八年级数学下册-二次根式-计算题-专项练习
八年级数学下册《二次根式》综合练习题含答案
八年级数学下册《二次根式》综合练习题测试1 二次根式学习要求掌握二次根式的概念和意义,会根据算术平方根的意义进行二次根式的运算.课堂学习检验一、填空题1.a +1表示二次根式的条件是______. 2.当x ______时,12--x 有意义,当x ______时,31+x 有意义. 3.若无意义2+x ,则x 的取值范围是______. 4.直接写出下列各式的结果: (1)49=_______;(2)2)7(_______; (3)2)7(-_______;(4)2)7(--_______; (5)2)7.0(_______;(6)22])7([- _______. 二、选择题5.下列计算正确的有( ).①2)2(2=- ②22=- ③2)2(2=- ④2)2(2-=-A .①、②B .③、④C .①、③D .②、④6.下列各式中一定是二次根式的是( ). A .23-B .2)3.0(-C .2-D .x7.当x =2时,下列各式中,没有意义的是( ). A .2-xB .x -2C .22-xD .22x -8.已知,21)12(2a a -=-那么a 的取值范围是( ).A .21>aB .21<a C .21≥a D .21≤a 三、解答题9.当x 为何值时,下列式子有意义? (1);1x -(2);2x -(3);12+x (4)⋅+-xx2110.计算下列各式:(1);)23(2 (2);)1(22+a(3);)43(22-⨯-(4).)323(2-综合、运用、诊断一、填空题11.x 2-表示二次根式的条件是______. 12.使12-x x有意义的x 的取值范围是______. 13.已知411+=-+-y x x ,则x y 的平方根为______. 14.当x =-2时,2244121x x x x ++-+-=________. 二、选择题15.下列各式中,x 的取值范围是x >2的是( ).A .2-xB .21-xC .x -21D .121-x16.若022|5|=++-y x ,则x -y 的值是( ). A .-7B .-5C .3D .7三、解答题17.计算下列各式:(1);)π14.3(2- (2);)3(22--(3);])32[(21-(4).)5.03(2218.当a =2,b =-1,c =-1时,求代数式aacb b 242-±-的值.拓广、探究、思考19.已知数a ,b ,c 在数轴上的位置如图所示:化简:||)(||22b b c c a a ---++-的结果是:______________________.20.已知△ABC 的三边长a ,b ,c 均为整数,且a 和b 满足.09622=+-+-b b a 试求△ABC 的c 边的长.测试2 二次根式的乘除(一)学习要求会进行二次根式的乘法运算,能对二次根式进行化简.课堂学习检测一、填空题1.如果y x xy ⋅=24成立,x ,y 必须满足条件______.2.计算:(1)=⨯12172_________;(2)=--)84)(213(__________; (3)=⨯-03.027.02___________.3.化简:(1)=⨯3649______;(2)=⨯25.081.0 ______;(3)=-45______. 二、选择题4.下列计算正确的是( ). A .532=⋅ B .632=⋅C .48=D .3)3(2-=-5.如果)3(3-=-⋅x x x x ,那么( ).A .x ≥0B .x ≥3C .0≤x ≤3D .x 为任意实数6.当x =-3时,2x 的值是( ). A .±3 B .3 C .-3 D .9三、解答题7.计算:(1);26⨯(2));33(35-⨯- (3);8223⨯(4);1252735⨯ (5);131aab ⋅(6);5252ac c b b a ⋅⋅(7);49)7(2⨯- (8);51322-(9).7272y x8.已知三角形一边长为cm 2,这条边上的高为cm 12,求该三角形的面积.综合、运用、诊断一、填空题9.定义运算“@”的运算法则为:,4@+=xy y x 则(2@6)@6=______.10.已知矩形的长为cm 52,宽为cm 10,则面积为______cm 2.11.比较大小:(1)23_____32;(2)25______34;(3)-22_______-6. 二、选择题12.若b a b a -=2成立,则a ,b 满足的条件是( ).A .a <0且b >0B .a ≤0且b ≥0C .a <0且b ≥0D .a ,b 异号13.把4324根号外的因式移进根号内,结果等于( ). A .11- B .11C .44-D .112三、解答题14.计算:(1)=⋅x xy 6335_______;(2)=+222927b a a _______;(3)=⋅⋅21132212_______; (4)=+⋅)123(3_______.15.若(x -y +2)2与2-+y x 互为相反数,求(x +y )x 的值.拓广、探究、思考16.化简:(1)=-+1110)12()12(________;(2)=-⋅+)13()13(_________.测试3 二次根式的乘除(二)学习要求会进行二次根式的除法运算,能把二次根式化成最简二次根式.课堂学习检测一、填空题1.把下列各式化成最简二次根式:(1)=12______;(2)=x 18______;(3)=3548y x ______;(4)=xy______; (5)=32______;(6)=214______;(7)=+243x x ______;(8)=+3121______. 2.在横线上填出一个最简单的因式,使得它与所给二次根式相乘的结果为有理式,如:23 与.2(1)32与______; (2)32与______;(3)a 3与______; (4)23a 与______; (5)33a 与______. 二、选择题 3.xx x x -=-11成立的条件是( ). A .x <1且x ≠0 B .x >0且x ≠1C .0<x ≤1D .0<x <14.下列计算不正确的是( ). A .471613= B .xy x x y 63132= C .201)51()41(22=-D .x x x3294= 5.把321化成最简二次根式为( ). A .3232B .32321C .281D .241三、计算题 6.(1);2516 (2);972(3);324 (4);1252755÷-(5);1525(6);3366÷(7);211311÷(8).125.02121÷综合、运用、诊断一、填空题7.化简二次根式:(1)=⨯62________(2)=81_________(3)=-314_________ 8.计算下列各式,使得结果的分母中不含有二次根式: (1)=51_______(2)=x 2_________(3)=322__________(4)=y x 5__________ 9.已知,732.13≈则≈31______;≈27_________.(结果精确到0.001) 二、选择题 10.已知13+=a ,132-=b ,则a 与b 的关系为( ). A .a =b B .ab =1C .a =-bD .ab =-111.下列各式中,最简二次根式是( ).A .yx -1B .ba C .42+x D .b a 25三、解答题12.计算:(1);3b a ab ab ⨯÷ (2);3212y xy ÷(3)⋅++ba b a13.当24,24+=-=y x 时,求222y xy x +-和xy 2+x 2y 的值.拓广、探究、思考14.观察规律:,32321,23231,12121-=+-=+-=+……并求值.(1)=+2271_______;(2)=+10111_______;(3)=++11n n _______.15.试探究22)(a 、a 与a 之间的关系.测试4 二次根式的加减(一)学习要求掌握可以合并的二次根式的特征,会进行二次根式的加、减运算.课堂学习检测一、填空题1.下列二次根式15,12,18,82,454,125,27,32化简后,与2的被开方数相同的有______,与3的被开方数相同的有______,与5的被开方数相同的有______.2.计算:(1)=+31312________; (2)=-x x 43__________.二、选择题3.化简后,与2的被开方数相同的二次根式是( ). A .10B .12C .21 D .61 4.下列说法正确的是( ).A .被开方数相同的二次根式可以合并B .8与80可以合并C .只有根指数为2的根式才能合并D .2与50不能合并5.下列计算,正确的是( ). A .3232=+B .5225=-C .a a a 26225=+D .xy x y 32=+ 三、计算题6..48512739-+7..61224-+8.⋅++3218121 9.⋅---)5.04313()81412(10..1878523x x x +- 11.⋅-+xx x x 1246932综合、运用、诊断一、填空题12.已知二次根式b a b +4与b a +3是同类二次根式,(a +b )a 的值是______.13.3832ab 与b a b 26无法合并,这种说法是______的.(填“正确”或“错误”) 二、选择题14.在下列二次根式中,与a 是同类二次根式的是( ).A .a 2B .23aC .3aD .4a三、计算题 15..)15(2822180-+-- 16.).272(43)32(21--+ 17.⋅+-+bb a b a a124118..21233ab bb a aba bab a-+-四、解答题19.化简求值:y y xy xx 3241+-+,其中4=x ,91=y .20.当321-=x 时,求代数式x 2-4x +2的值.拓广、探究、思考21.探究下面的问题:(1)判断下列各式是否成立?你认为成立的,在括号内画“√”,否则画“×”.①322322=+( ) ②833833=+( ) ③15441544=+( ) ④24552455=+( ) (2)你判断完以上各题后,发现了什么规律?请用含有n 的式子将规律表示出来,并写出n 的取值范围.(3)请你用所学的数学知识说明你在(2)题中所写式子的正确性.测试5 二次根式的加减(二)学习要求会进行二次根式的混合运算,能够运用乘法公式简化运算.课堂学习检测一、填空题1.当a =______时,最简二次根式12-a 与73--a 可以合并. 2.若27+=a ,27-=b ,那么a +b =______,ab =______.3.合并二次根式:(1)=-+)18(50________;(2)=+-ax xax45________. 二、选择题4.下列各组二次根式化成最简二次根式后的被开方数完全相同的是( ). A .ab 与2abB mn 与nm 11+ C .22n m +与22n m - D .2398b a 与4329b a5.下列计算正确的是( ). A .b a b a b a -=-+2))(2( B .1239)33(2=+=+C .32)23(6+=+÷D .641426412)232(2-=+-=-6.)32)(23(+-等于( ). A .7 B .223366-+- C .1D .22336-+三、计算题(能简算的要简算) 7.⋅-121).2218( 8.).4818)(122(+-9.).32841)(236215(-- 10.).3218)(8321(-+11..6)1242764810(÷+-12..)18212(2-综合、运用、诊断一、填空题13.(1)规定运算:(a *b )=|a -b |,其中a ,b 为实数,则=+7)3*7(_______.(2)设5=a ,且b 是a 的小数部分,则=-ba a ________.二、选择题14.b a -与a b -的关系是( ). A .互为倒数 B .互为相反数C .相等D .乘积是有理式15.下列计算正确的是( ).A .b a b a +=+2)(B .ab b a =+C .b a b a +=+22D .a aa =⋅1三、解答题 16.⋅+⋅-221221 17.⋅--+⨯2818)212(218..)21()21(20092008-+19..)()(22b a b a --+四、解答题20.已知,23,23-=+=y x 求(1)x 2-xy +y 2;(2)x 3y +xy 3的值.21.已知25-=x ,求4)25()549(2++-+x x 的值.拓广、探究、思考22.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们说这两个代数式互为有理化因式.如:a 与a ,63+与63-互为有理化因式.试写下列各式的有理化因式: (1)25与______; (2)y x 2-与______; (3)mn 与______; (4)32+与______; (5)223+与______; (6)3223-与______. 23.已知,732.13,414.12≈≈求)23(6-÷.(精确到0.01)答案与提示第二十一章 二次根式测试11.a ≥-1.2.<1, >-3.3.x <-2.4.(1)7; (2)7; (3)7; (4)-7; (5)0.7; (6)49.5.C . 6.B . 7.D . 8.D .9.(1)x ≤1;(2)x =0;(3)x 是任意实数;(4)x ≤1且x ≠-2.10.(1)18;(2)a 2+1;(3);23- (4)6. 11.x ≤0. 12.x ≥0且⋅=/21x 13.±1. 14.0. 15.B . 16.D . 17.(1)π-3.14;(2)-9;(3);23 (4)36. 18.21-或1. 19.0. 20.提示:a =2,b =3,于是1<c <5,所以c =2,3,4.测试21.x ≥0且y ≥0.2.(1);6 (2)24;(3)-0.18.3.(1)42;(2)0.45;(3).53- 4.B . 5.B . 6.B .7.(1);32 (2)45; (3)24; (4);53 (5);3b (6);52 (7)49; (8)12; (9)⋅y xy 263 8..cm 62 9..72 10.210.11.(1)>;(2)>;(3)<. 12.B . 13.D .14.(1);245y x (2);332b a + (3) ;34 (4)9. 15.1.16.(1);12- (2).2测试31.(1);32 (2);23x (3);342xy y x (4);xxy (5) ;36 (6);223 (7);32+x x (8)630. 2..3)5(;3)4(;3)3(;2)2(;3)1(a a3.C . 4.C . 5.C .6..4)8(;322)7(;22)6(;63)5(;215)4(;22)3(;35)2(;54)1(-7.⋅-339)3(;42)2(;32)1( 8.⋅y y x x x 55)4(;66)3(;2)2(;55)1( 9.0.577,5.196. 10.A . 11.C . 12..)3(;33)2(;)1(b a x bab + 13..112;2222222=+=+-y x xy y xy x14..1)3(;1011)2(;722)1(n n -+-- 15.当a ≥0时,a a a ==22)(;当a <0时,a a -=2,而2)(a 无意义.测试41..454,125;12,27;18,82,32 2.(1).)2(;33x3.C . 4.A . 5.C . 6..33 7..632+ 8.⋅827 9..23+ 10..214x 11..3x12.1. 13.错误. 14.C . 15..12+16.⋅-423411 17..321b a + 18.0. 19.原式,32y x +=代入得2. 20.1. 21.(1)都画“√”;(2)1122-=-+n nn n nn (n ≥2,且n 为整数);(3)证明:⋅-=-=-+-=-+111)1(1223222n n n n n n n n n n n n 测试51.6. 2..3,72 3.(1);22 (2) .3ax -4.D . 5.D . 6.B . 7.⋅66 8..1862-- 9..3314218- 10.⋅417 11..215 12..62484- 13.(1)3;(2).55-- 14.B . 15.D .16.⋅-41 17.2. 18..21- 19.ab 4(可以按整式乘法,也可以按因式分解法).20.(1)9; (2)10. 21.4.22.(1)2; (2)y x 2-; (3)mn ; (4)32-; (5)223-; (6)3223+(答案)不唯一. 23.约7.70.。
人教版八年级数学下册《求二次根式中的字母的值》练习题(附带答案)
人教版八年级数学下册《求二次根式中的字母的值》练习题(附带答案)类型一根式是整数求字母1则正整数n的最小值为()A.1B.2C.3D.42则正整数n的最小值是()A.2B.4C.6D.8【详解】解:242n=是整数即6n是完全平方数;的最小正整数值为6.本题主要考查了二次根式的定义3.已知n是一个正整数则n的最小值是()A.3B.5C.15D.45【答案】B【分析】由题意可知45n是一个完全平方数从而可求得答案.4则正整数n的最小值为()A.2B.3C.4D.55则a能取的最小整数为()A.0B.1C.2D.3【详解】解:41a+成立解得a≥-又41a+是整数a能取的最小整数为0故选:A.【点睛】本题考查了二次根式有意义的条件键.6.当x=_________时其最小值为_________.类型二根据根式的非负性求字母7.若|3﹣a|0 则a+b的立方根是_____.a+则ab的值为________.8.若a b为实数且满足40-【答案】89.若,x y 为实数 且满足26||0x y -- 则2021x y ⎛⎫ ⎪⎝⎭的值是________.1030b += 则(),P a b --在______象限.【答案】二【分析】根据非负数的性质得到a b 的值 得到点P 的坐标 即可知道点P 所在的象限.【详解】解:根据题意得20a -= 30b +=2a ∴= 3b =-()2,3P ∴-∴点P 在第二象限故答案为:二.【点睛】本题考查了非负数的性质点的坐标掌握两个非负数的和为0则这两个非负数分别等于0是解题的关键.11.若a、b、c是∵ABC的三边长且a、b、c|b-12|+(c-13)2=0.(1)求出a、b、c的值.(2)∵ABC是直角三角形吗?请说明理由.)5a-+13;是直角三角形理由如下:22512+=22a b∴+=∴∵ABC是直角三角形.【点睛】本题考查二次根式的非负性、绝对值的非负性、平方的非负性、勾股定理的逆定理等知识是重要考点12.已知a b0b=(1)a=_______ b=______(2)把a b的值代下以下方程并求解关于x的方程()221a xb a++=-类型三两根式中的式子互为相反数题型130=则x的取值范围是______.【答案】4x=【分析】根据二次根式有意义的条件列出不等式组求解即可.【详解】根据题意得40 40 xx-≥⎧⎨-≥⎩①②解①得4x≥;解②得4x≤;∵4x=所以x的取值范围是4x=故答案为:4x=【点睛】本题考查的是二次根式有意义的条件掌握二次根式中的被开方数是非负数是解题的关键.146y=求x y的算术平方根________.【答案】6【分析】根据被开方数是非负数可得不等式组根据解不等式组可得答案.【详解】解:∵2020xx-≥⎧⎨-≥⎩∵22xx≤⎧⎨≥⎩即=2x;当=2x时y=-6xy=(-6)2=36.所以x y的算术平方根为6.【点睛】本题考查了二次根式有意义的条件利用被开方数是非负数得出不等式组是解题关键.15.已知a b都是实数2b=则b a的值为___________.【详解】解:16 m=220,160n n-20=4时40n+=不符合题意317.若y 3 则52x y +的平方根为 _____.【答案】4±【详解】由二次根式有意义可得2x = 代入得3y = 再求出52x y +即可得出52x y +的平方根.【解答】解:由二次根式有意义可得 20x -≥ 420x -≥解得2x =∵3y =把23x y ==,代入52x y +得 5216x y +=所以52x y +的平方根为4±.故答案为:4±.【点睛】本题主要考查了二次根式有意义的条件及平方根 解题的关键是利用二次根式有意义求出x 的值.18b+6 则a ﹣b 的立方根是_____.19.已知 那么x y =______.类型四 有理数无理数综合求字母20.阅读材料并解决下列问题:已知a 、b 是有理数 并且满足等式52b =a 求a 、b 的值.解:∵52b =a即5(2)b a =-∵2b ﹣a =5 ﹣a =23解得:a =﹣213,36b =(1)已知a 、b 是有理数 (1b -= 1 则a = b = .(2)已知x 、y 是有理数 并且满足等式x 2y +-x +18 求xy 的平方根.21.先阅读第(1)题的解法 再解答第(2)题.(1)已知ab 是有理数并且满足等式52b a=求a b 的值. 解:因为52b a = 所以5(2)b a =-+所以2523b aa -=⎧⎪⎨-=⎪⎩解得 a b =⎧⎨=⎩____ (2)已知x y 是有理数 并且满足等式2217x y -=- 求x y +的值.∵54x y =⎧⎨=⎩或54x y =-⎧⎨=⎩所以9x y +=或1x y +=-【点睛】此题考查了二元一次方程组和平方根的求解 理解题意列出方程组是解题的关键.22.先阅读下面材料 再解答问题:材料:已知a b 是有理数并且满足等式52b a =求a b的值. 解:∵52b a = ∵5(2)b a =- ∵a b 是有理数∵2523b a a -=⎧⎪⎨-=⎪⎩解得23136a b ⎧=-⎪⎪⎨⎪=⎪⎩ 问题:(1)已知a b 是有理数5a += 则=a ________ b =________.(2)已知x y 是有理数 并且满足等式795x y -=-+ 求x y 的值.23.先阅读第(1)题的解法 再解答第(2)题.(1)已知a 、b 是有理数 并且满足等式2b =求a 、b 的值.解:因为2b =. 即 ()2b-a =所以22b-a 5-a 3,== 解得:216a -b 33==,(2)设x 、y 是有理数 并且满足2x 2y 17+=,求x+y 的值.24.先阅读第(1)题的解法 再解答第(2)题.(1)已知a 、b 是有理数 并且满足等式5-a=2b +-a 求a 、b 的值. 解:因为5-a =2b +. 即5-a =(2b -a )+. 所以2b -a =5 -a =. 解得:a =- b =.(2)设x 、y 是有理数 并且满足x 2+y +2y =-4+17 求x +y 的值.【答案】1或-9 【详解】根据规律:等式左右两边的有理数部分和二次根式分别相同 建立方程 然后解方程即可. 解:因为x 2+y +2y =-4+17 所以(x 2+2y )+y =17-4所以x 2+2y =17 y =-4解得x =5 y =-4或x =-5 y =-4.所以x +y =1或x +y =-9.25.先阅读(1)的解法 再解答第(2)题:(1)已知a b 是有理数 并且满足等式2b=a +5- 求a b 的值;解:∵2b=a +5- ∵2b -a =5-即(2b-a=5-又∵a b为有理数∵2b-a也为有理数∵252b aa-=⎧⎨=-⎩解得232ab=-⎧⎪⎨=⎪⎩(2)已知m n是有理数且m n满足等式m+2n2-n+6)+15求)100n的立方根.。
人教版八年级数学下册《二次根式的定义及性质》专项练习(附带答案)
人教版八年级数学下册《二次根式的定义及性质》专项练习(附带答案)
【考点导航】
目录
【典型例题】 (1)
【考点一二次根式的定义】 (1)
【考点二二次根式有意义的条件】 (2)
【考点三求二次根式的值】 (3)
【考点四求二次根式中的参数】 (4)
【考点五利用二次根式的性质化简】 (6)
【考点六复合二次根式的化简】 (7)
【过关检测】 (9)
【典型例题】
【考点一二次根式的定义】
【考点二二次根式有意义的条件】
【考点三求二次根式的值】
【考点四求二次根式中的参数】
【考点五利用二次根式的性质化简】
【考点六复合二次根式的化简】
-=
)解:743
【过关检测】一、选择题
【详解】解:二次根式
a b
-≠a b
+= a b
14
【答案】22+-a b c。
专题 二次根式的乘除(巩固篇)(专项练习)-2022-2023学年八年级数学下册基础知识专项讲练
专题12.6 二次根式的乘除(巩固篇)(专项练习)一、单选题1. 下列二次根式中,属于最简二次根式的是( )A. B. C. D. 2. 下列实数中是无理数是( )A. B. C. D. ()03π-3. A. 5到6之间 B. 6到7之间 C. 7到8之间 D. 8到9之间4. 若0,0mn m n >+<=( )A. m B. -m C. n D. -n5. ( )A.B. C. D.6. 已知1a b ==+,则,a b 的关系是( )A. a b = B. 1ab =- C. 1a b = D. a b=-7. 设a ,b ,用含a ,b ( )A. 0.3abB. 0.6abC. 2abD. 22a b 8. 已知226a b ab +=,且0a b >>,则a b a b +-的值为( )A. C. 2D. 2±9. 下列说法中正确的是( )A. 有意义的是x >﹣3B. 是正整数的最小整数n 是3C. 若正方形的边长为cm ,则面积为30cm 2D. 计算的结果是310. 在古希腊时期,有一天毕达哥拉斯走在街上,在经过铁匠铺前他听到铁匠打铁的声音非常好听,于是驻足倾听,他发现铁匠打铁节奏很有规律,这个声音的比例称为黄金分割数.设a =b =11111S a b =+++,2221111S a b =+++,3331111S a b=+++,…,1001001001111S a b =+++,则123100S S S S +++⋅⋅⋅+的值为( )A. B. C. 100 D. 5050二、填空题11. 的倒数是______.12. 已知实数1a =,则a 的倒数为________.13. 都是最简二次根式,则m +n =_____.14. 已知最简二次根式与0b ≠,则=a ________.15. 不等式0< 的解集是_________.16. 已知m ___________.17.米为单位长度建立数轴,线段AB =17米,点A 在原点,点B 在数轴的正半轴,估计点B 位于两个相邻整数之间,这两个整数分别是______.18. 将1按右侧方式排列.若规定(m,n)表示第m排从左向右第n个数,则(5,4)与(9,4)表示的两数之积是______.三、解答题19. (1)计算:()2023 1-+(220. 比较下列各数的大小(1)(2)3π-21. 计算:(1))2+-;(22 --;(3)((1 20212022221-+--22. 先化简,再求值:2222a b ab baa a⎛⎫--÷-⎪⎝⎭,其中3,3a b=+=.23. ===,….(1)类比上述式子,再写出几个同类型的式子(至少写3个);(2)请你将发现的规律用含自然数()1n n ≥的等式表示出来,并给出证明.24. 的大小过程:因为211=,224=,所以12<<;因为21.4 1.96=,21.5 2.25=,所以1.4 1.5<<;因为21.41 1.9881=,21.42 2.0164=,所以1.41 1.42<<;因为21.414 1.999396=,21.415 2.002225=,所以1.414 1.415<<;……的更加精确的近似值.(1的大致范围?(精确到0.01)(2)填空:①比较大小:“>、<或=”)②若a 、b 均为正整数,a >b <a b +的最小值是______.(3)现有一块长4.1dm ,宽为3dm 的长方形木板,要想在这块木板上截出两个面积分别为22dm 和25dm 的正方形木板,张师傅准备采用如图的方式进行,请你帮助分析一下,他的方法可行吗?专题12.6 二次根式的乘除(巩固篇)(专项练习)一、单选题【1题答案】【答案】C【解析】【分析】根据最简二次根式的概念判断即可.【详解】A ==合题意;B =,被开方数含分母,不是最简二次根式,本选项不符合题意;C 是最简二次根式,本选项符合题意;D 、==选项不符合题意;故选:C .【点睛】本题考查的是最简二次根式的概念,被开方数不含分母、被开方数中不含能开得尽方的因数或因式的二次根式,叫做最简二次根式.【2题答案】【答案】B【解析】32===4=,()031π-=,是无理数,其余的都是有理数,是无理数.故选:B .【点睛】本题主要考查了无理数的定义,最简二次根式、立方根、零指数幂,理解相关运算法则是解答关键.【3题答案】【解析】=4+∵3<4,∴7<2+8+7和8之间.故选:C.【点睛】此题考查了估算无理数的大小,解题的关键是用有理数逼近无理数,求无理数的近似值.【4题答案】【答案】B【解析】【分析】先由已知条件得到m、n的符号,再根据二次根式的乘除法则化简计算即可.【详解】解:由已知条件可得:m<0,n<0,∴原式=|m|=-m,故选:B.【点睛】本题考查二次根式的应用,熟练掌握二次根式的乘除法是解题关键. 【答案】C【解析】【分析】三角形面积计算既可以用直角边计算,又可以用斜边和斜边上的高计算,根据这个等量关系即可求斜边上的高.【详解】直角三角形中,两直角边长的乘积等于斜边长与斜边上的高(h )的乘=,∴h ==.故选:C .【点睛】本题考查了二次根式的运算,根据面积相等的方法巧妙地计算斜边上的高是解本题的关键.【6题答案】【答案】D【解析】【分析】根据a 和b 的值去计算各式是否正确即可.【详解】A. 1a b -=-==B. 1ab =≠-,错误;C. 1ab =≠,错误;D. 10a b +=++==,正确;故答案为:D .【点睛】本题考查了实数的运算问题,掌握实数运算法则是解题的关键.【7题答案】【答案】B【解析】【分析】根据已知求出ab 的值,即可求出答案.【详解】∵a =b =∴ab ,==2×0.13⨯==0.6ab .故选B .【点睛】本题考查了二次根式的乘除法,键,是一道基础题.【8题答案】【答案】A【解析】【分析】已知226a b ab +=,变形可得28a b ab +=(),24a b ab -=(),可以得出a b +()和a b -()的值,即可得出答案.【详解】解:∵226a b ab +=,∴28a b ab +=(),24a b ab -=(),∵0a b >>,∴a b +=a b -=,∴a b a b +==-,故选:A .【点睛】本题考查了分式的化简求值问题,完全平方公式的变形求值,二次根式的除法,观察式子可以得出应该运用完全平方式来求解,要注意a 、b 的大小关系以及本身的正负关系.【9题答案】【答案】B【解析】【分析】直接利用二次根式有意义的条件以及二次根式的乘除运算法则分别计算得出答案.【详解】A 有意义的是x≥﹣3,故此选项错误;B 是正整数的最小整数n 是3,故此选项正确;C 、若正方形的边长为cm ,则面积为90cm 2,故此选项错误;D 、的结果是1,故此选项错误;故选:B .【点睛】本题考查了二次根式有意义的条件以及二次根式的乘除运算,正确掌握相关定义是解题的关键;【10题答案】【答案】C【解析】【分析】先计算1S ,2S ,3S 的值,找出规律,然后求解即可.【详解】解:a = ,b =,1ab ∴=,11111S a b=+++ (111)1)(b a a b =+++++21a ba b ab++=+++22a b a b++=++1=,2221111S a b =+++222211(1)(1)b a a b +++=++22222221a b a b a b ++=+++2222211a b a b ++=+++222222a b a b ++=++1=,3331111S a b =+++333311(1)(1)b a a b +++=++33333321a b a b a b ++=+++33333321a b a b a b ++=+++3333211a b a b ++=+++333322a b a b ++=++1=,⋯⋯1111n n nS a b =+++1(1)(1)n nn n b a a b ++=++21n nn n n na b a b a b ++=+++211n nn n a b a b ++=+++22n nn na b a b ++=++1=,1001S ∴=,123100S S S S ∴+++⋯+111100=++⋯⋯+=,故选:C【点睛】本题考查的分式的规律计算以及二次根式的乘法,正确掌握异分母分式的加减计算法则及运算规律是解题的关键.二、填空题【11题答案】【解析】【分析】根据倒数的定义解答即可.【详解】∵1=,【点睛】本题考查了实数的性质以及倒数,熟记互为倒数的两个数的乘积为1是解题的关键.【12题答案】【解析】【分析】直接利用倒数的定义结合二次根式的性质化简得出答案.【详解】解:∵实数1a=-,∴a=.【点睛】此题主要考查了实数的性质,正确掌握相关性质是解题关键.【13题答案】【答案】﹣6.【解析】【分析】由于二次根式都是最简二次根式,因此被开方数的幂指数均为1,由此可得出关于m、n的方程组,可求出m、n的值.【详解】由题意可得:31 211mm n+=⎧⎨-+=⎩解得:24 mn=-⎧⎨=-⎩∴m +n =﹣6故答案:﹣6.【点睛】本题考查了最简二次根式的定义,当已知一个二次根式是最简二次根式时,那么被开方数(或因式)的幂指数必为1.【14题答案】【答案】3【解析】【分析】确定与.【详解】解:由题意得3b ab =,解得3a =,故答案为3.【点睛】本题考查了二次根式的概念,明确最简二次根式的被开方数是解题的关键.【15题答案】【答案】>1x 【解析】【分析】根据一元一次不等式的解法及二次根式的除法即可求得.【详解】解:由原不等式得: 解得>1x 故答案为:>1x .【点睛】本题考查了一元一次不等式的解法及二次根式的化简与除法,熟练掌握和运用一元一次不等式的解法及二次根式的化简与除法是解决本题的关键.【16题答案】【答案】2【解析】【分析】根据题意知m -1,将所求式子进行通分化简,再将m 的值代入即可求解.【详解】解:由题意,知m -1,当m -1时,原式=2.故答案为2.【点睛】本题考查了实数的混合运算,二次根式的化简求值.解题的关键是掌握二次根式的性质.【17题答案】【答案】9和10【解析】【分析】先计算17【详解】17=∵9=10=∴910<<∴这两个相邻整数是9和10.故答案为:9和10.【点睛】此题考查了无理数的估算,正确估算出17÷的大小是解题的关键.【18题答案】【答案】【解析】【详解】试题解析:(5,4)表示第5排从左向右第4,(9,4)表示第9排从左向右第4个数,可以看出奇数排最中间的一个数都是1,第9排是奇数排,最中间的也就是这排的第5个数是1,那么第4,∴(5,4)与(9,4).故答案为三、解答题【19题答案】【答案】(1)8;(2)0【解析】【分析】(1)原式先计算乘方和二次根式乘法,然后再算加法即可得到答案;(2)原式先计算二次根式的除法,再合并即可得到答案.【详解】解:(1)计算:()20231-=1-+=19-+=8;(2-+-=0.【点睛】本题主要考查了二次根式的运算,解答本题的关键是熟练掌握二次根式相关的运算法则.【20题答案】【答案】(1)<(2)3π<-【解析】【分析】(1)根据实数比较大小的方法求解即可;(2)根据实数比较大小的方法求解即可.【小问1详解】解:∵((221218=<=,∴<;【小问2详解】解:∵222254544363936πππ⎛⎛⎫==>-== ⎪⎝⎭⎝,∴3π<-.【点睛】本题主要考查了实数比较大小,熟知实数比较大小的方法是解题的关键.【21题答案】【答案】(1)5-;(2)1-;(3【解析】【分析】(1)本题首先需要将二次根式化简,之后进行计算,去括号注意符号变化;(2)先对二次根式进行化简,去括号利用完全平方公式进行运算在进行合并;(3)利用平方差公式对括号进行化简,之后针对绝对值,判断绝对值内符号的正负,再去绝对值,之后进行合并运算.【详解】(1)原式155552=⨯-=-=-;(2)原式(423451=-+-=--+=-;(3)原式((202122221⎛⎡⎤=-+--- ⎣⎦⎝22=+=【点睛】本题重点考查的是二次根式的混合运算,需要用到简便运算,熟练掌握二次根式的化简及运算方法是解此类题型的关键.【22题答案】【答案】a b a b +-【解析】【分析】根据分式的运算法则即可求出答案.【详解】解:原式=()()222a b a b a ab b aa+--+÷()()()2a b a b aa ab +-⨯-=a ba b+-,∴当33a b ==-,时,原式=【点睛】本题考查分式的化简求值,熟练掌握分式的运算法则是解题关键 .【23题答案】【答案】=,=,=(答案不唯一);(2)(1n =+,证明见解析.【解析】【分析】(1)此题应先观察列举出的式子,再根据式子的特点书写.(2)先找出它们的一般规律,用含有n 的式子表示出来即可.【详解】(1)===.(2)(1n =+.==(1n =+【点睛】本题主要考查学生把特殊归纳到一般的能力及二次根式的化简,解题的关键是仔细观察,找出各式的内在联系解决问题.【24题答案】【答案】(1)2.23 2.24<<;(2)①>;②4;(3)他的方法可行,理由见解析.【解析】【分析】(1可;(2)①将两个数进行平方,平方后再进行比较即可;②要使得a b + 有最小值,只需要求得a 和b 的最小值,再进行计算即可得到答案;(3 4.13的大小即可得到答案.【详解】解:(1)∵224=,239=,∴23<<;∵22.2 4.84=,22.3 5.29=,∴2.2 2.3<<;∵22.23 4.9729=,22.24 5.0176=,∴2.23 2.24<<,(2)①∵(218=,(212=∴((22>∴>故答案为:>.②∵224=,239=,∴23<<;∵a >a 为正整数∴a 的最小值为3∵311=,328=,∴12<<∵b <b 为正整数∴b 的最小值为1∴a b +的最小值为4;(3)∵两个正方形的面积分别为2dm 、5dm<<< 2.2431.42+<+=<2.24 1.423.664.1∴这个方法可行【点睛】本题主要考查了无理数的估值和比较大小,解题的关键在于能够熟练掌握相关知识进行求解.。
人教八年级数学下册-二次根式(附习题)
探索新知
思考 (1)面积为3 的正方形的边长为___3____,面积为
S 的正方形的边长为___S____.
被开方数都大于0
(2)一个长方形围栏,长是宽的2 倍,面积为130
m2,则它的宽为__6_5___m.
被开方数可
(3)一个物体从高处自由落下,落以到是地分面数所用的
时间 t(单位:s)与开始落下的高度h(单位:m)满足关系
(1)3的平方根是___3___
(2)3的算术平方根是___3____
(3)5 有意义吗?为什么? 0 呢?
(4)一个非负数a的算术平方根应表示为__a___a___0__
正数有两个平方根且互为相反数;
平方根的性质:0有一个平方根就是0;
负数没有平方根.
算术平方根的性质:正数和0都有算术平方根;
16.1 二次根式
第2课时 二次根式的性质
新课导入
我们知道二次根式 a 中a≥0,那么二次 根式 a 还有哪些性质呢?
学习目标
(1)知道 a ≥0(a≥0),会用非负数的性质
解题.
a
(2)会用公式 a2 =a(a≥0)进行计算.
(3)知道形如 的化简方法及结果.
探索新知
知识点 1 二次根式的性质 探究 当a>0时,a 是什么数? a 0 当a=0时,a 是什么数? a 0 当 a 有意义时,a是什么数? a≥0
2.使 x 3 有意义的x的取值范围是 x≥-3 .
3.下列各式中一定是二次根式的是( B )
A. x 1
B. ( x 1)2
C. a2 1
D. 1 x
4.二次根式
1 a
中,字母a的取值范围是(
2023年人教版八年级数学下册第十六章《二次根式》综合测试卷附答案解析
2023年八年级数学下册第十六章《二次根式》综合测试卷1.下列各式是二次根式的是()A.-7B.m C.a 2+1D.332.若式子x +1+x -2在实数范围内有意义,则x 的取值范围是()A.x >-1B.x ≥-1C.x ≥-1且x ≠0D.x ≤-13.下列二次根式中,是最简二次根式的是()A.2B.12C.12D.94.4.下列运算正确的是()A.2+3=5B.30=0C.(-2a )3=-8a 3D.a 6÷a 3=a 25.化简二次根式(-5)2×3的结果为()A.-53B.53C.±53 D.30×3的值在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间7.估计5+2×10的值应在()A.5和6之间B.6和7之间C.7和8之间D.8和9之间8.若x <0,则x -x 2x 的结果是()A.0B.-2C.0或2D.29.已知a ,b ,c 为△ABC 的三边长,且a 2-2ab +b 2+|b -c |=0,则△ABC 的形状是()A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形10.如图,长方形内有两个相邻的正方形,其面积分别为2和8,则图中阴影部分的面积为()A.2B.2C.22D.6二、填空题(每题3分,共24分)11.比较大小:35________27(填“>”“<”或“=”).12.计算:24-323=________.13.比较:5-12________12(填“>”“=”或“<”).14.实数a 在数轴上对应的点的位置如图所示,则(a -4)2+(a -11)2化简后为________.15.【2022·贺州】若实数m ,n 满足|m -n -5|+2m +n -4=0,则3m +n =________.16.△ABC 的面积S =12cm 2,底边a =23cm,则底边上的高为__________.17.已知a ≠0,b ≠0且a <b ,化简-a 3b 的结果是__________.18.已知三角形的三边长分别为a ,b ,c ,求其面积问题,中外数学家曾经进行过深入研究,古希腊的几何学家海伦给出求其面积的海伦公式S =p (p -a )(p -b )(p -c ),其中p =a +b +c 2;我国南宋时期数学家秦九韶曾提出利用三角形的三边求其面积的秦九韶公式S 的三边长分别为2,3,4,则其面积是________.三、解答题(19题16分,其余每题10分,共66分)19.计算:(1)(6+8)×3÷32;-12+(1-2)0-|3-2|;(3)(6-412+38)÷22;(4)(1+3)(2-6)-(22-1)2.20.先化简,再求值:23x 9x +y 2x y 3-21x -5x =12,y =4.21.已知等式|a -2023|+a -2024=a 成立,求a -20232的值.22.已知一个长方形花坛与一个圆形花坛的面积相等,长方形花坛的长为140πm,宽为35πm,求这个圆形花坛的半径.23.【跨学科题】据研究,高空抛物下落的时间t(单位:s)和高度h(单位:m)近似满足公式t=h5 (不考虑风速的影响).(1)求从40m高空抛物到落地的时间.(2)小明说从80m高空抛物到落地时间是(1)中所求时间的2倍,他的说法正确吗?如果不正确,请说明理由.(3)已知高空坠落物体动能(单位:焦耳)=10×物体质量×高度,某质量为0.05kg的鸡蛋经过6s后落在地上,这个鸡蛋产生的动能是多少?你能得到什么启示?(注:杀伤无防护人体只需要65焦耳的动能)24.我们学习了二次根式,那么所有的非负数都可以看成是一个数的平方,如3=(3)2,5=(5)2,下面我们观察:(2-1)2=(2)2-2×1×2+12=2-22+1=3-22;反之,3-22=2-22+1=(2-1)2,∴3-22=(2-1)2,∴3-22=2-1.(1)化简3+2 2.(2)化简4+2 3.(3)化简4-12.(4)若a±2b=m±n,则m,n与a,b的关系是什么?并说明理由.答案一、1.C2.C 3.A 4.C 5.B 6.D 7.B 8.D 9.B 10.B 二、11.>12.613.>14.715.716.43cm17.-a -ab点拨:∵a ≠0,b ≠0,∴-a 3b >0,a 3b <0.∴a ,b 异号.又∵a <b ,∴a <0,b >0.∴-a 3b =-a -ab .18.3154三、19.解:(1)原式=(32+26)÷32=1+233;(2)原式=-2-23+1-(2-3)=-2-23+1-2+3=-3-3;6-412+3×24=32-1+3=32+2;(4)原式=2×(1+3)×(1-3)-(8-42+1)=2×(1-3)-8+42-1=-22-8+42-1=22-9.20.解:原式=2x x +xy -x x +5xy=x x +6xy .当x =12,y =4时,原式=1212+612×4=24+62=2524.21.解:由题意得a -2024≥0,∴a ≥2024.原等式变形为a -2023+a -2024=a .整理,得a -2024=2023.两边平方,得a -2024=20232,∴a -20232=2024.22.解:长方形花坛的面积为140π×35π=70π(m 2),∴圆形花坛的面积为70πm 2.设圆形花坛的面积为S m 2,半径为r m,则S =πr 2,即70π=πr 2,∴r=70ππ=70.故这个圆形花坛的半径为70m. 23.解:(1)由题意知h=40m,∴t=h5=405=8=22(s).(2)不正确.理由如下:当h=80m时,t=805=16=4(s).∵4≠2×22,∴不正确.(3)当t=6s时,6=h5,∴h=180m.∴鸡蛋产生的动能为10×0.05×180=90(焦耳).启示:严禁高空抛物.24.解:(1)3+22=(2+1)2=2+1.(2)4+23=(3+1)2=3+1.(3)4-12=4-23=(3-1)2=3-1.+n=a,=b.理由:把a±2b=m±n两边平方,得a±2b=m+n±2mn,+n=a,=b.。
八年级数学-二次根式练习(含解析)
【详解】解:∵ 是二次根式,且值为5,
∴n=2,m﹣n=25,
解得:m=27,
故mn的算术平方根为: =27.
【反思】此题主要考查了二次根式的定义以及算术平方根的定义,正确得出m,n的值是解题关键.
22.已知, ,且x、y均为整数,求x+y的值.
【详解】解: = .
∵n是一个正整数, 是整数,
∴n的最小值是3.
故答案为:3.
【反思】本题主要考查的是二次根式的定义,熟练掌握二次根式的定义是解题的关键.
13.当x≥﹣ 时,代数式 是二次根式.
【点拨】一般地,我们把形如 (a≥0)的式子叫做二次根式.
【详解】解:由题可得,2x+1≥0,
解得x≥﹣ ,
则 的最小值是1.
【反思】本题考查了二次根式的性质,任何非负数的算术平方根是非负数.
25.已知 ,计算x﹣y2的值.
【点拨】根据二次根式有意义的条件可得: ,解不等式组可得x的值,进而可求出y的值,然后代入x﹣y2求值即可.
【详解】解:由题意得: ,
解得:x= ,
把x= 代入y= ﹣4,得y=﹣4,
20.如果 有意义,求代数式 的值.
【点拨】首先得出x的取值范围,再利用绝对值以及二次根式的性质化简求出即可.
【详解】解:∵ 有意有意义,
∴x﹣1≥0,9﹣x≥0,
解得:1≤x≤9,
∴ =x﹣1+12﹣x=11
【反思】此题主要考查了二次根式与绝对值的性质,正确化简二Fra bibliotek根式是解题关键.
21.如果 是二次根式,且值为5,试求mn的算术平方根.
A.﹣2B.±2C.2D.4
八年级数学下册-专题. 二次根式的加减【十大题型】(举一反三)(沪科版)(解析版)
【题型 8
二次根式混合运算的实际应用】 ...........................................................................................................19
【题型 9
二次根式的新定义类问题】 ...................................................................................................................23
①同类二次根式类似于整式中的同类项;
②几个同类二次根式在没有化简之前,被开方数完全可以互不相同;
③判断两个二次根式是否是同类二次根式,首先要把它们化为最简二次根式,然后再看被开方数是否相同.
【题型 1
判断同类二次根式】
【例 1】(2023·上海·八年级假期作业)判断下列各组的二次根式是否为同类二次根式?
∵ �2 > 0,则 5� + 8 > 0,
∴当� = 1 时,5� + 8 = 7,解得� =− 0.2,不是正整数,舍去;
当� = 2 时,5� + 8 = 28,解得� = 4,符合题意,
即�的最小正整数为 4.
【点睛】本题主要考查同类二次根式的概念,此题中要注意前面一个二次根式并不是最简的,根据题意列出
1
3
+ 48 ÷ 2 3
(2) 2 6 + 3 × 2 6 − 3 − (3 3 − 2)2 +
【答案】(1)
14
4
6− 2
3
(2)−8 + 7 6 + 2
2020-2021学年人教版数学八年级下册 第十六章 二次根式 综合练习
2020-2021学年人教版数学八年级下册十六章-二次根式综合练习一、选择题1.下列所给的二次根式中,是最简二次根式的是()A. √8xB. √x2+4C. √m2D.√a2.要使√x+12有意义,则x的取值范围为()A. x≤0B. x≥−1C. x≥0D. x≤−13.如果√−12−x是二次根式,那么x应满足的条件是()A. x≠2的实数B. x<2的实数C. x>2的实数D. x>0且x≠2的实数4.已知ab<0,则√−a2b化简后为()A. −a√−bB. −a√bC. a√bD. a√−b5.下列运算结果是无理数的是()A. 3√2×√2B. √3×√2C. √72÷√2D. √132−526.计算√15×√6的结果是()A. 3B. √21C. 9√10D. 3√107.下列式子中属于代数式的有()①0;②x;③x+2;④2x;⑤x=2;⑥x>2;⑦√x2+1;⑧x≠2.A. 5个B. 6个C. 7个D. 8个8.下列运算中,能合并成一个根式的是()A. √12−√2B. √18−√8C. √8a2+√2aD. √x2y+√xy29.下列运算正确的是()A. 2√18×3√5=6√80B. √52−32=√52−√32=5−3=2C. √(−4)×(−16)=√−4×√−16=(−2)×(−4)=8D. √52×32=√52×√32=5×3=1510.估计(2√3+6√2)×√1的值应在()3A. 4和5之间B. 5和6之间C. 6和7之间D. 7和8之间11.若√3的整数部分为x,小数部分为y,则√3x−y的值是()A. 3√3−3B. √3C. 1D. 312.计算|2−√5|+|4−√5|的值是()A. −2B. 2C. 2√5−6D. 6−2√513.已知√24n是整数,则正整数n的最小值为()A. 0B. 1C. 6D. 3614.化简√−a3+a√−1的结果为()aA. (−a+1)√−aB. (−a−1)√−aC. (a+1)√−aD. (a−1)√−a15.已知m=1+√2,n=1−√2,则√m2+n2−3mn的值为()A. 9B. ±3C. 3D. 5二、填空题16.要使二次根式√2−3x有意义,则x的最大值是.17.要使代数式√2x−1有意义,则x的取值范围是______.x−118.计算(√−2)2020(√5+2)2021的结果是.19.已知a=√2,则代数式a2−1的值为.20.计算:5√2×√8=.21.已知√32n+16是整数,则n的最小值为________.22.若a,b均为有理数,且√8+√18+√1=a+b√2,则a=(1),b=(2).8三、计算题23.计算:(1)√8+2√3−(√27−√2).(2)(√2−√3)2+2√13×3√2.(3)√48−√54÷2+(3−√3)(1+√3 (4)√12+(√2+1)(√2−1)+√2×√18.24.先化简,再求值:(yx−y −y2x2−y2)÷xxy+y2,其中x=√3+1,y=√3−1.25.已知a,b为实数,且a=√+√+3,求√(a−b)2的值.26.已知a>0,b>0,√a(√a+√b)=3√b(√a−13√b),求√aba−b+√ab的值.27.观察下列各式,通过分母有理化把不是最简二次根式的化成最简二次根式.1√2+1=1×(√2−1)(√2+1)(√2−1)=√2−1(√2)2−1=√2−1=√2−1;√3+√2=√3−√2)(√3+√2)(√3−√2)=√3−√2(√3)2−(√2)2=√3−√23−2=√3−√2.按照以上的过程,解答以下问题:(1)分母有理化:√4+√3;(2)计算:(√2+1+√3+√2+√4+√3+⋯+√2021+√2020)×(√2021+1).答案1.【答案】B2.【答案】B3.【答案】C4.【答案】D5.【答案】B6.【答案】D7.【答案】A8.【答案】B9.【答案】D10.【答案】C11.【答案】C12.【答案】B13.【答案】C14.【答案】B15.【答案】C16.【答案】2317.【答案】x≥1且x≠1218.【答案】√5+219.【答案】120.【答案】2021.【答案】−1222.【答案】0 21423.【答案】(1)√8+2√3−(√27−√2)=2√2+2√3−3√3+√2=3√2−√3×3√2(2)(√2−√3)2+2√13=√2+√32−2√6+23√3×3√2=5(3)√48−√÷2+(3−√3)(1+√3)=4√3−3√6÷2+(3−√3)3+√33=4√3−3√6÷2+3×3+√33−√3×3+√33=4√3−3√6÷2+3+√3−√3−1=4√3−32√6+2(4)√12+(√2+1)(√2−1)+√2×√18.=√12+2−1+√36=2√3+1+6=2√3+724.【答案】解:原式=y 2x−y.当x=√3+1,y=√3−1时,原式=(√3−1)22=2−√3.25.【答案】由题意得{5b−35⩾0 7−b⩾0,解得b=7,∴a=√5b−35+√7−b+3=3,∴√(a−b)2=√(3−7)2=4.26.【答案】解:∵a>0,b>0,√a(√a+√=3√√a−13√b),∴a+√ab=3√ab−b,∴a+b=2√ab,∴(a+b)2=4ab,∴a2+b2=2ab,∴(a−b)2=0,∴a=b,∴√aba−b+√ab =5a+aa=6.27.【答案】(1)√4+√3=√4−√3(√4+√3)(√4−√3)=2−√3.(2)(1√2+1+1√3+√2+1√4+√3+⋯+1√2021+√2020)×(√2021+1)=(√2−1+√3−√2+⋯+√2021−√2020)×(√2021+1) =(√2021−1)(√2021+1)=2021−1=2020.。
八年级数学-二次根式练习题(含解析)
八年级数学-二次根式练习题(含解析)一.选择题(共15小题)1.二次根式在实数范围内有意义,则x的取值范围是()A.x<1 B.x≥﹣1 C.x≠2 D.x≥﹣1且x≠22.若式子在实数范围内有意义,则x的取值范围是()A.x≥0 B.x≥1 C.x>1 D.x>03.若在实数范围内有意义,则x的取值范围是()A.x>﹣B.x>﹣且x≠0 C.x≥﹣D.x≥﹣且x≠04.式子+有意义的条件是()A.x≥0 B.x≤0 C.x≠﹣2 D.x≤0且x≠﹣25.若有意义,则x满足条件是()A.x≥﹣3且x≠1 B.x>﹣3且x≠1 C.x≥1 D.x≥﹣36.已知y=++2,则x y的值为()A.9 B.8 C.2 D.37.在式子中,二次根式有()A.2个B.3个C.4个D.5个8.下列各式中,一定是二次根式的有()①②③④⑤A.2个B.3个C.4个D.5个9.已知n是正整数,是整数,n的最小值为()A.21 B.22 C.23 D.2410.已知,则=()A.B.C.D.﹣11.若二次根式在实数范围内有意义,则x的取值范围在数轴上表示正确的是()A.B.C.D.12.如果y=,则2x﹣y的平方根是()A.﹣7 B.1 C.7 D.±113.若是二次根式,则下列说法正确的是()A.x≥0 B.x≥0且y>0C.x、y同号D.x≥0,y>0或x≤0,y<014.若,则a的取值范围是()A.a>0 B.a≥1 C.0<a<1 D.0<a≤115.使下列式子有意义的实数x的取值都满足x≥1的式子的是()A.B.C.+D.二.填空题(共10小题)16.若实数a,b满足,则a﹣b的平方根是.17.当x时,在实数范围内有意义.18.若在实数范围内有意义,则x的取值范围是.19.若|2017﹣m|+=m,则m﹣20172=.20.使代数式有意义的整数x的和是.21.观察与思考:形如的根式叫做复合二次根式,把变成=叫复合二次根式的化简,请化简=.22.若代数式﹣(x﹣2)0+(x﹣3)﹣2有意义,则x的取值范围是.23.设x,y为实数,且,则点(x,y)在第象限.24.代数式﹣3﹣的最大值为,若有意义,则=.25.当a时,无意义;有意义的条件是.三.解答题(共15小题)26.已知+=b+8.(1)求a、b的值;(2)求a2﹣b2的平方根和a+2b的立方根.27.(1)若++y=16,求﹣的值(2)若a,b互为相反数,c,d互为倒数,m的绝对值为2,求+m﹣cd的值28.若y=++x3,求10x+2y的平方根.29.已知n=﹣6,求的值.30.若b=+﹣a+10.(1)求ab及a+b的值;(2)若a、b满足x,试求x的值.31.(1)已知y=+x+3,求的值.(2)比较大小:3与2.32.已知x,y为实数,y=,求xy的平方根.33.若x,y为实数,且y=++.求﹣的值.34.已知a,b分别为等腰三角形的两条边长,且a•b满足b=4++3,求此三角形的周长.35.若a,b是一等腰三角形的两边长,且满足等式,试求此等腰三角形的周长.36.(1)已知a+3与2a﹣15是一个正数的平方根,求a的值;(2)已知x,y为实数,且y=﹣+4,求的值.37.(1)计算:(﹣)﹣1﹣|﹣3|﹣20160+()2;(2)解方程:4(x﹣1)2﹣1=24;(3)已知y=++3,则xy的算术平方根.38.请认真阅读下列这道例题的解法,并完成后面两问的作答:例:已知y=+2018,求的值.解:由,解得:x=2017,∴y=2018.∴.请继续完成下列两个问题:(1)若x、y为实数,且y>+2,化简:;(2)若y•=y+2,求的值.39.若a,b为实数,且,求.40.已知a、b、c为一个等腰三角形的三条边长,并且a、b满足b=2,求此等腰三角形周长.参考答案与试题解析一.选择题(共15小题)1.【分析】直接利用二次根式的定义得出x的取值范围进而得出答案.【解答】解:∵二次根式在实数范围内有意义,∴x+1≥0,解得:x≥﹣1.故选:B.2.【分析】根据被开方数是非负数、除数不等于0,确定x的取值范围.【解答】解:由题意,可得x﹣1>0,所以x>1故选:C.3.【分析】根据二次根式被开方数是非负数列出不等式,解不等式得到答案.【解答】解:由题意得,2x+5≥0,解得,x≥﹣,故选:C.4.【分析】根据被开方数大于等于0,分母不等于0列式进行计算即可得解.【解答】解:根据题意得﹣x≥0且x+2≠0,解得x≤0且x≠﹣2.故选:D.5.【分析】直接利用二次根式有意义的条件分析得出答案.【解答】解:∵有意义,∴x满足条件是:x+3≥0,且x﹣1≠0,解得:x≥﹣3且x≠1.故选:A.6.【分析】直接利用二次根式有意义的条件得出x的值,进而求出y的值,即可得出答案, 【解答】解:∵y=++2,∴x﹣3=3﹣x=0,解得:x=3,则y=2,则x y=32=9.故选:A.7.【分析】根据二次根式的定义对各数分析判断即可得解.【解答】解:根据二次根式的定义,y=﹣2时,y+1=﹣2+1=﹣1,所以二次根式有(x>0),,(x<0),,共4个.故选:C.8.【分析】利用二次根式定义判断即可.【解答】解:①是二次根式;②,当a≥0时是二次根式;③是二次根式;④是二次根式;⑤,当x≤0时是二次根式,故选:B.9.【分析】如果一个根式是整数,则被开方数是完全平方数,首先把化简,然后求n的最小值.【解答】解:∵189=32×21,∴=3,∴要使是整数,n的最小正整数为21.故选:A.10.【分析】根据二次根式有意义的条件求出x,根据题意求出y,分母有理化化简即可.【解答】解:由题意得,x2﹣2≥0,2﹣x2≥0,∴x2=2,解得,x=±,当x=时,无意义,当x=﹣时,2=2y,解得,y=,∴==+,故选:C.11.【分析】直接利用二次根式有意义的条件结合数轴得出答案.【解答】解:二次根式在实数范围内有意义,则2x﹣6≥0,解得:x≥3,则x的取值范围在数轴上表示为:.故选:A.12.【分析】直接利用二次根式有意义的条件分析得出答案.【解答】解:由题意可得:x2﹣4=0,x+2≠0,解得:x=2,故y=3,则2x﹣y=1,故2x﹣y的平方根是:±1.故选:D.13.【分析】二次根式中的被开方数必须是非负数.【解答】解:依题意有≥0且y≠0,即≥0且y≠0.所以x≥0,y>0或x≤0,y<0.故选:D.14.【分析】直接利用二次根式有意义的条件得出答案.【解答】解:∵,∴,解得:0<a≤1.故选:D.15.【分析】根据分式有意义的条件以及二次根式有意义的条件即可求出答案【解答】解:(A)由,可得:x≤0且x≠﹣1,故x≥1时,无意义,故不选A,(B)由x+1>0,可得:x>﹣1,此时有意义,不都满足x≥1,故不选B;(C)由可得:﹣1≤x≤1,故C不选;(D)解得:x>1,满足x≥1,故选D故选:D.二.填空题(共10小题)16.【分析】直接利用二次根式有意义的条件进而分析得出答案.【解答】解:∵和有意义,则a=5,故b=﹣4,则===3,∴a﹣b的平方根是:±3.故答案为:±3.17.【分析】根据二次根式有意义的条件、分式有意义的条件列出不等式,解不等式得到答案.【解答】解:由题意得,x+1≥0,|x|﹣2≠0,解得,x≥﹣1且x≠2,故答案为:≥﹣1且x≠2.18.【分析】根据被开方数大于等于0,分母不等于0列不等式求解即可.【解答】解:由题意得,﹣>0,解得x<﹣3.故答案为:x<﹣3.19.【分析】根据二次根式的性质求出m≥2018,再化简绝对值,根据平方运算,可得答案.【解答】解:∵|2017﹣m|+=m,∴m﹣2018≥0,m≥2018,由题意,得m﹣2017+=m.化简,得=2017,平方,得m﹣2018=20172,m﹣20172=2018.故答案为:201820.【分析】直接利用二次根式的性质得出不等式组求出答案.【解答】解:使代数式有意义,则,解得:﹣4<x≤,则整数x有:﹣3,﹣2,﹣1,0,故整数x的和是:﹣3﹣2﹣1=﹣6.故答案为:﹣6.21.【分析】直接利用完全平方公式将原式变形进而得出答案.【解答】解:==﹣.故答案为:﹣.22.【分析】直接利用二次根式有意义的条件以及零指数幂的性质和负指数幂的性质分别判断得出答案.【解答】解:∵代数式﹣(x﹣2)0+(x﹣3)﹣2有意义,∴x+1≥0,且x﹣1≠0,x﹣2≠0,x﹣3≠0,解得:x≥﹣1且x≠1,x≠2,x≠3.故答案为:x≥﹣1且x≠1,x≠2,x≠3.23.【分析】直接利用二次根式有意义的条件得出x的值,进而得出y的值,再利用点的坐标特点得出答案.【解答】解:由题意可得:,解得:x=5,故y=﹣4,则点(x,y)为(5,﹣4)在第四象限.故答案为:四.24.【分析】根据算术平方根具有非负性可得当=0时,代数式﹣3﹣有最大值,进而可得代数式﹣3﹣的最大值为﹣3;再根据二次根式被开方数为非负数可得x=0,进而可得答案.【解答】解:∵≥0,∴当=0时,代数式﹣3﹣有最大值,∴代数式﹣3﹣的最大值为﹣3;∵有意义,∴,解得:x=0,则=1,故答案为:﹣3;1.25.【分析】根据二次根式成立的条件:被开方数是非负数;无意义:被开方数小于0,列不等式可得结论.【解答】解:3a﹣2<0,a<,由有意义得:,解得,当a时,无意义;有意义的条件是:x≤2且x≠﹣8,故答案为:a,x≤2且x≠﹣8.三.解答题(共15小题)26.【分析】(1)关键二次根式有意义的条件即可求解;(2)将(1)中求得的值代入即可求解.【解答】解:(1)由题意得a﹣17≥0,且17﹣a≥0,得a﹣17=0,解得a=17,把a=17代入等式,得b+8=0,解得b=﹣8.答:a、b的值分别为17、﹣8.(2)由(1)得a=17,b=﹣8,±=±=±15,===1.答:a2﹣b2的平方根为±15,a+2b的立方根为1.27.【分析】(1)根据二次根式的被开方数是非负数;(2)根据相反数、倒数的定义以及绝对值得到:a+b=0,cd=1,m=±2,代入求值即可.【解答】解:(1)由题意,得解得x=8.所以y=16所以原式=﹣=2﹣4=﹣2.(2)∵a,b互为相反数,c,d互为倒数,m的绝对值为2,∴a+b=0,cd=1,m=±2,∴=+m﹣1=m﹣1.当m=2时,原式=1.当m=﹣2时,原式=﹣2﹣1=﹣3.综上所述,+m﹣cd的值是1或﹣3.28.【分析】根据二次根式有意义的条件可得x=2,进而可得y的值,然后计算出10x+2y的值,再求平方根.【解答】解:由题意得:,解得:x=2,则y=8,10x+2y=20+16=36,平方根为±6.29.【分析】直接利用二次根式的性质得出m,n的值,进而化简得出答案.【解答】解:∵与有意义,∴m=2019,则n=﹣6,故==45.30.【分析】(1)直接利用二次根式有意义的条件得出ab,a+b的值;(2)利用已知结合完全平方公式计算得出答案.【解答】解:(1)∵b=+﹣a+10,∴ab=10,b=﹣a+10,则a+b=10;(2)∵a、b满足x,∴x2=,∴x2===8,∴x=±2.31.【分析】(1)直接利用二次根式有意义的条件分析得出x,y的值,进而答案;(2)直接将二次根式变形进而比较即可.【解答】解:(1)∵y=+x+3,∴x=3,故y=6,∴==3;(2)∵3=,2=,∴>,即3>2.32.【分析】根据被开方数是非负数且分母不等于零,可得x,y的值,根据开平方,可得答案.【解答】解:由题意,得,,且x﹣2≠0解得x=﹣2,y=﹣xy=,xy的平方根是.33.【分析】根据二次根式的被开方数是非负数求得x的值,进而得到y的值,代入求值即可.【解答】解:依题意得:x=,则y=,所以==,==2,所以﹣=﹣=﹣=.34.【分析】根据题意求出a、b的值,根据三角形的三边关系确定三角形的边长,求出此三角形的周长.【解答】解:由题意得,3a﹣6≥0,2﹣a≥0,解得,a≥2,a≤2,则a=2,则b=4,∵2+2=4,∴2、2、4不能组成三角形,∴此三角形的周长为2+4+4=10.35.【分析】根据被开方数大于等于0列式求出a,再求出b,然后分a是腰长与底边两种情况讨论.【解答】解:根据题意得,3a﹣6≥0且2﹣a≥0,解得a≥2且a≤2,所以a=2,b=4,①a=2是腰长时,三角形的三边分别为2、2、4,∵2+2=4,∴不能组成三角形,②a=2是底边时,三角形的三边分别为2、4、4,能组成三角形,周长=2+4+4=10,所以此等腰三角形的周长为10.36.【分析】(1)直接利用平方根的定义分析得出答案;(2)利用二次根式有意义的条件分析得出答案.【解答】解:(1)根据平方根的性质得,a+3+2a﹣15=0,解得:a=4,答:a的值为4;(2)满足二次根式与有意义,则,解得:x=9,∴y=4,∴=+=5.37.【分析】(1)直接利用负指数幂的性质以及零指数幂的性质和绝对值的性质分别化简得出答案;(2)利用直接开平方法解方程得出答案;(3)直接利用二次根式的性质分析得出x,y的值进而得出答案.【解答】解:(1)(﹣)﹣1﹣|﹣3|﹣20160+()2=﹣4﹣3﹣1+2=﹣6;(2)∵4(x﹣1)2﹣1=24,∴(x﹣1)2=,∴x﹣1=±,解得:x1=,x2=﹣;(3)∵y=++3,∴,解得:x=4,∴y=3,则xy=12,故12的算术平方根为:2.38.【分析】根据题意给出的方法即可求出答案.【解答】解:(1)由,解得:x=3,∴y>2.∴;(2)由:,解得:x=1.y=﹣2.∴.39.【分析】根据被开方数是非负数且分母不等于零,可得答案.【解答】解:由题意,得a2﹣1=0,且a+1≠0,解得a=1,b=.﹣=﹣3.40.【分析】由二次根式有意义的条件可得,解不等式可得a的值,进而可得b的值,然后再分两种情况进行计算即可.【解答】解:由题意得:,解得:a=3,则b=5,若c=a=3,此时周长为11,若c=b=5,此时周长为13.。
(完整版)八年级下册数学二次根式测试题及答案(2套-高分必做),推荐文档
-1- x 2132 -122132 a ab 2 a + b a - b (x -1)2 2x -3 3 3 4 a 3 11(3a -4b )2x -8 y - 2 5 x 2 - 2x +1 1- x + x 2 44b - a 3 (- 2 )259 +16 9 16(-9) ⨯(-4) (a + b )2 a 2 -1 a +1 a -1 a ba 248 1 8 130.5 122 1a初中数学二次根式测试题(一)判断题:(每小题 1 分,共 5 分).1. ( 2)2 =2.……( )2.是二次根式.……………( )3.=- =13-12=1.( )4., , c是同类二次根式.……()5. 的有理化因式为 .…………()(二)填空题:(每小题 2 分,共 20 分)6. 等式 =1-x 成立的条件是.7. 当 x时,二次根式有意义.8.比较大小: -2 2- .9. 计算:(3 1 )2 - ( 1 )2 等于 .1 10. 计算:3 2 2 1 2 ·= .9 11. 实数 a 、b 在数轴上对应点的位置如图所示:aob则 3a - = .12.若+ =0,则 x = ,y =.13.3-2的有理化因式是.114.当 <x <1 时, -=.215.若最简二次根式3b -1a + 2 与是同类二次根式,则 a =,b = .(三)选择题:(每小题 3 分,共 15 分)16 A 2 2 2 3 6B .下列变形中,正确的是………()( )(2 5) = × =( )=- (C )= + (D )= 9 ⨯ 17. 下列各式中,一定成立的是……()(A )=a +b(B )=a 2+11(C ) =·(D )= b18. 若式子 2x -1 -+1 有意义,则 x 的取值范围是………………………()11 1(A )x ≥(B )x ≤(C )x =(D )以上都不对22 219.当 a <0,b <0 时,把化为最简二次根式,得…………………………………( )(A (B )1 (C ) - b - ab (D ) b 20.当 a <0 时,化简|2a - |的结果是…()(A )a (B )-a(C )3a (D )-3a(五)计算:(每小题 5 分,共 20 分)23.(- 4)-( 3 - 2 ); 1- 2x 4(a 2 +1)2ababab48 12 3 122 a 3b a b ab ba5 - 25 x - 2 y 3x + 2 y - 86 3 6 3 724.(5+ - 6 )÷ ;2-4+2( -1)0;26.( -+2 + )÷ .(六)求值:(每小题 6 分,共 18 分)1 1bb27. 已 知 a = ,b = ,求-的值.2 4128. 已知 x =,求 x 2-x +的值.+29. 已知+ =0,求(x +y )x 的值.(七)解答题:30.(7 分)已知直角三角形斜边长为(2+ )cm ,一直角边长为( +2 )cm ,求这个直角三角形的面积.a -b 25. 50 +2 +1b ax 2 - 8x +16 a 3 3x -8 y - 2 5 5 5 3 21 25 5 5 5 5 5 5 x - 2 y 3x + 2 y - 8 x - 2 y 3x + 2 y - 8 (26 + 3)2 - ( 6 + 2 3)231.(7 分)已知|1-x |-=2x -5,求 x 的取值范围.试卷答案【答案】1.√;2.×;3.×;4.√;5.×. 6. 【答案】x ≤1.37. 【提示】二次根式有意义的条件是什么?a ≥0.【答案】≥ .28.【提示】∵ 3 < 4 = 2 ,∴ - 2 < 0 ,2 - 1 9.【提示】(3 )2-( )2=?【答案】2 .2 2 10.> 0 .【答案】<. 11. 【提示】从数轴上看出 a 、b 是什么数?[ a <0,b >0. ] 3a -4b 是正数还是负数? [ 3a -4b <0. ]【答案】6a -4b .12. 【提示】和 各表示什么?[x -8 和 y -2 的算术平方根,算术平方根一定非负,]你能得到什么结论?[x -8=0,y -2=0.]【答案】8,2. 13.【提示】(3-2)(3+2 )=-11.【答案】3+2 .1 1114.【提示】x 2-2x +1=()2;-x +x 2=( )2.[x -1;-x .]当 <x <1 时,422113 x -1 与 -x 各是正数还是负数?[x -1 是负数, -x 也是负数.]【答案】 -2x .2 2215. 【提示】二次根式的根指数是多少?[3b -1=2.]a +2 与 4b -a 有什么关系时,两式是同类二次根式?[a +2=4b -a .] 【答案】1,1.16. 【答案】D .17.【答案】B .18.【答案】C .19.【答案】B .20.【答案】D .23.【答案】3.a24.22-2.25.5 .26.a 2+a -+2.bb ( a + b ) - b ( a - b )ab + b - ab + b2b27. ==.2 ⨯ a - ba - b当 a = 1 ,b = 1 时,原式= 4 =2.241 - 12 4 28. 【提示】本题应先将 x 化简后,再代入求值.1【解】∵ x =- 2 5 + 2==5 - 4+ 2 .∴ x 2-x + =( +2)2-( +2)+ =5+4 +4- -2+ =7+4 .29.【解】∵≥0, ≥0,而+ =0,⎧x - 2 y = 0 ∴ ⎨ ⎧x = 2 解得 ⎨ y = 1. ∴ (x +y )x =(2+1)2=9.⎩3x + 2 y - 8 = 0. ⎩30.【解】在直角三角形中,根据勾股定理:另一条直角边长为:=3(cm ).3 5 566 3 (x - 4)23 ⎩数学八年级(下) 复习测试题∴ 直角三角形的面积为:S = 1×3×(+ 2 2 3答:这个直角三角形的面积为( 2)= + 3 2+ 3 )cm 2.(cm 2) 31.【解】由已知,等式的左边=|1-x |- =|1-x |-|x -4 右边=2x -5.⎧1 - x ≤ 0只有|1-x |=x -1,|x -4|=4-x 时,左边=右边.这时⎨x - 4 ≤ 0. 解得 1≤x ≤4.∴ x 的取值范围是 1≤x ≤4.3 3 6453 -a 2 + 2x 2X 38X6X 3 yxx-2 x x-2 - y x 2 -yy二次根式一、选择题(共 20 分):1、下列各式中,不是二次根式的是( )A 、B 、C 、D 、2、下列根式中,最简二次根式是()A.B. C. D.3、计算:3÷ 16的结果是 ( ) A 、2 B 、 2C 、 2D 、4、如果 a2=-a ,那么 a 一定是 ( )A 、负数B 、正数C 、正数或零D 、负数或零5、下列说法正确的是() a 2=- aa 2= aA 、若,则 a <0 B 、若,则 a >0C 、 a 4b 8=a 2b 4D 、5 的平方根是6、若 2m-4 与 3m-1 是同一个数的平方根,则 m 为( )A 、-3B 、1C 、-3 或 1D 、-17、能使等式=成立的x 值的取值范围是( )A 、x≠2B 、x≥0C 、x >2D 、x≥28、已知 xy >0,化简二次根式 x 的正确结果是()A. B. C.- D.-9、已知二次根式 的值为 3,那么 x 的值是()A 、3B 、9C 、-3D 、3 或-31 26 32 X 2+15-yx - 2 3 - x x - 2 x -1 x + y 3 2 - 12 3 - 23 24 - 34 3 25 3 3 a 2b1 5(x - 2)(3 - x ) 2 - x (-3)22 2 (a-3)210、若 a = , b = ,则 a 、b 两数的关系是( )5A 、 a = bB 、 ab = 5C 、 a 、b 互为相反数D 、a 、b 互为倒数二、填空题(共 30 分):11、当 a=-3 时,二次根式 1-a 的值等于。
人教版八年级数学下册二次根式(全章)习题及答案
人教版八年级数学下册二次根式(全章)习题及答案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN二次根式16.1 二次根式:1. 有意义的条件是 。
2. 当__________3. 11m +有意义,则m 的取值范围是 。
4. 当__________x 是二次根式。
5. 在实数范围内分解因式:429__________,2__________x x -=-+=。
6. 2x =,则x 的取值范围是 。
7. 2x =-,则x 的取值范围是 。
8. )1x 的结果是 。
9. 当15x ≤5_____________x -=。
10. 把的根号外的因式移到根号内等于 。
11. 1x =+成立的条件是 。
12. 若1a b -+互为相反数,则()2005_____________a b -=。
13. )()()230,2,12,20,3,1,x y y x x x x y +=--++中,二次根式有( )A. 2个B. 3个C. 4个D. 5个14. 下列各式一定是二次根式的是( )15. 若23a ,则- )A. 52a -B. 12a -C. 25a -D. 21a -16. 若A==( ) A. 24a + B. 22a + C. ()222a + D. ()224a + 17. 若1a ≤)A. (1a -B. (1a -C. (1a -D. (1a -18.=x 的取值范围是( ) A. 2x ≠ B. 0x ≥ C. 2x D. 2x ≥ 19.)A. 0B. 42a -C. 24a -D. 24a -或42a -20. 下面的推导中开始出错的步骤是( )()()()()23123224==-==∴=-∴=- A. ()1 B. ()2 C. ()3 D. ()421.2440y y -+=,求xy 的值。
22. 当a 取什么值时,代数式1取值最小,并求出这个最小值。
23. 去掉下列各根式内的分母:())10x ())21x24. 已知2310x x -+=25. 已知,a b (10b -=,求20052006a b -的值。