .【点睛】本题主要考查了二次根式的混合运算,熟记二次根式的混合运算法则以及平方差公式是解答本题的关键. 6.C解析:C【分析】分别求出a 与b 的值,再利用0a b +<这一条件判断出a 、b 的值,进而分情况讨论即可解题.【详解】 解 ||3a =,216b =,3,4a b ∴=±=±,0a b +<,3,4a b ∴==-或3,4a b =-=-,7a b ∴-=或1,故选C .【点睛】本题考查了去绝对值和求平方根,正确的确定a 、b 的值是解答本题的关键.7.D解析:D【分析】根据算术平方根和平方根的概念,无理数的概念立方根的概念,和二次根式的概念逐一判断即可.【详解】5=,故A 选项错误;0ππ-+=,故B 选项错误;-3=C 选项错误;D 选项正确;故选D .【点睛】本题考查了算术平方根和平方根的区别,无理数、二次根式和立方根的概念,题目较为综合,熟练掌握相关概念是本题的关键.8.D解析:D【分析】由数轴可得到0b a <<a b =+和绝对值的性质,即可得到答案.【详解】解:根据题意,则 0b a <<,∴0a b ->,0a b +<,∴a b -=a b a b -++=a b a b ---=2b -;故选:D .【点睛】本题考查了二次根式的性质,绝对值的意义,数轴的定义,解题的关键是掌握所学的知识,正确得到0b a <<.9.C解析:C【分析】根据无理数的意义,开平方,被开方数越大算术平方根越大,实数与数轴的关系,可得答案.【详解】解:A A 错误;B 、5的平方根是B 错误;C ∴23,故C 正确;D D错误;故选:C.【点睛】本题考查了实数的意义、实数与数轴的关系利用被开方数越大算术平方根越大是解题关键.10.B解析:B【分析】根据无理数的估值方法进行判断即可;【详解】∵-3.16,∴点N最接近故选:B.【点睛】本题考查了实数与数轴,无理数的估算,熟练掌握知识点是解题的关键;11.D解析:D【分析】把已知条件变形得到x2=4x+1,利用降次的方法得到原式=3x-1,然后把 x 的值代入计算即可.【详解】∵x,∴x﹣2∴(x﹣2)2=5,即x2﹣4x+4=5,∴x2=4x+1,∴x2﹣x﹣2=4x+1﹣x﹣2=3x﹣1,当x时,原式=3)﹣1=.故选:D.【点睛】本题考查了二次根式的化简求值:二次根式的化简求值,一定要先化简再代入求值,运用整体代入的方法可简化计算.12.D解析:D【分析】直接利用积的乘方运算法则以及负整数指数幂的性质和二次根式的性质、完全平方公式分别判断得出答案.【详解】解:A 、(x +y )2=x 2+2xy +y 2,故此选项错误;B 、(﹣12x 2)3=﹣18x 6,故此选项错误; C 、215-=25,故此选项错误;D 5,故此选项正确;故选:D .【点睛】本题考查了积的乘方、负整数指数幂、二次根式的性质、完全平方公式,解题关键是熟知这些性质,并能准确应用.二、填空题13.5【分析】由绝对值和算术平方根的非负性求出ab 所有的可能值即可得到答案【详解】解:∵且均为整数又∵∴可分为以下几种情况:①解得:;②解得:或;③解得:或;∴符合题意的有序数对共由5组;故答案为:5【 解析:5【分析】由绝对值和算术平方根的非负性,求出a 、b 所有的可能值,即可得到答案.【详解】解:∵20212a -=,且a ,b 均为整数,又∵20210a -≥0≥,∴可分为以下几种情况:①20210a -=2=,解得:2021a =,2017b =-;②20211a -=1=,解得:2020a =或2022a =,2020b =-;③20212a -=0=解得:2019a =或2023a =,2021b =-;∴符合题意的有序数对(),a b 共由5组;故答案为:5.【点睛】本题考查了绝对值的非负性,算术平方根的非负性,解题的关键是掌握非负的性质进行解题.14.﹣3【分析】先根据非负数的性质列出方程组求出xy 的值进而可求出x ﹣y 的值【详解】解:∵+|2x ﹣y|=0∴解得所以x ﹣y =3﹣6=﹣3故答案为:-3【点睛】本题考查了二次根式的非负性绝对值的非负性根解析:﹣3【分析】先根据非负数的性质列出方程组,求出x、y的值,进而可求出x﹣y的值.【详解】解:∵+|2x﹣y|=0,∴3020xx y-=⎧⎨-=⎩,解得36 xy=⎧⎨=⎩.所以x﹣y=3﹣6=﹣3.故答案为:-3【点睛】本题考查了二次根式的非负性,绝对值的非负性,根据题意得到关于x、y的二元一次方程组,求出x、y的值是解题关键.15.-6【分析】根据正数的平方根有两个它们互为相反数进行解答【详解】解:∵∴这个数是36∵一个正数的两个平方根互为相反数这个数的算术平方根为6∴它的另一个平方根是6的相反数即-6故答案为:36-6【点睛解析:-6【分析】根据正数的平方根有两个,它们互为相反数进行解答.【详解】解:∵26=36,∴这个数是36∵一个正数的两个平方根互为相反数,这个数的算术平方根为6,∴它的另一个平方根是6的相反数,即-6.故答案为:36,-6.【点睛】本题考查了平方根的定义,注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.16.1【分析】根据二次根式混合运算的法则进行计算即可【详解】解:原式=故答案为:1【点睛】本题考查二次根式的混合运算熟练掌握运算法则是解题的关键解析:1【分析】根据二次根式混合运算的法则进行计算即可.【详解】解:原式=222431-=-=,故答案为:1.【点睛】本题考查二次根式的混合运算,熟练掌握运算法则是解题的关键.17.5cm3【分析】先根据正方体的体积求出正方体的边长要使它锯成8块同样大小的小正方体木块只需要将正方体的每条棱长平均分为两份即可得到小正方体的棱长即可求出表面积【详解】解:∵一个正方体的木块的体积是∴ 解析:5cm 3.【分析】先根据正方体的体积求出正方体的边长,要使它锯成8块同样大小的小正方体木块,只需要将正方体的每条棱长平均分为两份即可,得到小正方体的棱长,即可求出表面积.【详解】解:∵一个正方体的木块的体积是3343cm ,∴(cm 3),要将它锯成8块同样大小的小正方体木块,则每个小正方体的棱长为7÷2=3.5(cm 3), ∴每个小正方体的表面积为6×3.52=73.5(cm 3).故答案为73.5cm 3.【点睛】本题考查了立方根.解题的关键是能够通过空间想象得出如何将正方体分成8块同样大小的小正方体木块.18.【分析】先由二次根式的被开方数为非负数得出≥0结合已知条件b >0根据有理数乘法法则得出a≤0再利用积的算术平方根的性质进行化简即可【详解】解:∵≥0b >0∴a≤0故答案为:【点睛】本题主要考查了二次解析:-【分析】先由二次根式的被开方数为非负数得出32a b -≥0,结合已知条件b >0,根据有理数乘法法则得出a≤0,再利用积的算术平方根的性质进行化简即可.【详解】解:∵32a b -≥0,b >0,∴a≤0,a =⋅=-故答案为:-【点睛】本题主要考查了二次根式的性质与化简,难度适中,得出a≤0是解题的关键. 19.①④⑤【分析】根据题意表示大于x 的最小整数结合各项进行判断即可得出答案【详解】解:①根据表示大于x 的最小整数故正确;②应该等于故错误;③当x=05时故错误;④根据定义可知但不会超过x+1所以成立故正 解析:①④⑤【分析】根据题意[)x 表示大于x 的最小整数,结合各项进行判断即可得出答案.【详解】解:①[)01=,根据[)x 表示大于x 的最小整数,故正确; ②33055⎡⎫-=⎪⎢⎣⎭,应该等于333215555⎡⎫-=-=⎪⎢⎣⎭,故错误; ③[)0x x -<,当x=0.5时,[)10.5=0.50x x -=->,故错误;④[)1x x x <≤+,根据定义可知[)x x <,但[)x 不会超过x+1,所以[)1x x x <≤+成立,故正确;⑤当x=0.8时,[)1-0.8=0.2x x -=,故正确.故答案为:①④⑤.【点睛】本题主要考查了对题意的理解,准确的理解题意是解决本题的关键. 20.【分析】先利用完全平方差公式求出的值再利用完全平方和公式求出的值最后利用平方差公式即可得【详解】则故答案为:【点睛】本题考查了完全平方公式平方差公式平方根熟记公式是解题关键解析:±【分析】 先利用完全平方差公式求出221m m +的值,再利用完全平方和公式求出1m m+的值,最后利用平方差公式即可得.【详解】 15m m -=, 22221252271m m m m ⎛⎫-+=+= ⎪⎭∴⎝+=, 22212279122m m m m +⎛⎫∴+= =⎪+⎝=⎭+,1m m∴+=,则22111m m m m m m ⎛⎫-= ⎪⎛⎫+-=± ⎪⎭⎝⎭⎝故答案为:±本题考查了完全平方公式、平方差公式、平方根,熟记公式是解题关键.三、解答题21.(1)-7;(2)-5【分析】(1)先算二次根式的乘方,乘除,再算加减法,即可求解;(2)先算乘方,算术平方根,再算加减法,即可求解.【详解】(1)原式-3-7;(2)原式=4(164)1--⨯--=4416+--=-5.【点睛】本题主要考查二次根式的混合运算以及实数的混合运算,掌握二次根数的混合运算法则以及实数的混合运算法则,是解题的关键.22.(1)2)4【分析】(1)根据二次根式的乘除法和加减法可以解答本题;(2)根据﹣a|=0,可以得到a 、b 的值,然后将所求式子变形,再将a 、b 的值代入即可解答本题.【详解】解:(1=4-=4+(2)∵﹣a|=0, ∴a =0,b ﹣2=0,∴a,b =2,∴a2﹣a +2+b 2=(a 2+b 2)2+22=02+4=4【点睛】本题考查了如二次根式的化简求值、非负数的性质、解答本题的关键是明确二次根式混合运算的计算方法;23.14【分析】先计算平方、立方根、绝对值,再加减即可.【详解】解:21()|12-+ =12|13|4+-- =1224+- =14【点睛】本题考查了实数的计算,解题关键是准确的计算立方根、算术平方根和乘方,明确绝对值的意义.24.(1)2;(3)-3【分析】(1)根据平方差公式计算即可;(2)根据实数混合运算法则计算即可.【详解】解:(1)原式221=-31=-2=(2)原式()223=+--3=-.【点睛】本题主要考查了实数的运算以及平方差公式,解题的关键是熟练掌握平方差公式以及实数混合运算法则.25.(1)13;(2)3 【分析】(1)直接利用算术平方根的性质、二次根式的性质、立方根的性质分别化简在计算得出答(2)直接利用绝对值的性质、平方的的性质计算得出答案.【详解】解:(1=1-2+4=1-23+ 1=3(2)2|1(2)+--14+=3【点睛】此题主要考查了实数运算,正确化简各数是解题关键.26.(1)1-+;(2)54【分析】(1)先利用平方差公式计算,然后将每个二次根式化为最简二次根式,最后合并计算即可;(2)先将每个二次根式化简为最简二次根式,然后合并即可.【详解】(1)解:原式22231=-+=-+=-+(2)解:原式=== 【点睛】 本题考查了二次根式的运算,熟练掌握运算法则是解题的关键.。
(好题)初中数学八年级数学上册第二单元《实数》测试卷(包含答案解析)
一、选择题1.将尺寸如图的4块完全相同的长方形薄木块(厚度忽略不计)进行拼摆,恰好可以不重叠地摆放在如图的甲、乙两个方框内.已知小木块的宽为2,图甲中阴影部分面积为19,则图乙中AD 的长为( )A .2192+B .194+C .2194+D .192+ 2.如图,长方形ABCD 中,43,4AB BC ==,点E 是DC 边上的动点,现将BCE 沿直线BE 折叠,使点C 落在点F 处,则点D 到点F 的最短距离为( )A .5B .4C .3D .2 381 ) A .3 B .﹣3 C .±3 D .64.下列各式中,正确的是( ) A 16B .16C 3273-=-D 2(4)4-=- 5.下列各式计算正确的是( )A 31-B 38= ±2C 4= ±2D .9 6.下列各式计算正确的是( ) A 235+=B .236=() C 824= D 236= 7.一个正方体的水晶砖,体积为380cm ,它的棱长大约在( )A .45cm cm -之间B .67cm cm -之间C .78cm cm -之间D .89cm cm -之间8.在数2277,01822)316112π-,3.2020020002…(相邻的两个2之间依次多一个0)中,无理数有( )A .3个B .4个C .5个D .6个9.下列说法中正确的是( ) A 25±5 B .两个无理数的和仍是无理数C .-3没有立方根.D . 10.设12211112a =++,22211123a =++,32211134a =++,……,22111(1)n a n n =+++,其中n 2020a +( ) A .201920202020 B .202020202021 C .202020212021 D .20212021202211.下列对于二次根式的计算正确的是( )A =B .2C .2=D .=12.下列各计算正确的是( )A 2=B =C =D =二、填空题13.对于正整数n ,规定111()(1)1f n n n n n ==-++,例如:111(1)1212f ==-⨯,111(2)2323f ==-⨯,111(3)3434f ==-⨯,…则(1)(2)(3)(2021)f f f f ++++= _______ 14.一个正方体的木块的体积是3343cm ,现将它锯成8块同样大小的小正方体木块,则每个小正方体木块的表面积是________.15.已知b>0=_____.16.已知a 、b |3|0b +=,则(a +b )2021的值为________.17.已知3y x =+,当x 分别取1,2,3,,2020⋯时,所对应的y 值的总和是_________. 18分母有理化后得__________.19.=_____.20.求220191222++++的值,可令22019S 1222=++++,则23202022222S =++++,因此2020221S S -=-.仿照以上推理,计算出23201911112222++++的值为______. 三、解答题21.计算.(1(2.22.计算:223.(1﹣|2﹣|;(2 24.(1)判断下列各式是否成立?并选择其中一个说明理由;=== (2)用字母表示(1)中式子的规律,并给出证明.25.26.已知3m -的平方根是6±,3=,求m n +的算术平方根.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】设木块的长为x ,结合图形知阴影部分的边长为x-2,根据其面积为19得出(x-2)2=19,利用平方根的定义求出符合题意的x 的值,由AD=2x 可得答案.【详解】解:设木块的长为x ,根据题意,知:(x-2)2=19,则2x -= ∴2x =22x =-<(舍去)则24BC x ==,故选:C .【点睛】本题主要考查算术平方根,解题的关键是结合图形得出木块长、宽与阴影部分面积间的关系.2.B解析:B【分析】连接DB,DF,根据三角形三边关系可得DF+BF>DB,得到当F在线段DB上时,点D到点F的距离最短,根据勾股定理计算即可.【详解】解:连接DB,DF,在△FDB中,DF+BF>DB,由折叠的性质可知,FB=CB=4,∴当F在线段DB上时,点D到点F的距离最短,在Rt△DCB中,228+=,BD DC BC此时DF=8-4=4,故选:B.【点睛】本题考查的是翻转变换的性质,勾股定理,三角形三边关系.翻转变换是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.3.A解析:A【分析】819,再利用算术平方根的定义求出答案.【详解】∵819,∴8193,故选:A.【点睛】81.4.C解析:C【分析】根据算术平方根与平方根、立方根的定义逐项判断即可得.【详解】A164=,此项错误;B、4=±,此项错误;C3=-,此项正确;D4==,此项错误;故选:C.【点睛】本题考查了算术平方根与平方根、立方根,熟记各定义是解题关键.5.A解析:A【分析】根据平方根和立方根分别对四个选项进行计算即可.【详解】解:∵-1= 2= 2,,故只有A计算正确;故选:A.【点睛】本题考查的是平方根、算术平方根和立方根,计算的时候需要注意审题是求平方根还是算术平方根.6.D解析:D【分析】根据二次根式的运算法则一一判断即可.【详解】AB、错误,212(;=C==D==故选:D.【点睛】本题考查二次根式的运算,解题的关键是熟练掌握二次根式的加减乘除运算法则,属于中考常考题型.7.A解析:A【分析】【详解】80cm,解:∵正方体的水晶砖,体积为3∴3, ∵<< ∴45<<,故选:A .【点睛】本题考查了立方根的估算,找到两个连续整数的立方,一个大于80,一个小于80是解题关键.8.C解析:C【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】227,0,22=,这些数都是有理数;,=112π-,3.2020020002…(相邻的两个2之间依次多一个0),是无理数,无理数共有5个.故选:C .【点睛】本题考查了无理数的定义.解题的关键是掌握无理数的定义和各种类型.初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数. 9.D解析:D【分析】根据算术平方根和平方根的概念,无理数的概念立方根的概念,和二次根式的概念逐一判断即可.【详解】5=,故A 选项错误;0ππ-+=,故B 选项错误;-3=C 选项错误;D 选项正确;故选D .【点睛】本题考查了算术平方根和平方根的区别,无理数、二次根式和立方根的概念,题目较为综合,熟练掌握相关概念是本题的关键.10.B 解析:B 【分析】11(1)n n=++,然后把代数式进行化简,再进行计算,即可得到答案.【详解】解:∵n为正整数,∴==21(1)n nn n+++=11(1)n n++;∴2020a+=(1+112⨯)+(1+123⨯)+(1+134⨯)+…+(1+120202021⨯)=2020+1﹣11111112233420202021+-+-++-=2020+1﹣12021=202020202021.故选:B.【点睛】本题考查了二次根式的化简求值,解题的关键是用裂项法将分数1n(n1)+代成111n n-+,,寻找抵消规律求和.11.C解析:C【分析】利用二次根式的加减和乘除运算法则进行计算即可.【详解】解:=B.=C.2=,故原题计算正确;D.10=,故原题计算错误.故选:C【点睛】此题主要考查了二次根式的混合运算,掌握二次根式的运算法则是解答此题的关键. 12.D解析:D【分析】分别计算即可.【详解】解:2=-,原式错误,不符合题意;=≠D. =故选:D.【点睛】本题考查了二次根式和立方根的运算,解题关键是熟练掌握二次根式和立方根的运算法则,准确进行计算.二、填空题13.【分析】根据题意可得:原式=再根据加法的结合律相加计算即可【详解】解:原式=故答案为:【点睛】本题考查了数字类规律探究和新定义问题正确理解题意准确计算是关键解析:2021 2022【分析】根据题意可得:原式=111111112233420212022-+-+-++-,再根据加法的结合律相加计算即可.【详解】解:原式=11111111202111223342021202220222022-+-+-++-=-=. 故答案为:20212022. 【点睛】 本题考查了数字类规律探究和新定义问题,正确理解题意、准确计算是关键. 14.5cm3【分析】先根据正方体的体积求出正方体的边长要使它锯成8块同样大小的小正方体木块只需要将正方体的每条棱长平均分为两份即可得到小正方体的棱长即可求出表面积【详解】解:∵一个正方体的木块的体积是∴ 解析:5cm 3.【分析】先根据正方体的体积求出正方体的边长,要使它锯成8块同样大小的小正方体木块,只需要将正方体的每条棱长平均分为两份即可,得到小正方体的棱长,即可求出表面积.【详解】解:∵一个正方体的木块的体积是3343cm ,∴(cm 3),要将它锯成8块同样大小的小正方体木块,则每个小正方体的棱长为7÷2=3.5(cm 3), ∴每个小正方体的表面积为6×3.52=73.5(cm 3).故答案为73.5cm 3.【点睛】本题考查了立方根.解题的关键是能够通过空间想象得出如何将正方体分成8块同样大小的小正方体木块.15.【分析】先由二次根式的被开方数为非负数得出≥0结合已知条件b >0根据有理数乘法法则得出a≤0再利用积的算术平方根的性质进行化简即可【详解】解:∵≥0b >0∴a≤0故答案为:【点睛】本题主要考查了二次解析:-【分析】先由二次根式的被开方数为非负数得出32a b -≥0,结合已知条件b >0,根据有理数乘法法则得出a≤0,再利用积的算术平方根的性质进行化简即可. 【详解】解:∵32a b -≥0,b >0,∴a≤0,a =⋅=-故答案为:-【点睛】本题主要考查了二次根式的性质与化简,难度适中,得出a≤0是解题的关键. 16.-1【分析】要使只有当和时成立即此时解出a 和b 代入中求出结果即可【详解】由题意可知∴∴故答案为:-1【点睛】本题考查非负数的性质几个非负数的和为0时那么这几个非负数都为0解析:-1【分析】30b +=0=和30b +=时成立.即此时20a -=,30b +=,解出a 和b ,代入2021()a b +中求出结果即可.【详解】由题意可知20a -=,30b +=,∴23a b ==-,.∴20212021()(23)1a b +=-=-.故答案为:-1.【点睛】本题考查非负数的性质,几个非负数的和为0时,那么这几个非负数都为0. 17.2022【分析】将原式化简为然后根据x 的不同取值求出y 的值最后把所有的y 值加起来即可【详解】解:当时当时当时∴当分别取时所有值的总和是:故答案是:2022【点睛】本题考查二次根式的化简解题的关键是掌 解析:2022【分析】 将原式化简为23y x x =--+,然后根据x 的不同取值,求出y 的值,最后把所有的y 值加起来即可.【详解】解:3323y x x x x =+=+=--+,当2x ≥时,231y x x =--+=,当2x <时,2352y x x x =--+=-,当1x =时,523y =-=,∴当x 分别取1,2,3,,2020⋯时,所有y 值的总和是:312019320192022+⨯=+=. 故答案是:2022.【点睛】本题考查二次根式的化简,解题的关键是掌握二次根式的性质进行化简.18.【分析】根据分数的性质:分子分母同时乘以计算求出结果【详解】故答案为:【点睛】此题考查分数的性质分母有理化的计算方法根据分母得到分子分母都乘以使分母有理化是解题的关键解析:2+【分析】根据分数的性质:分子、分母同时乘以2+【详解】2==,故答案为:2+【点睛】此题考查分数的性质,分母有理化的计算方法,根据分母得到分子、分母都乘以2+分母有理化是解题的关键.19.【分析】先化简二次根式再合并同类二次根式即可【详解】故答案为:【点睛】本题主要考查二次根式的化简以及同类二次根式的合并掌握二次根式的化简以及同类二次根式的合并方法是解题关键【分析】先化简二次根式,再合并同类二次根式即可.【详解】【点睛】本题主要考查二次根式的化简以及同类二次根式的合并,掌握二次根式的化简以及同类二次根式的合并方法是解题关键.20.【分析】根据题目所给计算方法令再两边同时乘以求出用求出的值进而求出的值【详解】解:令则∴∴则故答案为:【点睛】本题考查了同底数幂的乘法利用错位相减法消掉相关值是解题的关键解析:2019112-【分析】根据题目所给计算方法,令23201911112222S,再两边同时乘以12,求出12S,用12S S,求出12S的值,进而求出S的值.【详解】解:令23201911112222S,则22023401111122222S,∴2020111222S S,∴2020111222S,则2019112S .故答案为:2019112-【点睛】 本题考查了同底数幂的乘法,利用错位相减法,消掉相关值,是解题的关键.三、解答题21.(1)2)【分析】(1)先利用二次根式的乘除法则运算,然后化简后合并;(2)先把二次根式化为最简二次根式,然后合并即可.【详解】解:(1=﹣=(2)原式==【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可,在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.22.【分析】根据二次根式的性值计算即可;【详解】原式66=--⨯+,+6,;【点睛】本题主要考查了二次根式的混合运算,准确计算是解题的关键.23.(1)2;(2)1.【分析】(1)先分别对各自进行化简,再合并同类二次根式即可;(2)利用二次根式的乘除法公式将乘除法全部化到根号下,乘除后开方即可.【详解】解:(1)原式2+-=2;(2)原式===1.【点睛】 本题考查二次根式的乘除法运算和二次根式的加减法运算.(1)中会正确对二次根式化简是解题关键;(2)熟记二次根式的乘除法公式是解题关键.24.(1)成立,理由见解析;(21)n =>,理由见解析 【分析】(1)通过二次根式的性质与化简即可判断;(2)类比上述式子,即可写出几个同类型的式子,然后根据已知的几个式子即可用含n 的式子将规律表示出来,再证明即可求解.【详解】(1)成立,===;(2)∵====,1)n =>,1)n ==>. 【点睛】本题主要考查了列代数式,二次根式的性质与化简,正确得出数字之间变化规律是解题关键.25 【分析】直接化简二次根式进而计算得出答案.【详解】-=3333=-=. 【点睛】 本题考查了二次根式的混合运算,正确化简二次根式是解题的关键.26.m n +的算术平方根为【分析】根据算术平方根和立方根的定义列式求出m 、n 的值,然后代入代数式求出m +n 的值,再根据算术平方根的定义解答.【详解】解:∵3m -的平方根是6±,∴23(6)m -=±,∴39m =, ∵3=,∴3427n +=,∴6n =,∴m n +==.【点睛】本题考查了算术平方根和平方根、立方根的定义,是基础题,熟记概念并列式求出m 、n 的值是解题的关键.。
八年级数学上册第二章《实数》综合测试卷-北师大版(含答案)
八年级数学上册第二章《实数》综合测试卷-北师大版(含答案)一、选择题(每题3分,共30分)1.在π,227,-3,38,3.14,0这些数中,无理数的个数是( )A .1B .2C .3D .4 2.下列各式中,无意义的是( )A .- 3B .-3C .3-3 D .(-3)2 3.下列计算错误的是( )A .8=2 2B .2-1=12 C .16=±4 D .|3-2|=2-3 4.与a 3b 不是同类二次根式的是( )A .ab2 B .b a C .1abD .b a 35.下列计算错误的是( )A .62×3=6 6B .27÷3=3C .32-2=3 2D .(2-3)(2+3)=1 6.当1<x <4时,化简(1-x )2-(x -4)2结果是( )A .-3B .3C .2x -5D .57.已知y =(x -4)2-x +5,当x 分别取1,2,3,…,2 022时,所对应y 值的总和是( )A .2 034B .2 033C .2 032D .2 031 8.已知a +b =4,ab =2,则a -b 的值为( )A .2 2B .2 3C .±2 2D .±2 39.将4块尺寸完全相同的长方形薄木板(薄木板如图,厚度忽略不计)进行拼摆,恰好可以不重叠地摆放在如图的甲、乙两个框内.已知薄木板的宽为2,图甲中阴影部分面积为19,则图乙中AD 的长为( )A .219+2B .19+4C .219+4D .19+210.正方形ABCD 在数轴上的位置如图所示,点A ,D 对应的数分别为1和0,若正方形ABCD 绕着顶点按顺时针方向在数轴上连续翻转,翻转1次后,点B 所对应的数为2,则翻转2 022次后,数轴上数2 022对应的点是( ) A .D B .C C .B D .A 二、填空题(每题3分,共15分) 11.化简:32=________________,23=____________.12.计算3-64125的结果等于________________.13.已知a ,b 满足-()4+a 2=2 022||b -3,a 2+b 2的平方根为________. 14.对于任意两个不相等的数a ,b ,定义一种新运算“⊕”如下:a ⊕b =a +ba -b ,如:3⊕2=3+23-2=5,那么12⊕4=________. 15.观察下列各式:①223=2+23;②338=3+38;③4415=4+415;….根据这些等式反映的规律,若x 2 022y =x +2 022y ,则x 2-y =________.三、解答题(16题10分,17题7分,第18~21题每题8分,第22~23题每题13分,共75分)16.实数与数轴上的点一一对应,无理数也可以在数轴上表示出来.(1)如图1,点A表示的数是________;(2)如图2,直线l垂直数轴于表示4的点,请用尺规作出表示1-13的点(不写作法,保留作图痕迹).17.计算:(1)18+|3-8|-(3)2;(2)2+32-3-(3+6)(3-6).18.解方程:(1)9(x+2)2-64=0;(2)12(x +3)3=108.19.求代数式a+a2-2a+1的值,其中a=-2 022.小亮的解法为:原式=a+(1-a)2=a+1-a=1.小芳的解法为:原式=a+(1-a)2=a+a-1=-4 045.(1)________的解法是错误的;(2)求代数式a+2a2-6a+9的值,其中a=-2 022.20.已知m-15的平方根是±2,33+4n=3,求m+n的算术平方根.21.已知:如图.化简:a2-(a+b)2+(b-c)2+(a+c)2.22.阅读下面的内容:我们规定:用[x]表示实数x的整数部分,用<x>表示实数x的小数部分,如[3.14]=3,<3.14>=0.14;[2]=1,而大家知道2是无理数,无理数是无限不循环小数,因此2的小数部分我们不可能全部写出来,于是小明用2-1来表示2的小数部分,即<2>=2-1.事实上,小明的表示方法是有道理的,因为2的整数部分是1,将这个数减去其整数部分,差就是2的小数部分,又例如:∵22<(7)2<32,即2<7<3,∴[7]=2,<7>=7-2.请解答以下问题:(1)[11]=________,<11>=________;(2)如果<5>=a,[41]=b,求a+b-5的平方根.23.(5+2)(5-2)=1,a·a=a(a≥0),(b+1)(b-1)=b-1(b≥0)……像这样,两个含有二次根式的代数式相乘,积不含有二次根式,我们称这两个代数式互为有理化因式.例如,5与5,2+1与2-1,23+3与23-3等都互为有理化因式.进行二次根式计算时,利用有理化因式,可以化去分母中的根号.请完成下列问题:(1)化简:233;(2)计算:12-3+13-2;(3)比较 2 023- 2 022与 2 022- 2 021的大小,并说明理由.参考答案一、1. B 2. B 3. C 4. A 5. D 6. C 7. A 8. C 9. C 10. C 二、11. 42;63 12. -45 13. ±19 14. 2 15. 1 三、16. 解:(1) 5(2)如图,点P 即为所求.17. 解:(1)原式=32+3-22-3=2.(2)原式=(2+3)2(2-3)×(2+3)-(9-6)=4+43+3-3=4+43.18. 解:(1)因为9(x +2)2-64=0,所以9(x +2)2=64, 所以(x +2)2=649, 所以x +2=±83, 所以x =23或x =-143. (2)因为12(x +3)3=108, 所以(x +3)3=216, 所以x +3=6,所以x =3. 19. 解:(1)小芳(2)a +2a 2-6a +9=a +2(a -3)2, 因为a =-2 022,所以a -3<0,所以原式=a +2(3-a )=a +6-2a =6-a =6-(-2 022)=6+2 022= 2 028,即代数式的值是2 028. 20. 解:因为m -15的平方根是±2,所以m-15=(±2)2,所以m=19.因为33+4n=3,所以3+4n=27,所以n=6.所以m+n的算术平方根为m+n=19+6=5.21.解:根据数轴可得a<0,a+b<0,b-c<0,a+c<0,所以原式=|a|-|a+b|+|b-c|+|a+c|=-a+a+b+c-b-a-c=-a.22.解:(1)3;11-3(2)因为2<5<3,6<41<7,且<5>=a,[41]=b,所以a=5-2,b=6,所以a+b-5=5-2+6-5=4,所以a+b-5的平方根是±2.23.解:(1)233=2×333×3=239.(2)12-3+13-22+3(2-3)×(2+3)3+2(3-2)×(3+2)=2+3+3+2=2+23+2.(3) 2 023- 2 022< 2 022- 2 021.理由如下:因为 2 023- 2 022=12 023+ 2 022,2 022- 2 021=12 022+ 2 021,2 023+ 2 022> 2 022+ 2 021,所以 2 023- 2 022< 2 022- 2 021.。
2024-2025学年北师大版数学八年级上册《第2章 实数》单元测试试卷附答案解析
第1页(共11页)2024-2025学年北师大版数学八年级上册《第2章实数》单元试卷一、选择题(本大题10小题,每小题3分,共30分)1.(3分)在下列实数中:0,2.5,﹣3.1415,4,227,0.343343334…无理数有()A .1个B .2个C .3个D .4个2.(3分)下列x 的值能使−6有意义的是()A .x =1B .x =3C .x =5D .x =73.(3分)将33×2化简,正确的结果是()A .32B .±32C .36D .±364.(3分)下列判断中,你认为正确的是()A .0的倒数是0B .5大于2C .π是有理数D .9的值是±35.(3分)下列计算正确的是()A .310−25=5B11=11C .(75−15)÷3=25D −=26.(3分)若a <5<b ,且a 、b 是两个连续整数,则a +b 的值是()A .2B .3C .4D .57.(3分)点A 在数轴上,点A 所对应的数用2a +1表示,且点A 到原点的距离等于3,则a 的值为()A .﹣2或1B .﹣2或2C .﹣2D .18.(3分)下列说法:①﹣7是49的平方根;②49的平方根是﹣7;③16的算术平方根是4;④(−4)2=(−4)2;⑤(3−8)3=3(−8)3.其中错误的有()A .1个B .2个C .3个D .4个9.(3)A .26B .62C .66D .1210.(3分)实数a ,b 在数轴上对应点的位置如图所示,下列判断正确的是()A .|a |<1B .ab >0C .a +b >0D .1﹣a >1二、填空题(本大题7小题,每小题4分,共28分)。
(典型题)初中数学八年级数学上册第二单元《实数》测试题(含答案解析)
一、选择题1.下列计算正确的是( )A +=B =C 6=-D 1-= 2.与数轴上的点一—对应的数是( )A .分数或整数B .无理数C .有理数D .有理数或无理数 3.一个正方形的面积为29,则它的边长应在( ) A .3到4之间 B .4到5之间 C .5到6之间 D .6到7之间 4.对于两个不相等的有理数a ,b ,我们规定符号{},max a b 表示a ,b 两数中较大的数,例如{}2,42max -=.则方程{},34max x x x -=+的解为( )A .-1B .-2C .-1或-2D .1或25.下列各式中,正确的是( )A .3=B 3=±C 3=-D 3=6. )A .8 B .4C D 7.下列计算正确的是( ). A .()()22a b a b b a +-=- B .224x y xy +=C .()235a a -=-D .=8.已知||3a =,216b =,且0a b +<,则代数式-a b 的值为( ) A .-1或-7B .1或-7C .1或7D .±1或7± 9.已知一个表面积为212dm 的正方体,这个正方体的棱长为( )A .2dmB CD .3dm10( )A .1与2之间B .2与3之间C .3与4之间D .5与6之间 11.已知21a -与2a -+是一个正数的平方根,则这个正数的值是( ) A .9 B .3 C .1D .81 12.下列对于二次根式的计算正确的是( )A =B .2C .2=D .=二、填空题13.a b -=________.14.对于任意非零实数a ,b ,定义运算“※”如下:“a b ※”a b ab-=,则12233420202021++++※※※※的值为__________.15.已知6y x =+,当x 分别取1,2,3,…,2021时,所对应y 值的总和是__.16.对于正整数n ,规定111()(1)1f n n n n n ==-++,例如:111(1)1212f ==-⨯,111(2)2323f ==-⨯,111(3)3434f ==-⨯,…则(1)(2)(3)(2021)f f f f ++++= _______ 17.材料:一般地,n 个相同因数a 相乘:n a a a a a ⋅⋅⋅⋅⋅个记为n a .如328=,此时3叫做以2为底的8的对数,记为2log 8(即2log 83=).那么3log 9=_____,()2231log 16log 813+=_____. 18.请你写出一个比3大且比4小的无理数,该无理数可以是:____.19.已知2a =+,2b =,则227a b ++的算术平方根是_____.20.已知2x =,2y =+x 2+y 2﹣2xy 的值为_____.三、解答题21.计算:(1)(π﹣2020)0﹣.(2.22.(3++-.23.计算:(1(2)已知﹣a|=0,求a 2﹣+2+b 2的值.24.已知某正数的两个平方根是314a -和2a +,14b -的立方根为-2,求+a b 的算术平方根.25.计算下列各题:(1(2)()(3)(226.化简(1)+(2【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据二次根式加减运算和二次根式的性质逐项排除即可.【详解】与A选项错误;===B选项正确;=-=,所以C选项错误;321与D选项错误;故选答案为B.【点睛】本题考查了二次根式加减运算和二次根式的性质,掌握同类二次根式的定义和二次根式的性质是解答本题的关键.2.D解析:D【分析】实数与数轴上的点一一对应,实数包括有理数和无理数.【详解】A. 分数或整数,只是有理数,不是数轴上所有点,故此项不正确;B. 只是无理数,不是数轴上所有点,故此项不正确;C. 只是有理数,不是数轴上所有点,故此项不正确;D. 有理数和无理数是实数的组成,实数与数轴上的点一一对应,故此项正确;故选D.【点睛】此题考查了实数的意义,能掌握实数与数轴的关系是解答此题的关键.3.C解析:C一个正方形的面积为29“夹逼法”的近似值,从而解决问题.【详解】解:∵正方形的面积为29,∴,5<6.故选:C .【点睛】此题主要考查了无理数的估算能力,解决本题的关键是得到最接近无理数的有理数的值.现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.4.A解析:A【分析】利用题中的新定义化简已知方程,求解即可.【详解】①当0x >时,即x x >-,此时max }{34x x x x -==+,, 解得2x =-,不符合题意舍去. ②当0x <时,即x x <-,此时max }{34x x x x -=-=+,, 解得1x =-且符合题意.故选:A .【点睛】此题考查了新定义下实数的运算以及解一元一次方程,运用分类讨论的思想是解答本题的关键. 5.D解析:D【分析】根据二次根式的性质化简判断.【详解】A 、3=±,故该项不符合题意;B 3=,故该项不符合题意;C 3=,故该项不符合题意;D 3=,故该项符合题意;【点睛】此题考查二次根式的化简,正确掌握二次根式的性质是解题的关键.6.B解析:B【分析】根据分数的性质,在分子分母同乘以2,再根据二次根式的性质化简即可.【详解】=== 故选:B .【点睛】此题考查化简二次根式,掌握分数的性质确定分子分母同乘以最小的数值,使分母化为一个数的平方,由此化简二次根式是解题的关键.7.D解析:D【分析】根据平方差公式、合并同类项、幂的乘方、二次根式的运算法则即可求出答案.【详解】A.原式=a 2−b 2,故A 错误;B.2x 与2y 不是同类项,不能合并,故B 错误;C.原式=a 6,故C 错误;D.原式=D 正确;故选:D .【点睛】本题考查了平方差公式、合并同类项、幂的乘方、二次根式,解题的关键是熟练运用运算法则,本题属于基础题型.8.C解析:C【分析】分别求出a 与b 的值,再利用0a b +<这一条件判断出a 、b 的值,进而分情况讨论即可解题.【详解】 解 ||3a =,216b =,3,4a b ∴=±=±,0a b +<,3,4a b ∴==-或3,4a b =-=-,7a b ∴-=或1,【点睛】本题考查了去绝对值和求平方根,正确的确定a 、b 的值是解答本题的关键.9.B解析:B【分析】先求得正方体的一个面的面积,然后依据算术平方根的定义求解即可.【详解】设正方形的棱长为a ,∵正方体有6个面且每个面都相等,∴正方体的一个面的面积为2,∴22a =,解得:a =∴dm .故选:B .【点睛】本题主要考查了算术平方根的定义,求得正方形的一个面的面积是解题的关键. 10.C解析:C【分析】【详解】解:<34∴<<,故选:C .【点睛】本题考查无理数的估算,掌握几个非负整数的算术平方根的大小比较方法是解决问题的关键.11.A解析:A【分析】首先根据正数有两个平方根,它们互为相反数可得2120a a --+=,解方程可得1a =-,然后再求出这个正数即可.【详解】解:由题意得:2120a a --+=,解得:1a =-,213a -=-,23a -+=,则这个正数为9.故选:A .【点睛】此题主要考查了平方根,关键是掌握一个正数有两个平方根,这两个平方根互为相反数. 12.C解析:C【分析】利用二次根式的加减和乘除运算法则进行计算即可.【详解】解:=B.=C.2=,故原题计算正确;D.10=,故原题计算错误.故选:C【点睛】此题主要考查了二次根式的混合运算,掌握二次根式的运算法则是解答此题的关键.二、填空题13.2【分析】根据最简二次根式同类二次根式的性质计算即可得到a 和b 的值;再将a 和b 的值代入到代数式通过计算即可得到答案【详解】根据题意得:∴∵最简二次根式与是同类最简二次根式∴∴∴故答案为:2【点睛】本 解析:2【分析】根据最简二次根式、同类二次根式的性质计算,即可得到a 和b 的值;再将a 和b 的值代入到代数式,通过计算即可得到答案.【详解】根据题意得:12a -=∴3a =∵与∴252b b +=-∴1b =∴312a b -=-=故答案为:2.【点睛】本题考查了二次根式的知识;解题的关键是熟练掌握最简二次根式、同类二次根式、代数式的性质,从而完成求解.14.【分析】根据已知将原式变形进而计算得出答案【详解】解:根据题意∵∴……∴=====故答案为:【点睛】此题主要考查了实数运算正确将原式变形是解题关键 解析:20202021-【分析】根据已知将原式变形进而计算得出答案.【详解】解:根据题意, ∵“a b ※”a b ab-=, ∴12※121(1)122-==--⨯,231123()2323-==--⨯※,……, ∴12233420202021++++※※※※ =122320202021122320202021---+++⨯⨯⨯ =11111(1)()()22320202021------- =111111(1)223320202021--+-+-+- =1(1)2021-- =20202021-. 故答案为:20202021-. 【点睛】此题主要考查了实数运算,正确将原式变形是解题关键.15.4054【分析】先化简二次根式求出y 的表达式再将x 的取值依次代入然后求和即可得【详解】解:当时当时则所求的总和为故答案为:【点睛】本题考查了二次根式的化简求值绝对值运算等知识点掌握二次根式的化简方法 解析:4054【分析】先化简二次根式求出y 的表达式,再将x 的取值依次代入,然后求和即可得.【详解】解:646y x x x =+=--+当4x <时,46102y x x x =--+=-当4x ≥时,462y x x =--+=则所求的总和为(1021)(1022)(1023)222-⨯+-⨯+-⨯++++86422018=+++⨯4054=故答案为:4054.【点睛】本题考查了二次根式的化简求值、绝对值运算等知识点,掌握二次根式的化简方法是解题关键.16.【分析】根据题意可得:原式=再根据加法的结合律相加计算即可【详解】解:原式=故答案为:【点睛】本题考查了数字类规律探究和新定义问题正确理解题意准确计算是关键 解析:20212022【分析】根据题意可得:原式=111111112233420212022-+-+-++-,再根据加法的结合律相加计算即可.【详解】解:原式=11111111202111223342021202220222022-+-+-++-=-=. 故答案为:20212022. 【点睛】本题考查了数字类规律探究和新定义问题,正确理解题意、准确计算是关键. 17.3;【分析】由可求出由可分别求出继而可计算出结果【详解】解:(1)由题意可知:则(2)由题意可知:则∴故答案为:3;【点睛】本题主要考查定义新运算读懂题意掌握运算方法是解题关键解析:3; 1173. 【分析】由239=可求出2log 93=,由4216=,43=81可分别求出2log 164=,3log 814=,继而可计算出结果.【详解】解:(1)由题意可知:239=,则2log 93=,(2)由题意可知: 4216=,43=81,则2log 164=,3log 814=,∴223141(log 16)log 811617333+=+=, 故答案为:3;1173. 【点睛】 本题主要考查定义新运算,读懂题意,掌握运算方法是解题关键.18.答案不唯一如:【分析】无限不循环小数是无理数根据无理数的三种形式解答即可【详解】设该无理数是x 由题意得∴x=10或11或12或13或14或15该无理数可以是:答案不唯一如:故答案为:答案不唯一如:【解析:【分析】无限不循环小数是无理数,根据无理数的三种形式解答即可.【详解】设该无理数是x x <<∴x=10或11或12或13或14或15,【点睛】此题考查无理数的定义,熟记定义并掌握无理数的三种形式是解题的关键.19.5【分析】根据完全平方公式和算术平方根即可求解【详解】解:因为所以=(+2)2+(-2)2+7=9+2+9-2+7=25所以a2+b2+7的算术平方根是5故答案为:5【点睛】本题考查了完全平方公式算解析:5【分析】根据完全平方公式和算术平方根即可求解.【详解】解:因为2a =,2b =,,所以227a b ++=)2+)2+7=25.所以a 2+b 2+7的算术平方根是5.故答案为:5.【点睛】本题考查了完全平方公式、算术平方根,解决本题的关键是掌握完全平方公式、算术平方根.20.【分析】根据二次根式的减法法则求出利用完全平方公式把原式化简代入计算即可【详解】解:则故答案为:12【点睛】本题考查的是二次根式的化简求值掌握完全平方公式二次根式的加减法法则是解题的关键解析:【分析】根据二次根式的减法法则求出x y -,利用完全平方公式把原式化简,代入计算即可.【详解】解:2x =-2y =+ 23x y, 则22222()(23)12x y xy x y , 故答案为:12.【点睛】本题考查的是二次根式的化简求值,掌握完全平方公式、二次根式的加减法法则是解题的关键.三、解答题21.(1)-2;(2)4【分析】(1)根据零指数幂、二次根式、立方根、绝对值的计算法则来化简,之后按照二次根式的加减计算法则来计算即可;(2)先计算二次根式的乘除,再计算二次根式的加减即可.【详解】解:(1)原式=()12212-⨯+-+=121+ =2-;(2)原式()32-=231+-=4.【点睛】本题考查的是实数的混合计算,熟练掌握相关的计算法则是解题的关键. 22.10-【分析】根据二次根式运算法则计算即可.【详解】解:原式=2253+-5924=+-1424=-10=-.【点睛】本题考查了二次根式的运算,解题关键是熟练运用二次根式运用算法则进行计算,注意:平方差公式的运用.23.(1)2)4【分析】(1)根据二次根式的乘除法和加减法可以解答本题;(2)根据﹣a|=0,可以得到a 、b 的值,然后将所求式子变形,再将a 、b 的值代入即可解答本题.【详解】解:(1=4-=4+(2)∵﹣a|=0, ∴a =0,b ﹣2=0,∴a,b =2,∴a2﹣a +2+b 2=(a 2+b 2)2+22=02+4=0+4=4【点睛】本题考查了如二次根式的化简求值、非负数的性质、解答本题的关键是明确二次根式混合运算的计算方法;24.3【分析】利用正数的平方根有两个,且互为相反数列出方程,求出方程的解即可得到a 的值,根据立方根的定义求出b 的值,根据算术平方根的定义求出a+b 的算术平方根.【详解】解:由题意得,31420a a -++=,148b -=-,解得:3a =,6b =,∴9a b +=,∴+a b 的算术平方根是3.【点睛】本题考查的是平方根、立方根和算术平方根的定义,正数的平方根有两个,且互为相反数;正数的算术平方根是正数,0的算术平方根是0,负数没有平方根.25.(1)0;(2)【分析】(1)根据平方根、立方根的意义进行计算即可;(2)利用平方差公式和实数的计算方法进行计算即可.【详解】解:(1=2+(﹣5)+3=0;(2)()(3)(2=32)2﹣2=9﹣﹣2=【点睛】本题考查了包含算术平方根、立方根、平方差公式的实数计算,熟练运用法则和公式是解决问题关键.26.(1)1-+;(2)54【分析】(1)先利用平方差公式计算,然后将每个二次根式化为最简二次根式,最后合并计算即可;(2)先将每个二次根式化简为最简二次根式,然后合并即可.【详解】(1)解:原式22231=-+=-+=-+(2)解:原式=== 【点睛】 本题考查了二次根式的运算,熟练掌握运算法则是解题的关键.。
最新北师版八年级初二上册数学第2章《实数》单元测试试卷及答案
新版北师大版八年级数学上册第2章《实数》单元测试试卷及答案(2)本检测题满分:100分,时间:90分钟一、选择题(每小题3分,共30分)1. 有下列说法:(1)开方开不尽的数的方根是无理数; (2)无理数是无限不循环小数;(3)无理数包括正无理数、零、负无理数; (4)无理数都可以用数轴上的点来表示. 其中正确的说法的个数是( ) A .1 B .2 C .3 D .4 2. ()20.9-的平方根是( )A .0.9-B .0.9±C .0.9D .0.81 3. 若、b 为实数,且满足|-2|+=0,则b -的值为( )A .2B .0C .-2D .以上都不对 4. 下列说法错误的是( )A .5是25的算术平方根B .1是1的一个平方根C .的平方根是-4D .0的平方根与算术平方根都是05. 要使式子有意义,则x 的取值范围是( )A .x >0B .x ≥-2C .x ≥2D .x ≤2 6. 若均为正整数,且,,则的最小值是( )A.3B.4C.5D.6 7. 在实数,,,,中,无理数有( )A.1个B.2个C.3个D.4个 8. 已知=-1,=1,=0,则的值为( )A.0 B .-1 C. D.9. 有一个数值转换器,原理如图所示:当输入的=64时,输出的y 等于( )第9题图A .2B .8C .3D .210. 若是169的算术平方根,是121的负的平方根,则(+)2的平方根为( )A. 2B. 4C.±2D. ±4二、填空题(每小题3分,共24分)11. 已知:若≈1.910,≈6.042,则≈ ,±≈ .12. 绝对值小于的整数有_______. 13.的平方根是 ,的算术平方根是 .14. 已知5-a +3+b ,那么.15. 已知、b 为两个连续的整数,且,则= . 16. 若5+的小数部分是,5-的小数部分是b ,则+5b = .17. 在实数范围内,等式+-+3=0成立,则= . 18. 对实数、b ,定义运算☆如下:☆b =例如2☆3=.计算[2☆(-4)]×[(-4)☆(-2)]= 三、解答题(共46分)19.(6分)已知,求的值.20.(6分)先阅读下面的解题过程,然后再解答:形如n m 2±的化简,只要我们找到两个数,使m b a =+,n ab =,即m b a =+22)()(,n b a =⋅,那么便有:b a b a n m ±=±=±2)(2)(b a >.例如:化简:347+.解:首先把347+化为1227+,这里7=m ,12=n , 由于,,即7)3()4(22=+,1234=⨯,所以347+1227+32)34(2+=+.根据上述方法化简:42213-.21.(6分)已知28-++=b a a M 是()8+a 的算术平方根,423+--=b a b N 是()3-b 的立方根,求N M +的平方根. 22. (6分)比较大小,并说理:(1)与6;(2)与.23.(6分)大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不能全部地写出来,于是小平用-1来表示的小数部分,你同意小平的表示方法吗?事实上小平的表示方法是有道理的,因为的整数部分是1,用这个数减去其整数部分,差就是小数部分. 请解答:已知:5+的小数部分是, 5-的整数部分是b ,求+b 的值.24.(8分) 若实数满足条件,求的值.25.(8分)阅读下面问题:12)12)(12()12(1121-=-+-⨯=+;();23)23)(23(231231-=-+-⨯=+()25)25)(25(251251-=-+-⨯=+.试求:(1)671+的值;(2)nn ++11(n 为正整数)的值.(3122334989999100+⋅⋅⋅+++++++.参考答案一、选择题1.C 解析:本题考查对无理数的概念的理解.由于0是有理数,所以(3)应为无理数包括正无理数和负无理数.2.B 解析:=0.81,0.81的平方根为3.C 解析:∵ |-2|+=0,∴=2,b=0,∴b-=0-2=-2.故选C.4.C 解析:A.因为=5,所以A正确;B.因为±=±1,所以1是1的一个平方根说法正确;C.因为±=±=±4,所以C错误;D.因为=0,=0,所以D正确.故选C.5. D 解析:∵二次根式的被开方数为非负数,∴ 2-x≥,解得x≤2.6.C 解析:∵均为正整数,且,,∴的最小值是3,的最小值是2,则的最小值是5.故选C.7. A 解析:因为所以在实数,0,,,中,有理数有,0,,,只有是无理数.8.C 解析:∵∴,∴.故选C.9.D 解析:由图表得,64的算术平方根是8,8的算术平方根是2.故选D.10.C 解析:因为169的算术平方根为13,所以 =13.又121的平方根为,所以 =-11,所以4的平方根为,所以选C.二、填空题11.604.2 0.019 1 解析:;±0.019 1.12.±3,±2,±1,0 解析:,大于-的负整数有:-3、-2、-1,小于的正整数有:3、2、1,0的绝对值也小于. 13.3 解析:;,所以的算术平方根是3.14. 8 解析:由5-a +3+b ,得,所以.15.11 解析:∵,、b 为两个连续的整数,又<<,∴ =6,b =5,∴ .16.2 解析:∵ 2<<3,∴ 7<5+<8,∴ =-2.又可得2<5-<3,∴ b =3-.将、b 的值代入+5b 可得+5b =2.故答案为2.17.8 解析:由算术平方根的性质知,又+-y +3=0,所以2- =0,-2=0,-y +3=0,所以=2,y =3,所以==8.18.1 解析:[2☆(-4)]×[(-4)☆(-2)]=2-4×(-4)2=×16=1.三、解答题 19.解:因为,所以,即,所以.故,从而,所以,所以.20. 解:根据题意,可知,由于,所以.21. 解:因为是的算术平方根,所以又是的立方根,所以解得所以M=3,N=0,所以M + N=3.所以M + N的平方根为22.分析:(1)可把6转化成带根号的形式再比较被开方数即可比较大小;(2)可采用近似求值的方法来比较大小.解:(1)∵ 6=,35<36,∴<6;(2)∵ -+1≈-2.236+1=-1.236,- ≈-0.707,1.236>0.707,∴<.23. 解:∵ 4<5<9,∴ 2<<3,∴ 7<5+<8,∴=-2.又∵-2>->-3,∴ 5-2>5->5-3,∴ 2<5-<3,∴b=2,∴+b=-2+2=.24. 分析:分析题中条件不难发现等号左边含有未知数的项都有根号,而等号右边的则都没有.由此可以想到将等式移项,并配方成三个完全平方数之和等于0的形式,从而可以分别求出的值.解:将题中等式移项并将等号两边同乘4得,∴,∴,∴,,,∴,,,∴∴.∴ =120.25. 解:(1)671+1(76)(76)(76)⨯-=+-=76-.(2)11(1)11(1)(1)n n n n n n n n n n ⨯+-==+-+++++-.(3)11111122334989999100+++⋅⋅⋅+++++++。
北师大版数学八年级上册 第2章 实数 单元测试卷(含答案)
第2 章测试卷(满分120分,时间90分钟)题号一二三总分得分合要求的)1.9的平方根是( )A.±3B.±1C.3D. -332.在-1.414,√2,π,2+√3,3.212212221…,3.14这些数中,无理数的个数为( )A.5个B.2个C.3个D.4个3.下列说法错误的是( )A.5是25的算术平方根B.1是1的一个平方根C.(-4)²的平方根是-4D.0的平方根与算术平方根都是04.下列各式中不是二次根式的是( )A.√x2+1B.√−4C.√0D.√(a−b)25.已知实数x,y满足√x−2+(y+1)2=0,,则x-y等于( )A.3B.-3C.1D.-16.估算√76−3的值在( )A.4与5之间B.5 与6 之间C.6 与 7 之间D.7 与8之间7.下列计算正确的是( )A.√18−√2=2√2B.√2+√3=√5C.√12÷√3=4D.√5×√6=√118.爸爸为颖颖买了一个密码箱,并告诉其密码(密码为自然数)是1、2、4、6、8、9六个数中的三个数的算术平方根,则这个密码箱的密码可能是( )A.123B.189C.169D.2489.将1、√2√3、√6、按如图所示的方式排列,若规定(m,n)表示第m排从左到右第n个数,则(4,2)与(21,2)表示的两数的积是( )A.1B.2C.2√3D.610.若6−√13的整数部分为x,小数部分为y,则((2x+√13)y的值是( )A.5−3√13B.3C.3√13−5D. -3二、填空题(本大题共8小题,每小题4分,共32分.本题要求把正确结果填在规定的横线上,不需要解答过程)11.写出一个比4 小的正无理数: .有意义,则实数x 的取值范围是 .12.若代数式√xx−113.a 是9的算术平方根,b的算术平方根是9,则a+b=. .14.若√x−2+(y+3)2=0,则x+y=. .15.若最简二次根式√5m−4与√2m+5可以合并,则m的值可以为 .16.若4<√a<10,,则满足条件的整数a有个.17.如果一个正数的平方根是a+3和2a-15,,则这个数为 .18.我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式.即如果一个三角形的三边长分别为a,b,c,则该三角形的面积为S=√1 4[a2b2−(a2+b2−c22)2].现已知△ABC的三边长分别为2,3,4,则△ABC的面积为 .三、解答题(本大题共6小题,满分58分.解答应写出文字说明、证明过程或演算步骤)19.(8分)计算:(1)(√12+√20)+(√3−√5)(2)(√7−√2)(√7+√2)20.(8分)求下列各式中x的值:(1)(x−2)²+1=17;(2)(x+2)³+27=0.21.(10分)如图,已知A,B,C三点分别对应数轴上的数a,b,c.(1)化简:|a−b|+|c−b|+|c−a|;,b=−z2,c=−4mn,且满足x与y互为相反数,z是绝对值最小的负整数,m,n互(2)若a=x+y4为倒数,试求98a+99b+100c的值;22.(10分)已知x=√5+2,y=√5−2,求下列各式的值.(1) xy;(2)x²−y².23.(10分)高空抛物极其危险,是我们必须杜绝的行为.据研究,高空抛物下落的时间t(单位:s)和高度h(单位:m)近似满足公式t=√ℎ5(不考虑风速的影响).(1)从50m高空抛物到落地所需时间l₁₁是 s,从100m高空抛物到落地所需时间l₂是 s;(2)t₂是t₁的多少倍?(3)经过1.5s,高空抛物下落的高度是多少?24.(12 分)观察下列一组等式,解答后面的问题:√2(+1)(√2−1)=1,(√3+√2)(√3−√2)=1,(√4+√3)(√4−√3)=1,(√5+√4)(√5−√4) =1,…(1)根据上面的规律,计算下列式子的值:(√2+1+√3+√2+√4+√3+⋯+√2020+√2019)(√2020+1);(2)利用上面的规律,比较√12−√11与√13−√12的大小.第2 章测试卷1. A2. D3. C4. B5. A6. B7. A8. A9. D10. B11.答案不唯一,如√212. x≥0且x≠1 13.84 14. --115.3 16.83 17.49 18.3√154 19.解(1)(√12+√20)+(√3−√5)=2√3+2√5+√3−√5=3√3+√5(2)(√7−√2)(√7+√2)=7−2=5.20.解(1)(x−2)²=16,x−2=±4,x=6或--2,(2)(x+2)³=−27,x+2=−3,x=-5.21.解(1)由数轴,知(a−b>0,c−b<0,c−a<0,所以|a−b|+|c−b|+|c−a|=(a−b)−(c−b)−(c−a)=a−b−c+b−c+a=2a−2c.(2)由题意,知:x+y=0,z=−1,mn=1,所以a=0,b=−(−1)²=−1,c=−4.所以98a+99b+100c=−99−400=−499.22.解(1)原式=(√5+2)(√5−2)=5−4=1.(2)原式=(√5+2)2−(√5−2)2=5+4+4√5−5−4+4√5=8√5.23.解(1)√102√5(2)∵t2t1=√5√10=√2,∴t2是t₁的√2倍.(3)由题意得√ℎ5=1.5,即ℎ5=2.25,∴ℎ=11.25.答:经过1.5s,高空抛物下落的高度是11.25 m.24.解(1)根据规律,可得√n+1+√n =√n−1−√n(n≥1).(√2+1+√3+√2√4+√3+⋯+√2020+√2019)(√2020+1).=[(√2−1)+(√3−√2)+(√4−√3)+⋯+(√2020−√2019)](√2020+1) =(√2020−1)(√2020+1)=2019.(2)因为√12−√11=√12+√11,√13−√12=√13+√12,又0<√12+√11<√13+√12,所以√12−√11<√13−√12所以√12−√11>√13−√12.。
(典型题)初中数学八年级数学上册第二单元《实数》检测题(答案解析)
一、选择题 1.计算82÷的结果是( )A .10B .6C .4D .22.16的平方根是( )A .4B .4±C .2±D .-2 3.如图,长方形ABCD 中,43,4AB BC ==,点E 是DC 边上的动点,现将BCE 沿直线BE 折叠,使点C 落在点F 处,则点D 到点F 的最短距离为( )A .5B .4C .3D .24.下列各式中,正确的是( ) A 16B .16C 3273-=- D 2(4)4-=- 5.在数2277,01822)316112π-,3.2020020002…(相邻的两个2之间依次多一个0)中,无理数有( )A .3个B .4个C .5个D .6个6.172178a a b --=+a b - ).A .3±B .3C .5D .5± 7.已知 ||3a =,216b =,且0a b +<,则代数式-a b 的值为( ) A .-1或-7 B .1或-7 C .1或7 D .±1或7± 8.下列说法中不正确的是( )A .0是绝对值最小的实数B ()222-=C .3是9的一个平方根D .负数没有立方根 9.在代数式13x -中,字母x 的取值范围是( ) A .x >1 B .x ≥1 C .x <1 D .x 13≤ 10.下列运算正确的是( )A .(x +y )2=x 2+y 2B .(﹣12x 2)3=﹣16x 6C .215-=125D .2(5)-=5 11.下列各计算正确的是( ) A .382-= B .842= C .235+= D .236⨯=12.如图,在数轴上作长、宽分别为2和1的长方形,以原点为圆心,长方形对角线的长为半径画弧,与数轴相交于点A .若点A 对应的数字为a ,则下列说法正确的是( )A .a>-2.3B .a<-2.3C .a=-2.3D .无法判断二、填空题13.实数a 、b 在数轴上所对应的点如图所示,则|3﹣b |+|a +3|+2a 的值_____.14.若202120212a b -+=,其中a ,b 均为整数,则符合题意的有序数对(),a b 的组数是______.15.3x -+|2x ﹣y |=0,那么x ﹣y =_____.16.对于任意非零实数a ,b ,定义运算“※”如下:“a b ※”a b ab-=,则12233420202021++++※※※※的值为__________. 1783=______. 18.()22120x y +-=,则xy =_________.19.37-的整数部分a=_____,小数部分b=__________. 20.188=_____.三、解答题21.如果一个正方形ABCD 的面积为69.(1)求正方形ABCD 的边长a .(2)正方形ABCD 的边长满足m a n <<,m ,n 表示两个连续的正整数,求m ,n 的值.(3)M 、N 在满足(23m n -的值22.(1)计算:23)(23)123+;(2)解方程组:1327x y x y +=-⎧⎨-=⎩. 23.计算题:(1)12273⨯; (2)20105025-⨯-; (3)()()()2533531+⨯--- 24.计算:()22021(3)333-⎛⎫--+- ⎭+⎪⎝. 25.(1)计算:271223+-; (2)计算:()()6565+-. 26.(概念学习)规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方.例如222÷÷,记作2③,读作“2的圈3次方”;再例如(3)(3)(3)(3)-÷-÷-÷-,记作()3-④,读作“3-的圈4次方”;一般地,把n a a a a a ÷÷÷⋅⋅⋅÷个(0a ≠,n 为大于等于2的整数)记作,读作“a 的圈n 次方”.(初步探究)(1)直接写出计算结果:7=③_______________,14⎛⎫-= ⎪⎝⎭⑤__________; (2)关于除方,下列说法错误的是____________;A .任何非零数的圈2次方都等于1;B .对于任何大于等于2的整数c ,;C .89=⑨⑧;D .负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数;(深入思考)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?除方211112222222222⎛⎫→=÷÷÷=⨯⨯⨯=→ ⎪⎝⎭④乘方幂的形式 (1)仿照上面的算式,将下列运算结果直接写成幂的形式:(5)-=⑥___________;12⎛⎫= ⎪⎝⎭⑨___________;(2)将一个非零有理数a的圈n次方写成幂的形式为____________;(3)将(m为大于等于2的整数)写成幂的形式为_________.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】a=(a≥0,b>0)进行计算即可.a bb【详解】84=2,2故选:D.【点睛】此题主要考查了二次根式的除法,关键是注意结果要化成最简二次根式.2.C解析:C【分析】先计算16的算术平方根a,再计算a的平方根即可.【详解】∵164=,∴4的平方根为±2.故选C.【点睛】本题考查了实数的算术平方根,平方根,准确掌握这两个基本概念是解题的关键.3.B解析:B【分析】连接DB,DF,根据三角形三边关系可得DF+BF>DB,得到当F在线段DB上时,点D到点F的距离最短,根据勾股定理计算即可.【详解】解:连接DB,DF,在△FDB中,DF+BF>DB,由折叠的性质可知,FB=CB=4,∴当F在线段DB上时,点D到点F的距离最短,在Rt△DCB中,228BD DC BC+=,此时DF=8-4=4,故选:B.【点睛】本题考查的是翻转变换的性质,勾股定理,三角形三边关系.翻转变换是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.4.C解析:C【分析】根据算术平方根与平方根、立方根的定义逐项判断即可得.【详解】A164=,此项错误;B、164±=±,此项错误;C3273-=-,此项正确;D2(4)164-==,此项错误;故选:C.【点睛】本题考查了算术平方根与平方根、立方根,熟记各定义是解题关键.5.C解析:C【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】22 7,0,2(2)2=,这些数都是有理数;,=112π-,3.2020020002…(相邻的两个2之间依次多一个0),是无理数,无理数共有5个.故选:C .【点睛】本题考查了无理数的定义.解题的关键是掌握无理数的定义和各种类型.初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数. 6.C解析:C【分析】根据二次根式的性质求出a=17,b=-8【详解】∵a-17≥0,17-a ≥0,∴a=17,∴b+8=0,解得b=-8, ∴5==,故选:C .【点睛】此题考查二次根式的性质,化简二次根式,熟记二次根式的性质是解题的关键. 7.C解析:C【分析】分别求出a 与b 的值,再利用0a b +<这一条件判断出a 、b 的值,进而分情况讨论即可解题.【详解】 解 ||3a =,216b =,3,4a b ∴=±=±,0a b +<,3,4a b ∴==-或3,4a b =-=-,7a b ∴-=或1,故选C .【点睛】本题考查了去绝对值和求平方根,正确的确定a 、b 的值是解答本题的关键. 8.D解析:D【分析】根据实数,平方根和立方根的概念逐一判断即可.【详解】0的绝对值是0,负数的绝对值为正数,正数的绝对值为正数,正数大于0,故A 正确;2,故B 正确;9的平方根是3±,故C 正确;任何数都有立方根,故D 错误;故选D .【点睛】本题考查了实数的概念,求一个数的平方根或立方根,熟练掌握平方根和立方根的概念是本题的关键.9.B解析:B【分析】根据二次根式有意义的条件求解即可;【详解】由题意得,x ﹣1≥0,解得x≥1,故选:B .【点睛】本题考查了二次根式有意义的条件,正确掌握知识点是解题的关键;10.D解析:D【分析】直接利用积的乘方运算法则以及负整数指数幂的性质和二次根式的性质、完全平方公式分别判断得出答案.【详解】解:A 、(x +y )2=x 2+2xy +y 2,故此选项错误;B 、(﹣12x 2)3=﹣18x 6,故此选项错误; C 、215-=25,故此选项错误;D 5,故此选项正确;故选:D .【点睛】本题考查了积的乘方、负整数指数幂、二次根式的性质、完全平方公式,解题关键是熟知这些性质,并能准确应用.11.D解析:D【分析】分别计算即可.【详解】解:A. 382-=-,原式错误,不符合题意; B. 82=,原式错误,不符合题意; C. 235+≠,不是同类二次根式,不能合并,原式错误,不符合题意; D. 236⨯=,原式正确,符合题意; 故选:D .【点睛】本题考查了二次根式和立方根的运算,解题关键是熟练掌握二次根式和立方根的运算法则,准确进行计算.12.A解析:A【分析】先利用勾股定理求出长方形对角线OB 的长,即为OA 的长,然后根据A 在原点的左边求出数轴上的点A 所对应的实数为5-,再根据22.3 5.295=>判断出5 2.3->-即可得答案.【详解】解:如图,连接OB ,长方形对角线的长OB 22215+=5OA OB ∴==,点A 在原点的左边,∴点A 所对应的实数为5a =又∵22.3 5.295=>,∴5 2.3,∴5 2.3>-,即 2.3a >-.故选A .【点睛】本题考查实数与数轴上的点的对应关系,勾股定理、比较无理数大小,求出5OA =题的关键.二、填空题13.﹣2a ﹣b 【分析】直接利用数轴结合绝对值以及平方根的性质化简得出答案【详解】解:由数轴可得:a <﹣0<b <故|﹣b|+|a+|+=﹣b ﹣(a+)﹣a =﹣b ﹣a ﹣﹣a =﹣2a ﹣b 故答案为:﹣2a ﹣b 【解析:﹣2a ﹣b【分析】直接利用数轴结合绝对值以及平方根的性质化简得出答案.【详解】解:由数轴可得:a 0<b ,故﹣b |+|ab ﹣(a )﹣ab ﹣a ﹣a=﹣2a ﹣b .故答案为:﹣2a ﹣b .【点睛】此题主要考查了实数的运算以及实数与数轴,正确化简各式是解题关键.14.5【分析】由绝对值和算术平方根的非负性求出ab 所有的可能值即可得到答案【详解】解:∵且均为整数又∵∴可分为以下几种情况:①解得:;②解得:或;③解得:或;∴符合题意的有序数对共由5组;故答案为:5【 解析:5【分析】由绝对值和算术平方根的非负性,求出a 、b 所有的可能值,即可得到答案.【详解】解:∵20212a -=,且a ,b 均为整数,又∵20210a -≥0≥,∴可分为以下几种情况:①20210a -=2=,解得:2021a =,2017b =-;②20211a -=1=,解得:2020a =或2022a =,2020b =-;③20212a -=0=解得:2019a =或2023a =,2021b =-;∴符合题意的有序数对(),a b 共由5组;故答案为:5.【点睛】本题考查了绝对值的非负性,算术平方根的非负性,解题的关键是掌握非负的性质进行解题.15.﹣3【分析】先根据非负数的性质列出方程组求出xy 的值进而可求出x ﹣y 的值【详解】解:∵+|2x ﹣y|=0∴解得所以x ﹣y =3﹣6=﹣3故答案为:-3【点睛】本题考查了二次根式的非负性绝对值的非负性根解析:﹣3【分析】先根据非负数的性质列出方程组,求出x 、y 的值,进而可求出x ﹣y 的值.【详解】解:∵+|2x ﹣y |=0,∴3020x x y -=⎧⎨-=⎩, 解得36x y =⎧⎨=⎩. 所以x ﹣y =3﹣6=﹣3.故答案为:-3【点睛】本题考查了二次根式的非负性,绝对值的非负性,根据题意得到关于x 、y 的二元一次方程组,求出x 、y 的值是解题关键.16.【分析】根据已知将原式变形进而计算得出答案【详解】解:根据题意∵∴……∴=====故答案为:【点睛】此题主要考查了实数运算正确将原式变形是解题关键 解析:20202021-【分析】根据已知将原式变形进而计算得出答案.【详解】解:根据题意, ∵“a b ※”a b ab-=, ∴12※121(1)122-==--⨯,231123()2323-==--⨯※,……, ∴12233420202021++++※※※※ =122320202021122320202021---+++⨯⨯⨯ =11111(1)()()22320202021------- =111111(1)223320202021--+-+-+-=1 (1)2021 --=2020 2021 -.故答案为:2020 2021 -.【点睛】此题主要考查了实数运算,正确将原式变形是解题关键.17.【分析】根据二次根式的性质进行化简【详解】解:故答案为:【点睛】本题考查了二次根式的性质与化简解题的关键是掌握二次根式的性质和分母有理化解析:3【分析】根据二次根式的性质进行化简.【详解】=故答案为:3.【点睛】本题考查了二次根式的性质与化简.解题的关键是掌握二次根式的性质和分母有理化.18.-1【分析】由非负数的性质可知x=-y=2然后求得xy的值即可【详解】解:∵|+(y-2)2=0∴2x+1=0y-2=0∴x=-y=2∴xy=-×2=-1故答案为:-1【点睛】本题考查了非负数的性质解析:-1【分析】由非负数的性质可知x=-12,y=2,然后求得xy的值即可.【详解】解:∵(y-2)2=0,∴2x+1=0,y-2=0,∴x=-12,y=2.∴xy=-12×2=-1.故答案为:-1.【点睛】本题考查了非负数的性质,掌握非负数的性质是解题的关键.19.【分析】将已知式子分母有理数后先估算出的大小即可得到已知式子的整数部分与小数部分【详解】解:∵4<7<9∴2<<3即2+3<<3+3∴即实数的整数部分是则小数部分为故答案为:【点睛】本题考查了分母有解析:2 【分析】的大小即可得到已知式子的整数部分与小数部分.【详解】==, ∵4<7<9,∴2<3,即2+3<3+<3+3,∴532<<的整数部分是2a =,则小数部分为31222b =-=.故答案为:2, 【点睛】 本题考查了分母有理化,以及估算无理数的大小,熟练掌握估算无理数大小的方法是解题的关键.20.【分析】先化简二次根式再合并同类二次根式即可【详解】故答案为:【点睛】本题主要考查二次根式的化简以及同类二次根式的合并掌握二次根式的化简以及同类二次根式的合并方法是解题关键【分析】先化简二次根式,再合并同类二次根式即可.【详解】【点睛】本题主要考查二次根式的化简以及同类二次根式的合并,掌握二次根式的化简以及同类二次根式的合并方法是解题关键.三、解答题21.(1;(2)8m =,9n =;(3)-5【分析】(1)正方形ABCD 的边长a ,由正方形面积269a =.开平方即可;(2)正方形ABCD 的边长满足m a n <<,即m n <<,可得2269m n <<,可得m 2=64,n 2=81,开平方即可;(3)当8m =,9n =计算即可.【详解】解:(1)正方形ABCD 的边长269a =.0a a =>,a=;(2)正方形ABCD 的边长满足m a n <<,∴m n <<,∴2269m n <<,∴m,n 都为整数,而且是连续正整数,∴m 2=64,n 2=81,∴8m =,9n =;(3)当8m =,9n =,235--=-.【点睛】本题考查平方根,算术平方根,无理数估值,代数式求值,掌握平方根,算术平方根求法,无理数估值方法,代数式求值的方法是解题关键.22.(1)1,(2)12x y =⎧⎨=-⎩【分析】(1)按照二次根式的运算法则计算即可;(2)用加减消元法解方程组即可.【详解】解:(1)=222-+=232-+=1 (2)1327x y x y +=-⎧⎨-=⎩①② ①×2+②得,55=x ,1x =,把1x =代入①得,1+y=-1,y=-2,∴方程组的解为:12x y =⎧⎨=-⎩. 【点睛】本题考查了二次根式计算和解二元一次方程组,解题关键是熟练运用二次根式运算法则和加减消元法解方程组.23.(1)2)8+;(3)【分析】(1)先利用二次根式的性质进行化简,再利用二次根式的乘除法运算法则计算即可; (2)先利用二次根式的性质进行化简,再利用二次根式的运算法则计算即可;(3)先利用完全平方公式和平方差公式进行计算,再利用二次根式的加减运算法则计算即可.【详解】(1====(2=102=-+8=(3)23)(31)+--2(31)=--22223211⎡⎤=---+⎣⎦9531=--+=.【点睛】本题主要考查二次根式的混合运算,解题的关键是正确化简二次根式,熟练掌握二次根式的运算法则.24.【分析】先计算零指数幂、负整数指数幂以及平方,再计算加减混合运算.【详解】 解:原式111999=+-+ 10=.【点睛】本题主要考查了实数的混合运算,解题的关键是熟练掌握零指数幂、负整数指数幂以及平方的性质.25.(1)5;(2)1【分析】(1)将原式化为最简二次根式,在根据二次根式的加减法则运算即可(2)按平方差公式展开,利用二次根式的性质化简,再进行计算即可【详解】(15=(2)22-=65=-1=【点睛】本题考查了二次根式的混合计算,解题关键是熟练掌握运算法则,准确计算.26.【初步探究】(1)17,64-;(2)C ;【深入思考】(1)415⎛⎫- ⎪⎝⎭,72;(2)21n a -⎛⎫⎪⎝⎭;(3)4m n a +-【分析】初步探究:(1)根据新定义的运算法则进行计算,即可得到答案;(2)根据新定义的运算法则进行判断,即可得到答案;深入思考:(1)由题目中的运算法则转换成幂的形式,即可得到答案;(2)把幂的形式转换为一般形式即可;(3)先把代数式进行化简,然后写成幂的形式即可.【详解】解:【初步探究】(1)177777=÷÷=③;111111()()()()()44444464⎛⎫-=-÷-÷-÷-÷-= ⎪⎭-⎝⑤; 故答案为:17;64-;(2)由题意:A 、任何非零数的圈2次方都等于1;正确;B 、对于任何大于等于2的整数c ,;正确; C 、7188888888888=÷÷÷÷÷÷÷÷=⑨, 619999999999=÷÷÷÷÷÷÷=⑧, ∴89≠⑨⑧,则C 错误;D 、负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数;正确;故选:C .【深入思考】(1)4111111(5)(5)()()()()()()555555-=-⨯-⨯-⨯-⨯-⨯-=-⑥; 71122222222222⎛⎫=⨯⨯⨯⨯⨯⨯⨯⨯= ⎪⎝⎭⑨; 故答案为:41()5-;72;(2)由(1)可知,根据乘方的运算法则,则将一个非零有理数a 的圈n 次方写成幂的形式为:21n a -⎛⎫= ⎪⎝⎭; 故答案为:21n a -⎛⎫ ⎪⎝⎭;(3)=224m n m n a a a --+-•=; 故答案为:4m n a +-.【点睛】本题考查了新定义的运算法则,幂的乘方,有理数的乘法和除法运算,解题的关键是熟练掌握新定义的运算法则、乘方的运算法则进行解题.。
北师大版八年级上册数学第二章《实数》单元测试卷(含答案)
北师大版八年级上册数学第二章《实数》单元测试卷(含答案)一、选择题(每题3分,共30分)1.下列各数中,是无理数的是()A.3.141 5 B. 4 C.227D.62.在-4,-2,0,4这四个数中,最小的数是() A.4 B.0 C.- 2 D.-43.【中考·黄石】若式子x-1x-2在实数范围内有意义,则x的取值范围是()A.x≥1且x≠2 B.x≤1 C.x>1且x≠2 D.x<1 4.下列二次根式中,是最简二次根式的是()A.15B.10 C.50 D.0.55.已知a-3+|b-4|=0,则ab的平方根是()A.32B.±32C.±34D.346.【2020·重庆】下列计算中,正确的是()A.2+3= 5 B.2+2=2 2 C.2×3= 6 D.23-2=3 7.实数a,b在数轴上的对应点的位置如图所示,下列式子成立的是()A.a>b B.|a|<|b| C.a+b>0 D.a b<0(第7题) (第8题)8.【教材P39议一议变式】小明学了在数轴上画出表示无理数的点的方法后,进行练习:首先画数轴,原点为O,在数轴上找到表示数2的点A,然后过点A 作AB⊥OA,使AB=3(如图).以O为圆心,OB长为半径作弧,交数轴正半轴于点P,则点P所表示的数介于()A.1和2之间B.2和3之间C.3和4之间D.4和5之间9.【教材P15习题T6变式】已知a=3+22,b=3-22,则a2b-ab2的值为() A.1 B.17 C.4 2 D.-42 10.【教材P11习题T12变式】如图,长方形内有两个相邻的正方形,其面积分别为2和8,则图中阴影部分的面积为()A.2B.2C.2 2 D.6二、填空题(每题3分,共24分)11.实数-2的相反数是________,绝对值是________.12.计算:3-8=________.13.一个正数的平方根分别是x+1和x-5,则x=__________.14.【教材P34习题T2(1)改编】比较大小:10-13________23(填“>”“<”或“=”).15.【2020·青海】对于任意两个不相等的数a,b,定义一种新运算“⊕”如下:a⊕b =a +b a -b ,如:3⊕2=3+23-2=5,那么12⊕4=________. 16.【教材P 11习题T 12变式】若利用计算器求得 6.619≈2.573,66.19≈8.136,则估计6 619的算术平方根是________.17.如图,在△ABC 中,若AB =AC =6,BC =4,D 是BC 的中点,则AD 的长为________.(第17题) (第18题)18.已知a ,b ,c 在数轴上对应点的位置如图所示,化简a 2-(a +b )2+(c -a )2+(b +c )2的结果是________.三、解答题(19题16分,其余每题10分,共66分)19.计算下列各题:(1)(-5)2+(π-3)0+|7-4|; (2)⎝ ⎛⎭⎪⎫-12-1-214-3(-1)2 023;(3)(6-215)×3-612;(4)48÷3-215×30+(22+3)2.20.已知5是2a-3的算术平方根,1-2a-b的立方根为-4.(1)求a和b的值;(2)求3b-2a-2的平方根.21.一个正方体的表面积是2 400 cm2.(1)求这个正方体的体积;(2)若该正方体的表面积变为原来的一半,则体积变为原来的多少?22.已知7+5和7-5的小数部分分别为a,b,试求代数式ab-a+4b-3的值.23.拦河坝的横断面是梯形,如图,其上底是8 m,下底是32 m,高是 3 m.(1)求横断面的面积;(2)若用300 m3的土,可修多长的拦河坝?24.【教材P48习题T4拓展】先阅读材料,再回答问题.已知x=3-1,求x2+2x-1的值.计算此题时,若将x=3-1直接代入,则运算非常麻烦.仔细观察代数式,发现由x=3-1得x+1=3,所以(x +1)2=3.整理,得x2+2x=2,再代入求值会非常简便.解答过程如下:解:由x=3-1,得x+1=3,所以(x+1)2=3.整理,得x2+2x=2,所以x2+2x-1=2-1=1.请仿照上述方法解答下面的题目:已知x=5+2,求6-2x2+8x的值.参考答案一、1.D2.D3.A4.B5.B6.C7.D8.C9.C10.B二、11.2;212.-213.214.>15.216.81.3617.4218.-a点拨:原式=|a|-|a+b|+(c-a)+|b+c|=-a+(a+b)+(c-a)-(b +c)=-a+a+b+c-a-b-c=-a.三、19.解:(1)原式=5+1+4-7=10-7;(2)原式=-2-94-3-1=-2-32+1=-52;(3)原式=18-245-6×22=32-65-32=-65;(4)原式=16-26+11+46=15+26.20.解:(1)因为5是2a -3的算术平方根,1-2a -b 的立方根为-4,所以2a -3=25,1-2a -b =-64.所以a =14,b =37.(2)由(1)知a =14,b =37,所以3b -2a -2=3×37-2×14-2=81.所以3b -2a -2的平方根为±81=±9.21.解:(1)设这个正方体的棱长为a cm(a >0).由题意得6a 2=2 400,所以a =20.则体积为203=8 000(cm 3).(2)若该正方体的表面积变为原来的一半,则有6a 2=1 200.所以a =102.所以体积为(102)3=2 0002(cm 3). 因为2 00028 000=24,所以体积变为原来的24.22.解:因为5的整数部分为2,所以7+5=9+a ,7-5=4+b , 即a =-2+5,b =3-5.所以ab -a +4b -3=(-2+5)(3-5)-(-2+5)+4(3-5)-3=-11+55+2-5+12-45-3=0.23.解:(1)S=12(8+32)×3=12(22+42)×3=12×62×3=36(m2).答:横断面的面积为3 6 m2.(2)3003 6=1006=100 66×6=100 66=50 63(m).答:可修5063m长的拦河坝.24.解:由x=5+2得x-2=5,所以(x-2)2=5.整理,得x2-4x=1.所以6-2x2+8x=6-2(x2-4x)=6-2×1=4.。
八年级数学上册_第二章《实数》单元测试题(无答案)_北师大版
八年级(上)第二章《实数》单元测试题一.选择题:(每题4分,共40分)1. 边长为1的正方形的对角线长是( )A. 整数B. 分数C. 有理数D. 不是有理数 2. 在下列各数中是无理数的有( ) -0.333…, 4,5, π-, 3π, 3.1415, 2.010101…(相邻两个1之间有1个0),76.0123456…(小数部分由相继的正整数组成). A.3个 B.4个 C. 5个 D. 6个 3. 下列说法正确的是( )A. 有理数只是有限小数B. 无理数是无限小数C. 无限小数是无理数D. 3π是分数4. 下列说法错误的是( )A. 1的平方根是1B. –1的立方根是-1C.2是2的平方根 D. –3是2)3(-的平方根5. 若规定误差小于1, 那么60的估算值为( )A. 3B. 7C. 8D. 7或8 6. 下列平方根中, 已经简化的是( ) A.31 B.20C. 22D.121要超过密封线 学校____________ 班级__________姓名____________ 考号____________ 答案不要超过密封线7. 下列结论正确的是( ) A.6)6(2-=--B.9)3(2=- C.16)16(2±=- D.251625162=⎪⎪⎭⎫ ⎝⎛--8. 下列说法正确的是( )A.064.0-的立方根是0.4B.9-的平方根是3±C.16的立方根是316D.0.01的立方根是0.000001 9. 以下语句及写成式子正确的是( )A.7是49的算术平方根,即749±=B.7是2)7(-的平方根,即7)7(2=-C.7±是49的平方根,即749=±D.7±是49的平方根,即749±=10. 若a和a-都有意义,则a 的值是( )A.0≥aB.0≤aC.0=aD.0≠a二. 填空题:(每题4分,共40分)11. 把下列各数填入相应的集合内:-7, 0.32, 31, 0, 8,21,3216,2π.①有理数集合: { …};②无理数集合:{ …};③正实数集合: { …}; 12. 9的算术平方根是 ;3的平方根是 ; 0的平方根是 ;-2的平方根是 . 13. –1的立方根是 ,271的立方根是 , 9的立方根是 .14. 2的相反数是 , 倒数是 , -36的绝对值是 .15. 比较大小310;62.35.(填“>”或“<”)16.=-2)4( ;=-33)6( ; 2)196(= .17.已知一个正数的平方根是3x-2 和 5x+6,则这个数是 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
F
第四单元试卷赵钰
一、填空题
1. -3的绝对值是 ;
2.
9
4
的平方根是 . 3.-27 的立方根是____。
4.比较大小:7___6
5.如图:以直角三角形斜边为边的正方形面积是
. 6.________.(误差小于1) 7.如右图,数轴上点....A .表示的数是 . 8.写一个无理数,使它与2的积是有理数 9.当_______x 时,3x -有意义;
10.已知0)3(22
=++-b a ,则b a -= .
二、选择题
11.下列说法中,正确的是( )
A 数轴上的点表示的都是有理数
B 无理数不能比较大小
C 无理数没有倒数及相反数
D 实数与数轴上的点是一一对应的 12.下列各式中,正确的是( )
A. 2)2(2-=-
B. 9)3(2
=- C. 39±=± D. 393-=-
13. 满足53<<-x 的整数x 是( )
A 、3,2,1,0,1,2--
B 、2,1,0,1-
C 、3,2,1,0,1,2--
D 、
3,2,1,0,1- 14. )。
A.7.0~7.5之间 B.6.5~7.0之间C.7.5~8.0之间 D.8.0~8.5之间
15.下列各组数中互为相反数的是( )
A、 -2与2)2(- B、 -2与38- C、 -2与2
1
-
D、2-与2 16.圆的面积增加为原来的4倍,则它的半径是原来的( ) A. 1倍; B. 倍2 C. 2倍 D. 4倍。
三、解答题
17.把下列各数分别填在相应的集合内:.39014.32
5741
413
,,,,,,,,,----∏-
2.0 , 51525354.0
有理数集合:{ …}; 无理数集合: { …}; 正数集合: { …}; 负数集合: { …}. 18.快速口答题 ①
64
9= ② =-2)2( ③=-3
3)3( ④=7
28
⑤=27 ⑥=+2243 ⑦
32•=
⑧=2
)23( ⑨
=3
1
19.计算 (1)
38
33+ (2)
9
114- (3) 327
64
232)(--
(4)5123-• (5))32)(32(-+。