高中数学一轮复习 基本不等式及其应用
高考数学第一轮复习资料基本不等式及其应用
高考数学第一轮复习资料基本不等式及其应用第33讲基本不等式及其应用第33讲基本不等式及其应用要点梳理式和不等式的性质时要注意它们各自成立的条件.综合法证明不等式的逻辑关系是:AB1B2BnB,及从已知条件一.基本不等式定理1:如果a,bR,那么a2b22ab(当且仅当ab时取“”).说明:(1)指出定理适用范围:a,bR;(2)强调取“”的条件ab.定理2:如果a,b是正数,那么abab (当且仅当ab时取“=”)2说明:(1)这个定理适用的范围:ab(2)我们称a,bR;为a,b的算术平均2数,称ab为a,b的几何平均数即:两个正数的算术平均数不小于它们的几何平均数.a,bR,则|a||b||ab||a||b|;a,bR,则(ab)20a2b22ab;某,y,zR,某y2某y,m某yz3某yz二、常用的证明不等式的方法(1)比较法比较法证明不等式的一般步骤:作差—变形—判断—结论;为了判断作差后的符号,有时要把这个差变形为一个常数,或者变形为一个常数与一个或几个平方和的形式,也可变形为几个因式的积的形式,以便判断其正负.(2)综合法利用某些已经证明过的不等式(例如算术平均数与几何平均数的定理)和不等式的性质,推导出所要证明的不等式,这个证明方法叫综合法;利用某些已经证明过的不等考点剖析A出发,逐步推演不等式成立的必要条件,推导出所要证明的结论B.(3)分析法证明不等式时,有时可以从求证的不等式出发,分析使这个不等式成立的充分条件,把证明不等式转化为判定这些充分条件是否具备的问题,如果能够肯定这些充分条件都已具备,那么就可以断定原不等式成立,这种方法通常叫做分析法.(1)“分析法”是从求证的不等式出发,分析使这个不等式成立的充分条件,把证明不等式转化为判定这些充分条件是否具备的问题,即“执果索因”;(2)综合过程有时正好是分析过程的逆推,所以常用分析法探索证明的途径,然后用综合法的形式写出证明过程三.最值定理设某>0,y>0,由某+y≥2某y.(1)若积某y=P(定值),则和某+y有最小值2P;(2)若和某+y=S(定值),则积某y有最大S值(2)2.即:积定和最小,和定积最大.运用最值定理求最值应满足的三个条件:“一正、二定、三相等”.∵a>0,b>0,a+b=1,∴ab≥8不可能成立∵1=a+b≥2ab,∴ab≤,从而得证.证法二:(比较法)∵a+b=1,a>0,b>0,∴a+b≥2ab,∴ab≤,1125a21b2125(a)(b)ab4ab4-163-利用基本不等式证明不等式【例1】已知a>0,b>0,且a+b=1求证:14(a+1251)(b+)≥.ba4【证明】证法一:(分析综合法)欲证原式,即证4(ab)2+4(a2+b2)-25ab+4≥0,即证4(ab)2-33(ab)+8≥0,即证ab≤或ab≥81414A、2B、2C、22D、412ab,a>0,b>0,【解析】ab122ba22ab22ab,abababab,所ab22(当且仅当b2a时取等号)以ab的最小值为22,故选C.【考点定位】基本不等式【名师点睛】基本不等式具有将“和式”转化为“积式”和将“积式”转化为“和式”的放缩功能,因此可以用在一些不等式的证明中,还可以用于求代数式的最值或取值范围.如果条件等式中,同时含有两个变量的和与积的形式,就可以直接利用基本不等式对两个正数的和与积进行转化,然后通过解不等式进【拓展练习】2.(2022天津文12)已知a0,b0,ab8,则当a的值为时log2alog22b取得最大值.logalog22b【解析】log2alog22b221122log22ablog2164,当a2b时44取等号,结合a0,b0a,b可得a4b,2【考点定位】本题主要考查对数运算法则及基本不等式应用.【名师点睛】在利用基本不等式求最值时,一定要紧扣“一正、二定、三相等”这三个条件,注意创造“定”这个条件时常要对所给式子进行拆分、组合、添加系数等处理,使之可用基本不等式来解决,若多次使用基本不等式,必须保持每次取等的一致性.3.(2022·山东文14)定义运算“”:某2y2(某,y∈R,某y≠0).当某>0,某y某yy>0时,某y+(2y)某的最小值为________.【解析】某2y2由某y,得某y某2y24y2某2某y+(2y)某=某y2某y某22y2=.因为某>0,y>0,所以2某y第33讲基本不等式及其应用2某22y2某22y2≥=2某y2某y某2y时,等号成立.2,当且仅当且仅当800某=,即某=80时“=”成立,∴每某8批应生产产品80件,故选B.典型错例.【考点】1.新定义运算;2.基本不等式.利用基本不等式解决实际问题【例3】(2022·福建文9)要制作一个容积为43m,高为1m的无盖长方体容器.已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是()A.80元B.120元C.160元D.240元【解析】设容器的底长某米,宽y米,则某y=4.4所以y=某,则总造价为:80f(某)=20某y+2(某+y)某1某10=80++20某某4=20某+80,某∈(0,+∞).某4所以f(某)≥20某2某+80=160,某4当且仅当某=,即某=2时,等号成立.某所以最低总造价是160元..C【拓展练习】4.某车间分批生产某种产品,每批的生产准备费用为800元.若每批生产某某件,则平均仓储时间为8天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品()A.60件B.80件C.100件D.120件【解析】.每批生产某件,则平均每件产品的生产准备费用是用是800元,每件产品的仓储费某已知:a0b,22,ab1,求11ab的最小值.ab2211【错解】abab=a2+b2+≥2ab+11++4a2b212ab+4≥4+4=8abab2211∴ab的最小值是8ab【易错点分析】上面的解答中,两次用到了基本不等式a2+b2≥2ab,第一次等号成立的1条件是ab,第二次等号成立的条件2ab=1,显然,这两个条件是不能同时成立ab1a2的.因此,8不是最小值.【解析】:原式=a2+b2+=(a2+b2)+(+1b2+411+)+422ab=[(ab)22ab]+[(1122+)-]+4abab1=(1-2ab)(1+22)+4ab11ab21由ab≤()=得:1-2ab≥1-=,且222411≥16,1+22≥17a2b2ab1251∴原式≥某17+4=(当且仅当ab2221212时,等号成立)∴(a+)+(b+)的最小ab25值是.2【知识归类点拔】在应用重要不等式求解最某800某800某元,则+≥2=20,当8某8某8-165-当且仅当a+1=b+3时,73即a=,b=时,等号成立.22即t的最大值为32.【考点定位】基本不等式.4.(2022·重庆文9)若log4(3a +4b)=log2ab,则a+b的最小值是()A.6+23B.7+23C.6+43D.7+431【解析】由log4(3a+4b)=log2ab,得2log2(3a134+4b)=2log2(ab),所以3a+4b=ab,即b+a=1.343a4b所以a+b=(a+b)=b +a+ba3a4b7≥43+7,当且仅当b=a,即a=23+4,b=3+23时取等号,故选D.5.(2022·浙江文16)已知实数a,b,c满足a+b+c=0,a2+b2+c2=1,则a的最大值是________.【解析】由a+b+c=0,得a =-b-c,则a2=(-b-c)2=b2+c2+2bc≤b2+c2+b2+c2=2(b2+c2).又a2+b2+c2=1,所以3a2≤2,666解得-3≤a≤3,所以ama某=3.6.(2022·济南一中高三期中)若实数a,b满足a+b=2,则3a+3b 的最小值是()A.18B.6C.23D.244【解析】3a+3b≥23a·3b=23a+b=232=6.7.(2022·四川文13)已知函数af(某)4某(某0,a0)在某=3时取得最某小值,则a=________.【解析】由基本不等式性质,aaf(某)4某(某0,a0)在4某,即某某a某2=取得最小值,由于某>0,a>0,再根据4a已知可得=32,故a=36.48.(2022山东文12)设正实数某,y,z 第33讲基本不等式及其应用z取得最小值某y时,某+2y-z的最大值为()99A.0B.8C.2D.4z某23某y4y2【解析】=某y某y满足某2-3某y+4y2-z=0.则当某4y某4y3≥23=1,当且仅y某y某当某=2y时等号成立,因此z=4y2-6y2+4y2=2y2,所以某+2y-z=4y-2y2=-2(y-1)2+2≤2.9.【点评】本题主要考查基本不等式的应用,考查运算求解能力、推理论证能力和转化思想、函数和方程思想.10.(2022·山东济南质量调研)已知直线a某+by=1经过点(1,2),则2a+4b的最小值为()A.2B.22C.4D.42【解析】因为直线a某+by=1过点(1,2),所以a+2b=1,则2a+4b=2a+22b≥22a·22b=22a+2b=22.答案B11..(2022·浙江文12)已知函数f(某)=某2,某≤1,6则f(f(-2))=_____,f(某)某+-6,某>1,某的最小值是_______.某2,某≤1【解析】∵f(某)=6某+-6,某>1,某1∴f(-2)=(-2)2=4,∴f[f(-2)]=f(4)=-2.当某≤1时,f(某)min=f(0)=0,6当某>1时,f(某)=某+某-6≥26-6,当且仅当某=6时“=”成立.∵26-6<0,∴f(某)的最小值为26-6.12.(2022江苏理)如图,建立平面直角坐标系某Oy,某轴在地平面上,y轴垂直于地平面,单位长度为1千米,某炮位于坐标原点.已1知炮弹发射后的轨迹在方程y=k某-20(1+k2)某2(k>0)表示的曲线上,其中k与发射方向有关.炮的射程是指炮弹落地点的横坐标.(1)求炮的最大射程;(2)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标a不超过多少时,炮弹可以击中它?请说明理由.1【解析】(1)令y=0,得k某-(1+k2)某2=0,20由实际意义和题设条件知某>0,k>0,20k2022故某=2=1≤2=10,当且仅当k1+kk+k=1时取等号.所以炮的最大射程为10千米.(2)因为a>0,所以炮弹可击中目标存1在k>0,使3.2=ka-20(1+k2)a2成立关于k的方程a2k2-20ak+a2+64=0有正根判别式Δ=(-20a)2-4a2(a2+64)≥0a≤6.所以当a不超过6(千米)时,可击中目标.备选题1,13.(2022·福建文7)若2某+2y=则某+y的取值范围是()A.[0,2]B.[-2,0]C.[-2,+∞)D.(-∞,-2]【解析】1=2某+2y≥22某y2,2某+y2-2,某+y-2,当且仅当某=y=-1时,等号成立,故选D.14.(2022山东理)若对任意某>0,某≤a恒成立,则a的取值范围是2某3某1________.某【解析】若对任意某>0,2≤a恒成立,某3某1某只需求得y=2的最大值即可.某3某1因为某>0,所以某11y=2=≤1某3某1某32某13某某-167-(1)将y表示为某的函数;(2)试确定某,使修建此矩形场地围墙的总费用最小,并求出最小总费用.【解析】(1)如图,设矩形的另一边长为am则y=45某+180(某-2)+180·2a=225某+360a-360360由已知某a=360,得a=某,3602∴y=225某+-360(某>0)某(2)∵某>0,3602∴225某+≥2225某3602=10800某3602∴y=225某+某-360≥10440.3602当且仅当225某=某时,等号成立.即当某=24m时,修建围墙的总费用最小,最小总费用是10440元.(1)将y表示为某的函数;(2)试确定某,使修建此矩形场地围墙的总费用最小,并求出最小总费用.【解析】(1)如图,设矩形的另一边长为am则y=45某+180(某-2)+180·2a=225某+360a-360360由已知某a=360,得a=某,3602∴y=225某+-360(某>0)某(2)∵某>0,3602∴225某+≥2225某3602=10800某3602∴y=225某+某-360≥10440.3602当且仅当225某=某时,等号成立.即当某=24m时,修建围墙的总费用最小,最小总费用是10440元.。
第04讲 基本不等式及其应用(十八大题型)(课件)-高考数学一轮复习(新教材新高考)
【典例1-1】下列不等式证明过程正确的是( )
A.若, ∈ R,则 + ≥ 2
⋅ =2
C.若x<0,则 + 4 ≥ −2 ⋅ 4 = −4
B.若x>0,y>0,则lg + lg ≥ 2 lg ⋅ lg
D.若x<0,则2 + 2− > 2 2 ⋅ 2− = 2
解析二: − 2 − = 0 ⇒ − 1 − 2 = 2,
则 + 2 = − 1 + 2 − 4 + 5 ≥ 2 2 − 1 − 2 + 5 = 9,
=3
− 1 = 2 − 4
⇒
等号成立时
,所以 + 2的最小值是9.
+ 2 = 9
=3
故答案为:9.
,解方程得
或
2
=1
= 1
=2
【方法技巧】
1、通过添项、拆项、变系数等方法凑成和为定值或积为定值的形式.
2、注意验证取得条件.
题型突破·考法探究
题型三:常规凑配法求最值
【变式3-1】若 > −2,则 = +
1
的最小值为
+2
.
【答案】0
1
【解析】由 > −2,得 + 2 > 0, +2 > 0,
所以() = +
1
+2
当且仅当 + 2 =
故答案为:0
=+2
1
即
+2
1
+
+2
高考数学一轮复习 专题7_4 基本不等式及应用(组)与简单的线性规划问题(讲)
第04节 基本不等式及其应用【考纲解读】【知识清单】基本不等式1、 如果,R a b ∈,那么222a b ab +≥(当且仅当a b =时取等号“=”)推论:22ab 2a b +≤(,R a b ∈)2、 如果0a >,0b >,则a b +≥,(当且仅当a b =时取等号“=”).推论:2ab ()2a b +≤(0a >,0b >);222()22a b a b ++≥ 3、20,0)112a b a b a b+≤≤>>+ 对点练习【2018重庆铜梁县联考】函数y=log a (x+2)﹣1(a >0,a≠1)的图象恒过定点A ,若点A 在直线mx+ny+1=0上,其中m >0,n >0,则 + 的最小值为( ) A. 3+2B. 3+2C. 7D. 11【答案】A【考点深度剖析】基本不等式是不等式中的重要内容,它的应用范围几乎涉及高中数学的所有章节,它在高考中往往是大小判断、求取值范围以及最值等几方面的应用. 【重点难点突破】考点1利用基本不等式证明不等式【1-1】不已知a 、b 、c 都是正数,求证:()()()8a b b c c a abc +++≥ 【解析】∵a 、b 、c 都是正数∴0a b +≥> (当且仅当a b =时,取等号)0b c +≥> (当且仅当b c =时,取等号)0c a +≥ (当且仅当c a =时,取等号)∴()()()8a b b c c a abc +++≥=(当且仅当a b c ==时,取等号) 即()()()8a b b c c a abc +++≥.【1-2】已知a >0,b >0,a +b =1,求证:11119a b ⎛⎫⎛⎫++≥ ⎪⎪⎝⎭⎝⎭. 【解析】∵0a >,0b >,1a b +=, ∴11+=1+=2+a b b a a a +.同理,11+=2+a b b .∴111122b a a b a b ⎛⎫⎛⎫⎛⎫⎛⎫++=++ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭=5+25+4=9b a a b ⎛⎫+≥ ⎪⎝⎭,当且仅当b a a b =,即1a=b=2时取“=”.∴11119a b ⎛⎫⎛⎫++≥ ⎪⎪⎝⎭⎝⎭,当且仅当12a b ==时等号成立. 【领悟技法】利用基本不等式证明不等式是综合法证明不等式的一种情况,要从整体上把握运用基本不等式,对不满足使用基本不等式条件的可通过“变形”来转换,常见的变形技巧有:拆项,并项,也可乘上一个数或加上一个数,“1”的代换法等. 【触类旁通】 【变式一】求证:47(3)3a a a +≥>-考点2 利用基本不等式求最值【2-1】【2017天津,理12】若,a b ∈R ,0ab >,则4441a b ab++的最小值为___________.【答案】4【解析】44224141144a b a b ab ab ab ab +++≥=+≥= ,(前一个等号成立条件是222a b =,后一个等号成立的条件是12ab =,两个等号可以同时取得,则当且仅当22a b ==时取等号). 【2-2】【2018河北大名第一中学模拟】已知关于x 的不等式x 2-4ax +3a 2<0(a <0)的解集为(x 1,x 2))【答案】D【解析】:不等式x 2-4ax +3a 2<0(a <0)的解集为(x 1,x 2), 根据韦达定理,可得: 2123x x a =,x 1+x 2=4a , 那么:a∵a <0,∴-(4a4a故选:D .【2-3】【2018有两个不等的实根1x 和2x ,则12x x +的取值范围是( ) A. ()1,+∞ B. C. ()2,+∞ D. ()0,1【答案】C【领悟技法】基本不等式具有将“和式”转化为“积式”和将“积式”转化为“和式”的放缩功能,因此可以用在一些不等式的证明中,还可以用于求代数式的最值或取值范围.如果条件等式中,同时含有两个变量的和与积的形式,就可以直接利用基本不等式对两个正数的和与积进行转化,然后通过解不等式进行求解.注意:形如y =x +ax(a >0)的函数求最值时,首先考虑用基本不等式,若等号取不到,再利用该函数的单调性求解. 【触类旁通】【变式一】【2017届浙江杭州高三二模】设函数()()2,f x x ax b a b R =++∈的两个零点为1x , 2x ,若122x x +≤,则( )A. 1a ≥B. 1b ≤C. 22a b +≥D. 22a b +≤ 【答案】B【解析】12x x +≥=,所以2≤ ,则1b ≤ ,故选择B.【变式二】【2018河南师范大学附属中模拟】对于使()f x M ≤成立的所有常数M 中,我们把M 的最小值叫做()f x 的上确界,若正数,a b R ∈且1a b +=,则为( )【答案】A考点3 基本不等式的实际应用【3-1】【2017江苏,10】某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储之和最小,则x 的值是 . 【答案】30【解析】总费用600900464()4240x x x x +⨯=+≥⨯=,当且仅当900x x=,即30x =时等号成立.【3-2】如图,有一块等腰直角三角形ABC 的空地,要在这块空地上开辟一个内接矩形EFGH 的绿地,已知AB AC ⊥,4AB =,绿地面积最大值为( )A.6B.4 D.【答案】C【解析】设EH x =,EF y =,由条件可知EBH ∆和EFA ∆为等直角三角形,所以EB =,AE y =.AB EB AE =+y ≥,即≤4,所以4xy ≤,所以绿地面积最大值为4,故选C .【3-3】 (2015·大理模拟)某小区想利用一矩形空地ABCD 建市民健身广场,设计时决定保留空地边上的一水塘(如图中阴影部分),水塘可近似看作一个等腰直角三角形,其中AD =60 m ,AB =40 m ,且△EFG 中,∠EGF =90°,经测量得到AE =10 m ,EF =20 m ,为保证安全同时考虑美观,健身广场周围准备加设一个保护栏,设计时经过点G 作一直线分别交AB ,DF 于M ,N ,从而得到五边形MBCDN 的市民健身广场,设DN =x (m).(1)将五边形MBCDN 的面积y 表示为x 的函数;(2)当x 为何值时,市民健身广场的面积最大?并求出最大面积.【领悟技法】用均值不等式解决此类问题时,应按如下步骤进行:(1)理解题意,设变量,设变量时一般把要求最大值或最小值的变量定为函数; (2)建立相应的函数关系式,把实际问题抽象为函数的最大值或最小值问题; (3)在定义域内,求出函数的最大值或最小值; (4)正确写出答案. 【触类旁通】【变式】运货卡车以每小时x 千米的速度匀速行驶130千米,按交通法规限制50≤x ≤100(单位:千米/时).假设汽油的价格是每升2元,而汽车每小时耗油⎝ ⎛⎭⎪⎫2+x 2360升,司机的工资是每小时14元.(1)求这次行车总费用y 关于x 的表达式;(2)当x 为何值时,这次行车的总费用最低,并求出最低费用的值.【解析】(1)设所用时间为t =130x(h),y =130x ×2×⎝ ⎛⎭⎪⎫2+x 2360+14×130x ,x ∈[50,100].所以,这次行车总费用y 关于x 的表达式是y =130×18x +2×130360x ,x ∈[50,100]. (或y =2 340x +1318x ,x ∈[50,100]).y =130×18x +2×130360x ≥2610, 当且仅当130×18x =2×130360x ,即x =1810,等号成立.故当x =1810千米/时,这次行车的总费用最低,最低费用的值为2610元.【易错试题常警惕】易错典例:已知两正数x ,y 满足x +y =1,则z =(x +1x )(y +1y)的最小值为________.[错解] 错解一:因为对a >0,恒有a +1a≥2,从而z =(x +1x )(y +1y)≥4,所以z 的最小值是4. 错解二:z =2+x 2y 2-2xyxy=(2xy +xy )-2≥22xy·xy -2=2(2-1),所以z 的最小值是2(2-1).易错分析:错解的错误原因是等号成立的条件不具备.温馨提示:1.在利用均值定理求最值时,要紧扣“一正、二定、三相等”的条件.“一正”是说每个项都必须为正值,“二定”是说各个项的和(或积)必须为定值.“三相等”是说各项的值相等时,等号成立.2.多次使用均值不等式解决同一问题时,要保持每次等号成立条件的一致性和不等号方向的一致性.。
基本不等式及其应用-2025年高考数学一轮复习讲义及高频考点归纳与方法总结(新高考通用)解析版
2025年高考数学一轮复习讲义及高频考点归纳与方法总结(新高考通用)第04练基本不等式及其应用(精练)1.了解基本不等式的证明过程.2.会用基本不等式解决简单的最值问题.3.理解基本不等式在生活实际问题中的应用.一、单选题1.(2022·全国·高考真题)已知910,1011,89m m m a b ==-=-,则()A .0a b >>B .0a b >>C .0b a >>D .0b a>>二、多选题2.(2022·全国·高考真题)若x ,y 满足221+-=x y xy ,则()A .1x y +≤B .2x y +≥-C .222x y +≤D .221x y +≥三、填空题3.(2023·天津·高考真题)在ABC 中,160BC A =∠= ,,11,22AD AB CE CD == ,记,AB a AC b ==,用,a b表示AE =;若13BF BC = ,则AE AF ⋅ 的最大值为.四、解答题4.(2022·全国·高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos sin 21sin 1cos2A BA B=++.(1)若23C π=,求B ;(2)求222a b c +的最小值.【A 级基础巩固练】一、单选题1.(23-24高二下·福建三明·阶段练习)若0x >,则22y x x=+的最小值是()A .B C .4D .22.(2024高二下·湖南株洲·学业考试)已知04x <<)A .12B .1C D .33.(23-24高一下·贵州贵阳·阶段练习)已知02x <<,则()32x x -的最大值是()A .3-B .3C .1D .6【答案】B【分析】利用基本不等式,直接计算即可.取得等号,满足题意4.(23-24高一下·河南周口·阶段练习)已知正数,a b 满足1ab =,则22(1)(1)T a b =+++的最小值为()A .4B .6C .8D .165.(2023·湖南岳阳·模拟预测)若0,0a b >>且1a mb +=,若ab 的最大值为8,则正常数m =()A .1B .2C .3D .46.(23-24高一下·云南丽江·开学考试)已知a ,b 为正数,41a b +=,则114a b+的最小值为()A .1B .2C .4D .87.(23-24高一下·福建南平·期中)已知0a >,0b >,230a b +-=,则21a b++的最小值为()A .2B .1C .32D .348.(23-24高一下·湖南衡阳·阶段练习)已知向量()2,1a m m =+,(),12b n =,若向量a ,b 共线且0m >,则n 的最大值为()A .6B .4C .8D .39.(23-24高一下·浙江·期中)已知实数a ,b ,满足310ab +=(1b >),则31b a ++的取值范围是()A .()(),04,-∞⋃+∞B .()4,+∞C .(][),04,-∞+∞U D .[)4,+∞10.(2024·辽宁葫芦岛·一模)已知0a >,0b >,2a b +=,则()A .01a <≤B .01ab <≤C .222a b +>D .12b <<11.(2024·山东枣庄·一模)已知0,0a b >>,则“2a b +>”是“222a b +>”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件12.(23-24高一下·辽宁抚顺·阶段练习)已知,a b 均为正实数,240a b -+≤,则23a ba b++的最小值为()A .135B .145C .3D .513二、多选题13.(2024高三·全国·专题练习)已知x ≥1,则下列函数的最小值为2的有()A .22xy x =+B .2y =C .13y xx=-D .411y x x =-+14.(23-24高三上·云南楚雄·期末)已知正数a ,b 满足5a b ab +=,则()A .151a b+=B .a 与b 可能相等C 6≥D .a b +的最小值为6+【答案】BD15.(23-24高二下·浙江·期中)已知正数,a b 满足()()111a b --=,则下列选项正确的是()A .111a b+=B .25ab b+³C .4a b +≥D .228a b +≤三、填空题16.(23-24高一上·北京·期中)已知()8233y x x x =+>,则当x =时,y 取最小值为.17.(2024·上海徐汇·二模)若正数a b 、满足1a b+=,则2a b +的最小值为.18.(2024·河南商丘·模拟预测)若正数,a b 满足232a b a b =+,则a 的最小值是.19.(23-24高二下·云南·阶段练习)设0,0m n >>,若直线:22l mx y +=过曲线11x y a -=+(0a >,且1a ≠)的定点,则11m n+的最小值为.20.(23-24高一上·广西百色·期末)若1x >,则2161x x x -+-的最小值为.21.(2023·湖南岳阳·模拟预测)如图,某人沿围墙CD 修建一个直角梯形花坛ABCD ,设直角边AD x =米,2BC x =米,若12AD AB BC ++=米,问当x =米时,直角梯形花坛ABCD 的面积最大.22.(23-24高二下·湖南长沙·阶段练习)已知02a <<,则2a a+-的最小值为.四、解答题23.(23-24高二下·全国·期中)为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用32年的隔热层,每厘米厚的隔热层建造成本为8万元.该建筑物每年的能源消耗费用C (单位:万元)与隔热层厚度x (单位;cm )满足关系:()()161102C x x x =≤≤+,设()f x 为隔热层建造费用与32年的能源消耗费用之和.(1)求()f x 的表达式;(2)隔热层修建多厚时,总费用()f x 达到最小,并求最小值.24.(23-24高一上·陕西渭南·阶段练习)已知0a >,0b >,0c >,求证:(1)6b c a c a ba b c+++++≥;(2)()()()2222226a b c b a c c a b abc +++++≥.25.(23-24高一上·浙江·期末)为了进一步增强市场竞争力,某公司计划在2024年利用新技术生产某款运动手表,经过市场调研,生产此款运动手表全年需投入固定成本100万,每生产x (单位:千只)手表,需另投入可变成本()R x 万元,且()228020,05064002015200,50x x x R x x x x ⎧++<<⎪=⎨+-≥⎪⎩,由市场调研知,每部手机售价0.2万元,且全年生产的手机当年能全部销售完.(利润=销售额-固定成本-可变成本)(1)求2024年的利润()W x (单位:万元)关于年产量x (单位:千只)的函数关系式.(2)2024年的年产量为多少(单位:千只)时,企业所获利润最大?最大利润是多少?26.(23-24高一上·黑龙江哈尔滨·阶段练习)完成下列不等式的证明:(1)对任意的正实数a ,b ,c,证明:a b c ++(2)设a ,b ,c 为正实数,且1a b c ++=,证明:13ab ac bc ++≤.【B 级能力提升练】一、单选题1.(23-24高一下·辽宁葫芦岛·开学考试)已知0,0x y >>,且41x y +=,则2y xxy+的最小值为()A .5B .C .4D .2.(2023·河南信阳·模拟预测)若51x -<<-,则函数()22f x x ++=+有()A .最小值1B .最大值1C .最小值1-D .最大值1-所以函数()f x 有最大值1-.故选:D.3.(23-24高三下·浙江·阶段练习)已知实数x ,y 满足3x >,且2312xy x y +-=,则x y +的最小值为()A .1+B .8C .D .1+4.(2024·辽宁·一模)已知20m n >>,则2m mm n n+-的最小值为()A .3+B .3-C .2+D .25.(2024·全国·模拟预测)已知,则下列不等式中不成立...的是()A .01ab <<B .122a b ->C >D .114a b+>【答案】C【分析】对于AB ,利用对数函数的性质即可判断;对于CD ,利用对数的运算得到1a b +=,结合基本不等式即可判断.【详解】因为lg 2,lg5a b ==,所以lg 2lg 5lg101a b +=+==,6.(2024·辽宁大连·一模)若()()ln 0,01f x m n n x+=>>--奇函数,则41m n ++的最小值为().A .65B .95C .4D .57.(23-24高一下·贵州贵阳·阶段练习)故宫博物院收藏着一幅《梧桐双兔图》.该绢本设色画纵约176cm ,横约95cm ,挂在墙上最低点B 离地面194cm ,小兰身高160cm (头顶距眼睛的距离为10cm).为使观测视角θ最大,小兰离墙距离S 应为()A.B .94cm C.D .76cm8.(2024·全国·模拟预测)已知0x >,0y >且1x y +=,则222211x y x y +++的最小值为()A .15B .25C .35D .459.(23-24高二下·江苏苏州·阶段练习)为提高市民的健康水平,拟在半径为200米的半圆形区域内修建一个健身广场,该健身广场(如图所示的阴影部分)分休闲健身和儿童活动两个功能区,图中ABCD 区域是休闲健身区,以CD 为底边的等腰三角形区域PCD 是儿童活动区,P ,C ,D 三点在圆弧上,AB 中点恰好在圆心O ,则当健身广场的面积最大时,OB 的长度为()A .100米B .150米C.米D.由于2AD BC OC ==-都是上底为21R t -,下底为所以,健身广场的面积S 从而,健身广场的面积最大的时候,恰好就是()22111tt t t t -+=-+=()223323223t t t +-+-≤=二、多选题10.(2023·浙江绍兴·二模)已知0a >,0b >,a b ab +=,则()A .1a >且1b >B .4ab ≥C .49a b +≤D .11b ab+>11.(2024·全国·模拟预测)已知0a >,0b >且2a b+=,则下列说法正确的是()A .ab 有最小值4B .a b +有最小值92C .2ab a +有最小值D的最小值为12.(23-24高二下·江西宜春·期中)已知0,1a b a b >>+=.则下列结论正确的有()A .a 32B .22122a b ++的最小值为C .1422a b a b+的最小值为3D .sin 1a b +<三、填空题13.(23-24高一下·河北保定·开学考试)若正数,m n 满足2212516m n +=,则mn 的最大值为.14.(23-24高一上·江苏扬州·期末)若1x >,1y >,10xy =,则lg lg x y 的最大值为.15.(2024·全国·模拟预测)已知1x >,0y >,且2x y +=,则11y x +-的最小值是.17.(2024·上海普陀·二模)若实数a ,b 满足20a b -≥,则24ab+的最小值为.18.(23-24高一上·浙江·期末)已知22321(,R)x xy y x y -+=∈,则222x y +的最小值为.四、解答题19.(2024·全国·二模)已知实数0,0a b >>,满足a b +=(1)求证:2224a b +≥;(2)求()()2211ab ab++的最小值.【答案】(1)证明见解析(2)1220.(23-24高一上·湖北武汉·阶段练习)已知0a >,0b >,且2a b +=.(1)求证:11413a b +≥+;(2)求证:42aab b+≥.21.(23-24高一下·甘肃白银·期中)养鱼是现在非常热门的养殖项目,为了提高养殖效益,养鱼户们会在市场上购买优质的鱼苗,分种类、分区域进行集中养殖.如图,某养鱼户承包了一个边长为100米的菱形鱼塘(记为菱形ABCD )进行鱼类养殖,为了方便计算,将该鱼塘的所有区域的深度统一视为2米.某养鱼户计划购买草鱼苗、鲤鱼苗和鲫鱼苗这三种鱼苗进行分区域养殖,用不锈钢网将该鱼塘隔离成ABD ,DEFB ,CEF 三块区域,图中,BD EF 是不锈钢网露出水面的分界网边,E 在鱼塘岸边DC 上(点E 与D ,C 均不重合),F 在鱼塘岸边BC .上(点F 与B ,C 均不重合).其中△ECF 的面积与四边形DEFB 的面积相等,△DAB 为等边三角形.(1)若测得EC 的长为80米,求CF 的长.(2)已知不锈钢网每平方米的价格是20元,为了节约成本,试问点E ,F 应如何设置,才能使得购买不锈钢1.414=)22.(2023·贵州黔西·一模)设a,b,c均为正数,且1a b c++=,证明:(1)2221 3a b c++≥;(2)333a cb ac b abc++≥.23.(23-24高一上·山东·阶段练习)已知0a >,0b >.(1)若4a b -=,证明:471a b +≥+.(2)若8a b ab ++=,求a b +的最小值.(3)若229327a b ab ++=,求3a b +的最大值.【C 级拓广探索练】一、单选题1.(22-23高一上·江苏徐州·阶段练习)设正实数,,x y z 满足22-3+4-=0x xy y z ,则当xyz取得最大值时,212+-x y z 的最大值为()A .9B .1C .94D .32.(23-24高三上·浙江绍兴·期末)已知x 为正实数,y 为非负实数,且22x y +=,则1x y +++的最小值为()A .34B .94C .32D .923.(2024·全国·模拟预测)设{}max ,,x y z 为,,x y z 中最大的数.已知正实数,a b ,记max 8,2M a b⎧=⎨⎩,则M 的最小值为()A .1B C .2D .44.(22-23高一上·河南·阶段练习)已知22321x xy y -+=(),R x y ∈,则22x y +的最小值为()A 6B 6C .6D .6二、多选题5.(23-24高一上·福建泉州·期末)已知0,0,21x y x y >>+=,则()A .42x y +的最小值为B .22log log x y +的最大值为3-C .y x xy --的最小值为1-D .22221x y x y +++的最小值为16正确;三、填空题6.(2023·山西·模拟预测)已知0,0a b >>,且122a b +=,则161211a b +--的最小值是.7.(23-24高三上·湖北荆州·阶段练习)已知实数,x y 满足22221x xy y -+=,则22x y -的最大值为.四、解答题8.(2023·全国·模拟预测)已知(),,0,x y z ∈+∞,且1x y z ++=.(1)1z>-;(2)求222544x y z xy yz xz +++++的最大值.,三式相加,可得:9.(23-24高一上·山东青岛·期末)某药品可用于治疗某种疾病,经检测知每注射t ml药品,从注射时间起血药浓度y(单位:ug/ml)与药品在体内时间x(单位:小时)的关系如下:162,06,89,618.2t xxyx t x⎧⎛⎫-≤≤⎪⎪-⎪⎝⎭=⎨⎛⎫⎪-<≤⎪⎪⎝⎭⎩当血药浓度不低于2ug/ml时才能起到有效治疗的作用,每次注射药品不超过2ml.(1)若注射1ml药品,求药品的有效治疗时间;(2)若多次注射,则某一时刻体内血药浓度为每次注射后相应时刻血药浓度之和.已知病人第一次注射1ml 药品,12小时之后又注射a ml药品,要使随后的6小时内药品能够持续有效消疗,求a的最小值.。
2023年高三一轮复习专题一基本不等式及其应用-教师版
高三一轮复习专题一基本不等式及其应用【考点预测】 1.基本不等式如果00>>b a ,,那么2b a ab +≤,当且仅当b a =时,等号成立.其中,2ba +叫作b a ,的算术平均数,ab 叫作b a ,的几何平均数.即正数b a ,的算术平均数不小于它们的几何平均数.基本不等式1:若a b ∈,R ,则ab b a 222≥+,当且仅当b a =时取等号; 基本不等式2:若a b ∈,+R ,则ab ba ≥+2(或ab b a 2≥+),当且仅当b a =时取等号. 注意(1)基本不等式的前提是“一正”“二定”“三相等”;其中“一正”指正数,“二定”指求最值时和或积为定值,“三相等”指满足等号成立的条件.(2)连续使用不等式要注意取得一致. 【方法技巧与总结】 1.几个重要的不等式(1)()()()20,00,0.a a R a a a a R ≥∈≥≥≥∈ (2)基本不等式:如果,a b R +∈,则2a bab +≥(当且仅当“a b =”时取“”). 特例:10,2;2a ba a ab a>+≥+≥(,a b 同号). (3)其他变形:①()2222a b a b ++≥(沟通两和a b +与两平方和22a b +的不等关系式)②222a b ab +≤(沟通两积ab 与两平方和22a b +的不等关系式)③22a b ab +⎛⎫≤ ⎪⎝⎭(沟通两积ab 与两和a b +的不等关系式)④重要不等式串:)222,1122a b a b ab a b R a b+++≤≤≤∈+即 调和平均值≤几何平均值≤算数平均值≤平方平均值(注意等号成立的条件). 2.均值定理 已知,x y R +∈.(1)如果x y S +=(定值),则2224x y S xy +⎛⎫≤=⎪⎝⎭(当且仅当“x y =”时取“=”).即“和为定值,积有最大值”.(2)如果xy P =(定值),则x y +≥=(当且仅当“x y =”时取“=”).即积为定值,和有最小值”. 3.常见求最值模型 模型一:)0,0(2>>≥+n m mn xnmx ,当且仅当m n x =时等号成立; 模型二:)0,0(2)(>>+≥+-+-=-+n m ma mn ma ax na x m a x n mx ,当且仅当m n a x =-时等号成立;模型三:)0,0(2112>>+≤++=++c a bac xc b ax c bx ax x ,当且仅当a cx =时等号成立; 模型四:)0,0,0(4)21)()(22mnx n m m n mx n mx m m mx n mx mx n x <<>>=-+⋅≤-=-(,当且仅当mnx 2=时等号成 立.【题型归纳目录】题型一:基本不等式及其应用 题型二:直接法求最值 题型三:常规凑配法求最值 题型四:消参法求最值 题型五:双换元求最值 题型六:“1”的代换求最值 题型七:齐次化求最值题型八:利用基本不等式解决实际问题【典例例题】题型一:基本不等式及其应用例1.(2022·江苏·高三专题练习)《几何原本》卷2的几何代数法(以几何方法研究代数问题)成了后世西方数学家处理问题的重要依据,通过这一原理,很多的代数的公理或定理都能够通过图形实现证明,也称之为无字证明.现有如图所示图形,点F 在半圆O 上,点C 在直径AB 上,且OF AB ⊥,设AC a =,BC b =,则该图形可以完成的无字证明为( )A .0,0)2a ba b +≥>> B .220,0)a b a b +≥>>C .20,0)aba b a b ≤>>+ D .0,0)2a b a b +>>【答案】D 【解析】 【分析】设,AC a BC b ==,得到2a br OF +==,2a b OC -=,在直角OCF △中,利用勾股定理,求得222=2a b FC +,结合FO FC ≤,即可求解.【详解】设,AC a BC b ==,可得圆O 的半径为122a br OF AB +===, 又由22a b a bOC OB BC b +-=-=-=, 在直角OCF △中,可得2222222()()222a b a b a b FC OC OF -++=+=+=,因为FO FC ≤,所以2a b +≤a b =时取等号. 故选:D.例2.(2022·黑龙江·哈尔滨三中高三阶段练习(文))下列不等式中一定成立的是( ) A .()2111x x >∈+R B .()12,sin sin xx k x k π+>≠∈Z C .21ln ln (0)4x x x ⎛⎫+>> ⎪⎝⎭D .()212x x x +≥∈R【答案】D 【解析】 【分析】 由211x +≥得211x +的范围可判断A ;利用基本不等式求最值注意满足一正二定三相等可判断B ;作差比较214x +与x 的大小可判断C ;作差比较21x +与2x 的大小可判断D.【详解】因为x ∈R ,所以211x +≥,所以21011x <≤+,故A 错误; 1sin 2sin x x+≥只有在sin 0x >时才成立,故B 错误; 因为2211042x x x ⎛⎫-+=-≥ ⎪⎝⎭,所以214x x +≥,所以21ln ln 4x x ⎛⎫+≥ ⎪⎝⎭,故C 错误;因为()221210x x x +-=-≥,所以212x x +≥,故D 正确. 故选:D.(多选题)例3.(2022·全国·高三专题练习)下列函数中最小值为6的是( ) A .9ln ln y x x=+B .36sin 2sin y x x=+C .233xxy -=+ D .2y =【答案】BC 【解析】 【分析】根据基本不等式成立的条件“一正二定三相等”,逐一验证可得选项. 【详解】解:对于A 选项,当()0,1x ∈时,ln 0x <,此时9ln 0ln x x+<,故A 不正确.对于B 选项,36sin 62sin y x x =+≥,当且仅当36sin 2sin x x =,即1sin 2x =时取“=”,故B 正确.对于C 选项,2336x x y -=+≥=,当且仅当233x x -=,即1x =时取“=”,故C 正确.对于D 选项,26y ≥=,=27x =-无解,故D 不正确.故选:BC.(多选题)例4.(2022·江苏·扬州中学高三开学考试)设0a >,0b >,下列结论中正确的是( )A .()1229a b a b ⎛⎫++≥ ⎪⎝⎭B .()2221a b a b +≥++C .22b a a b a b+≥+D .22a b a b+≥+【答案】ACD 【解析】 【分析】利用基本不等式可判断ACD 选项的正误,利用特殊值法可判断B 选项的正误. 【详解】对于A 选项,()12222559b a a b a b a b ⎛⎫++=++≥+= ⎪⎝⎭,当且仅当a b =时,等号成立,A 对;对于B 选项,取1a b ==,则()2221a b a b +<++,B 错;对于C 选项,22b a b a +≥=,22a b a b +≥=, 所以,2222b a a b a b a b +++≥+,即22b a a b a b+≥+,当且仅当a b =时,等号成立,C 对;对于D 选项,因为222a b ab +≥,则()()2222222a b a b ab a b +≥++=+,所以,()()22222a b a b a ba b a b +++≥=≥++a b =时,两个等号同时成立,D 对.故选:ACD. 【方法技巧与总结】熟记基本不等式成立的条件,合理选择基本不等式的形式解题,要注意对不等式等号是否成立进行验证.题型二:直接法求最值例5.(2022·河南河南·三模(理))已知二次函数()22f x ax x c =++(x ∈R )的值域为[)0,∞+,则14c a+的最小值为( ) A .4- B .4 C .8 D .8-【答案】B 【解析】 【分析】根据()f x 的值域求得1ac =,结合基本不等式求得14c a+的最小值.【详解】由于二次函数()22f x ax x c =++(x ∈R )的值域为[)0,∞+,所以0Δ440a ac >⎧⎨=-=⎩,所以1,0ac c =>,所以144c a +≥=,当且仅当14c a =即12,2a c ==时等号成立.故选:B例6.(2022·湖北十堰·三模)函数()1111642x x x f x -=++的最小值为( ) A .4 B .C .3D .【答案】A 【解析】 【分析】利用不等式性质以及基本不等式求解. 【详解】因为116224xx x +≥⨯,当且仅当1164x x =,即0x =时等号成立,1122222422x x x x -⨯+=⨯+≥=,当且仅当2222xx⨯=,即0x =时等号成立, 所以()f x 的最小值为4. 故选:A(多选题)例7.(2022·广东·汕头市潮阳区河溪中学高三阶段练习)已知a ,b 是两个正数,4是2a 与16b 的等比中项,则下列说法正确的是( ) A .ab 的最小值是1 B .ab 的最大值是1 C .11a b+的最小值是94D .11a b +的最大值是92【答案】BC 【解析】 【分析】根据等比中项整理得44a b +=,直接由基本不等式可得ab 的最大值,可判断AB ;由111()(4)4a b a b +⋅+⋅展开后使用基本不等式可判断CD. 【详解】因为22164a b ⋅=,所以4422a b +=,所以4424a b ab +=,可得1ab ,当且仅当4a b =时等号成立, 所以ab 的最大值为1,故A 错误,B 正确.因为1111419()(4)(14)(524444b a a b a b a b +⋅+⋅=++++=, 故11a b +的最小值为94,无最大值,故C 正确,D 错误. 故选:BC【方法技巧与总结】直接利用基本不等式求解,注意取等条件.题型三:常规凑配法求最值例8.(2022·全国·高三专题练习(理))若11x -<< ,则22222x x y x -+=-有( )A .最大值1-B .最小值1-C .最大值1D .最小值1【答案】A 【解析】将给定函数化简变形,再利用均值不等式求解即得. 【详解】因11x -<<,则012x <-<,于是得21(1)1111[(1)]121212x y x x x -+=-⋅=--+≤-⋅---,当且仅当111x x-=-,即0x =时取“=”, 所以当0x =时,22222x x y x -+=-有最大值1-.故选:A例9.(2022·全国·高三专题练习)函数131y x x =+-(1)x >的最小值是( )A .4B .3C .D .3【答案】D 【解析】 由()13131y x x =-++-,利用基本不等式求最小值即可. 【详解】因为1x >,所以()131331y x x =-++≥-3=,当且仅当()1311x x -=-,即1x =+时等号成立.所以函数131y x x =+-(1)x >的最小值是3. 故选:D. 【点睛】本题考查利用基本不等式求最值,考查学生的计算求解能力,属于基础题. 例10.(2022·全国·高三专题练习)若0x >,0y >且x y xy +=,则211x yx y +--的最小值为( )A .3B .52C .3D .3+【答案】D 【解析】利用给定条件确定1,1x y >>,变形211x y x y +--并借助均值不等式求解即得. 【详解】因0x >,0y >且x y xy +=,则xy x y y =+>,即有1x >,同理1y >, 由x y xy +=得:(1)(1)1x y --=,于是得11222123()33111111x y x y x y x y +=+++=++≥+=+------当且仅当2111x y =--,即11x y =+=“=”,所以211x y x y +--的最小值为3+ 故选:D例11.(2022·上海·高三专题练习)若1x >,则函数211x x y x -+=-的最小值为___________.【答案】3 【解析】 【分析】由2111111x x y x x x -+==-++--,及1x >,利用基本不等式可求出最小值.【详解】由题意,()()()()222211111111111111x x x x x x x y x x x x x -++-+-+-+-+====-++----,因为1x >,所以111131y x x =-++≥=-,当且仅当111x x -=-,即2x =时等号成立.所以函数211x x y x -+=-的最小值为3.故答案为:3.例12.(2021·江苏·常州市北郊高级中学高一阶段练习)已知1xy =,且102y <<,则22416x yx y -+最大值为______.【解析】由1xy =且102y <<,可得1(2)y x x=>,可得40x y ->,再将22416x y x y -+化为18(4)4x y x y-+-后利用基本不等式求解即可. 【详解】解:由1xy =且102y <<,可得1(2)y x x =>,代入440x y x x-=->,又222441816(4)8(4)4x y x y x y x y xy x y x y--==≤=+-+-+-当且仅当844x y x y-=-,即4x y -= 又1xy =,可得x =y =时,不等式取等, 即22416x y x y -+,. 【方法技巧与总结】1.通过添项、拆项、变系数等方法凑成和为定值或积为定值的形式. 2.注意验证取得条件.题型四:消参法求最值例13.(2022·浙江绍兴·模拟预测)若直线30(0,0)ax by a b --=>>过点(1,1)-,则___________.【答案】【解析】 【分析】将点(1,1)-代入直线方程可得3a b +=. 【详解】直线30ax by --=过点(1,1)-,则3a b += 又0,0a b >>,设t =0t >2126t a b =++++=+由()()2121292a b a b +++⎛⎫++≤= ⎪⎝⎭,当且仅当12+=+a b ,即2,1a b ==时等号成立.所以2612t =+≤,即t ≤2,1a b ==时等号成立. 故答案为:例14.(2022·全国·高三专题练习)设正实数x ,y ,z 满足22340x xy y z -+-=,则当xy z取得最大值时,212x y z+-的最大值为( )A .0B .3C .94D .1【答案】D 【解析】 【分析】利用22340x xy y z -+-=可得143xy x y z y x=+-,根据基本不等式最值成立的条件可得22,2x y z y ==,代入212x y z++可得关于y 的二次函数,利用单调性求最值即可.【详解】由正实数x ,y ,z 满足22340x xy y z -+-=, 2234z x xy y ∴=-+.∴22111434432?xy xy x y z x xy y x y y x===-++-, 当且仅当20x y =>时取等号,此时22z y =.∴222122121(1)1122x y z y y y y+-=+-=--+,当且仅当1y =时取等号, 即212xyz+-的最大值是1. 故选:D 【点睛】本题主要考查了基本不等式的性质和二次函数的单调性,考查了最值取得时等号成立的条件,属于中档题.例15.(2022·全国·高三专题练习(理))已知正实数a ,b 满足220ab a +-=,则4a b +的最小值是( ) A .2 B.2 C.2 D .6【答案】B 【解析】 【分析】根据220ab a +-=变形得22a b =+,进而转化为a b b b +=++842, 用凑配方式得出()b b ++-+8222,再利用基本不等式即可求解. 【详解】由220ab a +-=,得22a b =+,所以()a b b b b b b +=+=++-⋅=+++888422222222, 当且仅当,a b b b ==+++28222,即a b ==2取等号. 故选:B.例16.(2022·浙江·高三专题练习)若正实数a ,b 满足32+=b a ab ,则2+a bab 的最大值为______. 【答案】12【解析】 【分析】由已知得a =23b b -,代入2+a b ab =32323bb b b b +--=222b b -+=﹣2 (112b -)2+12,然后结合二次函数的性质可求. 【详解】因为正实数a ,b 满足b +3a =2ab , 所以a =23bb -,则2+a b ab =32323bb b b b +--=222b b -+=﹣2 (112b -)2+12, 当112b =,即b =2 时取得最大值12.故答案为:12. 【点睛】思路点睛:b +3a =2ab ,可解出a ,采用二元化一元的方法减少变量,转化为1b的一元二次函数,利用一元二次函数的性质求最值.例17.(2022·全国·高三专题练习)若,x y R +∈,23()()-=x y xy ,则11x y+的最小值为___________. 【答案】2 【解析】 【分析】根据题中所给等式可化为211()xy y x-=,再通过平方关系将其与11x y +联系起来,运用基本不等式求解最小值即可. 【详解】因为23()()-=x y xy 且,x y R +∈,则两边同除以2()xy ,得211()xy y x-=,又因为224(111111()44)xy y y x xy xy x -+=+=+≥,当且仅当14xy xy =,即22x y ==211x y+.故答案为:2例18.(2022·浙江绍兴·模拟预测)若220,0,422>>+-=a b a b ab ,则12++ab a b的取值范围是_________.【答案】23⎡⎢⎣⎦【解析】 【分析】根据已知可得2(2)206a b ab +-=>,求得2a b +>2(2)26a b ab +=+结合基本不等式可求得02a b <+≤12++ab a b变形为14262a b a b ⎛⎫++ ⎪+⎝⎭,采用换元法,利用导数求得结果. 【详解】由题意220,0,422>>+-=a b a b ab 得:2(2)206a b ab +-=> ,则2a b +>,又222(2)26232+⎛⎫+=+≤+⨯ ⎪⎝⎭a b a b ab ,当且仅当2b a ==时取等号,故02a b <+≤2a b <+≤ 所以1142262ab a b a b a b +⎛⎫=++ ⎪++⎝⎭,令2,t a b t =+∈ ,则14()()6f t t t =+ ,222144()(1)66t f t t t -'=-=,2t << 时,()0f t '<,()f t 递减,当2t <≤时,()0f t '>,()f t 递增,故min 2()(2)3f t f ==,而f = ,f =,故2()[3f t ∈,即2[312ab a b ∈++,故答案为:23⎡⎢⎣⎦【方法技巧与总结】消参法就是对应不等式中的两元问题,用一个参数表示另一个参数,再利用基本不等式进行求解.解题过程中要注意“一正,二定,三相等”这三个条件缺一不可!题型五:双换元求最值例19.(2022·浙江省江山中学高三期中)设0a >,0b >,若221a b +=,则2ab -的最大值为( )A .3B .C .1D .2+【答案】D 【解析】【分析】法一:设c b =-,进而将问题转化为已知221a c +=,求ac 的最大值问题,再根据基本不等式求解即可;法二:由题知221()14a b +=进而根据三角换元得5cos ,(0)62sin a b πθθθθ⎧=⎪<<⎨=⎪⎩,再根据三角函数最值求解即可. 【详解】解:法一:(基本不等式)设c b =-2ab -=)a b ac -=,条件222211a b a c +=⇔+=,2212a c ac +=+≥,即2≤ac 故选:D.法二:(三角换元)由条件221()14a b +=,故可设cos sin 2a b θθ⎧=⎪⎪⎨⎪=⎪⎩,即cos ,2sin a b θθθ⎧=⎪⎨=⎪⎩, 由于0a >,0b >,故cos 02sin 0θθθ⎧>⎪⎨>⎪⎩,解得506πθ<<所以,5cos ,(0)62sin a b πθθθθ⎧=⎪<<⎨=⎪⎩,22sin 22ab θ-=≤+当且仅当4πθ=时取等号.故选:D.例20.(2022·天津南开·一模)若0a >,0b >,0c >,2a b c ++=,则4a ba b c+++的最小值为______.【答案】2+ 【解析】 【分析】令2,,(0,0)c m c n m n -==>> ,则2m n +=,由此可将4a b a b c+++变形为421m n +-,结合基本不等式,即可求得答案。
高考数学一轮复习 专题7.4 基本不等式及其应用(讲)
专题7.4 基本不等式及其应用【考纲解读】内 容要 求备注A B C集合一元二次不等式√对知识的考查要求依次分为了解、理解、掌握三个层次(在表中分别用A 、B 、C 表示).了解:要求对所列知识的含义有最基本的认识,并能解决相关的简单问题.理解:要求对所列知识有较深刻的认识,并能解决有一定综合性的问题. 掌握:要求系统地掌握知识的内在联系,并能解决综合性较强的或较为困难的问题. 线性规划√基本不等式√【直击考点】题组一 常识题1.函数y =x +4x(x >0)的最小值为________.【解析】∵x >0,∴y =x +4x ≥4,当且仅当x =4x ,即x =2时取等号,故函数y =x +4x(x >0)的最小值为4.2.一段长为40 m 的篱笆围成一个矩形菜园,则菜园的最大面积是________.【解析】设矩形菜园的长为x m ,宽为y m ,则2(x +y )=40,即x +y =20,∴ 矩形的面积S =xy ≤⎝ ⎛⎭⎪⎫x +y 22=100,当且仅当x =y =10时,等号成立,此时菜园的面积最大,最大的面积是100 m 2. 3.将一根铁丝切割成三段做一个面积为 2 m 2、形状为直角三角形的框架,选用最合理(够用且浪费最少)的铁丝的长为________m.【解析】设两直角边长分别为a m ,b m ,直角三角形的框架的周长为l ,则12ab =2,即ab =4,∴ l=a +b +a 2+b 2≥2ab +2ab =4+22,当且仅当a =b =2时取等号,故选用最合理(够用且浪费最少)的铁丝的长为(4+22)m.4.建造一个容积为8 m 3,深为2 m 的长方体无盖水池,若池底的造价为每平方米120元,池壁的造价为每平方米80元,则这个水池的最低造价为______元.【解析】设水池的总造价为y 元,池底长为x m ,则宽为4xm ,由题意可得y =4×120+2⎝ ⎛⎭⎪⎫2x +8x ×80=480+320⎝⎛⎭⎪⎫x +4x ≥480+320×2x ·4x =480+320×24=1760,当且仅当x =4x,即x =2时,y min =1760.故当池底长为2 m 时,这个水池的造价最低,最低造价为1760元. 题组二 常错题5.若x >-1,则x +4x +1的最小值为________. 【解析】x +4x +1=x +1+4x +1-1≥4-1=3,当且仅当x +1=4x +1,即x =1时等号成立.6.已知0<x <1,则y =lg x +4lg x的最大值是________.【解析】∵0<x <1,∴lg x <0,则-lg x >0. ∴-y =-lg x +4-lg x≥2(-lg x )×4-lg x=4,当且仅当-lg x =4-lg x ,即x =1100时,等号成立,∴y max =-4.7. 函数y =sin x +4sin x ,x ∈⎝⎛⎦⎥⎤0,π2的最小值为 _________________________.【解析】当sin x =4sin x 时,sin x =±2,显然等号取不到,事实上,设t =sin x ,则t ∈(0,1],y =t +4t在(0,1]上为减函数,故当t =1时,y 取最小值5.题组三 常考题8. 设a >0,b >0.若关于x ,y 的方程组⎩⎪⎨⎪⎧ax +y =1,x +by =1无解,则a +b 的取值范围是__________.【解析】将方程组中的第一个方程化为y =1-ax ,代入第二个方程整理得(1-ab )x =1-b ,由方程组无解得1-ab =0且1-b ≠0,所以ab =1且b ≠1.由基本不等式得a +b >2ab =2,故a +b 的取值范围是(2,+∞).9.若直线x a +y b=1(a >0,b >0)过点(1,1),则a +b 的最小值等于________. 【解析】依题意有1a +1b =1,所以a +b =(a +b )·1a +1b =1+a b +ba+1≥2+2a b ·ba=4,当且仅当a =b =2时等号成立.10.已知a >0,b >0,ab =8,则当a 的值为________时,log 2a ·log 2(2b )取得最大值.【知识清单】考点1利用基本不等式证明不等式如果,R a b ∈,那么222a b ab +≥(当且仅当a b =时取等号“=”) 如果0a >,0b >,则2a b ab +≥,(当且仅当a b =时取等号“=”). 考点2 利用基本不等式求最值 常见结论:1、 如果,R a b ∈,那么222a b ab +≥(当且仅当a b =时取等号“=”)推论:22ab 2a b +≤(,R a b ∈)2、 如果0a >,0b >,则2a b ab +≥(当且仅当a b =时取等号“=”).推论:2ab ()2a b +≤(0a >,0b >);222()22a b a b ++≥ 3、222(0,0)1122a b a b ab a b a b++≤≤>>+ 考点3 基本不等式的实际应用利用基本不等式求解实际应用题的方法(1)问题的背景是人们关心的社会热点问题,如“物价、销售、税收、原材料”等,题目往往较长,解题时需认真阅读,从中提炼出有用信息,建立数学模型,转化为数学问题求解.(2)当运用基本不等式求最值时,若等号成立的自变量不在定义域内时,就不能使用基本不等式求解,此时可根据变量的范围用对应函数的单调性求解.【考点深度剖析】江苏新高考对不等式知识的考查要求较高,整个高中共有8个C 能级知识点,本章就占了两个,高考中以填空题和解答题的形式进行考查,涉及到数形结合、分类讨论和等价转化的思想,着重考查学生基本概念及基本运算能力.经常与其它章节知识结合考查,如与函数、方程、数列、平面解析几何知识结合考查.基本不等式及其应用在高考中是一个必考的知识点,在处理最值时是一种非常行之有效的工具,在使用时一定多观察所给代数式的形式,和基本不等式成立的条件.【重点难点突破】考点1利用基本不等式证明不等式【1-1】不已知a 、b 、c 都是正数,求证:()()()8a b b c c a abc +++≥ 【答案】∵a >0,b >0,c >0,∴222bc ac abc c a b ab +≥=, 222ac ab a bc a b c bc +≥=, 222bc ab ab c b a c ac+≥=. ∴bc ca aba b c a b c++≥++.【1-2】已知a >0,b >0,c >0,求证:bc ca aba b c a b c++≥++. 【1-3】已知a >0,b >0,a +b =1,求证:11119a b ⎛⎫⎛⎫++≥ ⎪⎪⎝⎭⎝⎭. 【解析】∵0a >,0b >,1a b +=,∴11+=1+=2+a b b a a a +.同理,11+=2+a b b .∴111122b a a b a b ⎛⎫⎛⎫⎛⎫⎛⎫++=++ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭=5+25+4=9b a a b ⎛⎫+≥⎪⎝⎭,当且仅当b a a b =,即1a=b=2时取“=”.∴11119a b ⎛⎫⎛⎫++≥ ⎪⎪⎝⎭⎝⎭,当且仅当1a=b=2时等号成立. 【思想方法】利用基本不等式证明不等式是综合法证明不等式的一种情况,要从整体上把握运用基本不等式,对不满足使用基本不等式条件的可通过“变形”来转换,常见的变形技巧有:拆项,并项,也可乘上一个数或加上一个数,“1”的代换法等. 【温馨提醒】1. 在运用ab ba ≥+2时,注意条件a 、b 均为正数,结合不等式的性质,进行变形. 2. 三个式子必须都为非负且能同时取得等号时,三个式子才能相乘,最后答案才能取得等号. 3. 在利用基本不等式证明的过程中,常常要把数、式合理的拆成两项或多项或恒等地变形配凑成适当的数、式,以便于利用基本不等式.考点2 利用基本不等式求最值【2-1】若log 2x +1og 2y =1,则x +2y 的最小值是________. 【答案】4【解析】因为log 2x +log 2y =1,即log 2xy =1,所以xy =2且x >0,y >0,于是x +2y ≥2x ·2y =4,当且仅当x =2y ,即x =2,y =1时取等号,所以x +2y 的最小值为4. 【2-2】设01x <<,函数411y x x=+-的最小值为 . 【答案】 9【2-3】已知0,0,lg 2lg8lg 2xyx y >>+=,则113x y+的最小值是 . 【答案】4【解析】由lg 2lg8lg 2xy+=,得()lg 28lg 2x y ⋅=,即322x y+=,亦即31x y +=,且0,0x y >>,从而()1111332333y x x y x y x y x y⎛⎫+=+⋅+=++ ⎪⎝⎭32243y xx y ≥+⋅=,当且仅当33y x x y =,又31x y +=,即12x =,16y =时,113x y +取得最小值4,注意乘“1”法技巧的使用.【2-4】若a>0,b>0,且a +b =2,则ab +1ab的最小值为 . 【答案】2【解析】由2=a +b≥2ab 得0<ab≤1,令t =ab ,t ∈(0,1],则y =t +1t在(0,1]上为减函数,故当t =1时,y min =2,故选A.【2-5】设x>0,y>0,且x +4y =40,则lgx +lgy 的最大值是 . 【答案】2【思想方法】基本不等式具有将“和式”转化为“积式”和将“积式”转化为“和式”的放缩功能,因此可以用在一些不等式的证明中,还可以用于求代数式的最值或取值范围.如果条件等式中,同时含有两个变量的和与积的形式,就可以直接利用基本不等式对两个正数的和与积进行转化,然后通过解不等式进行求解.注意:形如y =x +a x(a >0)的函数求最值时,首先考虑用基本不等式,若等号取不到,再利用该函数的单调性求解. 【温馨提醒】在用基本不等式求函数的最值时,应具备三个条件:一正二定三取等. ① 一正:函数的解析式中,各项均为正数;② 二定:函数的解析式中,含变数的各项的和或积必须有一个为定值; ③ 三取等:函数的解析式中,含变数的各项均相等,取得最值.若使用基本不等式时,等号取不到,可以通过“对勾函数”,利用单调性求最值.考点3 基本不等式的实际应用【3-1】要制作一个容器为43m ,高为m 1的无盖长方形容器,已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是_______(单位:元). 【答案】88【解析】假设底面长方形的长宽分别为x , 4x . 则该容器的最低总造价是808020160y x x=++≥.当且仅当2x =的时区到最小值.【3-2】如图,在三棱锥P ABC 中,PA ,PB ,PC 两两垂直,且PA =3,PB =2,PC =1.设M 是底面ABC 内一点,定义f (M )=(m ,n ,p ),其中m ,n ,p 分别是三棱锥M PAB ,三棱锥M PBC ,三棱锥M PCA 的体积.若f (M )=⎝ ⎛⎭⎪⎫12,x ,y ,且1x +a y ≥8恒成立,则正实数a 的最小值为________.【答案】1【3-3】如图,有一块等腰直角三角形ABC 的空地,要在这块空地上开辟一个内接矩形EFGH 的绿地,已知AB AC ⊥,4AB =,绿地面积最大值为 .【答案】4【解析】设EH x =,EF y =,由条件可知EBH ∆和EFA ∆为等直角三角形,所以2EB x =,2AE y =.AB EB AE =+=22x y +≥2222x y ⋅=2xy ,即2xy ≤4,所以4xy ≤,所以绿地面积最大值为4.【3-4】某汽车运输公司,购买了一批豪华大巴投入客运,据市场分析,每辆客车营运的总利润y (万元)与营运年数)(*N x x ∈满足25122-+-=x x y ,则每辆客车营运多少年使其营运年平均利润最大? 【答案】5年【解析】年平均利润为212252525()122122,x x f x x x x N x x x*-+-==--+≤-⋅=∈, 当x=5时,f(x)取得最大值,最大值为2万元. 【思想方法】用均值不等式解决此类问题时,应按如下步骤进行:(1)理解题意,设变量,设变量时一般把要求最大值或最小值的变量定为函数; (2)建立相应的函数关系式,把实际问题抽象为函数的最大值或最小值问题; (3)在定义域内,求出函数的最大值或最小值; (4)正确写出答案. 【温馨提醒】对于应用题要通过阅读、理解所给定的材料寻找量与量之间的内在联系建立起数学模型,然后利用不等式的知识解决题目所提出的问题.【易错试题常警惕】忽视最值取得的条件致误典例 (1)已知x >0,y >0,且1x +2y=1,则x +y 的最小值是________.(2)函数y =1-2x -3x(x <0)的最小值为________.易错分析 (1)多次使用基本不等式,忽略等号成立的条件.如:1=1x +2y ≥22xy,∴xy ≥22,∴x+y ≥2xy ≥42,得(x +y )min =4 2.(2)没有注意到x <0这个条件误用基本不等式得2x +3x≥2 6.【答案】(1)3+2 2 (2)1+2 6 【解析】(1)∵x >0,y >0,温馨提醒(1)利用基本不等式求最值,一定要注意应用条件;(2)尽量避免多次使用基本不等式,若必须多次使用,一定要保证等号成立的条件一致.[失误与防范]1.使用基本不等式求最值,“一正”“二定”“三相等”三个条件缺一不可.2.连续使用基本不等式求最值要求每次等号成立的条件一致.。
高考数学一轮复习第一章第五讲基本不等式及其应用课件
(a2+b2) 2
图 1-5-2
解析:∵△ACD∽△CBD,∴CADD=CBDD, 即 CD= AD·BD= ab. ∵OC=A2B=AD+2 BD=a+2 b, ∴ ab≤a+2 b.故选 B.
答案:B
考点二 利用基本不等式求最值 考向 1 通过配凑法求最值
[例 2]设 0<x<23,则函数 y=4x(3-2x)的最大值为________.
2-x x·2-x x+2=2,
当且仅当2-x x=2-x x,即 x=1 时取等号,所以 y 的最小值为
2.故选 B.
答案:B
2.(考向 2)(2023 年罗湖区校级期中)已知 x>0,y>0,且 2x+ y=xy,则 x+2y 的最小值为( )
A.8
B.8 2
C.9
D.9 2
解析:x>0,y>0,且 2x+y=xy,可得:1x+2y=1,则 x+2y
错误. (3)连续使用基本不等式求最值,要求每次等号成立的条件一
致. (4)若 a≥b>0,则 a≥ a2+2 b2≥a+2 b≥ ab≥a2+abb≥b.
考点一 基本不等式的证明 [ 例 1](1)(2023 年广西一模) 《几何原本》中的“几何代数 法”(以几何方法研究代数问题)是西方数学家处理问题的重要依 据,通过这一原理,很多代数的公理或定理都能够通过图形实现
【变式训练】
如图1-5-2所示,线段AB为半圆的直径,O为
圆心,点 C 为半圆弧上不与 A ,B 重合的点. 作 CD⊥AB于点D,设 AD=a,BD=b,则下列不等
式中可以直接表示 CD≤OC 的是( )
A.a2+abb≤ ab
B. ab≤a+2 b
C.a+2 b≤
高三一轮复习基本不等式及其应用的教学设计
高三数学一轮复习——基本不等式一、教学背景分析1.高考考纲要求:①理解基本不等式及成立条件②能应用基本不等式判断大小和求最值③应用基本不等式解决实际问题和综合问题二.教学目标1.知识与技能(1)通过本节课的学习,能掌握基本不等式并能理解等号成立的条件及几何意义(2)通过基本不等式的复习,能灵活比较大小、求有关最值等应用2.过程与方法(1)通过本节课的学习,能体会基本不等式应用的条件:一正二定三相等(2)通过本节课的学习,能体会应用基本不等式求最值问题解题策略的构建过程(3)能体会例题的变式改变过程,达到灵活应用的能力3.情感态度与价值观(1)通过变式教学,逐步培养学生的探索研究精神(2)通过解题后的反思,逐步培养学生养成解题反思的习惯(3)通过高考试题与教材例题对比教学,培养学生重视基础,勿好高骛远的习惯三.教学重难点:1.重点:正确应用基本不等式进行判断和计算。
2.难点:基本不等式的变形应用。
四、教学方法:以启发引导,探索发现为主导,讲解练习为主线,用一题多解,一题多变突出重点、突破难点,以综合应用提高分析解决问题的能力,培养创新能力。
五、教学过程(二)基本不等式的应用 (,0)a x b y a b x y 、已知=(,1),=(,-1)且⊥> 的最小值为__ 的最小值为__ 2y 的最小值为__ 的最小值为___ 12129,23,______.e e e y e 例3(月基础测试卷已知两单位向量的夹角为的取值范围是+=六、课后备注本堂课是在高三第一轮复习中关于“基本不等式”的一节复习课。
通过递进式的问题设置,让学生对基本不等式的掌握能达到灵活应用的程度。
高考数学一轮复习 6.3基本不等式及其应用课件 文
完整版ppt
21
【拓展探究】 若本例(1)中的“-6≤a≤3”改为 “0≤a≤3”,结果如何?
解:∵ 3-aa+b= -a+322+841 且f(a)=-a+322+841在[0,3]上为减函数,∴原式的最大值为 3 2.
完整版ppt
22
考点二 利用基本不等式证明不等式 1.利用基本不等式证明不等式是综合法证明不等式的一种情
完整版ppt
29
考点三 基本不等式的实际应用 应用基本不等式解决实际问题的步骤 (1)仔细阅读题目,透彻理解题意; (2)分析实际问题中的数量关系,引入未知数,并用它表示
() A.(0,+∞) B.15,+∞
C.[1,4)
D.(0,4)
完整版ppt
12
解析:a≥x2+3xx+1=x+1x1+3,又x>0,∴x+1x≥2, ∴x+1x1+3≤15,∴a≥15.故选B.
答案:B
完整版ppt
13
3.已知函数f(x)=4x+
a x
(x>0,a>0)在x=3时取得最小值,
第
六
不等式、推理与证明
章
完整版ppt
1
第三节
基本不等式及其应用
完整版ppt
2
高考导航
完整版ppt
3
基础
知识回顾
完整版ppt
4
1.基本不等式
完整版ppt
5
2.常用的几个重要不等式
(1)a2+b2≥ 2ab (a,b∈R).
(2)ab ≤ a+2 b2(a,b∈R).
a2+b2 (3) 2
≥
a+2 b2(a,b∈R).
由基本不等式可知,
3-aa+6
≤
2023年高考数学(文科)一轮复习——基本不等式及其应用
第3节 基本不等式及其应用考试要求 1.了解基本不等式的证明过程;2.会用基本不等式解决简单的最大(小)值问题.1.基本不等式:ab ≤a +b2(1)基本不等式成立的条件:a ≥0,b ≥0. (2)等号成立的条件:当且仅当a =b 时取等号.(3)其中a +b2称为正数a ,b 的算术平均数,ab 称为正数a ,b 的几何平均数. 2.两个重要的不等式(1)a 2+b 2≥2ab (a ,b ∈R ),当且仅当a =b 时取等号. (2)ab ≤⎝⎛⎭⎪⎫a +b 22(a ,b ∈R ),当且仅当a =b 时取等号. 3.利用基本不等式求最值 已知x ≥0,y ≥0,则(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p (简记:积定和最小).(2)如果和x +y 是定值s ,那么当且仅当x =y 时,xy 有最大值是s 24(简记:和定积最大).1.b a +ab ≥2(a ,b 同号),当且仅当a =b 时取等号. 2.ab ≤⎝ ⎛⎭⎪⎫a +b 22≤a 2+b 22.3.21a+1b≤ab≤a+b2≤a2+b22(a>0,b>0).4.应用基本不等式求最值要注意:“一定,二正,三相等”,忽略某个条件,就会出错.5.在利用不等式求最值时,一定要尽量避免多次使用基本不等式.若必须多次使用,则一定要保证它们等号成立的条件一致.1.思考辨析(在括号内打“√”或“×”)(1)两个不等式a2+b2≥2ab与a+b2≥ab成立的条件是相同的.()(2)函数y=x+1x的最小值是2.()(3)函数f(x)=sin x+4sin x的最小值为-5.()(4)x>0且y>0是xy+yx≥2的充要条件.()答案(1)×(2)×(3)√(4)×解析(1)不等式a2+b2≥2ab成立的条件是a,b∈R;不等式a+b2≥ab成立的条件是a≥0,b≥0.(2)函数y=x+1x的值域是(-∞,-2]∪[2,+∞),没有最小值.(4)x>0且y>0是xy+yx≥2的充分不必要条件.2.(易错题)已知x>2,则x+1x-2的最小值是()A.1B.2C.2 2D.4 答案 D解析∵x>2,∴x-2>0,∴x+1x-2=x-2+1x-2+2≥2(x-2)1x-2+2=4,当且仅当x-2=1x-2,即x=3时,等号成立.3.若x<0,则x+1x()A.有最小值,且最小值为2B.有最大值,且最大值为2C.有最小值,且最小值为-2D.有最大值,且最大值为-2 答案 D解析因为x<0,所以-x>0,x+1x=-⎣⎢⎡⎦⎥⎤-x+⎝⎛⎭⎪⎫-1x≤-2(-x)·⎝⎛⎭⎪⎫-1x=-2,当且仅当x=-1时,等号成立,所以x+1x≤-2.4.若x>0,y>0,且x+y=18,则xy的最大值为()A.9B.18C.36D.81 答案 A解析因为x+y=18,所以xy≤x+y2=9,当且仅当x=y=9时,等号成立.5.一段长为30 m的篱笆围成一个一边靠墙的矩形菜园,墙长18 m,则这个矩形的长为________m,宽为________m时菜园面积最大.答案1515 2解析设矩形的长为x m,宽为y m.则x+2y=30,所以S=xy=12x·(2y)≤12⎝⎛⎭⎪⎫x+2y22=2252,当且仅当x=2y,即x=15,y=152时取等号.6.已知a,b∈R,且a-3b+6=0,则2a+18b的最小值为________.答案 14解析 由题设知a -3b =-6,又2a>0,8b>0,所以2a+18b ≥22a·18b =2×2a -3b 2=14,当且仅当2a =18b ,即a =-3,b =1时取等号.故2a +18b 的最小值为14.考点一 利用基本不等式求最值 角度1 配凑法求最值例1 (1)已知0<x <1,则x (3-2x )的最大值为________. (2)已知x >54,则f (x )=4x -2+14x -5的最小值为________.(3)(2021·沈阳模拟)若0<x <12,则y =x 1-4x 2的最大值为________. 答案 (1)98 (2)5 (3)14解析 (1)x (3-2x )=12·2x (3-2x )≤12·⎝ ⎛⎭⎪⎫2x +3-2x 22=98, 当且仅当2x =3-2x ,即x =34时取等号. (2)∵x >54,∴4x -5>0, ∴f (x )=4x -2+14x -5=4x -5+14x -5+3≥21+3=5. 当且仅当4x -5=14x -5,即x =32时取等号. (3)∵0<x <12, ∴y =x1-4x 2=x 2(1-4x 2)=124x 2(1-4x 2)≤12·4x 2+1-4x 22=14,当且仅当4x 2=1-4x 2,即x =24时取等号,则y =x1-4x 2的最大值为14.角度2 常数代换法求最值例 2 (2022·江西九校联考)若正实数a ,b 满足a +b =1,则b 3a +3b 的最小值为________. 答案 5解析 因为a +b =1,所以b 3a +3b =b 3a +3(a +b )b =b 3a +3a b +3,因为a >0,b >0,所以b 3a +3ab +3≥2b 3a ·3a b +3=5,当且仅当b 3a =3a b ,即a =14,b =34时等号成立, 即b 3a +3b 的最小值为5. 角度3 消元法求最值例3 已知x >0,y >0,x +3y +xy =9,则x +3y 的最小值为________. 答案 6解析 法一(换元消元法) 由已知得x +3y =9-xy , 因为x >0,y >0, 所以x +3y ≥23xy , 所以3xy ≤⎝⎛⎭⎪⎫x +3y 22, 所以13×⎝⎛⎭⎪⎫x +3y 22≥9-(x +3y ), 即(x +3y )2+12(x +3y )-108≥0,则x +3y ≤-18(舍去)或x +3y ≥6(当且仅当x =3y ,即x =3,y =1时取等号),故x+3y的最小值为6. 法二(代入消元法)由x+3y+xy=9,得x=9-3y 1+y,所以x+3y=9-3y1+y+3y=9+3y21+y=3(1+y)2-6(1+y)+121+y=3(1+y)+121+y-6≥23(1+y)·121+y-6=12-6=6,当且仅当3(1+y)=121+y,即y=1,x=3时取等号,所以x+3y的最小值为6.感悟提升利用基本不等式求最值的方法(1)知和求积的最值:“和为定值,积有最大值”.但应注意以下两点:①具备条件——正数;②验证等号成立.(2)知积求和的最值:“积为定值,和有最小值”,直接应用基本不等式求解,但要注意利用基本不等式求最值的条件.(3)构造不等式求最值:在求解含有两个变量的代数式的最值问题时,通常采用“变量替换”或“常数1”的替换,构造不等式求解.训练1 (1)已知函数f(x)=-x2x+1(x<-1),则()A.f(x)有最小值4B.f(x)有最小值-4C.f (x )有最大值4D.f (x )有最大值-4(2)正数a ,b 满足ab =a +b +3,则a +b 的最小值为________. 答案 (1)A (2)6解析 (1)f (x )=-x 2x +1=-x 2-1+1x +1=-⎝⎛⎭⎪⎫x -1+1x +1=-⎝ ⎛⎭⎪⎫x +1+1x +1-2 =-(x +1)+1-(x +1)+2.因为x <-1,所以x +1<0,-(x +1)>0, 所以f (x )≥21+2=4, 当且仅当-(x +1)=1-(x +1),即x =-2时,等号成立. 故f (x )有最小值4.(2)∵a >0,b >0,∴ab ≤⎝ ⎛⎭⎪⎫a +b 22, 即a +b +3≤⎝ ⎛⎭⎪⎫a +b 22, 整理得(a +b )2-4(a +b )-12≥0,解得a +b ≤-2(舍)或a +b ≥6(当且仅当a =b =3时取等号). 故a +b 的最小值为6.考点二 基本不等式的综合应用例4 (1)(2022·河南名校联考)已知直线ax +2by -1=0和x 2+y 2=1相切,则ab 的最大值是( ) A.14B.12C.22D.1(2)已知不等式(x +y )⎝ ⎛⎭⎪⎫1x +a y ≥9对任意正实数x ,y 恒成立,则正实数a 的最小值为( ) A.2B.4C.6D.8答案 (1)A (2)B解析 (1)圆x 2+y 2=1的圆心为(0,0),半径r =1,由直线ax +2by -1=0和x 2+y 2=1相切,得|-1|a 2+4b 2=1,则a 2+4b 2=1,又由1=a 2+4b 2≥4ab ,可得ab ≤14,当且仅当a =2b ,即a =22,b =24时等号成立,故ab 的最大值是14.(2)已知不等式(x +y )⎝ ⎛⎭⎪⎫1x +a y ≥9对任意正实数x ,y 恒成立,只需求(x +y )⎝ ⎛⎭⎪⎫1x +a y 的最小值大于或等于9, ∵(x +y )⎝ ⎛⎭⎪⎫1x +a y =1+a +y x +ax y≥a +2a +1=(a +1)2, 当且仅当y =ax 时,等号成立, ∴(a +1)2≥9,∴a ≥4, 即正实数a 的最小值为4.感悟提升 1.当基本不等式与其他知识相结合时,往往是提供一个应用基本不等式的条件,然后利用常数代换法求最值.2.求参数的值或范围时,要观察题目的特点,利用基本不等式确定相关成立的条件,从而得到参数的值或范围.训练2 (1)若△ABC 的内角满足3sin A =sin B +sin C ,则cos A 的最小值是( ) A.23B.79C.13D.59(2)当x ∈(0,+∞)时,ax 2-3x +a ≥0恒成立,则实数a 的取值范围是________. 答案 (1)B (2)⎣⎢⎡⎭⎪⎫32,+∞解析(1)由题意结合正弦定理有3a=b+c,结合余弦定理可得:cos A=b2+c2-a22bc=b2+c2-⎝⎛⎭⎪⎫b+c322bc=89b2+89c2-29bc2bc=89b2+89c22bc-19≥2×89b×89c2bc-19=79.当且仅当b=c时等号成立.综上可得,cos A的最小值是79.(2)ax2-3x+a≥0,则a≥3xx2+1=3x+1x,x∈(0,+∞),故x+1x≥2,当且仅当x=1时等号成立,故y=3x+1x≤32,故a≥32.考点三基本不等式的实际应用例5 为了美化校园环境,园艺师在花园中规划出一个平行四边形,建成一个小花圃,如图,计划以相距6米的M,N两点为AMBN一组相对的顶点,当AMBN 的周长恒为20米时,小花圃占地面积(单位:平方米)最大为()A.6B.12C.18D.24答案 D解析设AM=x,AN=y,则由已知可得x+y=10,在△MAN中,MN=6,由余弦定理可得,cos A =x 2+y 2-622xy =(x +y )2-362xy -1=32xy -1≥32⎝ ⎛⎭⎪⎫x +y 22-1=3225-1=725, 当且仅当x =y =5时等号成立, 此时(cos A )min =725, 所以(sin A )max =1-⎝ ⎛⎭⎪⎫7252=2425,所以四边形AMBN 的最大面积为2×12×5×5×2425=24,此时四边形AMBN 是边长为5的菱形.感悟提升 1.设变量时一般要把求最大值或最小值的变量定义为函数. 2.根据实际问题抽象出函数的解析式后,只需利用基本不等式求得函数的最值. 3.在求函数的最值时,一定要在定义域(使实际问题有意义的自变量的取值范围)内求解.训练3 某公司一年购买某种货物400吨,每次都购买x 吨,运费为4万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储费用之和最小,则x =________吨. 答案 20解析 该公司一年购买某种货物400吨,每次都购买x 吨,则需要购买400x 次,运费为4万元/次,一年的总存储费用为4x 万元,一年的总运费与总存储费用为之和为⎝ ⎛⎭⎪⎫400x ·4+4x 万元,400x ·4+4x ≥160,当且仅当1 600x =4x ,即x =20时,一年的总运费与总存储费用之和最小.1.已知a ,b ∈R ,且ab ≠0,则下列结论恒成立的是( ) A.a +b ≥2ab B.a b +ba ≥2 C.⎪⎪⎪⎪⎪⎪a b +b a ≥2 D.a 2+b 2>2ab答案 C解析 因为a b 和b a 同号,所以⎪⎪⎪⎪⎪⎪a b +b a =⎪⎪⎪⎪⎪⎪a b +⎪⎪⎪⎪⎪⎪b a ≥2.2.若3x +2y =2,则8x +4y 的最小值为( ) A.4 B.4 2 C.2 D.2 2答案 A解析 因为3x +2y =2,所以8x +4y ≥28x ·4y =223x +2y =4,当且仅当3x +2y =2且3x =2y ,即x =13,y =12时等号成立.3.若a >0,b >0,lg a +lg b =lg(a +b ),则a +b 的最小值为( ) A.8 B.6 C.4 D.2答案 C解析 依题意ab =a +b ,∴a +b =ab ≤⎝ ⎛⎭⎪⎫a +b 22,即a +b ≤(a +b )24,∴a +b ≥4,当且仅当a =b =2时取等号, ∴a +b 的最小值为4.4.已知f (x )=x 2-2x +1x ,则f (x )在⎣⎢⎡⎦⎥⎤12,3上的最小值为( )A.12 B.43C.-1D.0答案 D解析 因为x ∈⎣⎢⎡⎦⎥⎤12,3,所以f (x )=x 2-2x +1x =x +1x -2≥2-2=0,当且仅当x =1x ,即x =1时取等号.又1∈⎣⎢⎡⎦⎥⎤12,3,所以f (x )在⎣⎢⎡⎦⎥⎤12,3上的最小值为0.5.某车间分批生产某种产品,每批产品的生产准备费用为800元,若每批生产x 件,则平均仓储时间为x8天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品( ) A.60件 B.80件 C.100件 D.120件答案 B解析 设每批生产产品x 件,则每件产品的生产准备费用是800x 元,仓储费用是x8元,总的费用是⎝ ⎛⎭⎪⎫800x +x 8元,由基本不等式得800x +x 8≥2800x ·x 8=20,当且仅当800x=x8,即x =80时取等号.6.对任意m ,n ∈(0,+∞),都有m 2-amn +2n 2≥0,则实数a 的最大值为( ) A. 2 B.2 2C.4D.92答案 B解析 ∵对任意m ,n ∈(0,+∞),都有m 2-amn +2n 2≥0, ∴m 2+2n 2≥amn ,即a ≤m 2+2n 2mn =m n +2nm 恒成立, ∵m n +2n m ≥2m n ·2n m =22,当且仅当m n =2n m 即m =2n 时取等号,∴a ≤22,故a 的最大值为2 2.7.(2022·河南顶级名校联考)已知各项均为正数的等比数列{a n },a 6,3a 5,a 7成等差数列,若{a n }中存在两项a m ,a n ,使得4a 1为其等比中项,则1m +4n 的最小值为( ) A.4 B.9C.23D.32答案 D解析 设各项均为正数的等比数列{a n }的公比为q ,q >0,由a 6,3a 5,a 7成等差数列,可得6a 5=a 6+a 7,即6a 1q 4=a 1q 5+a 1q 6, 解得q =2(q =-3舍去),由{a n }中存在两项a m ,a n ,使得4a 1为其等比中项,可得16a 21=a m a n =a 21·2m +n -2, 化简可得m +n =6,m ,n ∈N *, 则1m +4n =16(m +n )⎝ ⎛⎭⎪⎫1m +4n=16⎝ ⎛⎭⎪⎫5+n m +4m n ≥16⎝⎛⎭⎪⎫5+2n m ·4m n =32. 当且仅当n =2m =4时,上式取得等号. 8.已知x >0,y >0,且1x +1+1y =12,则x +y 的最小值为( ) A.3 B.5C.7D.9答案 C解析 ∵x >0,y >0,且1x +1+1y =12,∴x +1+y =2⎝ ⎛⎭⎪⎫1x +1+1y (x +1+y ) =2⎝ ⎛⎭⎪⎪⎫1+1+y x +1+x +1y ≥2⎝⎛⎭⎪⎪⎫2+2y x +1·x +1y =8,当且仅当y x +1=x +1y ,即x =3,y =4时取等号, ∴x +y ≥7,故x +y 的最小值为7.9.(2021·宜昌期末)某地为了加快推进垃圾分类工作,新建了一个垃圾处理厂,每月最少要处理300吨垃圾,最多要处理600吨垃圾,月处理成本y (单位:元)与月处理量x (单位:吨)之间的函数关系可近似表示为y =12x 2-300x +80 000,为使每吨的平均处理成本最低,该厂每月的垃圾处理量应为________吨.答案 400解析 由题意知,每吨垃圾的平均处理成本为y x =12x 2-300x +80 000x =x 2+80 000x -300,其中300≤x ≤600,又x 2+80 000x -300≥2x 2·80 000x -300=400-300=100,所以当且仅当x 2=80 000x ,即x =400吨时,每吨垃圾的平均处理成本最低. 10.(2022·兰州诊断)设a ,b ,c 均为正实数,若a +b +c =1,则1a +1b +1c ≥________. 答案 9解析 ∵a ,b ,c 均为正数,a +b +c =1, ∴1a +1b +1c =(a +b +c )⎝ ⎛⎭⎪⎫1a +1b +1c=3+⎝ ⎛⎭⎪⎫b a +a b +⎝ ⎛⎭⎪⎫a c +c a +⎝ ⎛⎭⎪⎫c b +b c≥3+2+2+2=9,当且仅当a =b =c =13时,取等号.11.(2020·江苏卷)已知5x 2y 2+y 4=1(x ,y ∈R ),则x 2+y 2的最小值是________. 答案 45解析 由题意知y ≠0.由5x 2y 2+y 4=1,可得x 2=1-y 45y 2,所以x 2+y 2=1-y 45y 2+y 2=1+4y 45y 2=15⎝ ⎛⎭⎪⎫1y 2+4y 2≥15×21y 2×4y 2=45,当且仅当1y 2=4y 2,即y =±22时取等号.所以x 2+y 2的最小值为45.12.(2020·天津卷)已知a >0,b >0,且ab =1,则12a +12b +8a +b 的最小值为__________. 答案 4解析 因为a >0,b >0,ab =1,所以原式=ab 2a +ab 2b +8a +b =a +b 2+8a +b ≥2a +b 2·8a +b=4,当且仅当a +b2=8a +b,即a +b =4时,等号成立. 故12a +12b +8a +b的最小值为4.13.(2022·宜春调研)已知x >0,y >0,x +2y =3,则x 2+3yxy 的最小值为( )A.3-2 2B.22+1C.2-1D.2+1答案 B解析 x >0,y >0,x +2y =3, 则x 2+3y xy =x 2+y (x +2y )xy=x y +2yx +1≥2x y ·2yx +1=22+1. 当且仅当x =2y 时,上式取得等号, 则x 2+3yxy 的最小值为22+1.14.(2022·西安一模)《几何原本》卷2的几何代数法(以几何方法研究代数问题)成为后世西方数学家处理问题的重要依据,通过这一原理,很多代数的公理或定理都能够通过图形实现证明,也称之为无字证明.现有如图所示的图形,点F 在半圆O 上,点C 在直径AB 上,且OF ⊥AB ,设AC =a ,BC =b ,则该图形可以完成的无字证明为( )A.a +b2≥ab (a >0,b >0)B.a 2+b 2≥2ab (a >0,b >0)C.2aba +b≤ab (a >0,b >0) D.a +b 2≤a 2+b 22(a >0,b >0)答案 D解析 由图形可知OF =12AB =12(a +b ),OC =⎪⎪⎪⎪⎪⎪12(a +b )-b =⎪⎪⎪⎪⎪⎪12(a -b ),在Rt △OCF 中,由勾股定理可得 CF =⎝ ⎛⎭⎪⎫a +b 22+⎝ ⎛⎭⎪⎫a -b 22=12(a 2+b 2), ∵CF ≥OF ,∴12(a 2+b 2)≥12(a +b )(a >0,b >0).故选D.15.若a ,b ∈R ,ab >0,则a 4+4b 4+1ab 的最小值为________.答案 4解析 ∵a ,b ∈R ,ab >0, ∴a 4+4b 4+1ab ≥4a 2b 2+1ab =4ab +1ab ≥24ab ·1ab =4,当且仅当⎩⎨⎧a 2=2b 2,4ab =1ab ,即⎩⎪⎨⎪⎧a 2=22,b 2=24时取得等号. 16.已知函数f (x )=x 2+ax +11x +1(a ∈R ),若对于任意的x ∈N *,f (x )≥3恒成立,则a的取值范围是________. 答案 ⎣⎢⎡⎭⎪⎫-83,+∞解析 对任意x ∈N *,f (x )≥3,即x 2+ax +11x +1≥3恒成立,即a ≥-⎝ ⎛⎭⎪⎫x +8x +3.设g (x )=x +8x ,x ∈N *, 则g (x )=x +8x ≥42, 当且仅当x =22时等号成立, 又g (2)=6,g (3)=173, ∵g (2)>g (3),∴g (x )min =173. ∴-⎝ ⎛⎭⎪⎫x +8x +3≤-83,∴a ≥-83,故a 的取值范围是⎣⎢⎡⎭⎪⎫-83,+∞.。
基本不等式课件-2025届高三数学一轮复习
A.3
B.4
+ − 的最小值是( C.6
) D.7
解:因为 x>1,所以 + − =2(x﹣1)+ − +2≥ 当且仅当 2(x﹣1)= − ,即 x=2 时等号成立, 所以 + − 的最小值是 6. 故选:C.
( − ) × − +2=6,
二次比一次型
分离常数法
已知函数 f(x)=x2+ax+3(x∈R).若存在 x∈(-∞,1),使关于 x 的不等式 f(x)≤a 有
2 ab≥1+1(a>0,b>0)的应用
ab
【多选题】若正实数 a,b 满足 a+b=2,则下列结论中正确的有( )
A.ab 的最大值为 1
B.1+1的最大值为 2 ab
C. a+ b的最小值为 2 D.a2+b2 的最小值为 2
a+b 2 【解析】 因为 ab≤ 2 =1,当且仅当 a=b=1 时取等号,则 ab 的最大值为 1,故 A 正确;
2
2
跟踪训练
(多选)(2024•随州模拟)设正实数 a,b 满足 a+b=1,则下列结论正确的是( )
A. + 有最小值 4
B. 有最小值
C. + 有最大值
解:正实数 a,b 满足 a+b=1, 对于 A,即有 a+b≥2 ,可得 0<ab≤ ,
D.a2+b2 有最小值
即有 + = ≥4,即有 a=b 时, + 取得最小值 4,故 A 正确;
对于 B,由 0< ≤ ,可得 有最大值 ,故 B 错误;
对于 C,由 + = + +
=+
≤ +×= ,
高三一轮专题复习基本不等式及其应用有详细答案
§7.3 基本不等式及其应用1.基本不等式ab ≤a +b2(1)基本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b 时取等号. 2.几个重要的不等式 (1)a 2+b 2≥2ab (a ,b ∈R ). (2)b a +ab ≥2(a ,b 同号). (3)ab ≤⎝⎛⎭⎫a +b 22(a ,b ∈R ).(4)a 2+b 22≥⎝⎛⎭⎫a +b 22 (a ,b ∈R ). 3.算术平均数与几何平均数设a >0,b >0,则a ,b 的算术平均数为a +b 2,几何平均数为ab ,基本不等式可叙述为两个正数的算术平均数不小于它们的几何平均数. 4.利用基本不等式求最值问题 已知x >0,y >0,则(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p .(简记:积定和最小) (2)如果和x +y 是定值p ,那么当且仅当x =y 时,xy 有最大值是p 24.(简记:和定积最大)1.判断下面结论是否正确(请在括号中打“√”或“×”) (1)函数y =x +1x 的最小值是2.( × )(2)ab ≤(a +b 2)2成立的条件是ab >0.( × )(3)函数f (x )=cos x +4cos x ,x ∈(0,π2)的最小值等于4.( × )(4)x >0且y >0是x y +yx ≥2的充要条件.( × )(5)若a >0,则a 3+1a 2的最小值为2a .( × )(6)a 2+b 2+c 2≥ab +bc +ca (a ,b ,c ∈R ).( √ )2.当x >1时,关于函数f (x )=x +1x -1,下列叙述正确的是( )A.函数f (x )有最小值2B.函数f (x )有最大值2C.函数f (x )有最小值3D.函数f (x )有最大值3答案 C3.若a ,b ∈R ,且ab >0,则下列不等式中,恒成立的是( ) A.a 2+b 2>2ab B.a +b ≥2ab C.1a +1b >2ab D.b a +a b ≥2 答案 D解析 ∵a 2+b 2-2ab =(a -b )2≥0,∴A 错误. 对于B 、C ,当a <0,b <0时,明显错误. 对于D ,∵ab >0,∴b a +ab≥2b a ·a b=2. 4.设x ,y ∈R ,a >1,b >1,若a x =b y =3,a +b =23,则1x +1y 的最大值为( )A.2B.32C.1D.12答案 C解析 由a x =b y =3,得:x =log a 3,y =log b 3,由a >1,b >1知x >0,y >0,1x +1y =log 3a +log 3b=log 3ab ≤log 3⎝⎛⎭⎪⎫a +b 22=1,当且仅当a =b =3时“=”成立,则1x +1y 的最大值为1. 5.(2013·天津)设a +b =2,b >0,则当a =________时,12|a |+|a |b取得最小值. 答案 -2解析 由于a +b =2,所以12|a |+|a |b =a +b 4|a |+|a |b =a 4|a |+b 4|a |+|a |b ,由于b >0,|a |>0,所以b 4|a |+|a |b≥2 b 4|a |·|a |b =1,因此当a >0时,12|a |+|a |b 的最小值是14+1=54;当a <0时,12|a |+|a |b的最小值是-14+1=34.故12|a |+|a |b 的最小值为34,此时⎩⎪⎨⎪⎧b 4|a |=|a |b,a <0,即a =-2.题型一 利用基本不等式求最值例1 (1)已知x >0,y >0,且2x +y =1,则1x +1y 的最小值为________;(2)当x >0时,则f (x )=2xx 2+1的最大值为________.思维启迪 利用基本不等式求最值可以先对式子进行必要的变换.如第(1)问把1x +1y 中的“1”代换为“2x +y ”,展开后利用基本不等式;第(2)问把函数式中分子分母同除“x ”,再利用基本不等式. 答案 (1)3+22 (2)1解析 (1)∵x >0,y >0,且2x +y =1, ∴1x +1y =2x +y x +2x +y y=3+y x +2x y ≥3+2 2.当且仅当y x =2xy 时,取等号.(2)∵x >0,∴f (x )=2x x 2+1=2x +1x≤22=1, 当且仅当x =1x,即x =1时取等号.思维升华 (1)利用基本不等式求函数最值时,注意“一正、二定、三相等,和定积最大,积定和最小”.(2)在求最值过程中若不能直接使用基本不等式,可以考虑利用拆项、配凑、常数代换、平方等技巧进行变形,使之能够使用基本不等式.(1)已知正实数x ,y 满足xy =1,则(x y +y )·(yx+x )的最小值为________.(2)已知x ,y ∈R +,且满足x 3+y 4=1,则xy 的最大值为________.答案 (1)4 (2)3解析 (1)依题意知,(x y +y )(y x +x )=1+y 2x +x 2y +1≥2+2y 2x ×x 2y=4,当且仅当x =y =1时取等号,故(x y +y )·(yx +x )的最小值为4.(2)∵x >0,y >0且1=x 3+y4≥2xy 12,∴xy ≤3.当且仅当x 3=y4时取等号. 题型二 不等式与函数的综合问题例2 (1)已知f (x )=32x -(k +1)3x +2,当x ∈R 时,f (x )恒为正值,则k 的取值范围是( ) A.(-∞,-1)B.(-∞,22-1) C.(-1,22-1)D.(-22-1,22-1)(2)已知函数f (x )=x 2+ax +11x +1(a ∈R ),若对于任意x ∈N *,f (x )≥3恒成立,则a 的取值范围是________.思维启迪 对不等式恒成立问题可首先考虑分离题中的常数,然后通过求最值得参数范围. 答案 (1)B (2)[-83,+∞)解析 (1)由f (x )>0得32x -(k +1)·3x +2>0,解得k +1<3x +23x ,而3x +23x ≥22(当且仅当3x =23x ,即x =log 32时,等号成立),∴k +1<22,即k <22-1.(2)对任意x ∈N *,f (x )≥3恒成立,即x 2+ax +11x +1≥3恒成立,即知a ≥-(x +8x )+3.设g (x )=x +8x ,x ∈N *,则g (2)=6,g (3)=173.∵g (2)>g (3),∴g (x )min =173.∴-(x +8x )+3≤-83, ∴a ≥-83,故a 的取值范围是[-83,+∞).思维升华 (1)a >f (x )恒成立⇔a >(f (x ))max , a <f (x )恒成立⇔a <(f (x ))min ;(2)求最值时要注意其中变量的条件,有些不能用基本不等式的问题可考虑利用函数的单调性.若不等式x 2+ax +1≥0对于一切x ∈(0,12)成立,则a 的最小值是( ) A.0B.-2C.-52D.-3答案 C解析 方法一 设f (x )=x 2+ax +1, 则对称轴为x =-a2.当-a 2≥12,即a ≤-1时,f (x )在(0,12)上是减函数,应有f (12)≥0⇒a ≥-52,∴-52≤a ≤-1.当-a 2≤0,即a ≥0时,f (x )在(0,12)上是增函数,应有f (0)=1>0恒成立,故a ≥0. 当0<-a 2<12,即-1<a <0时,应有f (-a 2)=a 24-a 22+1=1-a 24≥0恒成立,故-1<a <0.综上,a ≥-52,故选C.方法二 当x ∈(0,12)时,不等式x 2+ax +1≥0恒成立转化为a ≥-(x +1x )恒成立.又φ(x )=x +1x 在(0,12)上是减函数,∴φ(x )min =φ(12)=52,∴[-(x +1x )]max =-52,∴a ≥-52.题型三 基本不等式的实际应用例3 某单位决定投资3 200元建一仓库(长方体状),高度恒定,它的后墙利用旧墙不花钱,正面用铁栅,每米长造价40元,两侧墙砌砖,每米长造价45元,顶部每平方米造价20元,求:仓库面积S 的最大允许值是多少?为使S 达到最大,而实际投资又不超过预算,那么正面铁栅应设计为多长?思维启迪 把铁栅长、砖墙长设为未知数,由投资3 200元列等式,利用基本不等式即可求解.解 设铁栅长为x 米,一侧砖墙长为y 米,则顶部面积S =xy ,依题设,得40x +2×45y +20xy =3 200,由基本不等式得3 200≥240x ·90y +20xy =120xy +20xy =120S +20S ,则S +6S -160≤0,即(S -10)(S +16)≤0,故0<S ≤10,从而0<S ≤100,所以S 的最大允许值是100平方米,取得此最大值的条件是40x =90y 且xy =100,解得x =15,即铁栅的长应设计为15米.思维升华 对实际问题,在审题和建模时一定不可忽略对目标函数定义域的准确挖掘,一般地,每个表示实际意义的代数式必须为正,由此可得自变量的范围,然后再利用基本不等式求最值.(1)某车间分批生产某种产品,每批的生产准备费用为800元.若每批生产x 件,则平均仓储时间为x8天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品( ) A.60件B.80件C.100件D.120件(2)某种饮料分两次提价,提价方案有两种,方案甲:第一次提价p %,第二次提价q %;方案乙:每次都提价p +q2%,若p >q >0,则提价多的方案是________.答案 (1)B (2)乙解析 (1)设每件产品的平均费用为y 元,由题意得 y =800x +x 8≥2800x ·x8=20. 当且仅当800x =x8(x >0),即x =80时“=”成立,故选B.(2)设原价为1,则提价后的价格为 方案甲:(1+p %)(1+q %), 方案乙:(1+p +q2%)2,因为(1+p %)(1+q %)≤1+p %2+1+q %2=1+p +q2%,且p >q >0,所以(1+p %)(1+q %)<1+p +q2%,即(1+p %)(1+q %)<(1+p +q2%)2,所以提价多的方案是乙.忽视基本不等式等号成立的条件致误典例:(10分)(1)(2012·浙江)若正数x ,y 满足x +3y =5xy ,则3x +4y 的最小值是( ) A.245B.285C.5D.6 (2)函数y =1-2x -3x(x <0)的最小值为________.易错分析 (1)对x +3y 运用基本不等式得xy 的范围,再对3x +4y 运用基本不等式,利用不等式的传递性得最值;(2)没有注意到x <0这个条件误用基本不等式得2x +3x ≥2 6.解析 (1)由x +3y =5xy 可得15y +35x =1,所以3x +4y =(3x +4y )(15y +35x )=95+45+3x 5y +12y 5x ≥135+2 3x 5y ·12y 5x =135+125=5, 当且仅当x =1,y =12时取等号,故3x +4y 的最小值是5.(2)∵x <0,∴y =1-2x -3x =1+(-2x )+(-3x )≥1+2(-2x )·3-x=1+26,当且仅当x=-62时取等号,故y 有最小值1+2 6. 答案 (1)C (2)1+2 6温馨提醒 (1)利用基本不等式求最值,一定要注意应用条件;(2)尽量避免多次使用基本不等式,若必须多次使用,一定要保证等号成立的条件一致.方法与技巧1.基本不等式具有将“和式”转化为“积式”和将“积式”转化为“和式”的放缩功能,常常用于比较数(式)的大小或证明不等式,解决问题的关键是分析不等式两边的结构特点,选择好利用基本不等式的切入点.2.对于基本不等式,不仅要记住原始形式,而且还要掌握它的几种变形形式及公式的逆用等,例如:ab≤(a+b2)2≤a2+b22,ab≤a+b2≤a2+b22(a>0,b>0)等,同时还要注意不等式成立的条件和等号成立的条件.失误与防范1.使用基本不等式求最值,“一正、二定、三相等”三个条件缺一不可.2.连续使用基本不等式求最值要求每次等号成立的条件一致.A 组 专项基础训练(时间:40分钟)一、选择题1.已知0<x <1,则x (3-3x )取得最大值时x 的值为( )A.13B.12C.34D.23答案 B解析 ∵0<x <1,∴1-x >0.∴x (3-3x )=3x (1-x )≤3⎝ ⎛⎭⎪⎫x +1-x 22=34.当且仅当x =1-x ,即x =12时取等号.2.若函数f (x )=x +1x -2(x >2)在x =a 处取最小值,则a 等于() A.1+2B.1+ 3C.3D.4答案 C解析 f (x )=x +1x -2=x -2+1x -2+2.∵x >2,∴x -2>0.∴f (x )=x -2+1x -2+2≥2 (x -2)·1x -2+2=4,当且仅当x -2=1x -2,即x =3时,“=”成立.又f (x )在x =a 处取最小值.∴a =3.3.小王从甲地到乙地往返的时速分别为a 和b (a <b ),其全程的平均时速为v ,则( )A.a <v <abB.v =abC.ab <v <a +b 2D.v =a +b 2答案 A解析 设甲、乙两地相距s ,则小王往返两地用时为s a +s b, 从而v =2ss a +s b =2ab a +b . ∵0<a <b ,∴ab <a +b 2,2ab a +b >2ab 2b=a , ∴2a +b <1ab ,即2ab a +b<ab ,∴a <v <ab . 4.若a >0,b >0,且ln(a +b )=0,则1a +1b的最小值是( ) A.14B.1C.4D.8 答案 C解析 由a >0,b >0,ln(a +b )=0得⎩⎪⎨⎪⎧ a +b =1a >0b >0.故1a +1b =a +b ab =1ab ≥1(a +b 2)2=1(12)2=4. 当且仅当a =b =12时上式取“=”. 5.(2012·福建)下列不等式一定成立的是( )A.lg ⎝⎛⎭⎫x 2+14>lg x (x >0) B.sin x +1sin x≥2(x ≠k π,k ∈Z ) C.x 2+1≥2|x |(x ∈R )D.1x 2+1>1(x ∈R ) 答案 C解析 应用基本不等式:x ,y ∈R +,x +y 2≥xy (当且仅当x =y 时取等号)逐个分析,注意基本不等式的应用条件及取等号的条件.当x >0时,x 2+14≥2·x ·12=x , 所以lg ⎝⎛⎭⎫x 2+14≥lg x (x >0),故选项A 不正确; 运用基本不等式时需保证一正二定三相等,而当x ≠k π,k ∈Z 时,sin x 的正负不定,故选项B 不正确;由基本不等式可知,选项C 正确;当x =0时,有1x 2+1=1,故选项D 不正确.二、填空题6.设x ,y ∈R ,且xy ≠0,则(x 2+1y 2)(1x 2+4y 2)的最小值为________. 答案 9解析 (x 2+1y 2)(1x 2+4y 2)=5+1x 2y 2+4x 2y 2≥5+21x 2y 2·4x 2y 2=9,当且仅当x 2y 2=12时“=”成立.7.已知函数f (x )=x +p x -1(p 为常数,且p >0),若f (x )在(1,+∞)上的最小值为4,则实数p 的值为________.答案 94解析 由题意得x -1>0,f (x )=x -1+p x -1+1≥2p +1,当且仅当x =p +1时取等号,因为f (x )在(1,+∞)上的最小值为4,所以2p +1=4,解得p =94. 8.某公司一年需购买某种货物200吨,平均分成若干次进行购买,每次购买的运费为2万元,一年的总存储费用数值(单位:万元)恰好为每次的购买吨数数值,要使一年的总运费与总存储费用之和最小,则每次购买该种货物的吨数是__________________.答案 20解析 设每次购买该种货物x 吨,则需要购买200x 次,则一年的总运费为200x ×2=400x ,一年的总存储费用为x ,所以一年的总运费与总存储费用为400x +x ≥2400x ·x =40,当且仅当400x=x ,即x =20时等号成立,故要使一年的总运费与总存储费用之和最小,每次应购买该种货物20吨.三、解答题9.(1)已知0<x <25,求y =2x -5x 2的最大值; (2)已知x >0,y >0,且x +y =1,求8x +2y的最小值. 解 (1)y =2x -5x 2=x (2-5x )=15·5x ·(2-5x ). ∵0<x <25,∴5x <2,2-5x >0, ∴5x (2-5x )≤(5x +2-5x 2)2=1,∴y ≤15,当且仅当5x =2-5x ,即x =15时,y max =15. (2)∵x >0,y >0,且x +y =1,∴8x +2y =(8x +2y)(x +y ) =10+8y x +2x y ≥10+2 8y x ·2x y =18, 当且仅当8y x =2x y ,即x =23,y =13时等号成立, ∴8x +2y的最小值是18. 10.某造纸厂拟建一座底面图形为矩形且面积为162平方米的三级污水处理池,池的深度一定(平面图如图所示),如果池四周围墙建造单价为400元/米,中间两道隔墙建造单价为248元/米,池底建造单价为80元/平方米,水池所有墙的厚度忽略不计.(1)(2)若由于地形限制,该池的长和宽都不能超过16米,试设计污水处理池的长和宽,使总造价最低,并求出最低总造价.解 (1)设污水处理池的宽为x 米,则长为162x米. 总造价f (x )=400×(2x +2×162x)+248×2x +80×162 =1 296x +1 296×100x +12 960=1 296(x +100x)+12 960 ≥1 296×2 x ·100x+12 960=38 880(元), 当且仅当x =100x(x >0),即x =10时取等号. ∴当污水处理池的长为16.2米,宽为10米时总造价最低,总造价最低为38 880元.(2)由限制条件知⎩⎪⎨⎪⎧0<x ≤160<162x ≤16,∴818≤x ≤16. 设g (x )=x +100x (818≤x ≤16), g (x )在[818,16]上是增函数, ∴当x =818时(此时162x =16),g (x )有最小值,即f (x )有最小值,即为1 296×(818+80081)+12 960=38 882(元). ∴当污水处理池的长为16米,宽为818米时总造价最低,总造价最低为38 882元. B 组 专项能力提升(时间:30分钟)1.已知a >0,b >0,若不等式m 3a +b -3a -1b≤0恒成立,则m 的最大值为( ) A.4B.16C.9 D.3答案 B解析 因为a >0,b >0,所以由m 3a +b -3a -1b≤0恒成立得m ≤(3a +1b )(3a +b )=10+3b a +3a b 恒成立.因为3b a +3a b ≥2 3b a ·3a b =6, 当且仅当a =b 时等号成立,所以10+3b a +3a b≥16, 所以m ≤16,即m 的最大值为16,故选B.2.(2013·山东)设正实数x ,y ,z 满足x 2-3xy +4y 2-z =0,则当xy z 取得最大值时,2x +1y -2z 的最大值为( )A.0B.1C.94D.3 答案 B解析 由已知得z =x 2-3xy +4y 2(*)则xy z =xy x 2-3xy +4y 2=1x y +4y x-3≤1,当且仅当x =2y 时取等号,把x =2y 代入(*)式,得z =2y 2,所以2x +1y -2z =1y +1y -1y 2=-⎝⎛⎭⎫1y -12+1≤1. 3.定义“*”是一种运算,对于任意的x ,y ,都满足x *y =axy +b (x +y ),其中a ,b 为正实数,已知1].答案 1解析 ∵1]6ab ),∴ab ≤23.当且仅当2a =3b ,即a =1时等号成立,所以当a =1时,ab 取最大值23. 4.(1)若正实数x 、y 满足2x +y +6=xy ,求xy 的最小值.(2)求函数y =x 2+7x +10x +1(x >-1)的最小值. 解 (1)xy =2x +y +6≥22xy +6,令xy =t 2,可得t 2-22t -6≥0,注意到t >0,解得t ≥32,故xy 的最小值为18.(2)设x +1=t ,则x =t -1(t >0),∴y =(t -1)2+7(t -1)+10t=t +4t +5≥2 t ·4t+5=9. 当且仅当t =4t,即t =2,且此时x =1时,取等号, ∴y min =9.5.经市场调查,某旅游城市在过去的一个月内(以30天计),第t 天(1≤t ≤30,t ∈N +)的旅游人数f (t )(万人)近似地满足f (t )=4+1t,而人均消费g (t )(元)近似地满足g (t )=120-|t -20|. (1)求该城市的旅游日收益W (t )(万元)与时间t (1≤t ≤30,t ∈N +)的函数关系式;(2)求该城市旅游日收益的最小值.解 (1)W (t )=f (t )g (t )=(4+1t)(120-|t -20|) =⎩⎨⎧ 401+4t +100t , 1≤t ≤20,559+140t-4t , 20<t ≤30. (2)当t ∈[1,20]时,401+4t +100t ≥401+24t ·100t=441(t =5时取最小值). 当t ∈(20,30]时,因为W (t )=559+140t-4t 递减, 所以t =30时,W (t )有最小值W (30)=44323,所以t∈[1,30]时,W(t)的最小值为441万元.。
2025届高考一轮复习资料:第4讲基本不等式(学生版)
第4讲基本不等式1.基本不等式:√ab≤a+b2(1)基本不等式成立的条件:①a>0,b>0.(2)等号成立的条件:当且仅当②a=b时取等号.(3)其中,③a+b2叫做a,b的算术平均数,④√ab叫做a,b的几何平均数.基本不等式表明:正数a,b的算术平均数不小于它们的几何平均数.注意若a<0,b<0,应先转化为-a>0,-b>0,再运用基本不等式求解.2.几个重要不等式(1)a2+b2≥2ab(a,b∈R,当且仅当a=b时取等号).(2)a+b≥2√ab(a>0,b>0,当且仅当a=b时取等号).(3)2aba+b ≤√ab≤a+b2≤√a2+b22(a>0,b>0,当且仅当a=b时取等号).3.利用基本不等式求最值已知x>0,y>0.(1)如果积xy等于定值P,那么当x=y时,和x+y取得最小值⑤2√P(简记:积定和最小);(2)如果和x+y等于定值S,那么当x=y时,积xy取得最大值⑥S 24(简记:和定积最大).注意应用基本不等式求最值应满足三个条件“一正”“二定”“三相等”.1.下列说法正确的是()A.函数y=x+1x的最小值是2B.函数f(x)=cos x+4cosx ,x∈(0,π2)的最小值为4C.“x>0且y>0”是“xy +yx≥2”的充分不必要条件D.不等式a2+b2≥2ab与a+b2≥√ab有相同的成立条件2.矩形两边长分别为a,b,且a+2b=6,则矩形面积的最大值是()A.4B.92C.3√22D.23.已知a,b为正数,则下列不等式中不成立的是()A.ab≤a2+b22B.ab≤(a+b2)2 C.√a2+b22≥a+b2D.2aba+b≥√ab4.[教材改编]已知x>2,则4x-2+x的最小值是.命题点1利用基本不等式求最值角度1配凑法例1 (1)[2024四川省南充第一中学模拟]已知a>b>0,则2a+9a+b +4a-b的最小值为()A.4B.6C.3D.10(2)[2024宁夏银川模拟]已知0<x<4,则√x(4-x)的最大值为.角度2常数代换法例2 (1)[2023江西省南昌一中模拟]已知正数a,b满足8a+4b=ab,则8a+b的最小值为()A.54B.56C.72D.81(2)[山东高考]若直线xa +yb=1(a>0,b>0)过点(1,2),则2a+b的最小值为.角度3消元法例3 (1)[2024河南名校调研]若正数x,y满足xy-2x-y=0,则x+y2的最小值是()A.2 B.2√2 C.4 D.4√2(2)[江苏高考]已知5x2y2+y4=1(x,y∈R),则x2+y2的最小值是.训练1 (1)[2024辽宁省阜新市高级中学模拟]两个正实数x,y满足1x +4y=1,若关于m的不等式x+y4<m2+3m有解,则实数m的取值范围是()A.(-1,4)B.(-4,1)C.(-∞,-4)∪(1,+∞)D.(-∞,-3)∪(0,+∞)(2)[2021天津高考]若a>0,b>0,则1a +ab2+b的最小值为.(3)[2024上海市松江二中高三上学期阶段测]设正实数x,y,z满足4x2-3xy+y2-z=0,则xyz的最大值为.命题点2基本不等式的综合问题角度1基本不等式的综合应用例4 (1)[2021浙江高考]已知α,β,γ是互不相同的锐角,则在sin αcos β,sin βcos γ,sinγcos α三个值中,大于12的个数的最大值是()A.0B.1C.2D.3(2)[多选/2022新高考卷Ⅱ]若x,y满足x2+y2-xy=1,则()A.x+y≤1B.x+y≥-2C.x2+y2≤2D.x2+y2≥1角度2利用基本不等式解决实际问题例5 [江苏高考]某公司一年购买某种货物600吨,每次购买x吨,运费为6万元/次,一年的总存储费用为4x万元.要使一年的总运费与总存储费用之和最小,则x的值是.例6 某医疗器械公司为了进一步增加市场竞争力,计划改进技术生产某产品.已知生产该产品的年固定成本为200万元,最大产能为100台,每生产x台,需另投入成本G(x)万元,且G(x)={x2+120x,0<x≤50,201x+4 900x-2 100,50<x≤100,每台该产品的售价为200万元,且全年内生产的该产品当年能全部销售完.(1)写出年利润W(x)(单位:万元)关于年产量x(单位:台)的函数解析式(利润=销售收入-成本).(2)当该产品的年产量为多少时,公司所获利润最大?最大利润是多少?训练2 (1)[2024陕西省商洛市部分学校阶段测试]在△ABC 中,BD⃗⃗⃗⃗⃗⃗ =13BC ⃗⃗⃗⃗⃗ ,E 是线段AD 上的动点(与端点不重合),设CE ⃗⃗⃗⃗⃗ =x CA ⃗⃗⃗⃗⃗ +y CB ⃗⃗⃗⃗⃗ (x ,y ∈R ),则8x+3y 3xy的最小值是( ) A.6B.7C.8D.9(2)[2023湖南省部分学校联考]某社区计划在一块空地上种植花卉,已知这块空地是面积为1 800平方米的矩形ABCD ,为了方便居民观赏,在这块空地中间修了如图所示的三条宽度为2米的人行通道,则种植花卉区域的最大面积是( ) A.1 208平方米 B.1 448平方米 C.1 568平方米D.1 698平方米基本不等式链与柯西不等式的应用角度1 求最值例7 已知x ,y 均为正实数,且1x+2+1y+2=16,则x +y 的最小值为 .角度2 判断关于不等式的命题的真假例8 [2024四川成都联考]已知正实数m ,n 满足m +n =1,则下列不等式中错误的是( ) A.mn ≤14B.2m 2+2n 2≥1C.m (n +1)<1D.√m +√n ≤1方法技巧1.柯西不等式:(a 2+b 2)(c 2+d 2)≥(ac +bd )2,当且仅当ad =bc 时,等号成立.2.无论是均值不等式还是柯西不等式,在使用的时候都要注意“配凑”技巧,还要注意验证等号成立的条件.训练3 (1)已知正实数x ,y 满足1x+3y +12x +y=1,则x +y 的最小值是 .(2)[多选/2024云南省大理模拟]若12a =3,12b =4,则下列结论正确的是( )A.ba>1B.ab >14C.a 2+b 2>12D.2a -b >121.[2024河北保定模拟]设x ,y 均为正数,且x +y =4,则xy 的最大值为( ) A.1B.2C.4D.162.[2024江苏常州模拟]已知a >1,b >12,且2a +b =4,则1a -1+12b -1的最小值是( ) A.1B.43C.2D.33.当x >0时,函数y =3+x +x 21+x 的最小值为( )A.2√3B.2√3-1C.2√3+1D.44.[2023山西忻州第二次联考]已知0<a <2,则1a +92-a的最小值是( ) A.4B.6C.8D.165.[多选]小王从甲地到乙地往返的速度分别为a 和b (a <b ),其全程的平均速度为v ,则下列选项中正确的是( ) A.a <v <√ab B.v =√abC.√ab <v <a +b 2D.v =2ab a +b6.[多选/2023重庆市三检]已知x >0,y >0,且x +y +xy -3=0,则下列结论正确的是( )A.xy 的取值范围是(0,9]B.x +y 的取值范围是[2,3)C.x +2y 的最小值是4√2-3D.x +4y 的最小值是37.[2024广西河池联考]若x >0,y >0,且1x +2y =4,则yx 的最大值为 . 8.[2023济南市模拟]已知正数x ,y 满足4x +2y =xy ,则x +2y 的最小值为 .9.某电商自营店,其主打商品每年需要6 000件,每年进n 次货,每次购买x 件,每次购买商品需手续费300元,已购进未卖出的商品要付库存费,可认为年平均库存量为x2件,每件商品库存费是每年10元,则要使总费用(手续费+库存费)最低,则每年进货次数为 .10.[2024山东烟台模拟]如图,在半径为4(单位:cm )的半圆形(O 为圆心)铁皮上截取一块矩形材料ABCD ,其顶点A ,B 在直径上,顶点C ,D 在圆周上,则矩形ABCD 面积的最大值为 (单位:cm 2).11.[2021全国卷乙]下列函数中最小值为4的是 ( )A.y =x 2+2x +4B.y =|sin x |+4|sinx |C.y =2x +22-xD.y =ln x +4lnx12.[2024江西南昌模拟]正数m ,n 满足m +n =5,则√m +1+√n +3的最大值为( ) A.2√5B.3√2C.6D.313.[多选/新高考卷Ⅰ]已知a >0,b >0,且a +b =1,则下列选项中正确的是( ) A.a 2+b 2≥12B.2a -b >12C.log 2a +log 2b ≥-2D.√a +√b ≤√214.[天津高考]若a ,b ∈R ,ab >0,则a 4+4b 4+1ab的最小值为 .15.[角度创新/2024河北石家庄模拟]李老师在黑板上写下一个等式1( )+4( )=1,请同学们在两个括号内各填写一个正数,使得等号成立,哪个同学所填的两个数之和最小,则该同学获得“优胜奖”.小郭同学要想确保获得“优胜奖”,他应该在前一个括号内填上数字 .。
1.4+基本不等式及其应用+课件——2025届高三数学一轮复习
即该厂家 2022 年的促销费用投入 3 万元时,厂家的利润最大,最大为 21 万元.
『变式训练』
4.某公司购买了一批机器投入生产,若每台机器生产的产品可获得的总利润 s(单位:
万元)与机器运转时间 t(单位:年,t∈N*)的关系为 s=-t2+23t-64,要使年平均利润最
大,则每台机器运转的时间 t 为( D )
-1=3,当且仅当
x=2
时,取等号;当
x<0
时,-x+
-4 x
≥2
-x×
-4 x
=4,当且
仅当
x=-2
时,取等号,所以 f(x)=-
-x+
-4 x
-1≤-4-1=-5.综上,函数
f(x)=
x2-x+4的值域是(-∞,-5]∪[3,+∞). x
6.若 x>1,则 x+x-4 1的最小值为___5_____.
【解析】 解法一(换元消元法): 由已知得 x+3y=9-xy, 因为 x>0,y>0,所以 x+3y≥2 3xy, 所以 3xy≤x+23y2,当且仅当 x=3y,即 x=3,y=1 时取等号,即(x+3y)2+12(x+3y) -108≥0. 令 x+3y=t,则 t>0 且 t2+12t-108≥0, 得 t≥6,即 x+3y 的最小值为 6.
(2)由题意得 Sm=ma+12m(m-1)×(-4)=36,即 a=3m6+2m-2≥12 2-2,当且仅当 m2=18 时,等号成立.因为 m∈N*,所以 a>12 2-2.当 m=5 时,a=756;当 m=4 时,a =15<756,所以实数 a 的最小值为 15.
x=y 时,x+y 有最 小 值 2 p(简记:
积定和最小). (2)如果和 x+y 是定值 p,那么当且仅当
高三数学一轮复习基本不等式说课稿(基本不等式及应用)
高三数学一轮复习基本不等式说课稿(基本不等式及应用)二、教学目标分析(一)教学目标:1.理解利用基本不等式求最值的原理2.掌握利用基本不等式求最值的条件3.会用基本不等式解决简单的最值问题4.能综合运用函数关系,基本不等式解决一些实际问题(二)解析:(1)就是指从形式上理解如何才能构建出用均值不等式的结构(2)就是指能从形式上配凑出用均值不等式的结构,并把握住三大条件:“一正;二定;三相等教学目标:进一步通过探究几何图形,给出基本不等式的几何解释,加强学生数形结合的意识。
通过应用问题的解决,明确解决应用题的一般过程。
这是一个过程性目标。
借助例1,引导学生尝试用基本不等式解决简单的最值问题,体会和与积的相互转化,进一步通过例2,引导学生领会运用基本不等式2b a ab +≤的三个限制条件(一正二定三相等)在解决最值问题中的作用,并用几何画板展示函数图形,进一步深化数形结合的思想。
结合变式训练完善对基本不等式结构的理解,提升解决问题的能力,体会方法与策略。
三、教学重难点分析在用基本不等式解决最值时,学生往往容易忽视基本不等式2b a ab +≤使用的前提条件0,>b a ,同时又要注意区别基本不等式ab b a 222≥+的使用条件为R b a ∈,。
因此,在教学过程中,借助例题落实学生领会基本不等式成立的三个限制条件(一正二定三相等)在解决最值问题中的作用。
而对于“一正二定三相等”的进一步强化和应用,将放于下一个课时的内容。
在具体的题目中,“正数条件往往易从题设中获得解决”,“相等”条件也易验证确定,而要获得“定值”条件却常常被设计为一个难点,它需要一定的灵活性和变形技巧.常经过配凑、裂项、分离常数等变形手段,创设一个应用均值不等式的情境.因此,“定值”条件决定着均值不等式应用的可行性,这是解题成败的关键.四、说教学过程教学过程的设计从实际的问题情境出发,以基本不等式的几何背景为着手点,以探究活动为主线,探求基本不等式的结构形式,并进一步给出几何解释,深化对基本不等式的理解。
高三数学一轮复习第七章不等式第四节基本不等式及其应用课件文
ab
3.利用基本不等式求最值 已知x>0,y>0,则 (1)如果积xy是定值p,那么当且仅当⑤ x=y 时,x+y有最⑥ 小 值,是
⑦ 2 p .(简记:积定和最小)
(2)如果和x+y是定值s,那么当且仅当⑧ x=y 时,xy有最⑨ 大 值,是
s 2
4
.(简记:和定积最大)
判断下列结论的正误(正确的打“√”,错误的打“×”)
)
2
3 4
当且仅当x=1-x,
即x= 1 时,“=”成立.
2
(2)∵a>b,b>0,a+b=1,
∴ 1 +1 a = b +a b=2+ b + a ≥2+2 b =a 4,
ab a
b
ab
ab
即 1 +1 的最小值为4,
ab
当且仅当a=b= 1 时等号成立.
2
(3)因为xy+2x+y=4,所以x= 4 .y
(1)当a≥0,b≥0时,a+b≥2 a. b (√)
(2)两个不等式a2+b2≥2ab与 a ≥b 成a立b 的条件是相同的. (×)
2
(3)(a+b)2≥4ab(a,b∈R). (√)
(4)两个正数的等差中项不小于它们的等比中项. (√)
(5)函数y=x+ 1 的最小值是2. (×)
x
(6)x>0且y>0是 x +y ≥2的充要条件. (×)
答案 1
解析 ∵x< 5 ,∴5-4x>0,
4
∴y=4x-2+ 4 x 1=-5 +53≤4x-2+53=114,x
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:(Ⅰ)设 DQ 的长为 y m,则 x2+4xy=200,
所以 y=2004-x x2.
S=4 200x2+210×4xy+80×4×12y2
=38 000+4 000x2+400x2000(0<x<10 2).
(Ⅱ)S=38 000+4 000x2+400x2000
≥38 000+2 4 000x2×400x2000 =38 000+2 16×108=118 000,
当且仅当 4 000x2=400x2000,即 x= 10时取“=”,所以 Smin=118 000(元).故 计划至少要投入 11.8 万元才能建造这个休闲小区.
(2)要制作一个容积为 4 m3,高为 1 m 的无盖
(2)已知正数 x,y 满足 x+2 2xy≤λ(x+y)恒成立,
则实数 λ 的最小值为________.
解:依题意得,x+2 2xy≤x+(x+2y)=2(x+y),即 x+x2+y2xy≤2(当且仅当 x=2y 时取等号),即x+x2+y2xy的最大
值为 2.又 λ≥x+x2+y2xy恒成立,则有 λ≥2,即 λ 的最小值 为 2.故填 2.
=2 时等号成立,则a2+4a++4a2bb+4b2的最小值为 4.故选 D.
(2)(2017·山东)若直线ax+by=1(a>0,b>0) 过点(1,
2),则 2a+b 的最小值为________.
解:ax+by=1(a>0,b>0)过点(1,2),可得1a+2b=1,所
以 2a+b=(2a+b)1a+2b=4+ba+4ba≥4+2 ab·4ba=8,
即________,亦即________;或 a2+b2 为定值时,ab 有最大值(a
>0,b>0),即________.简记为:和定积最大.
7.拓展:若 a>0,b>0 时,a1+2 b1≤________≤a+2 b≤
________,当且仅当 a=b 时等号成立.
自查自纠:
1.a+2 b 2. ab 3.2ab 4.a+2 b≥ ab
的十字形区域.现计划在正方形 MNPQ 上建一花坛,造价为 4 200 元
/m2,在四个相同的矩形上(图中阴影部分)铺花岗岩地坪,造价为 210
元/m2,再在四个空角(图中四个三角形)上铺草坪,造价为 80 元/m2.
(Ⅰ)设总造价为 S 元,AD 的长为 x m,试建立 S 关于 x 的函数关 系式;
b=12时等号成立,所以 ab 的最大值为116.故填116.
(2)已知 x<54,则 f(x)=4x-2+4x-1 5的最
大值为________.
解: 因为 x<54,所以 5-4x>0,则 f(x)=4x-2+4x-1 5=-
5-4x+5-14x+3≤-2 (5-4x)·5-14x+3=-2+3=1.当
实数 x,y 恒成立,则正实数 a 的最小值为( )
A.2
B.4
Байду номын сангаас
C.6
D.8
解:因为(x+y)1x+ay=1+ayx+yx+a≥a+1+2 a,当且
仅当ayx=yx时等号成立.
要使原不等式恒成立,则只需 a+1+2 a≥9 恒成立, 所以( a-2)( a+4)≥0,解得 a≥4,
所以正实数 a 的最小值是 4.故选 B.
解:因为 x>0,a>0,所以 f(x)=4x+ax≥2 4x·ax=4 a,
当且仅当 4x=ax,即 4x2=a 时,f(x)取得最小值.又因为 f(x) 在 x=3 时取得最小值,所以 a=4×32=36.故填 36.
点 拨: 求解含参不等式的策略:①观察题目特点,利用基本不等 式确定相关不等式成立的条件,从而得参数的值或取值范
5.最小值 2 ab 2ab
6.ab≤a+2 b2 ab≤14(a+b)2
ab≤a2+2 b2
7. ab
a2+b2 2
下列说法正确的是 A.a≥0,b≥0,则 a2+b2≥2 ab B.函数 y=x+1x的最小值是 2
()
C.函数 f(x)=cosx+co4sx,x∈0,π2的最小值等于 4
基本不等式及其应用
1.如果 a>0,b>0,那么________叫做这两个正 数的算术平均数.
2.如果 a>0,b>0,那么________叫做这两个正 数的几何平均数.
3.重要不等式:a,b∈R,则 a2+b2≥________ (当 且仅当 a=b 时取等号).
4.基本不等式:a>0,b>0,则________________,
解:当
x>2
时
,
x
-
2>0
,
f(x)
=
(x
-
2)
+
1 x-2
+
2≥2 (x-2)·x-1 2+2=4,当且仅当 x-2=x-1 2(x>2),即 x
=3 时取等号.则当 f(x)取得最小值时,x=3,即 a=3.故填 3.
(河北衡水中学2017届调考)若 a>0,b>0,lga+lgb
=lg(a+b),则 a+b 的最小值为________.
D.“x>0 且 y>0”是“xy+yx≥2”的充分不必要条件
解:选项 A 中,a=b=0.1 时不成立;选项 B 中,当
x=-1 时 y=-2;选项 C 中,x∈0,π2时,0<cosx<1,f(x)
=cosx+co4sx无最小值;选项 D 中,当xy+yx≥2 时,需xy>0
即 xy>0,故“x>0 且 y>0”为充分不必要条件.故选 D.
(1)(2018·东北三省四市模拟)已知 a>0,b>0,
则a2+4a++4a2bb+4b2的最小值为 (
)
A.14
B.1
C.2
D.4
解: a2+4a++4a2bb+4b2=(a+a+2b2)b2+4=a+2b+a+42b≥
2 (a+2b)·a+42b=4,当且仅当 a+2b=a+42b,即 a+2b
解:由题意得 lg(ab)=lg(a+b),即 ab=a+b,则有1a+
1b=1,所以 a+b=1a+1b(a+b)=2+ba+ab≥2+2 ba·ab=
4,当且仅当 a=b=2 时等号成立,所以 a+b 的最小值为 4.故 填 4.
类型一 利用基本不等式求最值
(1)已知 a>0,b>0,且 4a+b=1,则 ab 的最大值为________.
对 x∈(0,+∞),a≥x2+3xx+1max,而对 x∈(0,+∞),
x2+3xx+1=x+11x+3≤2
x·1 1x+3=15,当且仅当 x=1x
即 x=1 时等号成立,所以 a≥15.故选 A.
(2)已知函数 f(x)=4x+ax(x>0,a>0)在 x=3 时取
得最小值,则 a=________.
当且仅当 a=2,b=4 时取“=”.故填 8.
(3)(2017·四川乐山一中月考)设 0<x<32,则函数 y=
4x(3-2x)的最大值为________.
解:y=4x(3-2x)=2[2x(3-2x)]≤22x+(32-2x)2=92, 当且仅当 2x=3-2x,即 x=34时,等号成立.因为34∈0,32, 所以函数 y=4x(3-2x)0<x<32的最大值为92.故填92.
当且仅当 a=b 时等号成立,即两个正数的算术平均数不
小于它们的几何平均数.
5.求最小值:a>0,b>0,当 ab 为定值时,a+b,a2+b2 有 ________,即 a+b≥________,a2+b2≥________.简记为:积 定和最小.
6.求最大值:a>0,b>0,当 a+b 为定值时,ab 有最大值,
解法一: 因为 a>0,b>0,4a+b=1,所以 1=4a+b≥2 4ab=
4 ab,当且仅当 4a=b=12,即 a=18,b=12时,等号成立.所以 ab≤ 14,ab≤116,则 ab 的最大值为116.
解法二: 因为 4a+b=1,所以 ab=14·4a·b
≤144a2+b2=116,当且仅当 4a=b=12,即 a=18,
(教材改编)设 x>0,y>0,且 x+y=18,则 xy
的最大值为( )
A.77
B.80
C.81
D.82
解:因为 x>0,y>0,所以x+2 y≥ xy,即 xy≤x+2 y2=
81,当且仅当 x=y=9 时取等号,即(xy)max=81.故选 C.
已知 f(x)=x+1x-2(x<0),则 f(x)有 ( )
=80+20(x+y)≥80+20×2 xy=80+20×4=160(当且仅
方米.
点 拨: 建立关于 x 的函数关系式是解决本题的关 键,在运用基本不等式求最小值时,除了“一 正,二定,三相等”以外,在最值的求法中, 使用基本不等式次数要尽量少,最好是在最后 一步使用基本不等式,如果必须使用几次,就 需要查看这几次基本不等式等号成立的条件
是否有矛盾,有矛盾则应调整解法.
(1)(2016·徐州质检)某住宅小区为了使居民有一个优 雅、舒适的生活环境,计划建一个八边形的休闲小区,它的主体造型 的平面图是由两个相同的矩形 ABCD 和 EFGH 构成的面积为 200 m2
且仅当 5-4x=5-14x,即 x=1 时,等号成立.故填 1.
(3)若正数 x,y 满足 x+3y=5xy,则 3x+4y 的
最小值为________.
解:由 x+3y=5xy 可得51y+53x=1,所以 3x+4y=(3x+
4y)51y+53x=95+45+35xy+152xy≥153+2 152xy·35xy=5(当且仅当35xy