2020年中考数学专题《四边形》复习综合训练及答案解析

合集下载

中考数学压轴题专项训练:四边形的综合(含答案)

中考数学压轴题专项训练:四边形的综合(含答案)

中考数学压轴题专项训练:四边形的综合(含答案)2020年数学中考压轴题专项训练:四边形的综合1.如图,四边形ABCD是直角梯形,AD∥BC,AB⊥AD,且AB=AD+BC,E是DC的中点,连结BE并延长交AD的延长线于G。

1) 证明:因为 AD∥BC,所以∠DGE=∠XXX,∠GDE=∠BCE。

又因为 E 是 DC 的中点,即 DE=CE,所以△DEG≌△CEB(AAS),从而 DG=BC。

2) 解:当 F 运动到 AF=AD 时,FD∥BG。

3) 解:结论:FH=HD。

因为 GE=BG,又因为△ABG为等腰直角三角形,所以 AE ⊥ BG。

由于 FD∥BG,所以 AE ⊥ FD。

又因为△AFD 为等腰直角三角形,所以 FH=HD。

2.如图,在矩形ABCD中,过 BD 的中点 O 作 EF⊥BD,分别与 AB、CD 交于点 E、F。

连接 DE、BF。

1) 证明:因为四边形 ABCD 是矩形,所以 AB∥CD。

因此∠DFO=∠BEO,又因为∠DOF=∠EOB 且 OD=OB,所以△DOF≌△BOE(AAS),从而 DF=BE。

因此四边形BEDF 是平行四边形。

又因为 EF⊥BD,所以四边形 BEDF 是菱形。

2) 解:因为 DM=AM,DO=OB,所以 OM∥AB,AB=2OM=8.设 DE=EB=x,在直角三角形 ADE 中,有 x^2=4^2+(8﹣x)^2,解得 x=5.因此 ON=BE=5√2.3.(1) 如图1,四边形 EFGH 中,FE=EH,∠EFG+∠EHG=180°,点 A,B 分别在边 FG,GH 上,且∠AEB=∠FEH,求证:AB=XXX。

2) 如图2,四边形 EFGH 中,FE=EH,点 M 在边 EH 上,连接 FM,EN 平分∠FEH 交 FM 于点 N,∠ENM=α,∠FGH=180°﹣2α,连接 GN,HN。

①找出与 NH 相等的线段,并加以证明。

2020-2021中考数学复习《平行四边形》专项综合练习及答案解析

2020-2021中考数学复习《平行四边形》专项综合练习及答案解析

2020-2021中考数学复习《平行四边形》专项综合练习及答案解析一、平行四边形1.已知:如图,在平行四边形ABCD中,O为对角线BD的中点,过点O的直线EF分别交AD,BC于E,F两点,连结BE,DF.(1)求证:△DOE≌△BOF.(2)当∠DOE等于多少度时,四边形BFDE为菱形?请说明理由.【答案】(1)证明见解析;(2)当∠DOE=90°时,四边形BFED为菱形,理由见解析.【解析】试题分析:(1)利用平行四边形的性质以及全等三角形的判定方法得出△DOE≌△BOF (ASA);(2)首先利用一组对边平行且相等的四边形是平行四边形得出四边形EBFD是平行四边形,进而利用垂直平分线的性质得出BE=ED,即可得出答案.试题解析:(1)∵在▱ABCD中,O为对角线BD的中点,∴BO=DO,∠EDB=∠FBO,在△EOD和△FOB中,∴△DOE≌△BOF(ASA);(2)当∠DOE=90°时,四边形BFDE为菱形,理由:∵△DOE≌△BOF,∴OE=OF,又∵OB=OD,∴四边形EBFD是平行四边形,∵∠EOD=90°,∴EF⊥BD,∴四边形BFDE为菱形.考点:平行四边形的性质;全等三角形的判定与性质;菱形的判定.2.如图,ABCD是正方形,点G是BC上的任意一点,DE⊥AG于E,BF∥DE,交AG于F.求证:AF=BF+EF.【答案】详见解析.【解析】【分析】由四边形ABCD 为正方形,可得出∠BAD 为90°,AB=AD ,进而得到∠BAG 与∠EAD 互余,又DE 垂直于AG ,得到∠EAD 与∠ADE 互余,根据同角的余角相等可得出∠ADE=∠BAF ,利用AAS 可得出△ABF ≌△DAE ;利用全等三角的对应边相等可得出BF=AE ,由AF-AE=EF ,等量代换可得证.【详解】∵ABCD 是正方形,∴AD=AB ,∠BAD=90°∵DE ⊥AG ,∴∠DEG=∠AED=90°∴∠ADE+∠DAE=90°又∵∠BAF+∠DAE=∠BAD=90°,∴∠ADE=∠BAF .∵BF ∥DE ,∴∠AFB=∠DEG=∠AED .在△ABF 与△DAE 中,AFB AED ADE BAF AD AB ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ABF ≌△DAE (AAS ).∴BF=AE .∵AF=AE+EF ,∴AF=BF+EF .点睛:此题考查了正方形的性质,全等三角形的判定与性质,矩形的判定与性质,熟练掌握判定与性质是解本题的关键.3.图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,每个小正方形的顶点叫做格点.(1)在图1中画出等腰直角三角形MON ,使点N 在格点上,且∠MON=90°;(2)在图2中以格点为顶点画一个正方形ABCD ,使正方形ABCD 面积等于(1)中等腰直角三角形MON 面积的4倍,并将正方形ABCD 分割成以格点为顶点的四个全等的直角三角形和一个正方形,且正方形ABCD 面积没有剩余(画出一种即可).【答案】(1)作图参见解析;(2)作图参见解析.【解析】试题分析:(1)过点O 向线段OM 作垂线,此直线与格点的交点为N ,连接MN 即可;(2)根据勾股定理画出图形即可.试题解析:(1)过点O 向线段OM 作垂线,此直线与格点的交点为N ,连接MN ,如图1所示;(2)等腰直角三角形MON 面积是5,因此正方形面积是20,如图2所示;于是根据勾股定理画出图3:考点:1.作图﹣应用与设计作图;2.勾股定理.4.如图①,四边形ABCD 是知形,1,2AB BC ==,点E 是线段BC 上一动点(不与,B C 重合),点F 是线段BA 延长线上一动点,连接,,,DE EF DF EF 交AD 于点G .设,BE x AF y ==,已知y 与x 之间的函数关系如图②所示.(1)求图②中y 与x 的函数表达式;(2)求证:DE DF ⊥;(3)是否存在x 的值,使得DEG △是等腰三角形?如果存在,求出x 的值;如果不存在,说明理由【答案】(1)y =﹣2x +4(0<x <2);(2)见解析;(3)存在,x =5432. 【解析】【分析】(1)利用待定系数法可得y 与x 的函数表达式;(2)证明△CDE ∽△ADF ,得∠ADF =∠CDE ,可得结论;(3)分三种情况:①若DE =DG ,则∠DGE =∠DEG ,②若DE =EG ,如图①,作EH ∥CD ,交AD 于H ,③若DG =EG ,则∠GDE =∠GED ,分别列方程计算可得结论.【详解】(1)设y =kx +b ,由图象得:当x =1时,y =2,当x =0时,y =4,代入得:24k b b +=⎧⎨=⎩,得24k b =-⎧⎨=⎩, ∴y =﹣2x +4(0<x <2);(2)∵BE =x ,BC =2∴CE =2﹣x , ∴211,4222CE x CD AF x AD -===-, ∴CE CD AF AD=, ∵四边形ABCD 是矩形,∴∠C =∠DAF =90°,∴△CDE ∽△ADF ,∴∠ADF =∠CDE ,∴∠ADF +∠EDG =∠CDE +∠EDG =90°,∴DE ⊥DF ;(3)假设存在x 的值,使得△DEG 是等腰三角形,①若DE =DG ,则∠DGE =∠DEG ,∵四边形ABCD 是矩形,∴AD ∥BC ,∠B =90°,∴∠DGE =∠GEB ,∴∠DEG =∠BEG ,在△DEF 和△BEF 中,FDE B DEF BEF EF EF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DEF ≌△BEF (AAS ),∴DE =BE =x ,CE =2﹣x ,∴在Rt △CDE 中,由勾股定理得:1+(2﹣x )2=x 2,x =54; ②若DE =EG ,如图①,作EH ∥CD ,交AD 于H ,∵AD ∥BC ,EH ∥CD ,∴四边形CDHE 是平行四边形,∴∠C =90°,∴四边形CDHE 是矩形,∴EH =CD =1,DH =CE =2﹣x ,EH ⊥DG ,∴HG =DH =2﹣x ,∴AG =2x ﹣2,∵EH ∥CD ,DC ∥AB ,∴EH ∥AF ,∴△EHG ∽△FAG , ∴EH HG AF AG =, ∴124222x x x -=--,∴12x x ==(舍), ③若DG =EG ,则∠GDE =∠GED ,∵AD ∥BC ,∴∠GDE =∠DEC ,∴∠GED =∠DEC ,∵∠C =∠EDF =90°,∴△CDE ∽△DFE , ∴CE DE CD DF=, ∵△CDE ∽△ADF , ∴12DE CD DF AD ==, ∴12CE CD =, ∴2﹣x =12,x =32,综上,x =54或32. 【点睛】 本题是四边形的综合题,主要考查了待定系数法求一次函数的解析式,三角形相似和全等的性质和判定,矩形和平行四边形的性质和判定,勾股定理和逆定理等知识,运用相似三角形的性质是解决本题的关键.5.如图1,已知正方形ABCD 的边CD 在正方形DEFG 的边DE 上,连接AE ,GC .(1)试猜想AE 与GC 有怎样的关系(直接写出结论即可);(2)将正方形DEFG 绕点D 按顺时针方向旋转,使点E 落在BC 边上,如图2,连接AE 和CG .你认为(1)中的结论是否还成立?若成立,给出证明;若不成立,请说明理由.(3)在(2)中,若E 是BC 的中点,且BC =2,则C ,F 两点间的距离为 .【答案】(1) AE =CG ,AE ⊥GC ;(2)成立,证明见解析; .【解析】【分析】(1)观察图形,AE 、CG 的位置关系可能是垂直,下面着手证明.由于四边形ABCD 、DEFG都是正方形,易证得△ADE≌△CDG,则∠1=∠2,由于∠2、∠3互余,所以∠1、∠3互余,由此可得AE⊥GC.(2)题(1)的结论仍然成立,参照(1)题的解题方法,可证△ADE≌△CDG,得∠5=∠4,由于∠4、∠7互余,而∠5、∠6互余,那么∠6=∠7;由图知∠AEB=∠CEH=90°﹣∠6,即∠7+∠CEH=90°,由此得证.(3)如图3中,作CM⊥DG于G,GN⊥CD于N,CH⊥FG于H,则四边形CMGH是矩形,可得CM=GH,CH=GM.想办法求出CH,HF,再利用勾股定理即可解决问题.【详解】(1)AE=CG,AE⊥GC;证明:延长GC交AE于点H,在正方形ABCD与正方形DEFG中,AD=DC,∠ADE=∠CDG=90°,DE=DG,∴△ADE≌△CDG(SAS),∴AE,CG,∠1=∠2∵∠2+∠3=90°,∴∠1+∠3=90°,∴∠AHG=180°﹣(∠1+∠3)=180°﹣90°=90°,∴AE⊥GC.(2)答:成立;证明:延长AE和GC相交于点H,在正方形ABCD和正方形DEFG中,AD=DC,DE=DG,∠ADC=∠DCB=∠B=∠BAD=∠EDG=90°,∴∠1=∠2=90°﹣∠3;∴△ADE≌△CDG(SAS),∴AE=CG,∠5=∠4;又∵∠5+∠6=90°,∠4+∠7=180°﹣∠DCE=180°﹣90°=90°,∴∠6=∠7,又∵∠6+∠AEB=90°,∠AEB=∠CEH,∴∠CEH+∠7=90°,∴∠EHC=90°,∴AE⊥GC.(3)如图3中,作CM⊥DG于G,GN⊥CD于N,CH⊥FG于H,则四边形CMGH是矩形,可得CM=GH,CH=GM.∵BE=CE=1,AB=CD=2,∴AE=DE=CG═DG=FG∵DE=DG,∠DCE=∠GND,∠EDC=∠DGN,∴△DCE≌△GND(AAS),∴GCD=2,∵S△DCG=12•CD•NG=12•DG•CM,∴2×2,∴CM=GH=5,∴MG=CH5,∴FH=FG﹣FG,∴CF..【点睛】本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,解直角三角形等知识,解题的关键是正确寻找全等三角形解决问题,属于中考压轴题.6.菱形ABCD中、∠BAD=120°,点O为射线CA上的动点,作射线OM与直线BC相交于点E,将射线OM绕点O逆时针旋转60°,得到射线ON,射线ON与直线CD相交于点F.(1)如图①,点O与点A重合时,点E,F分别在线段BC,CD上,请直接写出CE,CF,CA三条段段之间的数量关系;(2)如图②,点O在CA的延长线上,且OA=13AC,E,F分别在线段BC的延长线和线段CD的延长线上,请写出CE,CF,CA三条线段之间的数量关系,并说明理由;(3)点O在线段AC上,若AB=6,BO=CF=1时,请直接写出BE的长.【答案】(1)CA=CE+CF.(2)CF-CE=43AC.(3)BE的值为3或5或1.【解析】【分析】(1)如图①中,结论:CA=CE+CF.只要证明△ADF≌△ACE(SAS)即可解决问题;(2)结论:CF-CE=43AC.如图②中,如图作OG∥AD交CF于G,则△OGC是等边三角形.只要证明△FOG≌△EOC(ASA)即可解决问题;(3)分四种情形画出图形分别求解即可解决问题.【详解】(1)如图①中,结论:CA=CE+CF.理由:∵四边形ABCD是菱形,∠BAD=120°∴AB=AD=DC=BC,∠BAC=∠DAC=60°∴△ABC,△ACD都是等边三角形,∵∠DAC=∠EAF=60°,∴∠DAF=∠CAE,∵CA=AD,∠D=∠ACE=60°,∴△ADF≌△ACE(SAS),∴DF=CE,∴CE+CF=CF+DF=CD=AC,∴CA=CE+CF.(2)结论:CF-CE=43 AC.理由:如图②中,如图作OG∥AD交CF于G,则△OGC是等边三角形.∵∠GOC=∠FOE=60°,∴∠FOG=∠EOC,∵OG=OC,∠OGF=∠ACE=120°,∴△FOG≌△EOC(ASA),∴CE=FG,∵OC=OG,CA=CD,∴OA=DG,∴CF-EC=CF-FG=CG=CD+DG=AC+13AC=43AC,(3)作BH⊥AC于H.∵AB=6,AH=CH=3,∴,如图③-1中,当点O在线段AH上,点F在线段CD上,点E在线段BC上时.∵,∴=1,∴OC=3+1=4,由(1)可知:CO=CE+CF,∵OC=4,CF=1,∴CE=3,∴BE=6-3=3.如图③-2中,当点O在线段AH上,点F在线段DC的延长线上,点E在线段BC上时.由(2)可知:CE-CF=OC,∴CE=4+1=5,∴BE=1.如图③-3中,当点O在线段CH上,点F在线段CD上,点E在线段BC上时.同法可证:OC=CE+CF,∵OC=CH-OH=3-1=2,CF=1,∴CE=1,∴BE=6-1=5.如图③-4中,当点O在线段CH上,点F在线段DC的延长线上,点E在线段BC上时.同法可知:CE-CF=OC,∴CE=2+1=3,∴BE=3,综上所述,满足条件的BE的值为3或5或1.【点睛】本题属于四边形综合题,考查了全等三角形的判定和性质,等边三角形的性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.7.如图,点O是正方形ABCD两条对角线的交点,分别延长CO到点G,OC到点E,使OG=2OD、OE=2OC,然后以OG、OE为邻边作正方形OEFG.(1)如图1,若正方形OEFG的对角线交点为M,求证:四边形CDME是平行四边形.(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转,得到正方形OE′F′G′,如图2,连接AG′,DE′,求证:AG′=DE′,AG′⊥DE′;(3)在(2)的条件下,正方形OE′F′G′的边OG′与正方形ABCD的边相交于点N,如图3,设旋转角为α(0°<α<180°),若△AON是等腰三角形,请直接写出α的值.【答案】(1)证明见解析;(2)证明见解析;(3)α的值是22.5°或45°或112.5°或135°或157.5°.【解析】【分析】(1)由四边形OEFG是正方形,得到ME=12GE,根据三角形的中位线的性质得到CD∥GE,CD=12GE,求得CD=GE,即可得到结论;(2)如图2,延长E′D交AG′于H,由四边形ABCD是正方形,得到AO=OD,∠AOD=∠COD=90°,由四边形OEFG 是正方形,得到OG′=OE′,∠E′OG′=90°,由旋转的性质得到∠G′OD=∠E′OC ,求得∠AOG′=∠COE′,根据全等三角形的性质得到AG′=DE′,∠AG′O=∠DE′O ,即可得到结论;(3)分类讨论,根据三角形的外角的性质和等腰三角形的性质即可得到结论.【详解】(1)证明:∵四边形OEFG 是正方形,∴ME=12GE , ∵OG=2OD 、OE=2OC ,∴CD ∥GE ,CD=12GE , ∴CD=GE ,∴四边形CDME 是平行四边形;(2)证明:如图2,延长E′D 交AG′于H ,∵四边形ABCD 是正方形,∴AO=OD ,∠AOD=∠COD=90°,∵四边形OEFG 是正方形,∴OG′=OE′,∠E′OG′=90°,∵将正方形OEFG 绕点O 逆时针旋转,得到正方形OE′F′G′,∴∠G′OD=∠E′OC ,∴∠AOG′=∠COE′,在△AG′O 与△ODE′中,OA OD AOG DOE OG OE ⎧⎪∠'∠'⎨⎪''⎩===,∴△AG′O ≌△ODE′∴AG′=DE′,∠AG′O=∠DE′O ,∵∠1=∠2,∴∠G′HD=∠G′OE′=90°,∴AG′⊥DE′;(3)①正方形OE′F′G′的边OG′与正方形ABCD 的边AD 相交于点N ,如图3,Ⅰ、当AN=AO时,∵∠OAN=45°,∴∠ANO=∠AON=67.5°,∵∠ADO=45°,∴α=∠ANO-∠ADO=22.5°;Ⅱ、当AN=ON时,∴∠NAO=∠AON=45°,∴∠ANO=90°,∴α=90°-45°=45°;②正方形OE′F′G′的边OG′与正方形ABCD的边AB相交于点N,如图4,Ⅰ、当AN=AO时,∵∠OAN=45°,∴∠ANO=∠AON=67.5°,∵∠ADO=45°,∴α=∠ANO+90°=112.5°;Ⅱ、当AN=ON时,∴∠NAO=∠AON=45°,∴∠ANO=90°,∴α=90°+45°=135°,Ⅲ、当AN=AO时,旋转角a=∠ANO+90°=67.5+90=157.5°,综上所述:若△AON是等腰三角形时,α的值是22.5°或45°或112.5°或135°或157.5°.【点睛】本题主要考查了正方形的性质、全等三角形的判定与性质、锐角三角函数、旋转变换的性质的综合运用,有一定的综合性,分类讨论当△AON是等腰三角形时,求α的度数是本题的难点.8.如图,现将平行四边形ABCD沿其对角线AC折叠,使点B落在点B′处.AB′与CD交于点E.(1)求证:△AED ≌△CEB ′;(2)过点E 作EF ⊥AC 交AB 于点F ,连接CF ,判断四边形AECF 的形状并给予证明.【答案】(1)见解析(2)见解析【解析】【分析】(1)由题意可得AD=BC=B'C ,∠B=∠D=∠B',且∠AED=∠CEB',利用AAS 证明全等,则结论可得;(2)由△AED ≌△CEB′可得AE=CE ,且EF ⊥AC ,根据等腰三角形的性质可得EF 垂直平分AC ,∠AEF=∠CEF .即AF=CF ,∠CEF=∠AFE=∠AEF ,可得AE=AF ,则可证四边形AECF 是菱形.【详解】证明:(1)∵四边形ABCD 是平行四边形∴AD =BC ,CD ∥AB ,∠B =∠D∵平行四边形ABCD 沿其对角线AC 折叠∴BC =B'C ,∠B =∠B'∴∠D =∠B',AD =B'C 且∠DEA =∠B'EC∴△ADE ≌△B'EC(2)四边形AECF 是菱形∵△ADE ≌△B'EC∴AE =CE∵AE =CE ,EF ⊥AC∴EF 垂直平分AC ,∠AEF =∠CEF∴AF =CF∵CD ∥AB∴∠CEF =∠EFA 且∠AEF =∠CEF∴∠AEF =∠EFA∴AF =AE∴AF =AE =CE =CF∴四边形AECF 是菱形【点睛】本题考查了折叠问题,全等三角形的判定和性质,平行四边形的性质,菱形的判定,熟练掌握这些性质和判定是解决问题的关键.9.在ABC 中,ABC 90∠=,BD 为AC 边上的中线,过点C 作CE BD ⊥于点E ,过点A 作BD 的平行线,交CE 的延长线于点F ,在AF 的延长线上截取FG BD =,连接BG ,DF .()1求证:BD DF =;()2求证:四边形BDFG 为菱形;()3若AG 5=,CF =BDFG 的周长.【答案】(1)证明见解析(2)证明见解析(3)8【解析】【分析】()1利用平行线的性质得到90CFA ∠=,再利用直角三角形斜边上的中线等于斜边的一半即可得证,()2利用平行四边形的判定定理判定四边形BDFG 为平行四边形,再利用()1得结论即可得证,()3设GF x =,则5AF x =-,利用菱形的性质和勾股定理得到CF 、AF 和AC 之间的关系,解出x 即可.【详解】()1证明:AG //BD ,CF BD ⊥, CF AG ∴⊥, 又D 为AC 的中点,1DF AC 2∴=, 又1BD AC 2=, BD DF ∴=, ()2证明:BD//GF ,BD FG =, ∴四边形BDFG 为平行四边形, 又BD DF =,∴四边形BDFG 为菱形,()3解:设GF x =,则AF 5x =-,AC 2x =,在Rt AFC 中,222(2x)(5x)=+-,解得:1x 2=,216x (3=-舍去), GF 2∴=,∴菱形BDFG 的周长为8.【点睛】本题考查了菱形的判定与性质直角三角形斜边上的中线,勾股定理等知识,正确掌握这些定义性质及判定并结合图形作答是解决本题的关键.10.如图,抛物线交x 轴的正半轴于点A ,点B (,a )在抛物线上,点C 是抛物线对称轴上的一点,连接AB 、BC ,以AB 、BC 为邻边作□ABCD ,记点C 纵坐标为n , (1)求a 的值及点A 的坐标;(2)当点D 恰好落在抛物线上时,求n 的值;(3)记CD 与抛物线的交点为E ,连接AE ,BE ,当△AEB 的面积为7时,n =___________.(直接写出答案)【答案】(1), A (3,0);(2)【解析】 试题解析:(1)把点B 的坐标代入抛物线的解析式中,即可求出a 的值,令y =0即可求出点A 的坐标.(2)求出点D 的坐标即可求解;(3)运用△AEB 的面积为7,列式计算即可得解.试题解析:(1)当时, 由 ,得(舍去),(1分) ∴A (3,0)(2)过D 作DG ⊥轴于G ,BH ⊥轴于H.∵CD∥AB,CD=AB∴,∴,∴(3)11.如图1,矩形ABCD中,AB=8,AD=6;点E是对角线BD上一动点,连接CE,作EF⊥CE交AB边于点F,以CE和EF为邻边作矩形CEFG,作其对角线相交于点H.(1)①如图2,当点F与点B重合时,CE=,CG=;②如图3,当点E是BD中点时,CE=,CG=;(2)在图1,连接BG,当矩形CEFG随着点E的运动而变化时,猜想△EBG的形状?并加以证明;(3)在图1,CGCE的值是否会发生改变?若不变,求出它的值;若改变,说明理由;(4)在图1,设DE的长为x,矩形CEFG的面积为S,试求S关于x的函数关系式,并直接写出x的取值范围.【答案】(1)245,185,5,154;(2)△EBG是直角三角形,理由详见解析;(3)3 4;(4)S=34x2﹣485x+48(0≤x≤325).【解析】【分析】(1)①利用面积法求出CE,再利用勾股定理求出EF即可;②利用直角三角形斜边中线定理求出CE,再利用相似三角形的性质求出EF即可;(2)根据直角三角形的判定方法:如果一个三角形一边上的中线等于这条边的一半,则这个三角形是直角三角形即可判断;(3)只要证明△DCE∽△BCG,即可解决问题;(4)利用相似多边形的性质构建函数关系式即可;【详解】(1)①如图2中,在Rt△BAD中,,∵S△BCD=12•CD•BC=12•BD•CE,∴CE=245.185.②如图3中,过点E作MN⊥AM交AB于N,交CD于M.∵DE=BE,∴CE=12BD=5,∵△CME∽△ENF,∴CM EN CE EF=,∴CG=EF=154,(2)结论:△EBG是直角三角形.理由:如图1中,连接BH .在Rt △BCF 中,∵FH=CH ,∴BH=FH=CH ,∵四边形EFGC 是矩形,∴EH=HG=HF=HC ,∴BH=EH=HG ,∴△EBG 是直角三角形.(3)F 如图1中,∵HE=HC=HG=HB=HF , ∴C 、E 、F 、B 、G 五点共圆, ∵EF=CG ,∴∠CBG=∠EBF ,∵CD ∥AB ,∴∠EBF=∠CDE ,∴∠CBG=∠CDE ,∵∠DCB=∠ECG=90°,∴∠DCE=∠BCG ,∴△DCE ∽△BCG , ∴6384CG BC CE DC ===. (4)由(3)可知: 34CG CD CE CB ==, ∴矩形CEFG ∽矩形ABCD , ∴2264CEFG ABCD S CE CE S CD ==矩形矩形(), ∵CE 2=(325-x )2+245)2,S 矩形ABCD =48, ∴S 矩形CEFG =34[(325-x )2+(245)2]. ∴矩形CEFG 的面积S=34x 2-485x+48(0≤x≤325). 【点睛】本题考查相似三角形综合题、矩形的性质、相似三角形的判定和性质、勾股定理、直角三角形的判定和性质、相似多边形的性质和判定等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造相似三角形或直角三角形解决问题,属于中考压轴题.12.如图1,在长方形纸片ABCD中,AB=mAD,其中m⩾1,将它沿EF折叠(点E. F分别在边AB、CD上),使点B落在AD边上的点M处,点C落在点N处,MN与CD相交于点P,连接EP.设AMnAD=,其中0<n⩽1.(1)如图2,当n=1(即M点与D点重合),求证:四边形BEDF为菱形;(2)如图3,当12n=(M为AD的中点),m的值发生变化时,求证:EP=AE+DP;(3)如图1,当m=2(即AB=2AD),n的值发生变化时,BE CFAM-的值是否发生变化?说明理由.【答案】(1)证明见解析;(2)证明见解析;(3)值不变,理由见解析.【解析】试题分析:(1)由条件可知,当n=1(即M点与D点重合),m=2时,AB=2AD,设AD=a,则AB=2a,由矩形的性质可以得出△ADE≌△NDF,就可以得出AE=NF,DE=DF,在Rt△AED中,由勾股定理就可以表示出AE的值,再求出BE的值就可以得出结论.(2)延长PM交EA延长线于G,由条件可以得出△PDM≌△GAM,△EMP≌△EMG由全等三角形的性质就可以得出结论.(3)如图1,连接BM交EF于点Q,过点F作FK⊥AB于点K,交BM于点O,通过证明△ABM∽△KFE,就可以得出EK KFAM AB=,即BE BK BCAM AB-=,由AB=2AD=2BC,BK=CF就可以得出BE CFAM-的值是12为定值.(1)∵四边形ABCD是矩形,∴AB=CD,AD=BC,∠A=∠B=∠C=∠D=90°.∵AB=mAD,且n=2,∴AB=2AD.∵∠ADE+∠EDF=90°,∠EDF+∠NDF=90°,∴∠ADE=∠NDF.在△ADE和△NDF中,∠A=∠N,AD=ND,∠ADE=∠NDF,∴△ADE≌△NDF(ASA).∴AE=NF,DE=DF.∵FN=FC,∴AE=FC.∵AB=CD ,∴AB-AE="CD-CF." ∴BE="DF." ∴BE=DE .Rt △AED 中,由勾股定理,得222AE DE AD =-,即2222AE AD AE AD ()=--,∴AE=34AD. ∴BE=2AD-34AD=54.∴554334ADBE AE AD ==. (2)如图3,延长PM 交EA 延长线于G ,∴∠GAM=90°. ∵M 为AD 的中点,∴AM=DM .∵四边形ABCD 是矩形,∴AB=CD ,AD=BC ,∠A=∠B=∠C=∠D=90°,AB ∥CD. ∴∠GAM=∠PDM .在△GAM 和△PDM 中,∠GAM =∠PDM ,AM =DM ,∠AMG =∠DMP , ∴△GAM ≌△PDM (ASA ).∴MG=MP .在△EMP 和△EMG 中,PM =GM ,∠PME =∠GME ,ME =ME , ∴△EMP ≌△EMG (SAS ).∴EG=EP . ∴AG+AE=EP .∴PD+AE=EP ,即EP=AE+DP .(3)12BE CF AM -=,值不变,理由如下: 如图1,连接BM 交EF 于点Q ,过点F 作FK ⊥AB 于点K ,交BM 于点O , ∵EM=EB ,∠MEF=∠BEF ,∴EF ⊥MB ,即∠FQO=90°. ∵四边形FKBC 是矩形,∴KF=BC ,FC=KB. ∵∠FKB=90°,∴∠KBO+∠KOB=90°.∵∠QOF+∠QFO=90°,∠QOF=∠KOB ,∴∠KBO=∠OFQ. ∵∠A=∠EKF=90°,∴△ABM ∽△KFE. ∴EK KF AM AB =即BE BK BC AM AB-=.∵AB=2AD=2BC ,BK=CF ,∴12BE CF AM -=. ∴BE CFAM-的值不变.考点:1.折叠问题;2.矩形的性质;3.全等三角形的判定和性质;4.勾股定理;5.相似三角形的判定和性质.13.如图,在平面直角坐标系xOy 中,四边形OABC 的顶点A 在x 轴的正半轴上,OA=4,OC=2,点D 、E 、F 、G 分别为边OA 、AB 、BC 、CO 的中点,连结DE 、EF 、FG 、GD . (1)若点C 在y 轴的正半轴上,当点B 的坐标为(2,4)时,判断四边形DEFG 的形状,并说明理由.(2)若点C 在第二象限运动,且四边形DEFG 为菱形时,求点四边形OABC 对角线OB 长度的取值范围.(3)若在点C 的运动过程中,四边形DEFG 始终为正方形,当点C 从X 轴负半轴经过Y 轴正半轴,运动至X 轴正半轴时,直接写出点B 的运动路径长.【答案】(1)正方形(2)6OB <<(3)2π 【解析】分析:(1)连接OB ,AC ,说明OB ⊥AC ,OB=AC ,可得四边形DEFG 是正方形.(2)由四边形DEFG 是菱形,可得OB=AC ,当点C 在y 轴上时,AC=C 在x 轴上时,AC=6, 故可得结论; (3)根据题意计算弧长即可.详解:(1)正方形,如图1,证明连接OB ,AC ,说明OB ⊥AC ,OB=AC ,可得四边形DEFG 是正方形.OB<(2)6如图2,由四边形DEFG是菱形,可得OB=AC,当点C在y轴上时,AC=C在xOB<;轴上时,AC=6, ∴6(3)2π.如图3,当四边形DEFG是正方形时,OB⊥AC,且OB=AC,构造△OBE≌△ACO,可得B点在以E(0,4)为圆心,2为半径的圆上运动.所以当C点从x轴负半轴到正半轴运动时,B点的运动路径为2π .图1 图2 图3点睛:本题主要考查了正方形的判定,菱形的性质以及弧长的计算.灵活运用正方形的判定定理和菱形的性质运用是解题的关键.14.倡导研究性学习方式,着力教材研究,习题研究,是学生跳出题海,提高学习能力和创新能力的有效途径.下面是一案例,请同学们认真阅读、研究,完成“类比猜想”的问题.习题如图(1),点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连接EF,则EF=BE+DF,说明理由.解答:∵正方形ABCD中,AB=AD,∠BAD=∠ADC=∠B=90°,∴把△ABE绕点A逆时针旋转90°至△ADE′,点F、D、E′在一条直线上.∴∠E′AF=90°-45°=45°=∠EAF,又∵AE′=AE,AF=AF∴△AE′F≌△AEF(SAS)∴EF=E′F=DE′+DF=BE+DF.类比猜想:(1)请同学们研究:如图(2),在菱形ABCD中,点E、F分别在BC、CD上,当∠BAD=120°,∠EAF=60°时,还有EF=BE+DF吗?请说明理由.(2)在四边形ABCD中,点E、F分别在BC、CD上,当AB=AD,∠B+∠D=180°,∠EAF=∠BAD时,EF=BE+DF吗?请说明理由.【答案】证明见解析.【解析】试题分析:(1)把△ABE绕点A逆时针旋转120°至△ADE′,如图(2),连结E′F,根据菱形和旋转的性质得到AE=AE′,∠EAF=∠E′AF,利用“SAS”证明△AEF≌△AE′F,得到EF=E′F;由于∠ADE′+∠ADC=120°,则点F、D、E′不共线,所以DE′+DF>EF,即由BE+DF>EF;(2)把△ABE绕点A逆时针旋转∠BAD的度数至△ADE′,如图(3),根据旋转的性质得到AE′=AE,∠EAF=∠E′AF,然后利用“SAS”证明△AEF≌△AE′F,得到EF=E′F,由于∠ADE′+∠ADC=180°,知F、D、E′共线,因此有EF=DE′+DF=BE+DF;根据前面的条件和结论可归纳出结论.试题解析:(1)当∠BAD=120°,∠EAF=60°时,EF=BE+DF不成立,EF<BE+DF.理由如下:∵在菱形ABCD中,∠BAD=120°,∠EAF=60°,∴AB=AD,∠1+∠2=60°,∠B=∠ADC=60°,∴把△ABE绕点A逆时针旋转120°至△ADE′,如图(2),连结E′F,∴∠EAE′=120°,∠1=∠3,AE′=AE,DE′=BE,∠ADE′=∠B=60°,∴∠2+∠3=60°,∴∠EAF=∠E′AF,在△AEF和△AE′F中,∴△AEF≌△AE′F(SAS),∴EF=E′F,∵∠ADE′+∠ADC=120°,即点F、D、E′不共线,∴DE′+DF>EF∴BE+DF>EF;(2)当AB=AD,∠B+∠D=180°,∠EAF=∠BAD时,EF=BE+DF成立.理由如下:如图(3),∵AB=AD,∴把△ABE绕点A逆时针旋转∠BAD的度数至△ADE′,如图(3),∴∠EAE′=∠BAD,∠1=∠3,AE′=AE,DE′=BE,∠ADE′=∠B,∵∠B+∠D=180°,∴∠ADE′+∠D=180°,∴点F、D、E′共线,∵∠EAF=∠BAD,∴∠1+∠2=∠BAD,∴∠2+∠3=∠BAD,∴∠EAF=∠E′AF,在△AEF和△AE′F中,∴△AEF≌△AE′F(SAS),∴EF=E′F,∴EF=DE′+DF=BE+DF;归纳:在四边形ABCD中,点E、F分别在BC、CD上,当AB=AD,∠B+∠D=180°,∠EAF=∠BAD时,EF=BE+DF.考点:四边形综合题.15.(本题14分)小明在学习平行线相关知识时总结了如下结论:端点分别在两条平行线上的所有线段中,垂直于平行线的线段最短.小明应用这个结论进行了下列探索活动和问题解决.问题1:如图1,在Rt△ABC中,∠C=90°,AC=4,BC=3,P为AC边上的一动点,以PB,PA为边构造□APBQ,求对角线PQ的最小值及PQ最小时的值.(1)在解决这个问题时,小明构造出了如图2的辅助线,则PQ的最小值为,当PQ最小时= _____ __;(2)小明对问题1做了简单的变式思考.如图3,P为AB边上的一动点,延长PA到点E,使AE=nPA(n为大于0的常数).以PE,PC为边作□PCQE,试求对角线PQ长的最小值,并求PQ最小时的值;问题2:在四边形ABCD中,AD∥BC,AB⊥BC,AD=1,AB=2,BC=3.(1)如图4,若为上任意一点,以,为边作□.试求对角线长的最小值和PQ最小时的值.(2)若为上任意一点,延长到,使,再以,为边作□.请直接写出对角线长的最小值和PQ最小时的值.【答案】问题1:(1)3,;(2)PQ=,=.问题2:(1)=4,.(2)PQ的最小值为..【解析】试题分析:问题1:(1)首先根据条件可证四边形PCBQ是矩形,然后根据条件“四边形APBQ是平行四边形可得AP=QB=PC,从而可求的值.(2)由题可知:当QP⊥AC 时,PQ最小.过点C作CD⊥AB于点D.此时四边形CDPQ为矩形,PQ=CD,在Rt△ABC中,∠C=90°,AC=4,BC=3,利用面积可求出CD=,然后可求出AD=,由AE=nPA可得PE=,而PE=CQ=PD=AD-AP=,所以AP=.所以=.问题2:(1)设对角线与相交于点.Rt≌Rt.所以AD=HC,QH=AP.由题可知:当QP⊥AB时,PQ最小,此时=CH=4,根据条件可证四边形BPQH为矩形,从而QH=BP=AP.所以.(2)根据题意画出图形,当AB时,的长最小,PQ的最小值为..试题解析:问题1:(1)3,;(2)过点C作CD⊥AB于点D.由题意可知当PQ⊥AB时,PQ最短.所以此时四边形CDPQ为矩形.PQ=CD,DP=CQ=PE.因为∠BCA=90°,AC=4,BC=3,所以AB=5.所以CD=.所以PQ=.在Rt△ACD中AC=4,CD=,所以AD=.因为AE=nPA,所以PE==CQ=PD=AD-AP=.所以AP=.所以=.问题2:(1)如图2,设对角线与相交于点.所以G是DC的中点,作QH BC,交BC的延长线于H,因为AD//BC,所以.所以.又,所以Rt≌Rt.所以AD=HC,QH=AP.由图知,当AB时,的长最小,即=CH=4.易得四边形BPQH为矩形,所以QH=BP=AP.所以.(若学生有能力从梯形中位线角度考虑,若正确即可评分.但讲评时不作要求)(2)PQ的最小值为..考点:1.直角三角形的性质;2.全等三角形的判定与性质;3.平行四边形的性质;4矩形的判定与性质.。

2020年中考数学压轴题-专题28几何证明综合复习(判定四边形形状)(解析版)

2020年中考数学压轴题-专题28几何证明综合复习(判定四边形形状)(解析版)

专题28 几何证明综合复习(判定四边形形状)教学重难点1.培养学生通过探索和证明,发展推理意识和能力2.通过证明举例的学习和实践,懂得演绎推理的一般规则,并掌握规范表达的格式;了解证明之前进行分析的基本思路;3.体会用“分析综合法”探求解题思路;4.学习添置辅助线的基本方法,会添置常见的辅助线;5.会用文字语言、图形语言、符号语言三种数学语言进行证明说理。

【说明】:本部分为知识点方法总结性梳理,目的在于让学生能从题目条件和所证明结论,去寻找证明思路,用时大概 5-8 分钟左右。

【知识点、方法总结】:中考几何题证明思路总结几何证明题重点考察的是学生的逻辑思维能力,能通过严密的" 因为"、"所以 " 逻辑将条件一步步转化为所要证明的结论。

这类题目出法相当灵活,不像代数计算类题目容易总结出固定题型的固定解法,而更看重的是对重要模型的总结、常见思路的总结。

所以本文对中考中最常出现的若干结论做了一个较为全面的思路总结。

一、证明两线段相等1.两全等三角形中对应边相等。

2.同一三角形中等角对等边。

3.等腰三角形顶角的平分线或底边的高平分底边。

4.平行四边形的对边或对角线被交点分成的两段相等。

5.直角三角形斜边的中点到三顶点距离相等。

6.线段垂直平分线上任意一点到线段两段距离相等。

7.角平分线上任一点到角的两边距离相等。

8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。

9.同圆(或等圆)中等弧所对的弦或与圆心等距的两弦或等圆心角、圆周角所对的弦相等。

10.两前项(或两后项)相等的比例式中的两后项(或两前项)相等。

、证明两角相等1.两全等三角形的对应角相等。

2.同一三角形中等边对等角。

3.等腰三角形中,底边上的中线(或高)平分顶角。

4.两条平行线的同位角、内错角或平行四边形的对角相等。

5.同角(或等角)的余角(或补角)相等。

6.同圆(或圆)中,等弦(或弧)所对的圆心角相等;7.相似三角形的对应角相等;8.等于同一角的两个角相等。

2020年中考数学二轮复习压轴专题四边形(含解析)

2020年中考数学二轮复习压轴专题四边形(含解析)

《四边形》1.【习题再现】课本中有这样一道题目:如图1,在四边形ABCD中,E,F,M分别是AB,CD,BD的中点,AD=BC.求证:∠EFM =∠FEM.(不用证明)【习题变式】(1)如图2,在“习题再现”的条件下,延长AD,BC,EF,AD与EF交于点N,BC与EF 交于点P.求证:∠ANE=∠BPE.(2)如图3,在△ABC中,AC>AB,点D在AC上,AB=CD,E,F分别是BC,AD的中点,连接EF并延长,交BA的延长线于点G,连接GD,∠EFC=60°.求证:∠AGD=90°.【习题变式】解:(1)∵F,M分别是CD,BD的中点,∴MF∥BP,,∴∠MFE=∠BPE.∵E,M分别是AB,BD的中点,∴ME∥AN,,∴∠MEF=∠ANE.∵AD=BC,∴ME=MF,∴∠EFM=∠FEM,∴∠ANE=∠BPE.(2)连接BD,取BD的中点H,连接EH,FH.∵H,F分别是BD和AD的中点,∴HF∥BG,,∴∠HFE=∠FGA.∵H,E分别是BD,BC的中点,∴HE∥AC,,∴∠HEF=∠EFC=60°.∵AB=CD,∴HE=HF,∴∠HFE=∠EFC=60°,∴∠A GF=60°,∵∠AFG=∠EFC=60°,∴△AFG为等边三角形.∴AF=GF,∵AF=FD,∴GF=FD,∴∠FGD=∠FDG=30°,∴∠AGD=60°+30°=90°.2.(1)问题:如图1,在Rt△ABC中,∠BAC=90°,AB=AC,D为BC边上一点(不与点B,C重合),连接AD,过点A作AE⊥AD,并满足AE=AD,连接CE.则线段BD和线段CE的数量关系是BD=CE,位置关系是BD⊥CE.(2)探索:如图2,当D点为BC边上一点(不与点B,C重合),Rt△ABC与Rt△ADE均为等腰直角三角形,∠BAC=∠DAE=90°,AB=AC,AD=AE.试探索线段BD2、CD2、DE2之间满足的等量关系,并证明你的结论;(3)拓展:如图3,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°,若BD=3,CD=1,请直接写出线段AD的长.解:(1)问题:在Rt△ABC中,AB=AC,∴∠B=∠ACB=45°,∵∠BAC=∠DAE=90°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),故答案为:BD=CE,BD⊥CE;(2)探索:结论:DE2=BD2+CD2,理由是:如图2中,连接EC.∵∠BAC=∠DAE=90°,∴∠BAD=∠CAE,在△ABD和△ACE中,∵,∵△BAD≌△CAE(SAS),∴BD=CE,∠B=∠ACE=45°,∴∠BCE=∠ACB+∠ACE=45°+45°=90°,∴DE2=CE2+CD2,∴DE2=BD2+CD2;(3)拓展:如图3,将AD绕点A逆时针旋转90°至AG,连接CG、DG,则△DAG是等腰直角三角形,∴∠ADG=45°,∵∠ADC=45°,∴∠GDC=90°,同理得:△BAD≌△CAG,∴CG=BD=3,Rt△CGD中,∵CD=1,∴DG===2,∵△DAG是等腰直角三角形,∴AD=AG=2.3.如图1,正方形ABCD的边CD在正方形ECGF的边CE上,连接BE、DG.(1)BE和DG的数量关系是BE=DG,BE和DG的位置关系是BE⊥DG;(2)把正方形ECGF绕点C旋转,如图2,(1)中的结论是否还成立?若成立,写出证明过程,若不成立,请说明理由;(3)设正方形ABCD的边长为4,正方形ECGF的边长为3,正方形ECGF绕点C旋转过程中,若A、C、E三点共线,直接写出DG的长.解:(1)BE=DG.BE⊥DG;理由如下:∵四边形ABCD和四边形CEFG为正方形,∴CD=BC,CE=CG,∠BCE=∠DCG=90°,在△BEC和△DGC中,,∴△BEC≌△DGC(SAS),∴BE=DG;如图1,延长GD交BE于点H,∵△BEC≌△DGC,∴∠DGC=∠BEC,∴∠DGC+∠EBC=∠BEC+∠EBC=90°,∴∠BHG=90°,即BE⊥DG;故答案为:BE=DG,BE⊥DG.(2)成立,理由如下:如图2所示:同(1)得:△DCG≌△BCE(SAS),∴BE=DG,∠CDG=∠CBE,∵∠DME=∠BMC,∠CBE+∠BMC=90°,∴∠CDG+∠DME=90°,∴∠DOB=90°,∴BE⊥DG;(3)由(2)得:DG=EB,分两种情况:①如图3所示:∵正方形ABCD的边长为4,正方形ECGF的边长为3,∴AC⊥BD,BD=AC=AB=4,OA=OC=OB=AC=2,CE=3,∴AE=AC﹣CE=,∴OE=OA﹣AE=,在Rt△BOE中,由勾股定理得:DG=BE==;②如图4所示:OE=CE+OC=2+3=5,在Rt△BOE中,由勾股定理得:DG=BE==;综上所述,若A、C、E三点共线,DG的长为或.4.如图,在△ABC中,∠B=90°,AB=6cm,BC=8cm,动点D从点C出发,沿CA方向匀速运动,速度为2cm/s;同时,动点E从点A出发,沿AB方向匀速运动,速度为1cm/s;当一个点停止运动,另一个点也停止运动.设点D,E运动的时间是t(s)(0<t<5).过点D作DF⊥BC于点F,连接DE,EF.(1)t为何值时,DE⊥AC?(2)设四边形AEFC的面积为S,试求出S与t之间的关系式;(3)是否存在某一时刻t,使得S四边形AEFC:S△ABC=17:24,若存在,求出t的值;若不存在,请说明理由;(4)当t为何值时,∠ADE=45°?解:(1)∵∠B=90o,AB=6 cm,BC=8 cm,∴AC===10(cm),若DE⊥AC,∴∠EDA=90°,∴∠EDA=∠B,∵∠A=∠A,∴△ADE∽△ABC,∴=,即:=,∴t=,∴当t=s时,DE⊥AC;(2)∵DF⊥BC,∴∠DFC=90°,∴∠DFC=∠B,∵∠C=∠C,∴△CDF∽△CAB,∴=,即=,∴CF=,∴BF=8﹣,BE=AB﹣AE=6﹣t,∴S=S△ABC﹣S△BEF=×AB•BC﹣×BF•BE=×6×8﹣×(8﹣t)×(6﹣t)=﹣t2+t;(3)若存在某一时刻t,使得S四边形AEFC:S△ABC=17:24,根据题意得:﹣t2+t=××6×8,解得:t1=,t2=(不合题意舍去),∴当t=s时,S四边形AEFC:S△ABC=17:24;(4)过点E作EM⊥AC与点M,如图所示:则∠EMA=∠B=90°,∵∠A=∠A,∴△AEM∽△ACB,∴==,即==,∴EM=t,AM=t,∴DM=10﹣2t﹣t=10﹣t,在Rt△DEM中,当DM=ME时,∠ADE=45°,∴10﹣t=t,∴t=∴当t=s时,∠ADE=45°.5.我们定义:如果两个等腰三角形的顶角相等,且项角的顶点互相重合,则称此图形为“手拉手全等模型”.因为顶点相连的四条边,形象的可以看作两双手,所以通常称为“手拉手模型”.例如,如图(1),△ABC与△ADE都是等腰三角形,其中∠BAC=∠DAE,则△ABD≌△ACE(SAS)(1)熟悉模型:如图(2),已知△ABC与△ADE都是等腰三角形,AB=AC,AD=AE,且∠BAC=∠DAE,求证:BD=CE;(2)运用模型:如图(3),P为等边△ABC内一点,且PA:PB:PC=3:4:5,求∠APB 的度数.小明在解决此问题时,根据前面的“手拉手全等模型”,以BP为边构造等边△BPM,这样就有两个等边三角形共顶点B,然后连结CM,通过转化的思想求出了∠APB的度数,则∠APB的度数为150 度;(3)深化模型:如图(4),在四边形ABCD中,AD=4,CD=3,∠ABC=∠ACB=∠ADC =45°,求BD的长.(1)证明:∵∠BAC=∠DAE,∴∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE;(2)解:以BP为边构造等边△BPM,连接CM,如图(3)所示:∵△ABC与△BPM都是等边三角形,∴AB=BC,BP=BM=PM,∠ABC=∠PBM=∠BMP=60°,∴∠ABC﹣∠PBC=∠PBM﹣∠PBC,即∠ABP=∠CBM,在△ABP和△CBM中,,∴△ABP≌△CBM(SAS),∴AP=CM,∠APB=∠CMB,∵PA:PB:PC=3:4:5,∴CM:PM:PC=3:4:5,∴PC2=CM2+PM2,∴△CMP是直角三角形,∴∠PMC=90°,∴∠CMB=∠BMP+∠PMC=60°+90°=150°,∴∠APB=150°,故答案为:150;(3)解:过点A作EA⊥AD,且AE=AD,连接CE,DE,如图(4)所示:则△ADE是等腰直角三角形,∠EAD=90°,∴DE=AD=4,∠EDA=45°,∵∠ADC=45°,∴∠EDC=45°+45°=90°,在Rt△DCE中,CE===,∵∠ACB=∠ABC=45°,∴∠BAC=90°,AB=AC,∵∠BAC+∠CAD=∠EAD+∠CAD,即∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE=.6.(1)某学校“学习落实”数学兴趣小组遇到这样一个题目如图,在△ABC中,点O在线段BC上,∠BAO=30°,∠OAC=75°,AO=,BO:CO =2:1,求AB的长经过数学小组成员讨论发现,过点B作BD∥AC,交AO的延长线于点D,通过构造△ABD就可以解决问题(如图2)请回答:∠ADB=75 °,AB=3(2)请参考以上解决思路,解决问题:如图3在四边形ABCD中对角线AC与BD相交于点0,AC⊥AD,AO=,∠ABC=∠ACB =75°,BO:OD=2:1,求DC的长解:(1)如图2中,过点B作BD∥AC,交AO的延长线于点D,∵BD∥AC,∴∠ADB=∠OAC=75°.∵∠BOD=∠COA,∴△BOD∽△COA,∴==2,.又∵AO=,∴OD=2AO=2,∴AD=AO+OD=3.∵∠BAD=30°,∠ADB=75°,∴∠ABD=180°﹣∠BAD﹣∠ADB=75°=∠ADB,∴AB=AD=3;故答案为75,3.(2)如图3中,过点B作BE∥AD交AC于点E.∵AC⊥AD,BE∥AD,∴∠DAC=∠BEA=90°.∵∠AOD=∠EOB,∴△AOD∽△EOB,∴===2.∵BO:OD=1:3,∵AO=,∴EO=2,∴AE=3.∵∠ABC=∠ACB=75°,∴∠BAC=30°,AB=AC,∴AB=2BE.在Rt△AEB中,BE2+AE2=AB2,即(4BE2)2+BE2=(2BE)2,解得:BE=3,∴AB=AC=6,AD=在Rt△CAD中,AC2+AD2=CD2,即62+()2=CD2,解得:CD=(负根已经舍弃).7.正方形ABCD中,AB=4,点E、F分别在AB、BC边上(不与点A、B重合).(1)如图1,连接CE,作DM⊥CE,交CB于点M.若BE=3,则DM= 5 ;(2)如图2,连接EF,将线段EF绕点F顺时针旋转,当点E落在正方形上时,记为点G;再将线段FG绕点G顺时针旋转,当点F落在正方形上时,记为点H;依此操作下去…,①如图3,线段EF经过两次操作后拼得△EFD,其形状为等边三角形,在此条件下,求证:AE=CF;②若线段EF经过三次操作恰好拼成四边形EFGH,(3)请判断四边形EFGH的形状为正方形,此时AE与BF的数量关系是AE=BF;(4)以1中的结论为前提,设AE的长为x,四边形EFGH的面积为y,求y与x的函数关系式及面积y的取值范围.解:(1)如图1中,∵四边形ABCD是正方形,∴∠B=∠DCM=90°,∵BE=3,BC=4,∴CE===5,∵DM⊥EC,∴∠DMC+∠MCE=90°,∠MCE+∠CEB=90°,∴∠DMC=∠CEB,∵BC=CD,∴△BCE≌△CDM(AAS),∴DM=EC=5.故答案为5.(2)如题图3,由旋转性质可知EF=DF=DE,则△DEF为等边三角形.故答案为等边三角形.(2)①四边形EFGH的形状为正方形,此时AE=BF.理由如下:依题意画出图形,如答图1所示:连接EG、FH,作HN⊥BC于N,GM⊥AB于M.由旋转性质可知,EF=FG=GH=HE,∴四边形EFGH是菱形,由△EGM≌△FHN,可知EG=FH,∴四边形EFGH的形状为正方形.∴∠HEF=90°∵∠1+∠2=90°,∠2+∠3=90°,∴∠1=∠3.∵∠3+∠4=90°,∠2+∠3=90°,∴∠2=∠4.在△AEH与△BFE中,,∴△AEH≌△BFE(ASA)∴AE=BF.故答案为正方形,AE=BF.(4)利用①中结论,易证△AEH、△BFE、△CGF、△DHG均为全等三角形,∴BF=CG=DH=AE=x,AH=BE=CF=DG=4﹣x.∴y=S正方形ABCD﹣4S△AEH=4×4﹣4×x(4﹣x)=2x2﹣8x+16.∴y=2x2﹣8x+16(0<x<4)∵y=2x2﹣8x+16=2(x﹣2)2+8,∴当x=2时,y取得最小值8;当x=0时,y=16,∴y的取值范围为:8≤y<16.8.已知:如图1,在平面直角坐标系中,长方形OABC的顶点B的坐标是(6,4).(1)直接写出A点坐标( 6 ,0 ),C点坐标(0 , 4 );(2)如图2,D为OC中点.连接BD,AD,如果在第二象限内有一点P(m,1),且四边形OADP的面积是△ABC面积的2倍,求满足条件的点P的坐标;(3)如图3,动点M从点C出发,以每钞1个单位的速度沿线段CB运动,同时动点N 从点A出发.以每秒2个单位的速度沿线段AO运动,当N到达O点时,M,N同时停止运动,运动时间是t秒(t>0),在M,N运动过程中.当MN=5时,直接写出时间t的值.解:(1)∵四边形OABC是长方形,∴AB∥OC,BC∥OA,∵B(6,4),∴A(6,0),C(0,4),故答案为:6,0,0,4;(2)如图2,由(1)知,A(6,0),C(0,4),∴OA=6,OC=4,∵四边形OABC是长方形,∴S长方形OABC=OA•OC=6×4=24,连接AC,∵AC是长方形OABC的对角线,∴S△OAC=S△ABC=S长方形OABC=12,∵点D是OC的中点,∴S△OAD=S△OAC=6,∵四边形OADP的面积是△ABC面积的2倍,∴S四边形OADP=2S△ABC=24,∵S四边形OADP=S△OAD+S△ODP=6+S△ODP=24,∴S△ODP=18,∵点D是OC的中点,且OC=4,∴OD=OC=2,∵P(m,1),∴S△ODP=OD•|m|=×2|m|=18,∴m=18(由于点P在第二象限,所以,m小于0,舍去)或m=﹣18,∴P(﹣18,1);(3)如图3,由(2)知,OA=6,OC=4,∵四边形OABC是长方形,∴∠AOC=∠OCB=90°,BC=6,由运动知,CM=t,AN=2t,∴ON=OA﹣AN=6﹣2t,过点M作MH⊥OA于H,∴∠OHM=90°=∠AOC=∠OCB,∴四边形OCMH是长方形,∴MH=OC=4,OH=CM=t,∴HN=|ON﹣CM|=6﹣2t﹣t|=|6﹣3t|,在Rt△MHN中,MN=5,根据勾股定理得,HN2=MN2﹣MH2,∴|6﹣3t|2=52﹣42=9,∴t=1或t=3,即:t的值为1或3.9.综合与实践问题情境数学课上,李老师提出了这样一个问题:如图1,点P是正方形ABCD内一点,PA=1,PB =2,PC=3.你能求出∠APB的度数吗?(1)小敏与同桌小聪通过观察、思考、讨论后,得出了如下思路:思路一:将△BPC绕点B逆时针旋转90°,得到△BP'A,连接PP',求出∠APB的度数;思路二:将△APB绕点B顺时针旋转90°,得到△CP'B,连接PP',求出∠APB的度数.请参考以上思路,任选一种写出完整的解答过程.类比探究(2)如图2,若点P是正方形ABCD外一点,PA=3,PB=1,,求∠APB的度数.拓展应用(3)如图3,在边长为的等边三角形ABC内有一点O,∠AOC=90°,∠BOC=120°,则△AOC的面积是.解:(1)思路一,如图1,将△BPC绕点B逆时针旋转90°,得到△BP'A,连接PP',则△ABP'≌△CBP,AP'=CP=3,BP'=BP=2,∠PBP'=90°∴∠BPP'=45°,根据勾股定理得,,∵AP=1,∴AP2+P'P2=1+8=9,又∵P'A2=32=9,∴AP2+P'P2=P'A2,∴△APP'是直角三角形,且∠APP'=90°,∴∠APB=∠APP'+∠BPP'=90°+45°=135°.思路二、同思路一的方法.(2)如图2,将△BPC绕点B逆时针旋转90°,得到△BP'A,连接PP'.则△ABP'≌△CBP,,BP'=BP=1,∠PBP'=90°∴∠BPP'=45°,根据勾股定理得,,∵AP=3,∴AP2+P'P2=9+2=11,又∵,∴AP2+P'P2=P'A2,∴△APP'是直角三角形,且∠APP'=90°,∴∠APB=∠APP'﹣∠BPP'=90°﹣45°=45°.(3)如图,将△ABO绕点B顺时针旋转60°,得到△BCE,连接OE.则△BAO≌△BCE,∠AOB=∠BEC=360°﹣90°﹣120°=150°,∵△BOE是等边三角形,∴∠BEO=∠BOE=60°,∴∠OEC=90°,∠OEC=120°﹣60°=60°,∴sin60°==,设EC=k,OC=2k,则OA=EC=k,∵∠AOC=90°,∴OA2+OC2=AC2,∴3k2+4k2=7,∴k=1或﹣1(舍弃),∴OA=,OC=2,∴S△AOC=•OA•OC=××2=.故答案为.10.如图1,在矩形ABCD中,点P是BC边上一点,连接AP交对角线BD于点E,BP=BE.作线段AP的中垂线MN分别交线段DC,DB,AP,AB于点M,G,F,N.(1)求证:∠BAP=∠BGN;(2)若AB=6,BC=8,求;(3)如图2,在(2)的条件下,连接CF,求tan∠CFM的值.(1)证明:如图1中,∵四边形ABCD是矩形,∴∠ABC=90°,∴∠BAP=∠APB=90°∵BP=BE,∴∠APB∠BEP=∠GEF,∵MN垂直平分线段AP,∴∠GFE=90°,∴∠BGN+∠GEF=90°,∴∠BAP=∠BGN.(2)解:∵四边形ABCD是矩形,∴∠BAD=∠ABP=90°,AD∥BC,AD=BC=8,∴BD===10,∵AD∥BC,∴∠DAE=∠APB,∵∠APB=∠BEP=∠DEA,∴∠DAE=∠DEA,∴DA=DE=8,∴BE=BP=BD﹣DE=10﹣8=2,∴PA===2,∵MN垂直平分线段AP,∴AF=PF=,∵PB∥AD,∴===,∴PE=PA=,∴EF=PF﹣PE=﹣=,∴==.(3)解:如图3中,连接AM,MP.设CM=x.∵四边形AB CD是矩形,∴∠ADM=∠MCP=90°,AB=CD=6,AD=BC=8,∵MN垂直平分线段AP,∴MA=MP,∴AD2+DM2=PC2+CM2,∴82+(6﹣x)2=62+x2,∴x=,∵∠PFM=∠PCM=90°,∴P,F,M,C四点共圆,∴∠CFM=∠CPM,∴tan∠CFM=tan∠CFM===.11.在利用构造全等三角形来解决的问题中,有一种典型的利用倍延中线的方法,例如:在△ABC中,AB=8,AC=6,点D是BC边上的中点,怎样求AD的取值范围呢?我们可以延长AD到点E,使AD=DE,然后连接BE(如图①),这样,在△ADC和△EDB中,由于,∴△ADC≌△EDB,∴AC=EB,接下来,在△ABE中通过AE的长可求出AD的取值范围.请你回答:(1)在图①中,中线AD的取值范围是1<AD<7 .(2)应用上述方法,解决下面问题①如图②,在△ABC中,点D是BC边上的中点,点E是AB边上的一点,作DF⊥DE交AC边于点F,连接EF,若BE=4,CF=2,请直接写出EF的取值范围.②如图③,在四边形ABCD中,∠BCD=150°,∠ADC=30°,点E是AB中点,点F在DC上,且满足BC=CF,DF=AD,连接CE、ED,请判断CE与ED的位置关系,并证明你的结论.解:(1)延长AD到点E,使AD=DE,连接BE,如图①所示:∵点D是BC边上的中点,∴BD=CD,在△A DC和△EDB中,,∴△ADC≌△EDB(SAS),∴AC=EB=6,在△ABE中,AB﹣BE<AE<AB+BE,∴8﹣6<AE<8+6,即2<AE<14,∴1<AD<7,故答案为:1<AD<7;(2)①延长ED到点N,使ED=DN,连接CN、FN,如图②所示:∵点D是BC边上的中点,∴BD=CD,在△NDC和△EDB中,中,,∴△NDC≌△EDB(SAS),∴BE=CN=4,∵DF⊥DE,ED=DN,∴EF=FN,在△CFN中,CN﹣CF<FN<CN+CF,∴4﹣2<FN<4+2,即2<FN<6,∴2<EF<6;②CE⊥ED;理由如下:延长CE与DA的延长线交于点G,如图③所示:∵点E是AB中点,∴BE=AE,∵∠BCD=150°,∠ADC=30°,∴DG∥BC,∴∠GAE=∠CBE,在△GAE和△CBE中,,∴△GAE≌△CBE(ASA),∴GE=CE,AG=BC,∵BC=CF,DF=AD,∴CF+DF=BC+AD=AG+AD,即:CD=GD,∵GE=CE,12.如图,在平行四边形ABCD中,AB⊥AC,对角线AC、BD相交于点O,将直线AC绕点O 顺时针旋转一个角度α(0°<α≤90°),分别交线段BC、AD于点E、F,已知AB=1,,连接BF.(1)如图①,在旋转的过程中,请写出线段AF与EC的数量关系,并证明;(2)如图②,当α=45°时,请写出线段BF与DF的数量关系,并证明;(3)如图③,当α=90°时,求△BOF的面积.解:(1)AF=CE;理由如下:∵四边形ABCD是平行四边形,∴AD∥BC,AO=CO,∴∠FAO=∠ECO,∴在△AFO与△CEO中,,∴△AFO≌△CEO(ASA),(2)BF=DF;理由如下:∵AB⊥AC,∴∠BAC=90°,∴AC===2,∵四边形ABCD是平行四边形,∴BO=DO,AO=CO=AC=1,∴AB=AO,又∵AB⊥AC,∴∠AOB=45°,∵α=45°,∠AOF=45°,∴∠BOF=∠AOB+∠AOF=45°+45°=90°,∴EF⊥BD,∵BO=DO,∴BF=DF;(3)∵AB⊥AC,∴∠CAB=90°,∴∠CAB=∠AOF=α=90°,∴AB∥EF,∵四边形ABCD是平行四边形,∴AF∥BE,∴四边形ABEF是平行四边形,∴AB=EF=1,由(1)得:△AFO≌△CEO,∴OF=OE=EF=,由(2)得:AO=1,∵AB∥EF,AO⊥EF,∴S△BOF=S△AOF=AO•OF=×1×=.13.综合与实践(1)问题发现如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.请写出∠AEB的度数及线段AD,BE之间的数量关系,并说明理由.(2)类比探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一直线上,CM为△DCE中DE边上的高,连接BE.填空:①∠AEB的度数为90°;②线段CM,AE,BE之间的数量关系为AE=BE+2CM.(3)拓展延伸在(2)的条件下,若BE=4,CM=3,则四边形ABEC的面积为35 .解:(1)∠AEB=60°,AD=BE,理由如下:∵△ACB和△DCE均为等边三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=60°.∴∠ACD=∠BCE.在△ACD和△BCE中,,∴△ACD≌△BCE(SAS).∴∠ADC=∠BEC.AD=BE,∵△DCE为等边三角形,∴∠CDE=∠CED=60°.∵点A,D,E在同一直线上,∴∠ADC=120°.∴∠BEC=120°.∴∠AEB=∠BEC﹣∠CED=60°.(2)猜想:①∠AEB=90°,②AE=BE+2CM.理由如下:∵△ACB和△DCE均为等腰直角三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=90°.∴∠ACD=∠BCE.在△ACD和△BCE中,,∴△ACD≌△BCE(SAS).∴AD=BE,∠ADC=∠BEC.∵△DCE为等腰直角三角形,∴∠CDE=∠CED=45°.∵点A,D,E在同一直线上,∴∠ADC=135°.∴∠BEC=135°.∴∠AEB=∠BEC﹣∠CED=90°.∵CD=CE,CM⊥DE,∴DM=ME.∵∠DCE=90°,∴DM=ME=CM.∴AE=AD+DE=BE+2CM.故答案为:90°,AE=BE+2CM;(3)由(2)得:∠AEB=90°,AD=BE=4,∵△DCE均为等腰直角三角形,CM为△DCE中DE边上的高,∴CM⊥AE,DE=2CM=6,∴AE=AD+DE=4+6=10,∴四边形ABEC的面积=△ACE的面积+△ABE的面积=AE×CM+AE×BE=×10×3+×10×4=35;故答案为:35.14.如图,正方形OABC的边长为8,P为OA上一点,OP=2,Q为OC边上的一个动点,分别以OP\PQ为边在正方形OABC内部作等边三角形OPD和等边三角形PQE.(1)证明:DE=OQ;(2)直线ED与OC交于点F,点Q在运动过程中.①∠EFC的度数是否发生改变?若不变,求出这个角的度数;若改变,说明理由;②连结AE,求AE的最小值.(1)证明:如图1中,∵△OPD和△PQE是等边三角形,∴PO=PD,PQ=PE,∠OPD=∠QPE=60°,∴∠OPQ=∠DPE,∴△OPQ≌△DPE(SAS),∴DE=OQ.(2)①∵△OPQ≌△DPE,∴∠EDP=∠POQ=90°,∵∠DOP=∠ODP=60°∴∠FDO=∠FDO=30°,∴∠EFC=∠FOC+∠FDO=60°.②如图2中,当点Q与点C重合时,以PQ为边作正三角形PQM.∵∠EFC=60°为定值,点E的运动路径为线段DM,过点P作PH⊥EA,垂足为H,∴当AE⊥DE时,AE的值最小∵∠PDE=∠DEH=∠PHE=90°,∴四边形PDEH是矩形,∴∠DPH=90°,EH=PD=2,∴EH=DP=2,在△PHA中,∠AHP=90°,∠HPA=30°∴AH=PA=3,∴AE=EH+AH=2+3=5.15.我们把对角线互相垂直的四边形叫做垂直四边形.(1)如图1,在四边形ABCD中,AB=AD,CB=CD,问四边形ABCD是垂直四边形吗?请说明理由;(2)如图2,四边形ABCD是垂直四边形,求证:AD2+BC2=AB2+CD2;(3)如图3,Rt△ABC中,∠ACB=90°,分别以AC、AB为边向外作正方形ACFG和正方形ABDE,连接CE,BG,GE,已知AC=4,BC=3,求GE长.(1)解:四边形ABCD是垂直四边形;理由如下:∵AB=AD,∴点A在线段BD的垂直平分线上,∵CB=CD,∴点C在线段BD的垂直平分线上,∴直线AC是线段BD的垂直平分线,∴AC⊥BD,即四边形ABCD是垂直四边形;(2)证明:设AC、BD交于点E,如图2所示:∵AC⊥BD,∴∠AED=∠AEB=∠BEC=∠CED=90°,由勾股定理得:AD2+BC2=AE2+DE2+BE2+CE2,AB2+CD2=AE2+BE2+DE2+CE2,∴AD2+BC2=AB2+CD2;(3)解:连接CG、BE,如图3所示:∵正方形ACFG和正方形ABDE,∴AG=AC,AB=AE,CG=AC=4,BE=AB,∠CAG=∠BAE=90°,∴∠CAG+∠BAC=∠BAE+∠BAC,即∠GAB=∠CAE,在△GAB和△CAE中,,∴△GAB≌△CAE(SAS),∴∠ABG=∠AEC,又∵∠AEC+∠CEB+∠ABE=90°,∴∠ABG+∠CEB+∠ABE=90°,即CE⊥BG,∴四边形CGEB是垂直四边形,由(2)得,CG2+BE2=BC2+GE2,∵AC=4,BC=3,∴AB===5,BE=AB=5,∴GE2=CG2+BE2﹣BC2=(4)2+(5)2﹣32=73,∴GE=.。

2020年九年级数学中考典型压轴题专项训练:四边形(含答案)

2020年九年级数学中考典型压轴题专项训练:四边形(含答案)

2020年九年级数学中考典型压轴题专项训练:四边形1、如图,四边形ABCD为平行四边形,∠BAD的角平分线AE交CD于点F,交BC的延长线于点E.(1)求证:BE=CD;(2)连接BF,若BF⊥AE,∠BEA=60°,AB=4,求平行四边形ABCD的面积.2、如图,矩形ABCD中,延长AB至E,延长CD至F,BE=DF,连接EF,与BC、AD分别相交于P、Q两点.(1)求证:CP=AQ;(2)若BP=1,PQ=2,∠AEF=45°,求矩形ABCD的面积.3、如图,在▱ABCD中,点E,F在对角线AC上,且AE=CF.求证:(1)DE=BF;(2)四边形DEBF是平行四边形.4、如图,E是▱ABCD的边CD的中点,延长AE交BC的延长线于点F.(1)求证:△ADE≌△FCE.(2)若∠BAF=90°,BC=5,EF=3,求CD的长.5、如图,AC是矩形ABCD的对角线,过AC的中点O作EF⊥AC,交BC于点E,交AD于点F,连接AE,CF.(1)求证:四边形AECF是菱形;(2)若AB=,∠DCF=30°,求四边形AECF的面积.(结果保留根号)6、如图,▱ABCD中,AB=2,AD=1,∠ADC=60°,将▱ABCD沿过点A的直线l折叠,使点D 落到AB边上的点D′处,折痕交CD边于点E.(1)求证:四边形BCED′是菱形;(2)若点P时直线l上的一个动点,请计算PD′+PB的最小值.7、如图,菱形ABCD的对角线AC与BD交于点O,∠ABC:∠BAD=1:2,BE∥AC,CE∥BD.(1)求tan∠DBC的值;(2)求证:四边形OBEC是矩形.8、在矩形ABCD中,AB=3,AD=4,动点Q从点A出发,以每秒1个单位的速度,沿AB向点B移动;同时点P从点B出发,仍以每秒1个单位的速度,沿BC向点C移动,连接QP,QD,PD.若两个点同时运动的时间为x秒(0<x≤3),解答下列问题:(1)设△QPD的面积为S,用含x的函数关系式表示S;当x为何值时,S有最大值?并求出最小值;(2)是否存在x的值,使得QP⊥DP?试说明理由.9、如图,点P在矩形ABCD的对角线AC上,且不与点A,C重合,过点P分别作边AB,AD 的平行线,交两组对边于点E,F和G,H.(1)求证:△PHC≌△CFP;(2)证明四边形PEDH和四边形PFBG都是矩形,并直接写出它们面积之间的关系.10、如图,在四边形ABCD中,AD∥BC,∠A=∠C,点P在边AB上.(1)判断四边形ABCD的形状并加以证明;(2)若AB=AD,以过点P的直线为轴,将四边形ABCD折叠,使点B、C分别落在点B′、C′上,且B′C′经过点D,折痕与四边形的另一交点为Q.①在图2中作出四边形PB′C′Q(保留作图痕迹,不必说明作法和理由);②如果∠C=60°,那么为何值时,B′P⊥AB.11、某同学要证明命题“平行四边形的对边相等.”是正确的,他画出了图形,并写出了如下已知和不完整的求证.已知:如图,四边形ABCD是平行四边形.求证:AB=CD,BC=DA(1)补全求证部分;(2)请你写出证明过程.证明:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,∴∠BAC=∠DCA,∠BCA=∠DAC,在△ABC和△CDA中,,∴△ABC≌△CDA(ASA),∴AB=CD,BC=DA..12、在矩形ABCD中,E为CD的中点,H为BE上的一点,,连接CH并延长交AB于点G,连接GE并延长交AD的延长线于点F.(1)求证:;(2)若∠CGF=90°,求的值.13、如图,将矩形ABCD沿AF折叠,使点D落在BC边的点E处,过点E作EG∥CD交AF于点G,连接DG.(1)求证:四边形EFDG是菱形;(2)探究线段EG、GF、AF之间的数量关系,并说明理由;(3)若AG=6,EG=2,求BE的长.14、如图,已知▱ABCD的三个顶点A(n,0)、B(m,0)、D(0,2n)(m>n>0),作▱ABCD 关于直线AD的对称图形AB1C1D(1)若m=3,试求四边形CC1B1B面积S的最大值;(2)若点B1恰好落在y轴上,试求的值.15、已知正方形ABCD,P为射线AB上的一点,以BP为边作正方形BPEF,使点F在线段CB的延长线上,连接EA、EC.(1)如图1,若点P在线段AB的延长线上,求证:EA=EC;(2)若点P在线段AB上.①如图2,连接AC,当P为AB的中点时,判断△ACE的形状,并说明理由;②如图3,设AB=a,BP=b,当EP平分∠AEC时,求a:b及∠AEC的度数.16、如图1,我们把对角线互相垂直的四边形叫做垂美四边形.(1)概念理解:如图2,在四边形ABCD中,AB=AD,CB=CD,问四边形ABCD是垂美四边形吗?请说明理由.(2)性质探究:试探索垂美四边形ABCD两组对边AB,CD与BC,AD之间的数量关系.猜想结论:(要求用文字语言叙述)___________________________写出证明过程(先画出图形,写出已知、求证).(3)问题解决:如图3,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG 和正方形ABDE,连接CE,BG,GE,已知AC=4,AB=5,求GE长.17、如图1,已知点E,F,G,H分别是四边形ABCD各边AB,BC,CD,DA的中点,根据以下思路可以证明四边形EFGH是平行四边形:(1)如图2,将图1中的点C移动至与点E重合的位置,F,G,H仍是BC,CD,DA的中点,求证:四边形CFGH是平行四边形;(2)如图3,在边长为1的小正方形组成的5×5网格中,点A,C,B都在格点上,在格点上画出点D,使点C与BC,CD,DA的中点F,G,H组成正方形CFGH;(3)在(2)条件下求出正方形CFGH的边长.18、如图,面积为6的平行四边形纸片ABCD中,AB=3,∠BAD=45°,按下列步骤进行裁剪和拼图.第一步:如图①,将平行四边形纸片沿对角线BD剪开,得到△ABD和△BCD纸片,再将△ABD纸片沿AE剪开(E为BD上任意一点),得到△ABE和△ADE纸片;第二步:如图②,将△ABE纸片平移至△DCF处,将△ADE纸片平移至△BCG处;第三步:如图③,将△DCF纸片翻转过来使其背面朝上置于△PQM处(边PQ与DC重合,△PQM和△DCF在DC同侧),将△BCG纸片翻转过来使其背面朝上置于△PRN处,(边PR与BC 重合,△PRN和△BCG在BC同侧).则由纸片拼成的五边形PMQRN中,对角线MN长度的最小值为.19、如图,在矩形ABCD中,点O为坐标原点,点B的坐标为(4,3),点A、C在坐标轴上,点P在BC边上,直线l1:y=2x+3,直线l2:y=2x﹣3.(1)分别求直线l1与x轴,直线l2与AB的交点坐标;(2)已知点M在第一象限,且是直线l2上的点,若△APM是等腰直角三角形,求点M的坐标;(3)我们把直线l1和直线l2上的点所组成的图形为图形F.已知矩形ANPQ的顶点N在图形F上,Q是坐标平面内的点,且N点的横坐标为x,请直接写出x的取值范围(不用说明理由).20、如图1,在正方形ABCD内作∠EAF=45°,AE交BC于点E,AF交CD于点F,连接EF,过点A作AH⊥EF,垂足为H.(1)如图2,将△ADF绕点A顺时针旋转90°得到△ABG.①求证:△AGE≌△AFE;②若BE=2,DF=3,求AH的长.(2)如图3,连接BD交AE于点M,交AF于点N.请探究并猜想:线段BM,MN,ND之间有什么数量关系?并说明理由.参考答案:1、【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,AB=CD,∴∠B+∠C=180°,∠AEB=∠DAE,∵AE是∠BAD的平分线,∴∠BAE=∠DAE,∴∠BAE=∠AEB,∴AB=BE,∴BE=CD;(2)解:∵AB=BE,∠BEA=60°,[来源:学#科#网] ∴△ABE是等边三角形,∴AE=AB=4,∵BF⊥AE,∴AF=EF=2,∴BF===2,∵AD∥BC,∴∠D=∠ECF,∠DAF=∠E,在△ADF和△ECF中,,∴△ADF≌△ECF(AAS),∴△ADF的面积=△ECF的面积,∴平行四边形ABCD的面积=△ABE的面积=AE•BF=×4×2=4.2、【解答】(1)证明:∵四边形ABCD是矩形,∴∠A=∠ABC=∠C=∠ADC=90°,AB=CD,AD=BC,AB∥CD,AD∥BC,∴∠E=∠F,∵BE=DF,∴AE=CF,在△CFP和△AEQ中,,∴△CFP≌△AEQ(ASA),∴CP=AQ;(2)解:∵AD∥BC,[来源:学#科#网Z#X#X#K]∴∠PBE=∠A=90°,∵∠AEF=45°,∴△BEP、△AEQ是等腰直角三角形,∴BE=BP=1,AQ=AE,∴PE=BP=,∴EQ=PE+PQ=+2=3,∴AQ=AE=3,∴AB=AE﹣BE=2,∵CP=AQ,AD=BC,∴DQ=BP=1,∴AD=AQ+DQ=3+1=4,∴矩形ABCD的面积=AB•AD=2×4=8.3、【解答】证明:(1)∵四边形ABCD是平行四边形,∴AD∥CB,AD=CB,∴∠DAE=∠BCF,在△ADE和△CBF中,∴△ADE≌△CBF,∴DE=BF.(2)由(1),可得∴△ADE≌△CBF,∴∠ADE=∠CBF,∵∠DEF=∠DAE+∠ADE,∠BFE=∠BCF+∠CBF,∴∠DEF=∠BFE,∴DE∥BF,又∵DE=BF,∴四边形DEBF是平行四边形.4、【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴∠DAE=∠F,∠D=∠ECF,∵E是▱ABCD的边CD的中点,∴DE=CE,在△ADE和△FCE中,,∴△ADE≌△FCE(AAS);(2)解:∵ADE≌△FCE,∴AE=EF=3,∵AB∥CD,∴∠AED=∠BAF=90°,在▱ABCD中,AD=BC=5,∴DE===4,∴CD=2DE=8.5、【解答】(1)证明:∵O是AC的中点,且EF⊥AC,∴AF=CF,AE=CE,OA=OC,∵四边形ABCD是矩形,∴AD∥BC,∴∠AFO=∠CEO,在△AOF和△COE中,,∴△AOF≌△COE(AAS),∴AF=CE,∴AF=CF=CE=AE,∴四边形AECF是菱形;(2)解:∵四边形ABCD是矩形,∴CD=AB=,在Rt△CDF中,cos∠DCF=,∠DCF=30°,∴CF==2,∵四边形AECF是菱形,∴CE=CF=2,∴四边形AECF是的面积为:EC•AB=2.6、【解答】证明:(1)∵将▱ABCD沿过点A的直线l折叠,使点D落到AB边上的点D′处,∴∠DAE=∠D′AE,∠DEA=∠D′EA,∠D=∠AD′E,∵DE∥AD′,∴∠DEA=∠EAD′,∴∠DAE=∠EAD′=∠DEA=∠D′EA,∴∠DAD′=∠DED′,∴四边形DAD′E是平行四边形,∴DE=AD′,∵四边形ABCD是平行四边形,∴AB=DC,AB∥DC,∴CE=D′B,CE∥D′B,∴四边形BCED′是平行四边形;∵AD=AD′,∴▱DAD′E是菱形,(2)∵四边形DAD′E是菱形,∴D与D′关于AE对称,连接BD交AE于P,则BD的长即为PD′+PB的最小值,过D作DG⊥BA于G,∵CD∥AB,∴∠DAG=∠CDA=60°,∵AD=1,∴AG=,DG=,∴BG=,∴BD==,∴PD′+PB的最小值为.7、【解答】(1)解:∵四边形ABCD是菱形,∴AD∥BC,∠DBC=∠ABC,∴∠ABC+∠BAD=180°,∵∠ABC:∠BAD=1:2,∴∠ABC=60°,∴∠BDC=∠ABC=30°,则tan∠DBC=tan30°=;(2)证明:∵四边形ABCD是菱形,∴AC⊥BD,即∠BOC=90°,∵BE∥AC,CE∥BD,∴BE∥OC,CE∥OB,∴四边形OBEC是平行四边形,则四边形OBEC是矩形.8、【解答】解:(1)∵四边形ABCD为矩形,∴BC=AD=4,CD=AB=3,当运动x秒时,则AQ=x,BP=x,∴BQ=AB﹣AQ=3﹣x,CP=BC﹣BP=4﹣x,∴S△ADQ=AD•AQ=×4x=2x,S△BPQ=BQ•BP=(3﹣x)x=x﹣x2,S△PCD=PC•CD=•(4﹣x)•3=6﹣x,又S矩形ABCD=AB•BC=3×4=12,∴S=S矩形ABCD﹣S△ADQ﹣S△BPQ﹣S△PCD=12﹣2x﹣(x﹣x2)﹣(6﹣x)=x2﹣2x+6=(x﹣2)2+4,即S=(x﹣2)2+4,∴S为开口向上的二次函数,且对称轴为x=2,∴当0<x<2时,S随x的增大而减小,当2<x≤3时,S随x的增大而增大,又当x=0时,S=5,当S=3时,S=,但x的范围内取不到x=0,∴S不存在最大值,当x=2时,S有最小值,最小值为4;(2)存在,理由如下:由(1)可知BQ=3﹣x,BP=x,CP=4﹣x,当QP⊥DP时,则∠BPQ+∠DPC=∠DPC+∠PDC,∴∠BPQ=∠PDC,且∠B=∠C,∴△BPQ∽△PCD,∴=,即=,解得x=(舍去)或x=,∴当x=时QP⊥DP.9、【解答】证明:(1)∵四边形ABCD为矩形,∴AB∥CD,AD∥BC.∵PF∥AB,∴PF∥CD,∴∠CPF=∠PCH.∵PH∥AD,∴PH∥BC,∴∠PCF=∠CPH.在△PHC和△CFP中,,∴△PHC≌△CFP(ASA).(2)∵四边形ABCD为矩形,∴∠D=∠B=90°.又∵EF∥AB∥CD,GH∥AD∥BC,∴四边形PEDH和四边形PFBG都是矩形.∵EF∥AB,∴∠CPF=∠CAB.在Rt△AGP中,∠AGP=90°,PG=AG•tan∠CAB.在Rt△CFP中,∠CFP=90°,CF=PF•tan∠CPF.S矩形DEPH=DE•EP=CF•EP=PF•EP•tan∠CPF;S矩形PGBF=PG•PF=AG•PF•tan∠CAB=EP•PF•tan∠CAB.∵tan∠CPF=tan∠CAB,∴S矩形DEPH=S矩形PGBF.10、【解答】解:(1)四边形ABCD是平行四边形证明:∵在四边形ABCD中,AD∥BC,∴∠A+∠B=180°,∵∠A=∠C,∴∠C+∠B=180°,∴AB∥CD,∴四边形ABCD是平行四边形;(2)①作图如下:②当AB=AD时,平行四边形ABCD是菱形,由折叠可得,BP=B′P,CQ=C′Q,BC=B′C′,∠C=∠C′=60°=∠A,当B′P⊥AB时,由B′P∥C′Q,可得C′Q⊥CD,∴∠PEA=30°=∠DEB′,∠QDC′=30°=∠B′DE,∴B′D=B′E,设AP=a,BP=b,则直角三角形APE中,PE=a,且B′P=b,BC=B′C′=CD=a+b,∴B′E=b﹣a=B′D,∴C′D=a+b﹣(b﹣a)=a+a,∴直角三角形C′QD中,C′Q=a=CQ,DQ=C′Q=a,∵CD=DQ+CQ=a+b,∴a+a=a+b,整理得(+1)a=b,∴==,即=.11、【解答】(1)已知:如图,四边形ABCD是平行四边形.求证:AB=CD,BC=DA;故答案为:BC=DA;(2)证明:连接AC,如图所示:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,∴∠BAC=∠DCA,∠BCA=∠DAC,在△ABC和△CDA中,,∴△ABC≌△CDA(ASA),∴AB=CD,BC=DA;故答案为:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,∴∠BAC=∠DCA,∠BCA=∠DAC,在△ABC和△CDA中,,∴△ABC≌△CDA(ASA),∴AB=CD,BC=DA.12、【解答】(1)证明:∵四边形ABCD是矩形,∴CD∥AB,AD=BC,AB=CD,AD∥BC,∴△CEH∽△GBH,∴.(2)解:作EM⊥AB于M,如图所示:则EM=BC=AD,AM=DE,∵E为CD的中点,∴DE=CE,设DE=CE=3a,则AB=CD=6a,由(1)得: =3,∴BG=CE=a,∴AG=5a,∵∠EDF=90°=∠CGF,∠DEF=∠GEC,∴△DEF∽△GEC,∴,∴EG•EF=DE•EC,∵CD∥AB,∴=,∴,∴EF=EG,∴EG•EG=3a•3a,解得:EG=a,在Rt△EMG中,GM=2a,∴EM==a,∴BC=a,∴==3.13、【解答】解:(1)证明:∵GE∥DF,∴∠EGF=∠DFG.∵由翻折的性质可知:GD=GE,DF=EF,∠DGF=∠EGF,∴∠DGF=∠DFG.∴GD=DF.∴DG=GE=DF=EF.∴四边形EFDG为菱形.(2)EG2=GF•AF.理由:如图1所示:连接DE,交AF于点O.∵四边形EFDG为菱形,∴GF⊥DE,OG=OF=GF.∵∠DOF=∠ADF=90°,∠OFD=∠DFA,∴△DOF∽△ADF.∴,即DF2=FO•AF.∵FO=GF,DF=EG,∴EG2=GF•AF.(3)如图2所示:过点G作GH⊥DC,垂足为H.∵EG2=GF•AF,AG=6,EG=2,∴20=FG(FG+6),整理得:FG2+6FG﹣40=0.解得:FG=4,FG=﹣10(舍去).∵DF=GE=2,AF=10,∴AD==4.∵GH⊥DC,AD⊥DC,∴GH∥AD.∴△FGH∽△FAD.∴,即=.∴GH=.∴BE=AD﹣GH=4﹣=.14、【解答】解:(1)如图1,∵▱ABCD与四边形AB1C1D关于直线AD对称,∴四边形AB1C1D是平行四边形,CC1⊥EF,BB1⊥EF,∴BC∥AD∥B1C1,CC1∥BB1,∴四边形BCEF、B1C1EF是平行四边形,∴S▱BCEF=S▱BCDA=S▱B1C1DA=S▱B1C1EF,∴S▱BCC1B1=2S▱BCDA.∵A(n,0)、B(m,0)、D(0,2n)、m=3,∴AB=m﹣n=3﹣n,OD=2n,∴S▱BCDA=AB•OD=(3﹣n)•2n=﹣2(n2﹣3n)=﹣2(n﹣)2+,∴S▱BCC1B1=2S▱BCDA=﹣4(n﹣)2+9.∵﹣4<0,∴当n=时,S▱BCC1B1最大值为9;(2)当点B1恰好落在y轴上,如图2,∵DF⊥BB1,DB1⊥OB,∴∠B1DF+∠DB1F=90°,∠B1BO+∠OB1B=90°,∴∠B1DF=∠OBB1.∵∠DOA=∠BOB1=90°,∴△AOD∽△B1OB,∴=,∴=,∴OB1=.由轴对称的性质可得AB1=AB=m﹣n.在Rt△AOB1中,n2+()2=(m﹣n)2,整理得3m2﹣8mn=0.∵m>0,∴3m﹣8n=0,∴=.15、【解答】解:(1)∵四边形ABCD和四边形BPEF是正方形,∴AB=BC,BP=BF,∴AP=CF,在△APE和△CFE中,,∴△APE≌△CFE,∴EA=EC;(2)①∵P为AB的中点,∴PA=PB,又PB=PE,∴PA=PE,∴∠PAE=45°,又∠DAC=45°,∴∠CAE=90°,即△ACE是直角三角形;②∵EP平分∠AEC,EP⊥AG,∴AP=PG=a﹣b,BG=a﹣(2a﹣2b)=2b﹣a∵PE∥CF,∴=,即=,解得,a=b;作G H⊥AC于H,∵∠CAB=45°,∴HG=AG=×(2b﹣2b)=(2﹣)b,又BG=2b﹣a=(2﹣)b,∴GH=GB,GH⊥AC,GB⊥BC,∴∠HCG=∠BCG,∵PE∥CF,∴∠PEG=∠BCG,∴∠AEC=∠ACB=45°.∴a:b=:1;∴∠AEC=45°.16、【解答】解:(1)四边形ABCD是垂美四边形.证明:∵AB=AD,∴点A在线段BD的垂直平分线上,∵CB=CD,∴点C在线段BD的垂直平分线上,∴直线AC是线段BD的垂直平分线,∴AC⊥BD,即四边形ABCD是垂美四边形;(2)猜想结论:垂美四边形的两组对边的平方和相等.如图2,已知四边形ABCD中,AC⊥BD,垂足为E,求证:AD2+BC2=AB2+CD2证明:∵AC⊥BD,∴∠AED=∠AEB=∠BEC=∠CED=90°,由勾股定理得,AD2+BC2=AE2+DE2+BE2+CE2,AB2+CD2=AE2+BE2+CE2+DE2,∴AD2+BC2=AB2+CD2;(3)连接CG、BE,∵∠CAG=∠BAE=90°,∴∠CAG+∠BAC=∠BAE+∠BAC,即∠GAB=∠CAE,在△GAB和△CAE中,,∴△GAB≌△CAE,∴∠ABG=∠AEC,又∠AEC+∠AME=90°,∴∠ABG+∠AME=90°,即CE⊥BG,∴四边形CGEB是垂美四边形,由(2)得,CG2+BE2=CB2+GE2,∵AC=4,AB=5,∴BC=3,CG=4,BE=5,∴GE2=CG2+BE2﹣CB2=73,∴GE=.17、【解答】(1)证明:如图2,连接BD,∵C,H是AB,DA的中点,∴CH是△ABD的中位线,∴CH∥BD,CH=BD,同理FG∥BD,FG=BD,∴CH∥FG,CH=FG,∴四边形CFGH是平行四边形;(2)如图3所示,(3)解:如图3,∵BD=,∴FG=BD=,∴正方形CFGH的边长是.18、【解答】解:∵△ABE≌△CDF≌△PMQ,∴AE=DF=PM,∠EAB=∠FDC=∠MPQ,∵△ADE≌△BCG≌△PNR,∴AE=BG=PN,∠DAE=∠CBG=∠RPN,∴PM=PN,∵四边形ABCD是平行四边形,∴∠DAB=∠DCB=45°,∴∠MPN=90°,∴△MPN是等腰直角三角形,当PM最小时,对角线MN最小,即AE取最小值,∴当AE⊥BD时,AE取最小值,过D作DF⊥AB于F,∵平行四边形ABCD的面积为6,AB=3,∴DF=2,∵∠DAB=45°,∴AF=DF=2,∴BF=1,∴BD==,∴AE===,∴MN=AE=,故答案为:.19、【解答】解:(1)直线l1:当y=0时,2x+3=0,x=﹣则直线l1与x轴坐标为(﹣,0)直线l2:当y=3时,2x﹣3=3,x=3则直线l2与AB的交点坐标为(3,3);(2)①若点A为直角顶点时,点M在第一象限,连结AC,如图1,∠APB>∠ACB>45°,∴△APM不可能是等腰直角三角形,∴点M不存在;②若点P为直角顶点时,点M在第一象限,如图2,过点M作MN⊥CB,交CB的延长线于点N,则Rt△ABP≌Rt△PNM,∴AB=PN=4,MN=BP,设M(x,2x﹣3),则MN=x﹣4,∴2x﹣3=4+3﹣(x﹣4),x=,∴M(,);③若点M为直角顶点时,点M在第一象限,如图3,设M1(x,2x﹣3),过点M1作M1G1⊥OA,交BC于点H1,则Rt△AM1G1≌Rt△PM1H1,∴AG1=M1H1=3﹣(2x﹣3),∴x+3﹣(2x﹣3)=4,x=2∴M1(2,1);设M2(x,2x﹣3),同理可得x+2x﹣3﹣3=4,∴x=,∴M2(,);综上所述,点M的坐标为(,),(2,1),(,);(3)x的取值范围为﹣≤x<0或0<x≤或≤x≤或≤x≤2.20、【解答】解:(1)①由旋转的性质可知:AF=AG,∠DAF=∠BAG.[来源:学。

2020年中考数学一轮复习 第五章《四边形》综合测试卷含答案

2020年中考数学一轮复习 第五章《四边形》综合测试卷含答案

第五章《四边形》综合测试卷(时间:90分钟满分:120分)一、选择题(本大题10小题,每小题3分,共30分)1. 从n边形一个顶点出发,可以作条对角线. ( )A. nB. n-1C. n-2D. n-32. 一个多边形的每一个外角都是36°,则这个多边形是( )A. 正方形B. 正六边形C. 正八方形D. 正十边形3. 在平行四边形ABCD中,∠A=38°,则∠C的度数为( )A. 142°B. 148°C. 132°D. 38°4. 边长为3 cm的菱形的周长是( )A. 15 cmB. 12 cmC. 9 cmD. 3 cm5. 如图Z5-1,在平行四边形ABCD中,下列结论一定成立的是( )图Z5-1A. AC∠BDB. AB=ADC. ∠BAD≠∠BCDD. ∠ABC+∠BAD=180°6. 下列四边形中,对角线一定相等的是( )A. 菱形B. 矩形C. 平行四边形D. 梯形7. 如图Z5-2,周长为28的菱形ABCD中,对角线AC,BD交于点O,H为AD边中点,OH的长等于( )A. 3.5B. 4C. 7D. 14图Z5-28. 如图Z5-3,四边形ABCD是矩形,连接BD,∠ABD=60°,延长BC到点E使CE=BD,连接AE,则∠AEB的度数为( )图Z5-3A. 15°B. 20°C. 30°D. 60°9. 如图Z5-4,在矩形ABCD中,AB与BC的长度比为3∠4.若该矩形的周长为28,则BD的长为( )图Z5-4A. 5B. 6C. 8D. 1010. 如图Z5-5,在边长为4的正方形ABCD中,点M为对角线BD上一动点,ME∠BC 于点E,MF∠CD于点F,则EF的最小值为( )图Z5-5A. 42B. 22C. 2D. 1二、填空题(本大题7小题,每小题4分,共28分)11. 五边形从某一个顶点出发可以引条对角线.12. 如果正多边形的一个外角为40°,那么它是正边形.13. 在行四边形ABCD中,∠B+∠D=220°,则∠A=.14. 如图Z5-6,AC是菱形ABCD的对角线,AC=8,AB=5,则菱形ABCD的面积是.图Z5-615. 如图Z5-7,正方形ABCD中,以CD为边向正方形内作等边三角形DEC,则∠EAB =.图Z5-716. 如图Z5-8,在平行四边形ABCD中,对角线AC,BD交于点O,点E为BC边上一点,且CE=2BE. 若四边形ABEO的面积为3,则平行四边形的ABCD的面积为.图Z5-817.如图Z5-9,在∠ABC中,AC的垂直平分线分别交AC,AB于点D,F,BE∠DF 交DF的延长线于点E. 已知∠A=30°,BC=2,AF=BF,则四边形BCDE的面积是.图Z5-9三、解答题(一)(本大题3小题,每小题6分,共18分)18. 如图Z5-10,四边形ABCD中,AC,BD相交于点O,O是AC的中点,AD∥BC.求证:四边形ABCD是平行四边形.图Z5-1019. 如图Z5-11,点E,F分别是矩形ABCD的边AB,CD上的一点,且DF=BE. 求证:AF=CE.图Z5-1120. 如图Z5-12,菱形ABCD的对角线AC和BD交于点O,AB=10,∠ABC=60°,求菱形ABCD的面积.图Z5-12四、解答题(二)(本大题3小题,每小题8分,共24分)21. 如图Z5-13,平行四边形ABCD中,DF平分∠ADC,交BC于点F,BE平分∠ABC,交AD于点E.(1)求证:四边形BFDE是平行四边形;(2)若∠AEB=68°,求∠C的度数.图Z5-1322. 如图Z5-14,平行四边形ABCD中,过点D作DE⊥AB于点E,点F在CD上,DF=BE,连接BF,AF.(1)求证:四边形BFDE是矩形;(2)若AF平分∠BAD,且AE=3,DF=5,求矩形BFDE的面积.图Z5-1423. 如图Z5-15,平行四边形ABCD中,过点A作AE⊥BC于点E,AF⊥DC于点F,且AE=AF.(1)求证:平行四边形ABCD是菱形;(2)若∠EAF=60°,CF=2,求菱形ABCD的面积.图Z5-15五、解答题(三)(本大题2小题,每小题10分,共20分)24. 如图Z5-16,在四边形ABCD中,AB=AD,CB=CD,E是CD上的点,BE交AC 于点F,连接DF.(1)求证:∠BAF=∠DAF,∠AFD=∠CFE;(2)若AB∥CD,试证明:四边形ABCD是菱形;(3)在(2)的条件下,试确定点E的位置,使得∠EFD=∠BCD,并说明理由.图Z5-1625. 如图Z5-17,四边形ABCD是正方形,点P是BC上任意一点,DE⊥AP于点E,BF⊥AP于点F,CH⊥DE于点H,BF的延长线交CH于点G.(1)求证:AF-BF=EF;(2)四边形EFGH是什么四边形?并证明;(3)若AB=2,BP=1,求四边形EFGH的面积.图Z5-17第五章《四边形》综合测试卷(时间:90分钟满分:120分)一、选择题(本大题10小题,每小题3分,共30分)1. 从n边形一个顶点出发,可以作条对角线. ( D )A. nB. n-1C. n-2D. n-32. 一个多边形的每一个外角都是36°,则这个多边形是( D )A. 正方形B. 正六边形C. 正八方形D. 正十边形3. 在平行四边形ABCD中,∠A=38°,则∠C的度数为( D )A. 142°B. 148°C. 132°D. 38°4. 边长为3 cm的菱形的周长是( B )A. 15 cmB. 12 cmC. 9 cmD. 3 cm5. 如图Z5-1,在平行四边形ABCD中,下列结论一定成立的是( D )图Z5-1A. AC∠BDB. AB=ADC. ∠BAD≠∠BCDD. ∠ABC+∠BAD=180°6. 下列四边形中,对角线一定相等的是( B )A. 菱形B. 矩形C. 平行四边形D. 梯形7. 如图Z5-2,周长为28的菱形ABCD中,对角线AC,BD交于点O,H为AD边中点,OH的长等于( A )A. 3.5B. 4C. 7D. 14图Z5-28. 如图Z5-3,四边形ABCD是矩形,连接BD,∠ABD=60°,延长BC到点E使CE=BD,连接AE,则∠AEB的度数为( A )图Z5-3A. 15°B. 20°C. 30°D. 60°9. 如图Z5-4,在矩形ABCD中,AB与BC的长度比为3∠4.若该矩形的周长为28,则BD的长为( D )图Z5-4A. 5B. 6C. 8D. 1010. 如图Z5-5,在边长为4的正方形ABCD中,点M为对角线BD上一动点,ME∠BC 于点E,MF∠CD于点F,则EF的最小值为( B )图Z5-5A. 42B. 22C. 2D. 1二、填空题(本大题7小题,每小题4分,共28分)11. 五边形从某一个顶点出发可以引2条对角线.12. 如果正多边形的一个外角为40°,那么它是正九边形.13. 在平行四边形ABCD中,∠B+∠D=220°,则∠A=70°.14. 如图Z5-6,AC是菱形ABCD的对角线,AC=8,AB=5,则菱形ABCD的面积是24.图Z5-615. 如图Z5-7,正方形ABCD中,以CD为边向正方形内作等边三角形DEC,则∠EAB =15°.图Z5-716. 如图Z5-8,在平行四边形ABCD中,对角线AC,BD交于点O,点E为BC边上一点,且CE=2BE. 若四边形ABEO的面积为3,则平行四边形ABCD的面积为9.图Z5-817. 如图Z5-9,在∠ABC中,AC的垂直平分线分别交AC,AB于点D,F,BE∠DF 交DF的延长线于点E. 已知∠A=30°,BC=2,AF=BF,则四边形BCDE的面积是2 3.图Z5-9三、解答题(一)(本大题3小题,每小题6分,共18分)18. 如图Z5-10,四边形ABCD中,AC,BD相交于点O,O是AC的中点,AD∥BC.求证:四边形ABCD是平行四边形.图Z5-10证明:∵O是AC的中点,∴OA=OC.∵AD∥BC,∴∠ADO=∠CBO.在△AOD和△COB中,{∠ADO=∠CBO,∠AOD=∠COB,OA=OC,∴△AOD∠△COB(AAS).∴OD=OB.∴四边形ABCD是平行四边形.19. 如图Z5-11,点E,F分别是矩形ABCD的边AB,CD上的一点,且DF=BE. 求证:AF=CE.图Z5-11证明:∵四边形ABCD是矩形,∴∠D=∠B=90°,AD=BC.在△ADF和△CBE中,{AD=CB,∠D=∠B,DF=BE,∴△ADF∠△CBE(SAS).∴AF=CE.20. 如图Z5-12,菱形ABCD的对角线AC和BD交于点O,AB=10,∠ABC=60°,求菱形ABCD的面积.图Z5-12解:如答图Z5-1,过点A作AE⊥BC于点E.∵四边形ABCD是菱形,∴AB=BC=10.∵∠ABC=60°,AE⊥BC,∴∠BAE=30°.答图Z5-1∠BE =12AB =5,AE =3BE =53.∠菱形ABCD 的面积=BC×AE =50 3.四、解答题(二)(本大题3小题,每小题8分,共24分) 21. 如图Z5-13,平行四边形ABCD 中,DF 平分∠ADC ,交BC 于点F ,BE 平分∠ABC ,交AD 于点E .(1)求证:四边形BFDE 是平行四边形; (2)若∠AEB =68°,求∠C 的度数.图Z5-13(1)证明:∵在平行四边形ABCD 中,AD ∥BC , ∴∠AEB =∠CBE.又∵BE 平分∠ABC ,∴∠ABE =∠EBC.∴∠ABE =∠AEB.∴AB =AE. 同理可得CF =CD.又AB =CD ,∴CF =AE.∴BF =DE.又∵BF ∥DE ,∴四边形EBFD 是平行四边形.(2)解:∵∠AEB =68°,AD ∥BC ,∴∠EBF =∠AEB =68°. ∵BE 平分∠ABC ,∴∠ABC =2∠EBF =136°. ∴∠C =180°-∠ABC =44°.22. 如图Z5-14,平行四边形ABCD 中,过点D 作DE ⊥AB 于点E ,点F 在CD 上,DF =BE ,连接BF ,AF .(1)求证:四边形BFDE 是矩形;(2)若AF 平分∠BAD ,且AE =3,DF =5,求矩形BFDE 的面积.图Z5-14(1)证明:∵四边形ABCD 是平行四边形,∴AB ∥CD. ∵BE ∥DF ,BE =DF ,∴四边形BFDE 是平行四边形. ∵DE ⊥AB ,∴∠DEB =90°.∴四边形BFDE 是矩形. (2)解:∵AB ∥CD ,∴∠BAF =∠DFA. ∵AF 平分∠BAD ,∴∠BAF =∠DAF. ∴∠DFA =∠DAF.∴AD =DF =5. ∵DE ⊥AB ,∴∠AED =90°.由勾股定理,得DE=AD2-AE2=4.∴矩形BFDE的面积=DF×DE=5×4=20.23. 如图Z5-15,在平行四边形ABCD中,过点A作AE⊥BC于点E,AF⊥DC于点F,且AE=AF.(1)求证:ABCD是菱形;(2)若∠EAF=60°,CF=2,求菱形ABCD的面积.图Z5-15(1)证明:∵四边形ABCD是平行四边形,∴∠B=∠D.∵AE⊥BC,AF⊥DC,∴∠AEB=∠AFD=90°.又∵AE=AF,∴△AEB∠△AFD(AAS). ∴AB=AD.∴四边形ABCD是菱形.(2)解:连接AC,如答图Z5-2. ∵AE⊥BC,AF⊥DC,∠EAF=60°,∴∠ECF=120°.答图Z5-2∵四边形ABCD是菱形,∴∠ACF=60°.∴△ACD是等边三角形.在Rt△CFA中,AF=CF·tan∠ACF=23,AC=CFcos∠ACF=4=CD.∴菱形ABCD的面积=4×23=8 3.五、解答题(三)(本大题2小题,每小题10分,共20分)24. 如图Z5-16,在四边形ABCD中,AB=AD,CB=CD,E是CD上的点,BE交AC 于点F,连接DF.(1)求证:∠BAF=∠DAF,∠AFD=∠CFE;(2)若AB∥CD,试证明:四边形ABCD是菱形;(3)在(2)的条件下,试确定点E的位置,使得∠EFD=∠BCD,并说明理由.图Z5-16(1)证明:在△ABC和△ADC中,{AB=AD,CB=CD,AC=AC,∴△ABC∠△ADC.∴∠BAC=∠DAC,即∠BAF=∠DAF.在△ABF和△ADF中{AB=AD,∠BAF=∠DAF,AF=AF,∴△ABF∠△ADF(SAS).∴∠AFB=∠AFD.∵∠CFE=∠AFB,∴∠AFD=∠CFE.∴∠BAF=∠DAF,∠AFD=∠CFE.(2)证明:∵AB∥CD,∴∠BAC=∠ACD.∵∠BAC=∠DAC,∴∠DAC=∠ACD.∴AD=CD.∵AB=AD,CB=CD,∴AB=CB=CD=AD.∴四边形ABCD是菱形.(3)解:当BE⊥CD时,点E的位置可令∠EFD=∠BCD.理由如下.∵四边形ABCD是菱形,∴BC=CD,∠BCF=∠DCF.∵CF=CF,∴△BCF∠△DCF(SAS).∴∠CBF=∠CDF.∵BE⊥CD,∴∠BEC=∠DEF=90°.∴∠EFD=∠BCD.25. 如图Z5-17,四边形ABCD是正方形,点P是BC上任意一点,DE⊥AP于点E,BF⊥AP于点F,CH⊥DE于点H,BF的延长线交CH于点G.(1)求证:AF-BF=EF;(2)四边形EFGH是什么四边形?并证明;(3)若AB=2,BP=1,求四边形EFGH的面积.图Z5-17(1)证明:∵DE⊥AP于点E,BF⊥AP于点F,CH⊥DE于点H,∴∠AFB=∠AED=∠DHC=90°.∴∠ADE+∠DAE=90°.又∵∠DAE+∠BAF=90°,∴∠ADE=∠BAF.在△AED和△BFA中,{∠AED=∠BFA,∠EDA=∠FAB,AD=AB,∴△AED∠△BFA(AAS).∴AE=BF.∴AF-AE=EF,即AF-BF=EF.(2)解:四边形EFGH是正方形.证明:∵∠AFB=∠AED=∠DHC=90°,∴四边形EFGH是矩形.∵△AED∠△BFA,同理可得△AED∠∠DHC,∠∠AED∠∠BFA∠△DHC.∴DH=AE=BF,AF=DE=CH.∴DE-DH=AF-AE.∴EF=EH.∴矩形EFGH是正方形.(3)解:∵AB=2,BP=1,∴AP= 5.∵S△ABP=12×BF×AP=12×BF×5=1×2×12,∴BF=255.∵∠BAF=∠PAB,∠AFB=∠ABP=90°,∴△ABF∠△APB.∴BFAF=BPAB=12,∴AF=455,∴EF=AF-AE=455-255=255.25 52=45.∴四边形EFGH的面积为⎝⎛⎭⎫。

中考数学压轴题专项训练:四边形的综合(含答案)

中考数学压轴题专项训练:四边形的综合(含答案)

2020年数学中考压轴题专项训练:四边形的综合1.如图,四边形ABCD是直角梯形,AD∥BC,AB⊥AD,且AB=AD+BC,E是DC的中点,连结BE并延长交AD的延长线于G.(1)求证:DG=BC;(2)F是AB边上的动点,当F点在什么位置时,FD∥BG;说明理由.(3)在(2)的条件下,连结AE交FD于H,FH与HD长度关系如何?说明理由.(1)证明:∵AD∥BC,∴∠DGE=∠CBE,∠GDE=∠BCE,∵E是DC的中点,即DE=CE,∴△DEG≌△CEB(AAS),∴DG=BC.(2)解:当F运动到AF=AD时,FD∥BG.理由:由(1)知DG=BC,∵AB=AD+BC,AF=AD,∴BF=BC=DG,∴AB=AG,∵∠BAG=90°,∴∠AFD=∠ABG=45°,∴FD∥BG.(3)解:结论:FH=HD.理由:由(1)知GE=BG,又由(2)知△ABG为等腰直角三角形,所以AE⊥BG,∵FD∥BG,∴AE⊥FD,∵△AFD为等腰直角三角形,∴FH=HD.2.如图,在矩形ABCD中,过BD的中点O作EF⊥BD,分别与AB、CD交于点E、F.连接DE、BF.(1)求证:四边形BEDF是菱形;(2)若M是AD中点,联结OM与DE交于点N,AD=OM=4,则ON的长是多少?(1)证明:∵四边形ABCD是矩形,∴AB∥CD,∴∠DFO=∠BEO,∵∠DOF=∠EOB,OD=OB,∴△DOF≌△BOE(AAS),∴DF=BE,∴四边形BEDF是平行四边形,∵EF⊥BD,∴四边形BEDF是菱形.(2)解:∵DM=AM,DO=OB,∴OM∥AB,AB=2OM=8,∴DN=EN,ON=BE,设DE=EB=x,在Rt△ADE中,则有x2=42+(8﹣x)2,解得x=5,∴ON=.3.(1)如图1,四边形EFGH中,FE=EH,∠EFG+∠EHG=180°,点A,B分别在边FG,GH 上,且∠AEB=∠FEH,求证:AB=AF+BH.(2)如图2,四边形EFGH中,FE=EH,点M在边EH上,连接FM,EN平分∠FEH交FM 于点N,∠ENM=α,∠FGH=180°﹣2α,连接GN,HN.①找出图中与NH相等的线段,并加以证明;②求∠NGH的度数(用含α的式子表示).(1)证明:如图1中,延长BH到M,使得HM=FA,连接EM.∵∠F+∠EHG=180°,∠EHG+∠EHM=180°,∴∠F=∠EHM,∵AE=HE,FA=HM,∴△EFA≌△EHM(SAS),∴EA=EM,∠FEA=∠HEM,∵∠EAB=∠FEH,∴∠FEA+∠BEH=∠HEM+∠BEH=∠BEM=∠FEH,∴∠AEB=∠BEM,∵BE=BE,EA=EM,∴△AEB≌△MEB(SAS),∴AB=BM,∵BM=BH+HM=BH+AF,∴AB=AF+BH.(2)解:①如图2中,结论:NH=FN.理由:∵NE平分∠FEH,∴∠FEN=∠HEN,∵EF=EH,EN=EN,∴△ENF≌△ENH(SAS),∴NH=FN.②∵△ENF≌△ENH,∴∠ENF=∠ENH,∵∠ENM=α,∴∠ENF=∠ENH=180°﹣α,∴∠MNH=180°﹣α﹣α=180°﹣2α,∵∠FGH=180°﹣2α,∴∠MNH=∠FGH,∵∠MNH+∠FNH=180°,∴∠FGH+∠FNH=180°,∴F,G,H,N四点共圆,∵NH=NF,∴=,∴∠NGH=∠NGF=∠FGH=90°﹣α.4.如图,已知△ABC中,∠ACB=90°,AC=4,BC=3,点M、N分别是边AC、AB上的动点,连接MN,将△AMN沿MN所在直线翻折,翻折后点A的对应点为A′.(1)如图1,若点A′恰好落在边AB上,且AN=AC,求AM的长;(2)如图2,若点A′恰好落在边BC上,且A′N∥AC.①试判断四边形AMA′N的形状并说明理由;②求AM、MN的长;(3)如图3,设线段NM、BC的延长线交于点P,当且时,求CP的长.解:(1)如图1中,在Rt△ABC中,∵∠C=90°,AC=4,BC=3,∴AB===5,∵∠A=∠A,∠ANM=∠C=90°,∴△ANM∽△ACB,∴=,∴=,∴AM=.(2)①如图2中,∵NA′∥AC,∴∠AMN=∠NMA′,由翻折可知:MA=MA′,∠AMN=∠NMA′,∴∠MNA′=∠A′MN,∴A′N=A′M,∴AM=A′N,∵AM∥A′N,∴四边形AMA′N是平行四边形,∵MA=MA′,∴四边形AMA′N是菱形.②连接AA′交MN于O.设AM=MA′=x,∵MA′∥AB,∴=,∴=,解得x=,∴AM=,∴CM=,∴CA′===,∴AA′===,∵四边形AMA′N是菱形,∴AA′⊥MN,OM=ON,OA=OA′=,∴OM===,∴MN=2OM=.(3)如图3中,作NH⊥BC于H.∵NH∥AC,∴==∴==∴NH=,BH=,∴CH=BC﹣BH=3﹣=,∴AM=AC=,∴CM=AC﹣AM=4﹣=,∵CM∥NH,∴=,∴=,∴PC=1.5.如图,四边形ABCD为平行四边形,AD=1,AB=3,∠DAB=60°,点E为边CD上一动点,过点C作AE的垂线交AE的延长线于点F.(1)求∠D的度数;(2)若点E为CD的中点,求EF的值;(3)当点E在线段CD上运动时,是否存在最大值?若存在,求出该最大值;若不存在,请说明理由.解:(1)如图1中,∵四边形ABCD是平行四边形,∴AB∥CB,∠ADC+∠DAB=180°,∵∠DAB=60°,∴∠ADC=120°.(2)如图1中,作AH⊥CD交CD的延长线于H.在Rt△ADH中,∵∠H=90°,∠ADH=60°,AD=2,∴AH=AD•sin60°=,DH=AD•cos60°=,∵DE=EC=,∴EH=DH+DE=2,∴AE===,∵CF⊥AF,∴∠F=∠H=90°,∵∠AEH=∠CEF,∴△AEH∽△CEF,∴=,∴=,∴EF=.(3)如图2中,作△AFC的外接圆⊙O,作AH⊥CD交CD的郯城县于H,作OK⊥CD于K,交⊙O于M,作FP∥CD交AD的延长线于P,作MN∥CD交AD的延长线于M,作NQ⊥CD于Q.∵DE∥PF,∴=,∵AD是定值,∴PA定值最大时,定值最大,观察图象可知,当点F与点M重合时,PA定值最大,最大值=AN的长,由(2)可知,AH=,CH=,∠H=90°,∴AC===,∴OM=AC=,∵OK∥AH,AO=OC,∴KH=KC,∴OK==,∴MK=NQ=﹣,在Rt△NDQ中,DN===﹣,∴AN=AD+DN=+,∴的最大值==+.6.如图,在边长为2的正方形ABCD中,点P是射线BC上一动点(点P不与点B重合),连接AP、DP,点E是线段AP上一点,且∠ADE=∠APD,连接BE.(1)求证:AD2=AE•AP;(2)求证BE⊥AP;(3)直接写出的最小值.(1)证明:∵∠DAE=∠PAD,∠ADE=∠APD,∴△ADE∽△APD,∴=,∴AD2=AE•AP(2)证明:∵四边形ABCD是正方形,∴AD=AB,∠ABC=90°,∴AB2=AE•AP,∴=,∵∠BAE=∠PAB,∴△ABE∽△APB,∴∠AEB=∠ABP=90°,∴BE⊥AP.(3)∵△ADE∽△APD,∴=,∴=,∵AD=2,∴DE最小时,的值最小,如图,作△ABE的外接圆⊙O,连接OD,OE,易知OE=1,OD=,∴DE≥OD﹣OE=﹣1,∴DE的最小值为﹣1,∴的最小值=.7.在正方形ABCD中,点E是BC边上一点,连接AE.(1)如图1,点F为AE的中点,连接CF.已知tan∠FBE=,BF=5,求CF的长;(2)如图2,过点E作AE的垂线交CD于点G,交AB的延长线于点H,点O为对角线AC 的中点,连接GO并延长交AB于点M,求证:AM+BH=BE.解:(1)Rt△ABE中,BF为中线,BF=5,∴AE=10,FE=5,作FP⊥BC于点P,Rt△BFP中,,∴BP=3,FP=4,在等腰三角形△BFE中,BE=2BP=6,由勾股定理求得,∴CP=8﹣3=5,∴;(2)∵∠ACD=∠BAC=45°,AO=CO,∠AOM=∠COG,∴证明△AMO≌△CGO(ASA),∴AM=GC,过G作GP垂直AB于点P,得矩形BCGP,∴CG=PB,∵AB=PG,∠AEB=∠H,∠ABE=∠GPH,∴△ABE≌△GPH(ASA),∴BE=PH=PB+BH=CG+BH=AM+BH.8.阅读理解:如图1,若一个四边形的两条对角线互相垂直,则称这个四边形为垂美四边形.(1)概念理解:如图2,在四边形ABCD中,AB=AD,CB=CD,问四边形ABCD是垂美四边形吗?请说明理由;(2)性质探究:如图1,试在垂美四边形ABCD中探究AB2,CD2,AD2,BC2之间的关系,并说明理由;(3)解决问题:如图3,分别以Rt△ABC的直角边AC和斜边AB为边向外作正方形ACFG 和正方形ABDE,连结CE、BG、GE、CE交BG于点N,交AB于点M.已知AC=,AB=2,求GE的长.解:(1)如图2,四边形ABCD是垂美四边形;理由如下:连接AC、BD交于点E,∵AB=AD,∴点A在线段BD的垂直平分线上,∵CB=CD,∴点C在线段BD的垂直平分线上,∴直线AC是线段BD的垂直平分线,∴AC⊥BD,即四边形ABCD是垂美四边形;(2)猜想结论:AB2+CD2=AD2+BC2,证明:如图1,在四边形ABCD中,∵AC⊥BD,∴∠AOD=∠AOB=∠BOC=∠COD=90°,由勾股定理得:AB2+CD2=AO2+BO2+OD2+OC2AD2+BC2=AO2+BO2+OD2+OC2∴AB2+CD2=AD2+BC2,(3)如图3,连接CG,BE,∵∠CAG=∠BAE=90°,∴∠CAG+∠BAC=∠BAE+∠BAC,即∠GAB=∠CAE,在△GAB和△CAE中,FMNG图 3EDCAB∴△GAB≌△CAE(SSS),∴∠ABG=∠AEC,∵∠AEC+∠AME=90°,∴∠ABG+∠BMN=90°,∴∠BNC=90°,即BG⊥CE,∴四边形CGEB是垂美四边形,由(2)得:EG2+BC2=CG2+BE2∵,AB=2,∴BC=1,,,∴EG2=CG2+BE2﹣BC2=6+8﹣2=13,∴.9.已知:如图,长方形ABCD中,∠A=∠B=∠B=∠D=90°,AB=CD=4米,AD=BC=8米,点M是BC边的中点,点P从点A出发,以1米/秒的速度沿AB方向运动再过点B沿BM方向运动,到点M停止运动,点O以同样的速度同时从点D出发沿着DA方向运动,到点A停止运动,设点P运动的时间为x秒.(1)当x=2秒时,线段AQ的长是 6 米;(2)当点P在线段AB上运动时,图中阴影部分的面积发生改变吗?请你作出判断并说明理由.(3)在点P,Q的运动过程中,是否存在某一时刻,使得BP=DQ?若存在,求出点P 的运动时间x的值;若不存在,请说明理由.解:(1)∵四边形ABCD是矩形,∴AD=BC=8,∵DQ=2,∴AQ=AD﹣DQ=8﹣2=6,故答案为6.(2)结论:阴影部分的面积不会发生改变.理由:连结AM,作MH⊥AD于H.则四边形ABMH是矩形,MH=AB=4.∵S阴=S△APM+S△AQM=×x×4+(8﹣x)×4=16,∴阴影面积不变;(3)当点P在线段AB上时,BP=4﹣x,DQ=x.∵BP=DQ,∴4﹣x=x,∴x=3.当点P在线段BM上时,BP=x﹣4,DQ=x.∵BP=DQ,∴x﹣4=x,∴x=6.所以当x=3或6时,BP=DQ.10.A,B,C,D是长方形纸片的四个顶点,点E、F、H分别是边AB、BC、AD上的三点,连结EF、FH.(1)将长方形纸片ABCD按图①所示的方式折叠,FE、FH为折痕,点B、C、D折叠后的对应点分别为B'、C'、D',点B'在FC'上,则∠EFH的度数为90°;(2)将长方形纸片ABCD按图②所示的方式折叠,FE、FH为折痕,点B、C、D折叠后的对应点分别为B'、C'、D',若∠B'FC'=18°,求∠EFH的度数;(3)将长方形纸片ABCD按图③所示的方式折叠,FE、FH为折痕,点B、C、D折叠后的对应点分别为B'、C'、D',若∠EFH=m°,求∠B'FC'的度数为180°﹣2m°.解:(1)∵沿EF,FH折叠,∴∠BFE=∠B'FE,∠CFH=∠C'FH,∵点B′在FC′上,∴∠EFH=(∠BFB'+∠CFC')=×180°=90°,故答案为:90°;(2)∵沿EF,FH折叠,∴可设∠BFE=∠B'FE=x,∠C'FH=∠CFH=y,∵2x+18°+2y=180°,∴x+y=81°,∴∠EFH=x+18°+y=99°;(3)∵沿EF,FH折叠,∴可设∠BFE=∠B'FE=x,∠C'FH=∠CFH=y,∴∠EFH=180°﹣∠BFE﹣∠CFH=180°﹣(x+y),即x+y=180°﹣m°,又∵∠EFH=∠EFB'﹣∠B'FC'+∠C'FH=x﹣∠B'FC'+y,∴∠B'FC'=(x+y)﹣∠EFH=180°﹣m°﹣m°=180°﹣2m°,故答案为:180°﹣2m°.11.勾股定理是数学史上非常重要的一个定理.早在2000多年以前,人们就开始对它进行研究,至今已有几百种证明方法.在欧几里得编的《原本》中证明勾股定理的方法如下,请同学们仔细阅读并解答相关问题:如图,分别以Rt△ABC的三边为边长,向外作正方形ABDE、BCFG、ACHI.(1)连接BI、CE,求证:△ABI≌△AEC;(2)过点B作AC的垂线,交AC于点M,交IH于点N.①试说明四边形AMNI与正方形ABDE的面积相等;②请直接写出图中与正方形BCFG的面积相等的四边形.(3)由第(2)题可得:正方形ABDE的面积+正方形BCFG的面积=正方形ACHI的面积,即在Rt△ABC中,AB2+BC2=AC2.(1)证明:∵四边形ABDE、四边形ACHI是正方形,∴AB=AE,AC=AI,∠BAE=∠CAI=90°,∴∠EAC=∠BAI,在△ABI和△AEC中,,∴△ABI≌△AEC(SAS);(2)①证明:∵BM⊥AC,AI⊥AC,∴BM∥AI,∴四边形AMNI的面积=2△ABI的面积,同理:正方形ABDE的面积=2△AEC的面积,又∵△ABI≌△AEC,∴四边形AMNI与正方形ABDE的面积相等.②解:四边形CMNH与正方形BCFG的面积相等,理由如下:∵Rt△ABC中,AB2+BC2=AC2,∴正方形ABDE的面积+正方形BCFG的面积=正方形ACHI的面积,由①得:四边形AMNI与正方形ABDE的面积相等,∴四边形CMNH与正方形BCFG的面积相等;(3)解:由(2)得:正方形ABDE的面积+正方形BCFG的面积=正方形ACHI的面积;即在Rt△ABC中,AB2+BC2=AC2;故答案为:正方形ACHI,AC2.12.在长方形纸片ABCD中,点E是边CD上的一点,将△AED沿AE所在的直线折叠,使点D 落在点F处.(1)如图1,若点F落在对角线AC上,且∠BAC=54°,则∠DAE的度数为18 °.(2)如图2,若点F落在边BC上,且AB=6,AD=10,求CE的长.(3)如图3,若点E是CD的中点,AF的沿长线交BC于点G,且AB=6,AD=10,求CG 的长.解:(1)∵四边形ABCD是矩形,∴∠BAD=90°,∵∠BAC=54°,∴∠DAC=90°﹣54°=36°,由折叠的性质得:∠DAE=∠FAE,∴∠DAE=∠DAC=18°;故答案为:18;(2)∵四边形ABCD是矩形,∴∠B=∠C=90°,BC=AD=10,CD=AB=6,由折叠的性质得:AF=AD=10,EF=ED,∴BF===8,∴CF=BC﹣BF=10﹣8=2,设CE=x,则EF=ED=6﹣x,在Rt△CEF中,由勾股定理得:22+x2=(6﹣x)2,解得:x=,即CE的长为;(3)连接EG,如图3所示:∵点E是CD的中点,∴DE=CE,由折叠的性质得:AF=AD=10,∠AFE=∠D=90°,FE=DE,∴∠EFG=90°=∠C,在Rt△CEG和△FEG中,,∴Rt△CEG≌△FEG(HL),∴CG=FG,设CG=FG=y,则AG=AF+FG=10+y,BG=BC﹣CG=10﹣y,在Rt△ABG中,由勾股定理得:62+(10﹣y)2=(10+y)2,解得:y=,即CG的长为.13.如图,矩形ABCD中,AB=6cm,AD=8cm,点P从点A出发,以每秒一个单位的速度沿A→B→C的方向运动;同时点Q从点B出发,以每秒2个单位的速度沿B→C→D的方向运动,当其中一点到达终点后两点都停止运动.设两点运动的时间为t秒.(1)当t=7 时,两点停止运动;(2)设△BPQ的面积面积为S(平方单位)①求S与t之间的函数关系式;②求t为何值时,△BPQ面积最大,最大面积是多少?解:(1)∵四边形ABCD是矩形,∴AD=BC=8cm,AB=CD=6cm,∴BC+AD=14cm,∴t=14÷2=7,故答案为7.(2)①当0<t<4时,S=•(6﹣t)×2t=﹣t2+6t.当4≤t<6时,S=•(6﹣t)×8=﹣4t+24.当6<t≤7时,S=(t﹣6)•(2t﹣8)=t2﹣10t+24.②当0<t<4时,S=•(6﹣t)×2t=﹣t2+6t=﹣(t﹣3)2+9,∵﹣1<0,∴t=3时,△PBQ的面积最大,最小值为9.当4≤t<6时,S=•(6﹣t)×8=﹣4t+24,∵﹣4<0,∴t=4时,△PBQ的面积最大,最大值为8,当6<t≤7时,S=(t﹣6)•(2t﹣8)=t2﹣10t+24=(t﹣5)2﹣1,t=7时,△PBQ的面积最大,最大值为3,综上所述,t=3时,△PBQ的面积最大,最大值为9.14.综合实践:问题情境数学活动课上,老师和同学们在正方形中利用旋转变换探究线段之间的关系探究过程如下所示:如图1,在正方形ABCD中,点E为边BC的中点.将△DCE以点D为旋转中心,顺时针方向旋转,当点E的对应点E'落在边AB上时,连接CE'.“兴趣小组”发现的结论是:①AE'=C'E';“卓越小组”发现的结论是:②DE=CE',DE⊥CE'.解决问题(1)请你证明“兴趣小组”和“卓越小组”发现的结论;拓展探究证明完“兴趣小组”和“卓越小组”发现的结论后,“智慧小组”提出如下问题:如图2,连接CC',若正方形ABCD的边长为2,求出CC'的长度.(2)请你帮助智慧小组写出线段CC'的长度.(直接写出结论即可)(1)证明:①∵△DE'C'由△DEC旋转得到,∴DC'=DC,∠C'=∠DCE=90°.又∵四边形ABCD是正方形,∴DA=DC,∠A=90°,∴DA=DC',∵DE'=DE',∴Rt△DAE≌Rt△DC'E′(HL),∴AE'=C'E'.②∵点E为BC中点,C'E'=AE'=CE,∴点E'为AB的中点.∴BE′=CE,又∵DC=BC,∠DCE=∠CBE'=90°,∴△DCE≌△CBE'(SAS),∴DE=CE',∠CDE=∠E'CB,∵∠CDE+∠DEC=90°,∴∠E'CB+∠CED=90°,∴DE⊥CE'.(2)解:如图2中,作C′M⊥CD于M,交AB于N.∵AB∥CD,C′M⊥CD,∴C′M⊥AB,∴∠DMC′=∠C′NE′=∠DC′E′=90°,∴∠MDC′+∠DC′M=90°,∠DC′M+∠E′CN=90°,∴∠MDC′=∠E′C′N,∴△DMC′∽△C′NE′,∴===2,设NE′=x,则AM=AN=1+x,C′M=2x,C′N=(1+x),∵MN=AD=2,∴2x+(1+x)=2,解得x=,∴CM=2﹣(1+)=,MC=,∴CC′===.15.在△ABC中,AD平分∠BAC交BC于D,∠MDN的两边分别与AB,AC相交于M,N两点,且DM=DN.(1)如图甲,若∠C=90°,∠BAC=60°,AC=9,∠MDN=120°,ND∥AB.①写出∠MDA=90 °,AB的长是18 .②求四边形AMDN的周长.(2)如图乙,过D作DF⊥AC于F,先补全图乙再证明AM+AN=2AF.解:(1)①∵AD平分∠BAC,∴∠BAD=∠CAD=∠BAC=30°,∵ND∥AB,∴∠NDA=∠BAD=30°,∴∠MDA=∠MDN﹣∠NDA=120°﹣30°=90°,∵∠C=90°,∠BAC=60°,∴∠ABC=30°,∴AC=AB,∴AB=2AC=18,故答案为:90,18;②∵∠ABC=30°,ND∥AB,∴∠NDC=30°,又∵∠MDN=120°,∴∠MDB=30°,∴∠MAD=∠NAD=∠ADN=∠MBD=30°,∴BM=MD,DN=AN,∵DM=DN,∴BM=MD=DN=AN,在Rt△ADM中,设MD=x,则AM=2x,BM=MD=DN=AN=x,∵AB=18,∴3x=18,∴x=6,∴AM=12,MD=DN=AN=6,∴四边形AMDN的周长=AM+MD+DN+AN=12+6+6+6=30;(2)补全图如图乙所示:证明:过点D作DE⊥AB于E,如图丙所示:∵DE⊥AB,DF⊥AC,AD平分∠BAC,∴∠DEM=∠DFN=90°,DE=DF,在Rt△DEA和Rt△DFA中,,∴Rt△DEA≌Rt△DFA(HL),∴AE=AF,在Rt△DEM和Rt△DFN中,,∴Rt△DEM≌Rt△DFN(HL),∴EM=FN,∴AM+AN=AE+EM+AF﹣NF=2AF.。

2020中考数学知识梳理系统复习专题训练: 四边形压轴题练习(附答案)

2020中考数学知识梳理系统复习专题训练:  四边形压轴题练习(附答案)

中考数学知识梳理系统复习专题训练:四边形压轴题练习1.(1)如图1,在四边形ABCD中,AB=BC=CD=DA=5cm,BD=8cm.则AC=6cm;(2)在宽为8cm的长方形纸带上,用图1中的四边形设计如图2所示的图案.①如果用7个图1中的四边形设计图案,那么至少需要24cm长的纸带;②设图1中的四边形有x个,所需的纸带长为ycm,求y与x之间的函数表达式;③在长为40cm的纸带上,按照这种方法,最多能设计多少个图1中的四边形?解:(1)如图1中,设菱形的对角线交于点O.∵四边形ABCD是菱形,∴AC⊥BD,OD=OB=4cm,∴OA=OC===3(cm),∴AC=2OA=6cm,故答案为6.(2)①用7个图1中的四边形设计图案,6+6×3=24(cm),∴用7个图1中的四边形设计图案,那么至少需要24cm,故答案为24.②由题意y=6+3(x﹣1)=3x+3.③由题意y=40,40=3x+3,解答x=≈12,∴在长为40cm的纸带上,按照这种方法,最多能设计12个图1中的四边形.2.已知:矩形ABCD,AB=2,BC=5,动点P从点B开始向点C运动,动点P速度为每秒1个单位,以AP为对称轴,把△ABP折叠,所得△AB'P与矩形ABCD重叠部分面积为y,运动时间为t秒.(1)当运动到第几秒时点B'恰好落在AD上;(2)求y关于t的关系式,以及t的取值范围;(3)在第几秒时重叠部分面积是矩形ABCD面积的;(4)连接PD,以PD为对称轴,将△PCD作轴对称变换,得到△PC'D,当t为何值时,点P、B'、C'在同一直线上?解:(1)如图1,由折叠得:∠AB′P=∠B=90°,AB=AB′=2,∵四边形ABCD为矩形,∴∠BAB′=90°,∴四边形ABPB′为正方形,∴BP=AB=2,∵动点P速度为每秒1个单位,∴t=2,即当运动到第2秒时点B′恰好落在AD上;(2)分两种情况:①当0≤t≤2时,如图2,PB=t,由折叠得:S△AB′P =S△ABP,∴y=S△ABP=AB•PB=×2×t=t,②当2<t≤5时,如图3,由折叠得:∠APB=∠APE,PB=PB′=t,∵AD∥BC,∴∠DAP=∠APB,∴∠DAP=∠APE,∴A E=PE,设AE=x,则PE=x,B′E=t﹣x,由勾股定理得:22+(t﹣x)2=x2,x=,∴,综上所述:;(3)①y=t=×2×5,∴t=2.5(舍),②=×2×5,∴t1=1(舍),t2=4,综上所述:在第4秒时,重叠部分面积都是矩形ABCD面积的;(4)如图4,点P,B′,C′在同一直线上,由折叠得:∠APB=∠APB′,∠C′PD=∠CPD,∴∠APC′+∠C′PD=×180°=90°,∵∠P AB′+∠APB′=90°,∴∠P AB′=∠C′PD,∵∠AB′P=∠C′=90°,∴△AB′P∽△PC′D,∴,∴,解得:t1=1,t2=4,如图5所示,∴当t为1秒或4秒时,点P,B′,C′在同一直线上.3.如图,在平面直角坐标系中,正方形顶点A为x轴正半轴上一点,点B在第一象限,点B的坐标为(4,4),连接OB.动点P在射线AO上(点P不与点O、点A重合),点C 在线段BO的延长线上,连接PB、PC,PB=PC,设OP的长为x.(1)填空:线段OA的长=4,线段OB的长=4;(2)求BC的长,并用含x的代数式表示.解:(1)∵B(4,4),四边形OABD是正方形,∴OA=AB=DB=OD=4,∠OAB=90°,∴OB===4,故答案为4,4.(2)当点O在线段OA上时,作PH⊥OB于H.∵∠POH=45°,∠PHO=90°,∴∠POH=∠OPH=45°,∴OH=PH=OP=x,∴BH=OB﹣OH=4﹣x,∵PC=PB,PH⊥BC,∴CH=BH,∴BC=2BH=8﹣x.当点P在AO的延长线上时,同法可得BC=8+x.4.如图,在矩形纸片ABCD中,已知AB=,BC=,点E在边CD上移动,连接AE,将多边形ABCE沿AE折叠,得到多边形AB'C'E,点B、C的对应点分别为点B',C'.(1)连接AC.则AC=2,∠DAC=30°;(2)当B'C'恰好经过点D时,求线段CE的长;(3)在点E从点C移动到点D的过程中,求点C'移动的路径长.解:(1)如图1,连接AC,∵四边形ABCD是矩形,∴AD=BC=,CD=AB=,∠ADC=90°,在Rt△ADC中,根据勾股定理得,AC==2,tan∠DAC==,∴∠DAC=30°,故答案为:2,30(2)设CE=EC′=x,则DE=﹣x,∵∠ADB′+∠EDC′=90°,∠B′AD+∠ADB′=90°,∴∠B′AD=∠EDC′,∵∠B′=∠C′=90°,AB′=AB=,AD=,∴DB′==2,∴△ADB′∽△DEC′,∴,∴,∴x=2(﹣).∴CE=2(﹣);(3)如备用图中,点C的运动路径的长为的长,由(1)知,∠DAC=30°,AC=2,∵∠C′AD=∠DAC=30°,∴∠CAC′=60°,∴的长=5.如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点,(1)求证:AC2=AB•AD.(2)求证:CE∥AD;(3)若AD=4,AB=6,求AF的值.解:(1)∵AC平分∠BAD,∴∠CAD=∠CAB,∵∠ADC=∠ACB=90°,∴△ADC∽△ACB,∴,∴AC2=AD•AB;(2)在Rt△ABC中,∵E为AB的中点,∴CE=AE(直角三角形斜边的中线等于斜边的一半),∴∠ACE=∠CAE,∵AC平分∠BAD,∴∠CAD=∠CAE,∴∠CAD=∠ACE,∴CE∥AE;(3)由(1)知,AC2=AD•AB,∵AD=4,AB=6,∴AC2=4×6=24,∴AC=2,在Rt△ABC中,∵E为AB的中点,∴CE=AB=3,由(2)知,CE∥AD,∴△CFE∽△AFD,∴,∴,∴AF=.6.(1)如图1,在正方形ABCD中,M是BC边(不含端点B、C)上任意一点,P是BC 延长线上一点,N是∠DCP的平分线上一点,若∠AMN=90°,求证:△AMN为等腰三角形.下面给出此问题一种证明的思路,你可以按这一思路继续完成证明,也可以选择另外的方法证明此结论.证明:在AB边上截取AE=MC,连接ME,在正方形ABCD中,∠B=∠BCD=90°,AB=BC∴∠NMC=180°﹣∠AMN﹣∠AMB=180°﹣∠B﹣∠AMB=∠MAB.(下面请你连接AN,完成余下的证明过程)(2)若将(1)中的“正方形ABCD”改为“正三角形ABC”(如图2),N是∠ACP的平分线上一点,则当∠AMN=60°时,试探究△AMN是何种特殊三角形,并证明探究结论.(3)若将(1)中的“正方形ABCD”改为“正n边形ABCD…X,试猜想:当∠AMN的大小为多少时,(1)中的结论仍然成立?(1)证明:如图1,在AB边上截取AE=MC,连接ME,AN,在正方形ABCD中,∠B=∠BCD=90°,AB=BC,∴∠NMC=180°﹣∠AMN﹣∠AMB=180°﹣∠B﹣∠AMB=∠MAB,BE=AB﹣AE=BC﹣MC=BM,∴∠BEM=45°,∴∠AEM=135°,∵N是∠DCP平分线上一点,∴∠NCP=45°,∴∠MCN=135°,在△AEM与△MCN中,∠MAE=∠NMC,AE=MC,∠AEM=∠MCN,∴△AEM≌△MCN(ASA),∴AM=MN,∴△AMN为等腰三角形;(2)△AMN仍是等腰三角形,理由如下:如图2,在边AB上截取AE=MC,连接ME,AN,在正△ABC中,∠B=∠BCA=60°,AB=BC,∴∠NMC=180°﹣∠AMN﹣∠AMB=180°﹣∠B﹣∠AMB=∠MAE,BE=AB﹣AE=BC﹣MC=BM,∴∠BEM=60°,∴∠AEM=120°,∵N是∠ACP的平分线上一点,∴∠ACN=60°,∴∠MCN=120°,在△AEM与△MCN中,∠MAE=∠NMC,AE=MC,∠AEM=∠MCN,∴△AEM≌△MCN(ASA),∴AM=MN,∴△AMN为等腰三角形;(3)若将(1)中的“正方形ABCD”改为“正n边形ABCD…X,则当∠AMN=度时,(1)中的结论仍然成立,理由同(1),(2),参考图1,在正n边形的边AB上截取AE=MC,连接ME,AN,在正n边形ABCD…X中,∠B=∠BCD,AB=BC,当∠AMN=∠B=度时,∴∠NMC=180°﹣∠AMN﹣∠AMB=180°﹣∠B﹣∠AMB=∠MAE,BE=AB﹣AE=BC﹣MC=BM,∴∠BEM=∠BME,∠AEM=180°﹣∠BEM=度,∵N是∠ACP的平分线上一点,∴∠ACN=度,∴∠MCN=180°﹣=度,∴在△AEM与△MCN中,∠MAE=∠NMC,AE=MC,∠AEM=∠MCN,∴△AEM≌△MCN(ASA),∴AM=MN,∴△AMN为等腰三角形,∴当∠AMN=度时,(1)中的结论仍然成立.7.一个边长为60米的正六边形跑道,P、Q两人同时从A处开始沿相反方向都跑一圈后停止,P以4米/秒逆时针方向、Q以5米/秒顺时针方向,PQ的距离为d米,设跑步时间为x秒,令d2=y,(1)跑道全长为360米,经过40秒两人第一次相遇.(2)当P在BC上,Q在EF上时,求y关于x的函数解析式;并求相遇前当x为多少时,他们之间的距离最大.(3)直接写出P、Q在整个运动过程中距离最大时的x的值及最大的距离.解:(1)∵六边形ABCDEF是正六边形,∴AB=BC=CD=DE=EF=AF=60米,∠A=∠F=∠E=∠D=∠C=∠B=120°,∴跑道全长=6×60=360米,∴4x+5x=360,∴x=40s,∴经过40秒两人第一次相遇.故答案为:360,40;(2)如图,连接BF,过点Q作QH⊥BC于H,∵∠A=120°,AB=AF=60,∴∠AFB=∠ABF=30°,BF=60米,∴∠BFE=∠FBC=90°,且QH⊥BC,∴四边形FBHQ是矩形,∴QH=BF=60米,FQ=BH,∵AF+FQ=5x米,AB+BP=4x米,∴PH=x米,∴y=QP2=PH2+QH2,∴y=x2+10800,(15≤x≤24)∴当x=24时,d的最大值为12米,(3)∵六边形ABCDEF是正六边形,∴点A,点B,点C,点D,点E,点F在以AD中点为圆心,AB长为半径的圆上,∴当x=60s时,5×60=300米,则点Q与点B重合,4×60=240米,则点P与点E重合,∴PQ为直径,即PQ的最大值为120米.8.如图1,在矩形ABCD中AB=4,BC=8,点E、F是BC、AD上的点,且BE=DF.(1)求证:四边形AECF是平行四边形.(2)如果四边形AECF是菱形,求这个菱形的边长.(3)如图2,在(2)的条件下,取AB、CD的中点G、H,连接DG、BH,DG分别交AE、CF于点M、Q,BH分别交AE、CF于点N、P,求点P到BC的距离并直接写出四边形MNPQ的面积.(1)证明:∵四边形ABCD为矩形,BE=DF,∴AD∥BC,AD=BC,∴AF∥EC,AF=EC,∴四边形AECF为平行四边形;(2)解:设菱形AECF的边长为x,∵四边形AECF为菱形,AB=4,BC=8,∴AE=EC=x,BE=8﹣x,在Rt△ABE中,AE2=AB2+BE2即x2=42+(8﹣x)2解得:x=5,∴菱形AECF的边长为5;(3)解:连接GH交FC于点K,设点P到BC的距离为h,如图2所示:∵G、H分别为AB、CD的中点,∴KH是△CDF的中位线,CH=2,∴KQ∥DF,∴△PKH∽△PCB,∴=,∵四边形AECF是菱形,∴AE=AF=CF=5,∵DF=AD﹣AF=8﹣5=3,∴KH=1.5,∴==,解得h=,∴=,∵P到BC的距离,∴N到BC的距离为×=,∴四边形NECP的面积为×8×2﹣××8×2﹣×3×=,∵菱形AECF面积为CE×CD=5×4=20,∴四边形MNPQ面积为20﹣2×=.9.如图,矩形ABCD中,AB=8,BC=6,过对角线BD中点O的直线分别交AB,CD边于点E,F.(1)求证:四边形BEDF是平行四边形;(2)当四边形BEDF是菱形时,求EF的长.解:(1)证明:∵四边形ABCD是矩形,O是BD的中点,∴∠A=90°,AD=BC=4,AB∥DC,OB=OD,∴∠OBE=∠ODF,在△BOE和△DOF中,,∴△BOE≌△DOF(ASA),∴EO=FO,∴四边形BEDF是平行四边形;(2)∵四边形BEDF为菱形,∴BE=DE DB⊥EF,又∵AB=8,BC=6,设BE=DE=x,则AE=8﹣x,在Rt△ADE中,62+(8﹣x)2=x2∴,∴,∴∴,∴EF=2OE=.10.如图,在△ABC中,D是BC的中点,E是AD的中点,过点A作AF∥BC,AF与CE 的延长线相交于点F,连接BF.(1)求证:四边形AFBD是平行四边形;(2)①若四边形AFBD是矩形,则△ABC必须满足条件AB=AC;②若四边形AFBD是菱形,则△ABC必须满足条件∠BAC=90°.证明:(1)∵AF∥BC∴∠AFE=∠DCE,且∠AEF=∠DEC,AE=DE,∴△AFE≌△DCE(AAS)∵D是BC的中点,∴BD=CD∴AF=BD,AF∥BC∴四边形AFBD是平行四边形(2)①当AB=AC时,四边形AFBD是矩形理由:∵AB=AC,D是BC的中点∴AD⊥BC,且四边形AFBD是平行四边形∴四边形AFBD是矩形故答案为:AB=AC②当∠BAC=90°时,四边形AFBD是菱形理由:∵∠BAC=90°,D是BC的中点∴AD=BD,且四边形AFBD是平行四边形∴四边形AFBD是菱形故答案为:∠BAC=90°11.如图①,在矩形ABCD中,已知BC=8cm,点G为BC边上一点,满足BG=AB=6cm,动点E以1cm/s的速度沿线段BG从点B移动到点G,连接AE,作EF⊥AE,交线段CD 于点F.设点E移动的时间为t(s),CF的长度为y(cm),y与t的函数关系如图②所示.(1)图①中,CG=2cm,图②中,m=2;(2)点F能否为线段CD的中点?若可能,求出此时t的值,若不可能,请说明理由;(3)在图①中,连接AF,AG,设AG与EF交于点H,若AG平分△AEF的面积,求此时t的值.解:(1)∵BC=8cm,BG=AB=6cm,∴CG=2cm,∴∠AEB+∠FEC=90°,且∠AEB+∠BAE=90°,∴∠BAE=∠FEC,且∠B=∠C=90°,∴△AB E∽△ECF,∴,∵t=6,∴BE=6cm,CE=2cm,∴∴CF=2cm,∴m=2,故答案为:2,2;(2)若点F是CD中点,∴CF=DF=3cm,∵△ABE∽△ECF,∴,∴∴EC2﹣8EC+18=0∵△=64﹣72=﹣8<0,∴点F不可能是CD中点;(3)如图①,过点H作HM⊥BC于点M,∵∠C=90°,HM⊥BC,∴HM∥CD,∴△EHM∽△EFC,∴∵AG平分△AEF的面积,∴EH=FH,∴EM=MC,∵BE=t,EC=8﹣t,∴EM=CM=4﹣t,∴MG=CM﹣CG=2﹣,∵,∴∴CF=∵EM=MC,EH=FH,∴MH=CF=∵AB=BG=6,∴∠AGB=45°,且HM⊥BC,∴∠HGM=∠GHM=45°,∴HM=GM,∴=2﹣,∴t=2或t=12,且t≤6,∴t=2.12.如图,在△ABC中,AB=AC=5,BC=6,在△ABC中截出一个矩形DEFG,使得点D 在AB边上,EF在BC边上,点G在AC边上,设EF=x,矩形DEFG的面积为y.(1)求出y与x之间的函数关系式;(2)直接写出自变量x的取值范围0<x<6;(3)若DG=2DE,则矩形DEFG的面积为.解:(1)如图,过点A作AN⊥BC于点N,交DG于点M,∵AB=AC=5,BC=6,AN⊥BC,∴BN=CN=3,AN===4,∵DG∥BC,∴∠ADG=∠ABC,∠AGD=∠ACB,∴△ADG∽△ABC,∴=,即=,∴MN=4﹣x.∴y=EF•MN=x(4﹣x)=﹣x2+4x,即y=﹣x2+4x:(2)0<x<6;故答案为:0<x<6;(3)若DG=2DE,则EF=2MN,∴x=2(4﹣x),解得:x=,当x=时,y=﹣×()2+4×=;故答案为:.13.如图,BD是平行四边形ABCD的对角线,DE⊥AB于点E,过点E的直线交BC于点G,且BG=CG.(1)求证:GD=EG.(2)若BD⊥EG垂足为O,BO=2,DO=4,画出图形并求出四边形ABCD的面积.(3)在(2)的条件下,以O为旋转中心顺时针旋转△GDO,得到△G′D'O,点G′落在BC上时,请直接写出G′E的长.证明:(1)如图1,延长EG交DC的延长线于点H,∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,AB=CD,AB∥CD,∵AB∥CD,∴∠H=GEB,且BG=CG,∠BGE=∠CGH,∴△CGH≌△BGE(AAS)∴GE=GH,∵DE⊥AB,DC∥AB,∴DC⊥DE,且GE=GH,∴DG=EG=GH;(2)如图1:∵DB ⊥EG ,∴∠DOE =∠DEB =90°,且∠EDB =∠EDO ,∴△DEO ∽△DBO , ∴∴DE ×DE =4×(2+4)=24,∴DE =2, ∴EO ===2, ∵AB ∥CD , ∴,∴HO =2EO =4, ∴EH =6,且EG =GH , ∴EG =3,GO =EG ﹣EO =, ∴GB ===,∴BC =2=AD , ∴AD =DE ,∴点E 与点A 重合,如图2:∵S 四边形ABCD =2S △ABD ,∴S 四边形ABCD =2××BD ×AO =6×2=12;(3)如图3,过点O 作OF ⊥BC ,∵旋转△GDO,得到△G′D'O,∴OG=OG',且OF⊥BC,∴GF=G'F,∵OF∥AB,∴==,∴GF=BG=,∴GG'=2GF=,∴BG'=BG﹣GG'=,∵AB2=AO2+BO2=12,∵EG'=AG'==,=.14.如图1,在矩形ABCD中,P是对角线AC上的动点,过点P的直线分别与DC、AB交于点E.F(不与矩形的顶点重合).(1)当AF=CE,BE=BF,∠BEF=2∠BAC时①求证:PE=PF;②若BC=2,求AB的长(2)若AD=4,CD=6,则DP+PE是否存在最小值?如果存在,利用图2画出图形,确定点P所在的位置,并求此最小值:如果不存在,说明理由.证明:(1)①∵四边形ABCD是矩形,∴AB∥CD,∴∠P AF=∠PCE,∠PF A=∠PEC,且AF=CE,∴△AFP≌△CEP(ASA)∴PE=PF;②如图1,连接BP,∵BE=BF,PE=PF,∴BP⊥EF,∠EBP=∠FBP,∠BEF=∠BFE,∴∠BPE=90°,∵四边形ABCD是矩形,∴∠BCD=90°,∵∠BEF=2∠BAC,∠BEF=∠BFE,∠BFE=∠BAC+∠APF,∴∠APF=∠BAC,∴AF=PF,且AF=EC,PF=PE,∴PE=EC,且BE=BE,∴Rt△BCE≌Rt△BPE(HL),∴BC=BP=2,∵△AFP≌△CEP,∴AP=PC,且∠ABC=90°,∴AC=2PB=4,∴AB===6;(2)存在最小值,如图2,过点D作关于直线AC的对称点D',过点D'作CD的垂线,垂足为E,交AC于点P,∵点D,点D'关于AC对称,∴DF=D'F,DD'⊥AC,∴DP=D'P,∴DP+PE=D'P+PE,∴D'E⊥CD时,DP+PE有最小值为D'E,∵AD=4,CD=6,∴AC===2,=×AD×CD=×DF×AC,∵S△ADC∴DF=,∴DD'=,∵∠CDF=∠D'DE,∠DED'=∠DFC=90°,∴△DFC∽△DED',∴,∴DE==,∴D'E===.∴DP+PE最小值为.15.如图,长方形AOCB的顶点A(m,n)和C(p,q)在坐标轴上,已知和都是方程x+2y=4的整数解,点B在第一象限内.(1)求点B的坐标;(2)若点P从点A出发沿y轴负半轴方向以1个单位每秒的速度运动,同时点Q从点C出发,沿x轴负半轴方向以2个单位每秒的速度运动,问运动到多少秒时,四边形BPOQ 面积为长方形ABCO面积的一半;(3)如图2,将线段AC沿x轴正方向平移得到线段BD,点E(a,b)为线段BD上任意一点,试问a+2b的值是否变化?若变化,求其范围;若不变化,求其值.(直接写出结论)解:(1)∵A(m,n),C(p,q),∴m=0,n>0,p>0,q=0,∵方程x+2y=4的非负整数解为,或,或,∴A(0,2),C(4,0),∵四边形AOCB是矩形,∴BC=OA=2,AB=OC=4,∴点B的坐标为(4,2);(2)如图1所示:由题意得:AP=t,CQ=2t,∴四边形BPOQ的面积=矩形AOCB的面积﹣△ABP的面积﹣△BCQ的面积=4×2﹣×4×t﹣×2t×2=×4×2,解得:t=1,即运动到1秒时,四边形BPOQ面积为长方形ABCO面积的一半;(3)a+2b的值不变化,值为8,理由如下:作EF⊥CD于F,如图2所示:则EF∥OA∥BC,由平移的性质得:AC∥BD,AC=BD,∴四边形ABDC是平行四边形,∴CD=AB=4,∴OD=OC+CD=8,∵点E的坐标为(a,b),∴OF=a,EF=b,∴DF=8﹣a,∵EF∥BC,∴△DEF∽△DBC,∴=,即=,整理得:a+2b=8.。

2020年中考数学专题四边形精选试题及答案详解(28页)

2020年中考数学专题四边形精选试题及答案详解(28页)

2020年中考数学专题四边形精选试题满分:100分时间:100分钟一.选择题(每小题3分,共30分)1.如图,在平行四边形ABCD中,BC=8cm,CD=6cm,∠D=40°,BE平分∠ABC,下列结论错误的是()A.AE=6cm B.ED=2cm C.∠BED=150°D.∠C=140°2.在菱形ABCD中,AC是对角线,CD=CE,连结DE.AC=16,CD=10,则D E的长为()A.B.C.或D.3.如图,菱形ABCD的对角线AC,BD相交于点O,E是AD的中点,连结OE.若OE=3,则菱形ABCD的周长是()A.6B.12C.18D.244.在平行四边形ABCD中,下列结论一定成立的是()A.AC⊥BD B.∠A+∠B=180°C.AB=AD D.∠B=∠C 5.已知菱形ABCD的对角线相交于点O,若AC=8,AB=5,则菱形的高为()A.3B.C.4D.6.如图,E是平行四边形内任一点,若S平行四边形ABCD=10,则图中阴影部分的面积是()A.3B.4C.5D.67.如图,菱形ABCD中,∠A=60°,边AB=8,E为边DA的中点,P为边CD上的一点,连接PE、PB,当PE=EB时,线段PE的长为()A.4B.8C.4D.48.如图,已知直角△ABC中,∠B=90°,AB=8,BC=6,把斜边AC分成n 段,以每段为对角线作小长方形,则所有这些小长方形的周长的和是()A.14B.28C.D.9.如图,在菱形ABCD中,DE⊥AB,AD=5,BD=4,则DE的值是()A.3B.C.4D.10.如图,正方形ABCD中,点E是AD边的中点,BD,CE交于点H,BE、AH交于点G,则下列结论:①∠ABE=∠DCE;②AG⊥BE;③S△BHE=S△;④∠AHB=∠EHD.其中正确的是()CHDA.①③B.①②③④C.①②③D.①③④二.填空题(每小题3分,共30分)11.如图,矩形OABC的顶点A、C分别在坐标轴上,B(8,7),D(5,0),点P是边AB上的一点,连接OP,DP,当△ODP为等腰三角形时,点BP 的长度为.12.如图,四边形ABCD中,∠B+∠ADC=150°,∠1,∠2分别是∠BCD和∠BAD的邻补角,则∠1+∠2=.13.如图,在正方形ABCD中,AB=6,点E、F分别在CD、AD上,CE=DF,BE,CF相交于G.若图中阴影部分的面积与正方形ABCD的面积之比为2:3,则△BCG的周长为.14.一个正多边形的某个外角度数是30°,那么这个正多边形有条边,每个内角度数为.15.如图,正方形ABCD的边长为2,E为射线CD上一动点(不与C重合),以CE为边向正方形ABCD外作正方形CEFG,连接DG,直线BE、DG相交于点P,连接AP,则线段AP长度的取值范围是.16.如图,用灰白两色正方形瓷砖铺设地面,第1个图案用了4块灰色的瓷砖,第2个图案用了6块灰色的瓷砖,第3个图案用了8块灰色的瓷砖,…,第n个图案中灰色瓷砖块数为.17.如图,在Rt△ABC中,∠BAC=90°,∠B=60°,AB=2,点E为BC上任意一点(不与点B,点C重合),连接EA,以EA,EC为邻边作平行四边形EADC,连接DE,则DE的最小值为.18.如图,正方形ABCD的面积为256,点E在AD上,点F在AB的延长线上,EC⊥FC,△CEF的面积为200,则BF的长为.19.如图,正方形ABCD中,E、F分别在AB、AD上(AE<BE),DE⊥CF于G,M在CG上,且MG=DG,连BM,N是BM的中点,连结CN,若CN =8,EG=13,则CF=.20.如图,在菱形ABCD中,AB=2,∠DAB=60°,对角线AC,BD相交于点O,过点C作CE∥BD交AB的延长线于点E,连接OE,则OE长为.三.解答题(每题8分,共40分)21.如图,在平行四边形ABCD中,点E在边AD上,点F在边CB的延长线上,联结CE、EF,CE2=DE•CF.(1)求证:∠D=∠CEF;(2)联结AC,交EF于点G,如果AC平分∠ECF,求证:AC•AE=CB•CG.22.如图,在梯形ABCD中,AD∥BC,∠C=90°,AD=2,BC=5,DC=3,点E在边BC上,tan∠AEC=3,点M是射线DC上一个动点(不与点D、C 重合),联结BM交射线AE于点N,设DM=x,AN=y.(1)求BE的长;(2)当动点M在线段DC上时,试求y与x之间的函数解析式,并写出函数的定义域;(3)当动点M运动时,直线BM与直线AE的夹角等于45°,请直接写出这时线段DM的长.23.在△ABC中,AB=AC,AM是△ABC的外角∠CAE的平分线.(1)如图1,求证:AM∥BC;(2)如图2,若D是BC中点,DN平分∠ADC交AM于点N,DQ平分∠ADB 交AM的反向延长线于Q,判断△QDN的形状并说明理由.(3)如图3,在(2)的条件下,若∠BAC=90°将∠QDN绕点D旋转一定角度,DN交边AC于F,DQ交边AB于H,当S△ABC=14时,则四边形AHDF 的面积为.24.如图,BD是平行四边形ABCD的对角线,DE⊥AB于点E,过点E的直线交BC于点G,且BG=CG.(1)求证:GD=EG.(2)若BD⊥EG垂足为O,BO=2,DO=4,画出图形并求出四边形ABCD 的面积.(3)在(2)的条件下,以O为旋转中心顺时针旋转△GDO,得到△G′D'O,点G′落在BC上时,请直接写出G′E的长.25.如图,在直角坐标系中,长方形ABCD(每个内角都是90°)的顶点的坐标分别是A(0,m),B(n,0),(m>n>0),点E在AD上,AE=AB,点F 在y轴上,OF=OB,BF的延长线与DA的延长线交于点M,EF与AB交于点N.(1)试求点E的坐标(用含m,n的式子表示);(2)求证:AM=AN;(3)若AB=CD=12cm,BC=20cm,动点P从B出发,以2cm/s的速度沿BC向C运动的同时,动点Q从C出发,以vcm/s的速度沿CD向D运动,是否存在这样的v值,使得△ABP与△PQC全等?若存在,请求出v值;若不存在,请说明理由.参考答案一.选择题1.解:∵四边形ABCD是平行四边形,∠D=50°,∴AD∥BC,AD=BC=8cm,AB=CD=6cm,∠ABC=∠D=40°,∴∠C=180°﹣∠D=140°,故D正确;∵BE平分∠ABC,∴∠ABE=∠EBC=∠ABC=20°,∴∠AEB=∠EBC=20°,∴∠BED=180°﹣∠AEB=160°,故C错误;∴∠AEB=∠ABE,∴AE=AB=6cm,故A正确;A D=BC=8cm,∴ED=AD﹣AE=2cm,故B正确.故选:C.2.解:连接BD交AC于K.∵四边形ABCD是菱形,∴AC⊥BD,AK=CK=8,在Rt△AKD中,DK===6,∵CD=CE,∴EK=CE﹣CK=10﹣8=2,在Rt△DKE中,DE==2.故选:A.3.解:∵四边形ABCD为菱形,∴AC⊥BD,AB=BC=CD=DA,∴△AOD为直角三角形.∵OE=3,且点E为线段AD的中点,∴AD=2OE=6.C菱形ABCD=4AD=4×6=24.故选:D.4.解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∠A=∠C,∠B=∠D,AB∥CD,AD∥BC,AC与BD 互相平分,∴∠A+∠B=180°,故选:B.5.解:∵四边形ABCD是菱形,AC=8,AB=5,∴AC⊥BD,OA=AC=4,OB===3,∴BD=2OB=6,∵S菱形ABCD=AC•BD=BC•AE,∴×6×8=5×AE,∴AE=.故选:B.6.解:设两个阴影部分三角形的底为AD,CB,高分别为h1,h2,则h1+h2为平行四边形的高,∴S△EAD+S△ECB=AD•h1+CB•h2=AD(h1+h2)=S四边形ABCD=5.故选:C.7.解:∵四边形ABCD是菱形,∴AB=AD=8,且∠A=60°,∴△ABD是等边三角形,且点E是AD的中点,∴BE⊥AD,且∠A=60°,∴AE=4,BE=AE=4,∴PE=BE=4,故选:D.8.解:∵∠B=90°,AB=8,BC=6,且斜边AC平均分成n段,∴小矩形的长为=,宽为=,∴一个小矩形的周长为:2(+)=,∴这些小矩形的面积和是n•=28.故选:B.9.解:设AE=x,则BE=AB﹣BE=5﹣x,∵DE⊥AB,∴AD2﹣AE2=DB2﹣BE2,即:52﹣x2=42﹣(5﹣x)2,解得:x=,∴DE==,故选:B.10.解:∵四边形ABCD是正方形,E是AD边上的中点,∴AE=DE,AB=CD,∠BAD=∠CDA=90°,∴△BAE≌△CDE(SAS),∴∠ABE=∠DCE,故①正确;∵四边形ABCD是正方形,∴AD=DC,∠ADB=∠CDB=45°,DH=DH,∴△ADH≌△CDH(SAS),∴∠HAD=∠HCD,∵∠ABE=∠DCE∴∠ABE=∠HAD,∵∠BAD=∠BAH+∠DAH=90°,∴∠ABE+∠BAH=90°,∴∠AGB=180°﹣90°=90°,∴AG⊥BE,故②正确;∵AD∥BC,∴S△BDE=S△CDE,∴S△BDE﹣S△DEH=S△CDE﹣S△DEH,即;S△BHE=S△CHD,故③正确;∵△ADH≌△CDH,∴∠AHD=∠CHD,∴∠AHB=∠CHB,∵∠BHC=∠DHE,∴∠AHB=∠EHD,故④正确;故选:B.二.填空题(共10小题)11.解:∵四边形OABC是矩形,B(8,7),∴OA=BC=8,OC=AB=7,∵D(5,0),∴OD=5,∵点P是边AB的一点,∴OD=DP=5,∵AD=3,∴P A==4,∴PB=3故答案为:3.12.解:∵∠B+∠ADC+∠DAB+∠DCB=360°∠DAB+∠DCB+∠1+∠2=360°∴∠1+∠2=∠B+∠ADC=150°故答案为150°13.解:∵四边形ABCD是正方形,∴∠BCE=∠D=90°,BC=CD,∵阴影部分的面积与正方形ABCD的面积之比为2:3,正方形ABCD的面积=62=36,∴阴影部分的面积为×36=24,∴空白部分的面积为36﹣24=12,在△BCE和△CDF中,∴△BCE≌△CDF(SAS),∴∠CBE=∠DCF,△BCG的面积与四边形DEGF的面积相等,均为×12=6,∵∠DCF+∠BCG=90°,∴∠CBG+∠BCG=90°,即∠BGC=90°,设BG=a,CG=b,则ab=6,又∵a2+b2=62,∴a2+2ab+b2=36+24=60,即(a+b)2=60,∴a+b=2,即BG+CG=2,∴△BCG的周长=6+2,故答案为:6+2.14.解:这个正多边形的边数:360°÷30°=12,每个内角度数为:180°﹣30°=150°.故答案为:12;150°15.解:∵四边形ABCD和四边形CEFG为正方形,∴CB=CD,CE=CG,∠BCD=∠ECG=90°,在△BCE和△DCG中,∴△BCE≌△DCG(SAS),∴∠CBE=∠CDG,而∠BEC=∠DEP,∴∠DPE=∠BCE=90°,连接BD,如图,点P在以BD为直径的圆上,即点P在正方形ABCD的外接圆上,∴AP为此外接圆的弦,∵BD=AB=2,∴0<AP<2,故答案为:0<AP<2.16.解:n=1时,黑瓷砖的块数为:4;n=2时,黑瓷砖的块数为:6;n=3时,黑瓷砖的块数为:8;…;当n=n时,黑瓷砖的块数为:2n+2.故答案为2n+2.17.解:∵∠BAC=90°,∠B=60°,∴∠ACB=30°,∴BC=2AB=4,AC=AB=2,∵四边形EADC是平行四边形,∴EO=DO,CO=AO=,∵DE最短也就是EO最短,∴过O作BC的垂线OF,∵∠ACB=∠FCO,∠CFO=∠CAB=90°,∴△CAB∽△CFO,∴=,即=,∴FO=,∴则DE的最小值为2FO=,故答案为:.18.解:∵∠ECF=90°,∠DCB=90°,∴∠BCF=∠DCE,∵在△CDE与△CBF中,∴△CDE≌△CBF,∴CE=CF.因为Rt△CEF的面积是200,即•CE•CF=200,故CF=20.正方形ABCD的面积=BC2=256,得BC=16.根据勾股定理得:BF==12.故答案为:12.19.解:如图,过点B作BH∥FC,连接GN并延长交BH于点H,连接CH,∵BH∥FC,∴∠BHN=∠MGN,∠HBC=∠GCB,∵N是BM的中点,∴BN=MN,∵∠BHN=∠MGN,BN=MN,∠BNH=∠GNM,∴△BH N≌△MGN(AAS)∴BH=GM,HN=GN,∵DG=GM,∴BH=GD,∵四边形ABCD是正方形,∴BC=CD,∠BCD=90°,∴∠DCG+∠BCG=90°,∵DE⊥CF,∴∠DCG+∠CDG=90°,∴∠BCG=∠CDG=∠HBC,且BC=CD,DG=BH,∴△DGC≌△BHC(SAS)∴CH=CG,∠BCH=∠DCG,∴∠BCH+∠BCG=∠DCG+∠BCG=90°,∴∠GCH=90°,且C G=CH,HN=NG,∴CN=NH=NG=8,CN⊥HF,∴CG===16,∵∠A=∠FGD=90°,∴∠AED+∠ADE=90°,∠ADE+∠DFG=90°,∴∠DFG=∠AED,且AD=CD,∠A=∠ADC=90°,∴△ADE≌△DCF(AAS)∴CF=DE,∠ADE=∠DCF,∵∠ADE=∠DCF,∠DGF=∠DGC,∴△DGF∽△CGD,∴∴DG2=FG•GC∴(DE﹣EG)2=(FC﹣EG)2=(16+FG﹣13)2=16•FG ∴FG=9(不合题意舍去),FG=1,∴FC=FG+GC=17,故答案为:17.20.解:∵四边形ABCD是菱形,∠DAB=60°,∴∠OAB=30°,∠AOB=90°.OB=OD,AO=CO,∵AB=2,∴OB=1,AO=OC=,∴DB=2,∵CE∥DB,∴四边形DBEC是平行四边形.∴CE=DB=2,∠ACE=90°,∴OE===,故答案为:.三.解答题(共5小题)21.(1)证明:∵CE2=DE•CF,即=∵四边形ABCD为平行四边形,∴AD∥BC,∴∠DEC=∠ECF,∴△CDE∽△CEF,∴∠D=∠CEF.(2)如图所示:∵AC平分∠ECF,∴∠ECA=∠BCA,∵∠D=∠CEF,∠D=∠B,∴∠CEF=∠B,∴△CGE∽△CAB,∴=,∵AD∥BC,∴∠DAC=∠BCA,∵∠ECA=∠DAC,∴AE=CE,∴=,即AC•AE=CB•CG.22.解:(1)如图1中,作AH⊥BC于H,∵AD∥BC,∠C=90°,∴∠AHC=∠C=∠D=90°,∴四边形AHCD是矩形,∴AD=CH=2,AH=CD=3,∵tan∠AEC=3,∴=3,∴EH=1,CE=1+2=3,∴BE=BC﹣CE=5﹣3=2.(2)延长AD交BM的延长线于G.∵AG∥BC,∴=,∴=,∴DG=,AG=2+=,∵=,∴=,∴y=(0<x<3).(3)①如图3﹣1中,当点M在线段DC上时,∠BNE=∠ABC=45°,∵△EBN∽△EAB,∴EB2=EN•AE,∴,解得x=.②如图3﹣2中,当点M在线段DC的延长线上时,∠ANB=∠ABE=45°,∵△BNA∽△EBA,∴AB2=AE•AN,∴(3)2=•[+解得x=13,综上所述DM的长为或13.23.解:(1)∵AB=AC,∴∠B=∠C,∵AM平分∠EAC,∴∠EAM=∠MAC=∠EAC,∵∠EAC=∠B+∠C,∴∠B=∠EAC,∴∠EAM=∠B,∴AM∥BC;(2)△ADN是等腰直角三角形,理由:∵D是BC的中点,AB=AC,∴AD⊥BC,∴∠ADB=∠ADC=90°,∵DN平分∠ADC,DQ平分∠ADB,∴∠ADN=∠NDC=45°,∠ADQ=∠BDQ=45°,∴∠QDN=90°,∵AM∥BC,∴∠AND=∠NDC=45°,∠AQD=∠BQD=45°,∴∠AND=∠AQD,∴DQ=DN,∴△ADN是等腰直角三角形;(3)由(2)知,∠QDN=90°,∵∠BAC=90°,∴∠QDN+∠BAC=180°,∴∠AHD+∠AFD=180°,∵∠AHD+∠BHD=180°,∴∠BHD=∠AFD,由(2)知,∠ADB=∠QDN=90°,∴∠BDH=∠ADF,在Rt△ABC中,AB=AC,∠ADC=90°,∴BD=CD=AD,∴△BDH≌△ADF(AAS),∴S△BDH=S△ADF,∴S四边形AHDF=S△ADF+S△ADH=S△BDH+S△ADH=S△ABD=S△ABC=7,故答案为:7.24.证明:(1)如图1,延长EG交DC的延长线于点H,∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,AB=CD,AB∥CD,∵AB∥CD,∴∠H=GEB,且BG=CG,∠BGE=∠CGH,∴△CGH≌△BGE(AAS)∴GE=GH,∵DE⊥AB,DC∥AB,∴DC⊥DE,且GE=GH,∴DG=EG=GH;(2)如图1:∵DB⊥EG,∴∠DOE=∠DEB=90°,且∠EDB=∠EDO,∴△DEO∽△DBO,∴∴DE×DE=4×(2+4)=24,∴DE=2,∴EO===2,∵AB∥CD,∴,∴HO=2EO=4,∴EH=6,且EG=GH,∴EG=3,GO=EG﹣EO=,∴GB===,∴BC=2=AD,∴AD=DE,∴点E与点A重合,如图2:∵S四边形ABCD=2S△ABD,∴S四边形ABCD=2××BD×AO=6×2=12;(3)如图3,过点O作OF⊥BC,∵旋转△GDO,得到△G′D'O,∴OG=OG',且OF⊥BC,∴GF=G'F,∵OF∥AB,∴==,∴GF=BG=,∴GG'=2GF=,∴BG'=BG﹣GG'=,∵AB2=AO2+BO2=12,∵EG'=AG'==,=.25.解:(1)过E作EG⊥AO于G.∵∠EGA=∠EAB=∠AOB=90°,∴∠EAG+∠AEG=90°,∠EAG+∠BAO=90°,∴∠BAO=∠AEG,∵AE=AB,∴△EGA≌△AOB(AAS),∴EG=OA=m,AG=OB=n∴E(m,m+n).(2)∵OB=OF,∠BOF=90°,∴∠OFB=∠OBF=45°,∵△EGA≌△AOB,∴AG=OB=OF,∴OA=FG=EG,∴∠GFE=45°,∴∠EFB=90°,∴∠NAE=∠NFB=90°,∵∠ANE=∠FNB,∴∠AEN=∠ABM,∵∠EAN=∠BAM=90°,EA=BA,∴△EAN≌△BAM(ASA),∴AN=AM.(3)如图,∵△ABP与△PCQ全等,∠ABP=∠PCQ=90°∴有两种情形:①当AB=CD,PB=CP时,t==5(s),∴v=(cm/s),②当AB=PC,CQ=PB时,PB=20﹣12=8,∴t==4(s),∴v===2(cm/s).。

2020年中考数学专题《四边形》复习综合训练及答案解析

2020年中考数学专题《四边形》复习综合训练及答案解析

2020年中考数学专题《四边形》复习综合训练及答案解析2020年中考数学总复习《四边形》专题一、选择题1.下列命题中,不正确的是().A. 平行四边形的对角线互相平分B. 矩形的对角线互相垂直且平分C. 菱形的对角线互相垂直且平分D. 正方形的对角线相等且互相垂直平分2.从一个七边形的某个顶点出发,分别连接这个点与其余各顶点,可以把一个七边形分割成( )个三角形.A. 6B. 5C. 8D. 73.如图,在?ABCD中,M是BC延长线上的一点,若∠A=135°,则∠MCD的度数是()A. 45°B. 55°C. 65°D. 75°4.一个多边形截去一个角后,形成新多边形的内角和为2520°,则原多边形边数为()A. 13B. 15C. 13或15D. 15或16或175.如图,若要使平行四边形ABCD成为菱形.则需要添加的条件是()A. AB=CDB. AD=BCC. AB=BCD. AC=BD6.如下图,平行四边形ABCD的周长为40,△BOC的周长比△AOB 的周长多10,则AB长为()A. 20B. 15C. 10D. 57.如图,在□ABCD中,EF//AB,GH//AD,EF与GH交于点O,则该图中的平行四边形的个数共有()A. 7 个B. 8个C. 9个D. 11个8.如图,在七边形ABCDEFG中,AB,ED的延长线相交于O点.若图中∠1,∠2,∠3,∠4的角度和为220°,则∠BOD的度数为( )A. 40°B. 45°C. 50°D. 60°9.若一个菱形的两条对角线长分别是5cm和10cm,则与该菱形面积相等的正方形的边长是()A. 6cmB. 5cmC. cmD. 7.5cm10.能够铺满地面的正多边形组合是()A. 正三角形和正五边形B. 正方形和正六边形C. 正方形和正五边形D. 正五边形和正十边形二、填空题11.一个多边形对角线的数目是边数的2倍,这样的多边形的边数是________ .12.如图,BD是□ABCD的对角线,点E、F在BD上,要使四边形AECF 是平行四边形,还需增加的一个条件是________13.已知平行四边形ABCD中,AB=5,AE平分∠DAB交BC所在直线于点E,CE=2,则AD=________.14.如图:矩形ABCD的对角线相交于点O,AB=4cm,∠AOB=60°,则AD=________ cm.15.八年级(3班)同学要在广场上布置一个矩形花坛,计划用鲜花摆成两条对角线.如果一条对角线用了20盆红花,还需要从花房运来________盆红花.如果一条对角线用了25盆红花,还需要从花房运来________盆红花.16.在正三角形、正方形、正五边形、正六边形中不能镶嵌成一个平面图案的是________ .17.已知菱形的周长为40cm,两条对角线之比3:4,则菱形面积为________cm2.18.梯形ABCD的底AB的长度等于底CD的2倍,也等于腰AD 的2倍,设对角线AC的长为3,腰BC的长为4,则梯形ABCD的高为________.19.如图,在?ABCD中,AD=4,AB=8,∠A=30°,以点A为圆心,AD 的长为半径画弧交AB于点E,连接CE,则阴影部分的面积是________ .(结果保留π)20.如图所示,在平行四边形ABCD中,分别以AB、AD为边作等边△ABE 和等边△ADF,分别连接CE、CF和EF,则下列结论中一定成立的是________ (把所有正确结论的序号都填在横线上).①△CDF≌△EBC;②△CEF是等边三角形;③∠CDF=∠EAF;④EF ⊥CD.三、解答题21.如图,已知?ABCD中,AE平分∠BAD,CF平分∠BCD,分别交BC、AD于E、F.求证:AF=EC.22.如图,四边形ABCD中,AB∥DC,∠B=90°,F为DC上一点,且AB=FC,E为AD上一点,EC交AF于点G,EA=EG.求证:ED=EC.23.如图,平行四边形ABCD的对角线AC和BD相交于点O ,E ,F分别为OB ,OD的中点,过点O任作一直线分别交AB ,CD 于点G ,H.试说明:GF∥EH.24.如图,BD是△ABC的角平分线,点E,F分别在BC,AB上,且DE ∥AB,EF∥AC.(1)求证:BE=AF;(2)若∠ABC=60°,BD=12,求DE的长及四边形ADEF的面积.25.如图,正方形ABCD的边长为8cm,E、F、G分别是AB、CD、DA 上的动点,且AE=BF=CG=DH.(1)求证:四边形EFGH是正方形;(2)判断直线EG是否经过某一定点,说明理由;(3)求四边形EFGH面积的最小值.26.如图,四边形ABCD中,AE平分∠BAD,DE平分∠ADC.(1)如果∠B+∠C=120°,则∠AED的度数=________.(直接写出结果)(2)根据(1)的结论,猜想∠B+∠C与∠AED之间的关系,并证明.27.如图1,△ABD和△BDC都是边长为1的等边三角形。

2020年九年级中考数学复习专题训练:《四边形综合 》(含答案)

2020年九年级中考数学复习专题训练:《四边形综合 》(含答案)

中考数学复习专题训练:《四边形综合》1.问题发现:(1)如图①,在△ABC中,∠ACB=90°,AC=b,BC=a,点E是AC的中点,点F在BC 边上,将△ECF沿着EF折叠后得到△EPF,连接BP并使得BP最小,请画出符合题意的点P;问题探究:(2)如图②,已知在△ABC和△EBD中,∠ACB=∠BDE=90°,AC=BC=4,BD=DE =2,连接CE,点F是CE的中点,连接AF,求AF的最大值.问题解决:(3)西安大明宫遗址公园是世界文化遗产,全国重点文物保护单位,为了丰富同学们的课外学习生活,培养同学们的探究实践能力,周末光明中学的张老师在家委会的协助下,带领全班同学去大明宫开展研学活动.在公园开设的一处沙地考古模拟场地上,同学们参加了一次模拟考古游戏.张老师为同学们现场设计了一个四边形ABCD的活动区域,如图③所示,其中BD为一条工作人员通道,同学们的入口设在点A处,AD⊥BD,AD∥BC,∠DCB=60°,AB=2米.在上述条件下,小明想把宝物藏在距入口A尽可能远的C 处让小鹏去找,请问小明的想法是否可以实现?如果可以,请求出AC的最大值及此时△BCD区域的面积,如果不能,请说明理由.2.已知:如图,在菱形ABCD中,AC=2,∠B=60°.点E为边BC上的一个动点(与点B、C不重合),∠EAF=60°,AF与边CD相交于点F,联结EF交对角线AC于点G.设CE =x,EG=y.(1)求证:△AEF是等边三角形;(2)求y关于x的函数解析式,并写出x的取值范围;(3)点O是线段AC的中点,联结EO,当EG=EO时,求x的值.3.已知在正方形ABCD和正方形CEFG中,直线BG,DE交于点H.(1)如图1,当B,C,E共线时,求证:BH⊥DE.(2)如图2,把正方形CEFG绕C点顺时针旋转α度(0<α<90),M,N分别为BG,DE的中点,探究HM,HN,CM之间的数量关系,并证明你的结论.(3)如图3,∠PDG=45°,DH⊥PG于H,PH=2,HG=4.直接写出DH的长.4.[问题引入](1)如图1,在正方形ABCD中,E、F分别是BC、CD两边上的点,且AE⊥BF,垂足为点P.求证:AE=BF;[类比探究](2)如图2,把(1)中正方形ABCD改为矩形ABCD,且AD=2AB,其余条件不变,请你推断AE、BF满足怎样的数量关系,并说明你的理由;[实践应用](3)如图3,Rt△ABC中,∠BAC=30°,把△ABC沿斜边AC对折得到Rt△ADC,E、F分别为CD、AD边上的点,连接AE、BF,恰好使得AE⊥BF,垂足为点P.请求出的值.5.如图,已知正方形ABCD中,BC=4,AC、BD相交于点O,过点A作射线AM⊥AC,点E是射线AM上一点,联结OE交AB边于点F.以OE为一边,作正方形OEGH,且点A在正方形OEGH的内部,联结DH.(1)求证:△HDO≌△EAO;(2)设BF=x,正方形OEGH的边长为y,求y关于x的函数关系式,并写出定义域;(3)联结AG,当△AEG是等腰三角形时,求BF的长.6.阅读材料:等腰三角形具有性质“等边对等角”.事实上,不等边三角形也具有类似性质“大边对大角”,如图1,在△ABC中,如果AB>AC,那么∠ACB>∠ABC.证明如下:将AB沿△ABC的角平分线AD翻折(如图2),因为AB>AC,所以点B落在AC的延长线上的点B′处.于是,由∠ACB>∠B′,∠ABC=∠B′,可得∠ACB>∠ABC.(1)灵活运用:从上面的证法可以看出,折纸常常能为证明一个命题提供思路和方法.由此小明想到可用类似方法证明“大角对大边”,如图3,在△ABC中,如果∠ACB>∠ABC,那么AB>AC.小明的思路是:沿BC的垂直平分线翻折……请你帮助小明完成后面的证明过程.(2)拓展延伸:请运用上述方法或结论解决如下问题:如图4,已知M为正方形ABCD的边CD上一点(不含端点),连接AM并延长,交BC的延长线于点N.求证:AM+AN>2BD.7.探究:如图1和图2,四边形ABCD中,已知AB=AD,∠BAD=90°,点E、F分别在BC、CD上,∠EAF=45°.(1)①如图1,若∠B、∠ADC都是直角,把△ABE绕点A逆时针旋转90°至△ADG,使AB与AD重合,直接写出线段BE、DF和EF之间的数量关系;②如图2,若∠B、∠D都不是直角,但满足∠B+∠D=180°,线段BE、DF和EF之间的结论是否仍然成立,若成立,请写出证明过程;若不成立,请说明理由.(2)拓展:如图3,在△ABC中,∠BAC=90°,AB=AC=2.点D、E均在边BC边上,且∠DAE=45°,若BD=1,求DE的长.8.如图1,在矩形ABCD中,AB=4,AD=3,沿对角线AC剪开,再把△ADC沿AB方向平移,得到图2,其中A'D交AC于E,A'C'交BC于F.(1)在图2中,除△ABC与△C'DA'外,指出还有哪几对全等三角形(不能添加辅助线和字母),并选择一对加以证明;(2)设AA'=x.①当x为何值时,四边形A'ECF是菱形?②设四边形A'ECF的面积为y,求y的最大值.9.在正方形ABCD中,BD为对角线,点E在BD上,过点E作EF⊥CE,交AB于点F,连接CF.(1)如图①,求证:∠ECF=45°;(2)如图②,作FG⊥AB,交BD于点G,求证:DE=GE;(3)在(2)的条件下,如图③,延长FG交CE于点K,延长CE交AD于点M,连接MG、BK,若MG=2EK,GK=2,求线段BK的长.10.如图,在正方形ABCD中,M、N分别是射线CB和射线DC上的动点,且始终∠MAN=45°.(1)如图1,当点M、N分别在线段BC、DC上时,请直接写出线段BM、MN、DN之间的数量关系;(2)如图2,当点M、N分别在CB、DC的延长线上时,(1)中的结论是否仍然成立,若成立,给予证明,若不成立,写出正确的结论,并证明;(3)如图3,当点M、N分别在CB、DC的延长线上时,若CN=CD=6,设BD与AM的延长线交于点P,交AN于Q,直接写出AQ、AP的长.11.如图,菱形ABCD中,AB=10,连接BD,点P是射线BC上一点(不与点B重合),AP 与对角线BD交于点E,连接EC.(1)求证:AE=CE;(2)若sin∠ABD=,当点P在线段BC上时,若BP=4,求△PEC的面积;(3)若∠ABC=45°,当点P在线段BC的延长线上时,请直接写出△PEC是等腰三角形时BP的长.12.如图,在正方形ABCD 中,P 是边BC 上的一动点(不与点B ,C 重合),点B 关于 直线AP 的对称点为E ,连接AE .连接DE 并延长交射线AP 于点F ,连接BF . (1)若∠BAP =α,直接写出∠ADF 的大小(用含α的式子表示); (2)求证:BF ⊥DF ;(3)连接CF ,用等式表示线段AF ,BF ,CF 之间的数量关系,并证明.13.已知正方形OABC 在平面直角坐标系中,点A ,C 分别在x 轴,y 轴的正半轴上,等腰直角三角形OEF 的直角顶点O 在原点,E ,F 分别在OA ,OC 上,且OA =4,OE =2.将△OEF 绕点O 逆时针旋转,得△OE 1F 1,点E ,F 旋转后的对应点为E 1,F 1. (Ⅰ)①如图①,求E 1F 1的长;②如图②,连接CF 1,AE 1,求证△OAE 1≌△OCF 1;(Ⅱ)将△OEF 绕点O 逆时针旋转一周,当OE 1∥CF 1时,求点E 1的坐标(直接写出结果即可).14.菱形ABCD中,E,F为边AB,AD上的点,CF,DE相交于点G.(1)如图1,若∠A=90°,DE=CF,求证:DE⊥CF;(2)如图2,若∠EGC+∠B=180°.求证:DE=CF;(3)如图3,在(1)的条件下,平移线段DE到MN,使G为CF的中点,连接BD交MN 于点H,若∠FCD=15°,BN=,请直接写出FG的长度.15.我们定义:对角线互相垂直的四边形叫做垂美四边形.(1)如图1,垂美四边形ABCD的对角线AC,BD交于O.求证:AB2+CD2=AD2+BC2;(2)如图2,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG和正方形ABDE,连结BE,CG,GE.①求证:四边形BCGE是垂美四边形;②若AC=4,AB=5,求GE的长.16.(1)观察猜想如图①,点B、A、C在同一条直线上,DB⊥BC,EC⊥BC且∠DAE=90°,AD=AE,则△ADB 和△EAC是否全等?(填是或否),线段AB、AC、BD、CE之间的数量关系为.(2)问题解决如图②,在Rt△ABC中,∠ABC=90°,AC=6,AB=6,以AC为直角边向外作等腰Rt △DAC,连接BD,求BD的长.(3)拓展延伸如图③,在四边形ABCD中,∠ABC=∠ADC=90°,AB=5,AD=,DC=DA,CG⊥BD于点G,求CG的长,17.已知,在▱ABCD中,AB⊥BD,AB=BD,E为射线BC上一点,连接AE交BD于点F.(1)如图1,若点E与点C重合,且AF=2,求AD的长;(2)如图2,当点E在BC边上时,过点D作DG⊥AE于G,延长DG交BC于H,连接FH.求证:AF=DH+FH;(3)如图3,当点E在射线BC上运动时,过点D作DG⊥AE于G,M为AG的中点,点N 在BC边上且BN=1,已知AB=4,请直接写出MN的最小值.18.如图,在矩形ABCD中,E是AB边上的一个动点,把△BCE沿CE折叠,使点B落在点F 处,过点F作GH∥CE,分别交AB、CD于点G、H.(1)求证:△EFG是等腰三角形;(2)如图①,若F是GH中点,求∠FGE的度数;(3)如图②,若点G与点A重合,AB=30,BC=20,求FH的长.19.在平面直角坐标系中,已知A(﹣4,0),B(4,0),点C,D在x轴上方,且四边形ABCD的面积为32,(1)若四边形ABCD是菱形,求点D的坐标.(2)若四边形ABCD是平行四边形,如图1,点E,F分别为CD,BC的中点,且AE⊥EF,求AE+2EF的值.(3)若四边形ABCD是矩形,如图2,点M为对角线AC上的动点,N为边AB上的动点,求BM+MN的最小值.20.在平面直角坐标系中,点O为坐标原点,正方形OABC与长方形DEFG的位置如图所示,点A在x轴的正半轴上,点C在y轴的正半轴上,点B的横坐标为a,点D,E在x轴的负半轴上(点E在点D的右侧),点G的坐标为(b,﹣b),DE=OA,实数a,b的值满足.(1)求点F的坐标;(2)长方形DEFG以每秒1个单位长度的速度向右平移t(t>0)秒得到矩形D'E'F'G',点D',E',F',G'分别为点D,E,F,G平移后的对应点,设矩形D'E'F'G'与正方形OABC 重合部分的面积为S,用含t的式子表示S,并直接写出相应的t的范围;(3)在(2)的条件下,在长方形DEFG出发运动的同时,点P从点O出发,沿正方形的边以每秒2个单位长度的速度顺时针方向运动(即O→C→B→A→O→C),连接PD',PG',当三角形PD'G'的面积为15时,求S>0时相应的t值,并直接写出此时刻S值及点P 的坐标.参考答案1.解:(1)如图①中,点P即为所求.当E,P,B共线时,BP的值最小.(2)如图②中,取BC的中点P,连接PA,PF.∵∠BDE=90°,BD=DE=2,∴BE=BD=4,∴CF=EF,CP=PB=2,∴PF=BE=2,∵∠ACP=90°,AC=4,CP=2,∴PA===2,∵AF≤PA+PF,∴AF≤2+2,∴AF的最大值为2+2.(3)如图③中,作△ABD的外接圆⊙O交CD于E,连接OE,EB,AC.∵∠DBC=90°,∠DCB=60°,∴∠CDB=30°,∴∠EOB=60°,∵EO=EB,∴△EOB是等边三角形,BE=OB=,∵∠ECB=60°,∴点C的运动轨迹是圆弧,不妨设圆心为P,连接PC,PE,PB,则∠EPB=2∠ECB=120°,作PT⊥BE于T,在Rt△PET中,∠PET=30°,ET=BT=BE=,∴PE=PB=PC==,∵∠EBO=60°,∠EBP=30°,∴∠ABP=90°,在Rt△ABP中,AP===13,∵AC≤PA+PC,∴AC≤13+,∴AC的最大值为13+,此时A,P,C共线,如图③﹣1中,作CW⊥AB于W.∵PB∥CW,∴==,∴==,∴CW=+1,BW=2,∴BC===,∴S=•BC•BD=•BC•BC=×(26+2)=13+.△BCD2.(1)证明:∵四边形ABCD为菱形,∴AB=BC,∵∠B=60°,∴△ABC为等边三角形,∴∠BAC=60°,AC=AB,∴∠BAE+∠EAC=60°,∵AB∥CD,∴∠BAC=∠ACF=60°,∵∠EAF=60°,即∠EAC+∠CAF=60°,∴∠BAE=∠CAF,在△AEB和△AFC中,,∴△AEB≌△AFC(ASA),∴AE=AF,∴△AEF为等边三角形;(2)解:过点A作AH⊥BC于点H,∵△AEF为等边三角形,∴AE=EF=,∠AEF=60°,∵∠ABH=60°,∴,BH=HC=1,∴EH=|x﹣HC|=|x﹣1|,∴EF==,∵∠AEF=∠B=60°,∴∠CEG+∠AEB=∠AEB+∠BAE=120°,∴∠CEG=∠BAE,∵∠B=∠ACE=60°,∴△BAE∽△CEG,∴,∴,∴y=EG=(0<x<2),(3)解:∵AB=2,△ABC是等边三角形,∴AC=2,∴OA=OC=1,∵EG=EO,∴∠EOG=∠EGO,∵∠EGO=∠ECG+∠CEG=60°+∠CEG,∠CEA=∠CEG+∠AEF=60°+∠CEG,∴∠EGO=∠CEA,∴∠EOG=∠CEA,∵∠ECA=∠OCE,∴△COE∽△CEA,∴,∴CE2=CO•CA,∴x2=1×2,∴x=(x=﹣舍去),即x=.3.(1)证明:∵在正方形ABCD和正方形CEFG中,BC=CD,CG=CE,∠BCG=∠DCE=90°,∴△BCG≌△DCE(SAS),∴∠CBG=∠CDE,∵∠CDE+∠DEC=90°,∴∠HBE+∠BEH=90°,∴∠BHE=90°,∴BH⊥DE;(2)解:MH2+HN2=2CM2,理由:∵在正方形ABCD和正方形CEFG中,BC=CD,CG=CE,∠BCD=∠GCE=90°,∴∠BCG=∠DCE,∴△BCG≌△DCE(SAS),∴∠CBG=∠CDE,BG=DE,∵∠DPH=∠CPM,∴∠DHP=∠BCP=90°,∴∠MHN=90°,∵M,N分别为BG,DE的中点,∴BM=BG,DN=DE,∴BM=DN,∵BC=CD,∴△BCM≌△DCN(SAS),∴CM=CN,∠BCM=∠DCN,∴∠MCN=∠BCP=90°,∴MH2+HN2=CM2+CN2=2CM2;(3)解:∵DH⊥PG,∴∠DHP=∠DHG=90°,把△PDH沿着PD翻折得到△APD,把△GDH沿着DG翻折得到△DGC,∴AD=DH=CD,∠A=∠C=∠DHP=90°,∠ADP=∠HDP,∠GDH=∠GDC,AP=PH=2,CG=HG=4,∵∠PDG=45°,∴∠ADC=90°,延长AP,CG交于B,则四边形ABCD是正方形,∴∠B=90°,设DH=AD=AB=BC=x,∴PB=x﹣2,BG=x﹣4,∵PG2=PB2+BG2,∴62=(x﹣2)2+(x﹣4)2,解得:x=3+(负值舍去),∴DH=3+.4.证明:[问题引入](1)∵正方形ABCD,∴∠ABC=∠C,AB=BC,∵AE⊥BF,∴∠APB=∠BAP+∠ABP=90°,∵∠ABP+∠CBF=90°,∴∠BAP=∠CBF,在△ABE和△BCF中,,∴△ABE≌△BCF(ASA),∴AE=BF;(2)BF=2AE,理由如下:∵矩形ABCD,∴∠ABC=∠C,AD=BC=2AB,∵AE⊥BF,∴∠APB=∠BAP+∠ABP=90°,∵∠ABP+∠CBF=90°,∴∠BAP=∠CBF,且∠ABE=∠BCF=90°,∴△ABE∽△BCF,∴=2,∴BF=2AE;(3)如图3,过点B作BH⊥AD于H,连接BD,∵把△ABC沿斜边AC对折得到Rt△ADC,∴AD=AB,∠ABC=∠ADC=90°,∠DAC=∠BAC=30°,∴∠DAB=60°,∴△ABD是等边三角形,且BH⊥AD,∴AD=AB=2AH,BH=AH,∴,∵∠ADC+∠EPF+∠DEA+∠DFB=360°,∴∠DEA+∠DFB=180°,且∠DFB+∠BFA=180°,∴∠DEA=∠BFH,∵∠BHF=∠ADE=90°,∴△ADE∽△BHF,∴==5.解:(1)∵在正方形ABCD中,AC⊥BD,∴∠AOD=90°,AO=OD,∵四边形OEGH是正方形,∴∠EOH=90°,OE=OH,∴∠AOE=∠DOH,∴△HDO≌△EAO(SAS);(2)如图1,过O作ON⊥AB于N,则AN=BN=ON=AB=2,∵BF=x,∴AF=4﹣x,∴FN=2﹣x,∴OF===,∴EF=y﹣,∵AM⊥AC,∴AE∥OB,∴,∴=,∴;(3)①当AE=EG时,△AEG是等腰三角形,则AE=OE,∵∠EAO=90°,∴这种情况不存在;②当AE=AG时,△AEG是等腰三角形,如图2,过A作AP⊥EG于P,则AP∥OE,∴∠PAE=∠AEO,∴△APE∽△EAO,∴=,∵AE=AG,∴PE=y=,AE==,∴=,解得:x=2,②当GE=AG时,△AEG是等腰三角形,如图3,过G作GQ⊥AE于Q,∴∠GQE=∠EAO=90°,∴∠GEQ+∠EGQ=∠GEQ+∠AEO=90°,∴∠EGQ=∠AEO,∵GE=OE,∴△EGQ≌△OEA(AAS),∴EQ=AO=2,∴AE=2EQ=4=,∴x=,∴BF=2或.6.解:(1)将∠B沿BC的中垂线DE翻折(如图3),使点B落在点C处.∵∠ACB>∠ABC,∴CD在△ABC的内部,D落在AB上.连接DC,∵DE为BC的中垂线,∴DB=DC,在△ADC中,AD+DC>AC,∴AD+DB>AC,即AB>AC;(2)如图4,延长DC到点E,使得CE=CN,连接AE交BC于点F,连接AC,∵四边形ABCD是正方形,∴∠ACD=∠ACB=45°,∴∠ACE=∠ACN=135°,∵AC=AC,∴△ACE≌△ACN(SAS),∴AE=AN,过点C作PQ⊥AC,分别交AN、AE于点P、Q,由∠ACP=∠ACQ=90°可知AP>AC、AQ>AC,∴AP+AQ>2AC,∵∠ACD>∠E,∠ACD=45°,∠QCE=45°,∴∠QCE>∠E,∴QE>CQ,同理可得PC>PM,由全等或对称性可得PC=CQ,∴QE>PM.∴AM+AN=AM+AE=AM+AQ+QE>AM+AQ+PM=AP+AQ,又∵AP+AQ>2AC,∴AM+AN>2AC,∵正方形ABCD中,AC=BD.∴AM+AN>2BD.7.解:(1)①如图1,∵把△ABE绕点A逆时针旋转90°至△ADG,使AB与AD重合,∴AE=AG,∠BAE=∠DAG,BE=DG,∠B=∠ADG=90°,∵∠ADC=90°,∴∠ADC+∠ADG=90°∴F、D、G共线,∵∠BAD=90°,∠EAF=45°,∴∠BAE+∠DAF=45°,∴∠DAG+∠DAF=45°,即∠EAF=∠GAF=45°,在△EAF和△GAF中,∵,∴△EAF≌△GAF(SAS),∴EF=GF,∵BE=DG,∴EF=GF=DF+DG=BE+DF,故答案为:EF=BE+DF;②成立,理由:如图2,把△ABE绕A点旋转到△ADG,使AB和AD重合,则AE=AG,∠B=∠ADG,∠BAE=∠DAG,∵∠B+∠ADC=180°,∴∠ADC+∠ADG=180°,∴C、D、G在一条直线上,与①同理得,∠EAF=∠GAF=45°,在△EAF和△GAF中,∵,∴△EAF≌△GAF(SAS),∴EF=GF,∵BE=DG,∴EF=GF=BE+DF;(2)解:∵△ABC中,AB=AC=2,∠BAC=90°,∴∠ABC=∠C=45°,由勾股定理得:BC==4,如图3,把△AEC绕A点旋转到△AFB,使AB和AC重合,连接DF.则AF=AE,∠FBA=∠C=45°,∠BAF=∠CAE,∵∠DAE=45°,∴∠FAD=∠FAB+∠BAD=∠CAE+∠BAD=∠BAC﹣∠DAE=90°﹣45°=45°,∴∠FAD=∠DAE=45°,在△FAD和△EAD中,∴△FAD≌△EAD(SAS),∴DF=DE,设DE=x,则DF=x,∵BC=4,∴BF=CE=4﹣1﹣x=3﹣x,∵∠FBA=45°,∠ABC=45°,∴∠FBD=90°,由勾股定理得:DF2=BF2+BD2,x2=(3﹣x)2+12,解得:x=,即DE=.8.解:(1)△AA′E≌△C′CF,△A′BF≌△CDE,由题意得,四边形A′DCB是矩形,∴A′B=DC,∴AA′=CC′,∵AB∥CD,∴∠BA′F=∠C′,由题意得,∠BA′F=∠A,∴∠A=∠C′,在△AA′E和△C′CF中,,∴△AA′E≌△C′CF(ASA);(2)①设A′E=a,A′F=b,∵A′F∥AC,∴=,即=,解得,b=,同理=,解得,a=x,当A′E=A′F时,四边形A′ECF是菱形,∴=x,解得,x=,∴当x=时,四边形A′ECF是菱形;②由①得,四边形A′ECF的面积为y=3×(4﹣x)﹣×(3﹣x)×(4﹣x)×2=﹣x2+3x=﹣(x﹣2)2+3,∴当x=2时,y的最大值为3.9.解:(1)如图①,连接AE,∵四边形ABCD是正方形,∴AB=BC=AD=CD,∠ABD=∠CBD=45°,且BE=BE,∴△ABE≌△CBE(SAS)∴AE=CE,∠BAE=∠BCE,∵∠ABC+∠FEC+∠BCE+∠EFB=360°,∴∠BCE+∠BFE=180°,∠BFE+∠AFE=180°,∴∠AFE=∠BCE,∴∠BAE=∠AFE,∴EF=AE=EC,且∠FEC=90°,∴△EFC是等腰直角三角形,∴∠ECF=45°;(2)如图②,延长FG交CD于H,∵GF⊥AB,∠ABC=∠BCD=90°,∴四边形BCHF是矩形,∴FH=BC=CD,∠FHC=90°,∵∠AFE=∠BCE,∴∠EFH=∠ECH,且EF=EC,FH=CD,∴△EFH≌△ECD(SAS)∴∠FHE=∠CDE=45°,且∠FHD=90°,∴∠FHE=∠CDE=∠DGH=∠DHE=45°,∴EG=EH,EH=DE,∴EG=DE;(3)如图③,延长FK交CD于H,连接FM,过点M作MP⊥FH于P,∵AD∥BC∥FH,∴∠MDE=∠KGE,且DE=EG,∠MED=∠GEK,∴△MED≌△KEG(ASA)∴ME=EK=MK,MD=GK=2,∵MG=2EK,∴MK=MG,且MP⊥FH,∴GP=PK=1,∵∠ADH=∠DHF=∠MPH=90°,∴四边形MDHP是矩形,∴MD=PH=2,∴GH=3,∴FH=BC=AB=AD=3+FG,∴AM=1+FG,∵FG⊥AB,∠ABD=45°,∴△BFG是等腰直角三角形,∴BF=FG,∴AF=3,∵ME=EK,EF⊥MK,∴FM=FK=FG+2,∵FM2=AM2+AF2,∴(FG+2)2=(FG+1)2+9,∴FG=3,∴BK==.10.解:(1)BM+DN=MN,理由如下:如图1,在MB的延长线上,截取BE=DN,连接AE,∵四边形ABCD是正方形,∴AB=AD,∠BAD=∠ABC=∠D=90°,∴∠ABE=90°=∠D,在△ABE和△ADN中,,∴△ABE≌△ADN(SAS),∴AE=AN,∠EAB=∠NAD,∴∠EAN=∠BAD=90°,∵∠MAN=45°,∴∠EAM=45°=∠NAM,在△AEM和△ANM中,,∴△AEM≌△ANM(SAS),∴ME=MN,又∵ME=BE+BM=BM+DN,∴BM+DN=MN;故答案为:BM+DN=MN;(2)(1)中的结论不成立,DN﹣BM=MN.理由如下:如图2,在DC上截取DF=BM,连接AF,则∠ABM=90°=∠D,在△ABM和△ADF中,,∴△ABM≌△ADF(SAS),∴AM=AF,∠BAM=∠DAF,∴∠BAM+∠BAF=∠BAF+∠DAF=∠BAD=90°,即∠MAF=∠BAD=90°,∵∠MAN=45°,∴∠MAN=∠FAN=45°,在△MAN和△FAN中,,∴△MAN≌△FAN(SAS),∴MN=NF,∴MN=DN﹣DF=DN﹣BM,∴DN﹣BM=MN.(3)∵四边形ABCD是正方形,∴AB=BC=AD=CD=6,AD∥BC,AB∥CD,∠ABC=∠ADC=∠BCD=90°,∴∠ABM=∠MCN=90°,∵CN=CD=6,∴DN=12,∴AN===6,∵AB∥CD,∴△ABQ∽△NDQ,∴====,∴=,∴AQ=AN=2;由(2)得:DN﹣BM=MN.设BM=x,则MN=12﹣x,CM=6+x,在Rt△CMN中,由勾股定理得:62+(6+x)2=(12﹣x)2,解得:x=2,∴BM=2,∴AM===2,∵BC∥AD,∴△PBM∽△PDA,∴===,∴PM=AM=,∴AP=AM+PM=3.11.(1)证明:∵四边形ABCD是菱形,∴∠ABE=∠CBE,AB=BC,在△ABE和△CBE中,,∴△ABE≌△CBE(SAS),∴AE=CE;(2)解:连接AC,交BD于O,如图1所示:∵四边形ABCD是菱形,∴AD∥BC,AD=AB=4,∠AOB=90°,OB=OD,OA=OC,∴△BEP∽△DEA,∴==,∴=()2=,∵sin∠ABD===,∴OA=2,OB===4,∴BD=2OB=8,∴=,解得:DE=,∴BE=BD﹣DE=8﹣=,∴S△DEA=OA•DE=×2×=,S△ABE =OA•BE=×2×==S△BEC,∴S△BEP =S△DEA=×=,∴S△PEC =S△BEC﹣S△BEP=﹣=;(3)解:①由(1)得:△ABE≌△CBE,∴∠BAE=∠BCE,当∠BAE=90°时,则∠BCE=90°,∴∠ECP=90°,∵∠ABC=45°,∴∠EBC=22.5°,∠CPE=45°,∴△PEC是等腰直角三角形,∴CE=CP,∠BEC=90°﹣22.5°=67.5°,过点E作∠FEC=45°交BC于F,如图2所示:则CE=CP=CF,EF=CF,∠BEF=∠BEC﹣∠FEC=67.5°﹣45°=22.5°,∴∠BEF=∠EBC,∴EF=BF,∴CF+CF=BC=10,∴CF==10(﹣1),∴BP=BC+CP=BC+CF=10+10(﹣1)=10;②由(1)得:△ABE≌△CBE,∴∠AEB=∠CEB,当∠BAE=105°时,∠AEB=180°﹣105°﹣22.5°=52.5°,∴∠AEC=2∠AEB=105°,∴∠CEP=75°,∵∠APB=180°﹣105°﹣45°=30°,∴∠ECP=180°﹣75°﹣30°=75°,∴∠ECP=∠CEP,∴△PEC是等腰三角形,过点A作AN⊥BP于N,如图3所示:则△ABN是等腰直角三角形,∴AN=BN=AB=5,∵∠APB=30°,∴tan30°=,即=,∴PN=5,∴BP=BN+PN=5+5,综上所述,△PEC是等腰三角形时BP的长为10或5+5.12.(1)解:由轴对称的性质得:∠EAP=∠BAP=α,AE=AB,∵四边形ABCD是正方形,∴∠BAD=90°,AB=AD,∴∠DAE=90°﹣2α,AD=AE,∴∠ADF=∠AED=(180°﹣∠DAE)=(90°+2α)=45°+α;(2)证明:∵四边形ABCD是正方形,∴∠BAD=90°,AB=AD,∵点E与点B关于直线AP对称,∴∠AEF=∠ABF,AE=AB.∴AE=AD.∴∠ADE=∠AED.∵∠AED+∠AEF=180°,∴在四边形ABFD中,∠ADE+∠ABF=180°,∴∠BFD+∠BAD=180°,∴∠BFD=90°∴BF⊥DF;(3)解:线段AF,BF,CF之间的数量关系为AF=BF+CF,理由如下:过点B作BM⊥BF交AF于点M,如图所示:∵四边形ABCD是正方形,∴AB=CB,∠ABC=90°,∴∠ABM=∠CBF,∵点E与点B关于直线AP对称,∠BFD=90°,∴∠MFB=∠MFE=45°,∴△BMF是等腰直角三角形,∴BM=BF,FM=BF,在△AMB和△CFB中,,∴△AMB≌△CFB(SAS),∴AM=CF,∵AF=FM+AM,∴AF=BF+CF.13.(Ⅰ)①解:∵等腰直角三角形OEF的直角顶点O在原点,OE=2,∴∠EOF=90°,OF=OE=2,∴EF===2,∵将△OEF绕点O逆时针旋转,得△OE1F1,∴E1F1=EF=2;②证明:∵四边形OABC为正方形,∴OC=OA.∵将△OEF绕点O逆时针旋转,得△OE1F1,∴∠AOE 1=∠COF 1,∵△OEF 是等腰直角三角形,∴△OE 1F 1是等腰直角三角形,∴OE 1=OF 1.在△OAE 1和△OCF 1中,∴△OAE 1≌△OCF 1(SAS );(Ⅱ)解:∵OE ⊥OF ,∴过点F 与OE 平行的直线有且只有一条,并与OF 垂直,当三角板OEF 绕O 点逆时针旋转一周时,则点F 在以O 为圆心,以OF 为半径的圆上.∴过点F 与OF 垂直的直线必是圆O 的切线,又点C 是圆O 外一点,过点C 与圆O 相切的直线有且只有2条,不妨设为CF 1和CF 2, 此时,E 点分别在E 1点和E 2点,满足CF 1∥OE 1,CF 2∥OE 2.当切点F 1在第二象限时,点E 1在第一象限.在直角三角形CF 1O 中,OC =4,OF 1=2,cos ∠COF 1===,∴∠COF 1=60°,∴∠AOE 1=60°.∴点E 1的横坐标=2cos60°=1,点E 1的纵坐标=2sin60°=,∴点E 1的坐标为(1,); 当切点F 2在第一象限时,点E 2在第四象限.同理可求:点E 2的坐标为(1,﹣).综上所述,当OE 1∥CF 1时,点E 1的坐标为(1,)或(1,﹣).14.解:(1)证明:∵菱形ABCD中,∠A=90°∴菱形ABCD是正方形∴AD=DC,∠A=∠CDF=90°在Rt△ADE与Rt△DCF中∴Rt△ADE≌Rt△DCF(HL)∴∠ADE=∠DCF∴∠DCF+∠CDE=∠ADE+∠CDE=∠ADC=90°∴∠CGD=90°∴DE⊥CF(2)证明:∵四边形ABCD是菱形∴AD=CD,∠B=∠ADC,AD∥BC∴∠A+∠B=180°∵∠EGC+∠B=180°,∠EGC+∠CGD=180°∴∠A=∠EGC=∠DGF,∠CGD=∠B=∠ADC∵∠A=∠DGF,∠ADE=∠GDF∴△ADE∽△GDF∴∴∵∠CGD=∠CDF,∠DCG=∠FCD∴△DCG∽△FCD∴∴∵AD=DC∴DE=CF(3)如图,过点N作NP⊥CD于点P,连接FM ∴∠CPN=∠MPN=90°∵四边形ABCD是正方形∴∠ABC=∠BCD=∠ADC=90°,BC=CD∴四边形BCPN是矩形∴NP=BC=CD,PC=BN=在Rt△NPM与Rt△CDF中∴Rt△NPM≌Rt△CDF(HL)∴PM=DF设PM=DF=x,则CM=PC+PM=+x∵由(1)得MN⊥CF,G为CF中点∴MN垂直平分CF∴MF=MC∴∠MFC=∠FCD=15°∴∠DMF=∠MFC+∠FCD=30°∴Rt△DMF中,MF=2DF=2x,DM=DF=x ∴2x=+x∴x=∴DF=,CM=2,CD=CM+DM=2+∵∠GCM=∠MCF,∠CGM=∠CDF=90°∴△CGM∽△CDF∴=∴2CG2=CD•CM=(2+)=8+4∴CG2=4+2=12+2+()2=(1+)2∴FG=CG=1+15.(1)证明:∵垂美四边形ABCD的对角线AC,BD交于O,∴AC⊥BD,∴∠AOD=∠AOB=∠BOC=∠COD=90°,由勾股定理得:AD2+BC2=AO2+DO2+BO2+CO2,AB2+CD2=AO2+BO2+CO2+DO2,∴AD2+BC2=AB2+CD2;(2)①证明:连接BG、CE相交于点N,CE交AB于点M,如图2所示:∵正方形ACFG和正方形ABDE,∴AG=AC,AB=AE,∠CAG=∠BAE=90°,∴∠CAG+∠BAC=∠BAE+∠BAC,即∠GAB=∠CAE,在△GAB和△CAE中,,∴△GAB≌△CAE(SAS),∴∠ABG=∠AEC,∵∠AEC+∠AME=90°,∴∠ABG+∠AME=90°,∴∠ABG+∠BMN=90°,即CE⊥BG,∴四边形BCGE是垂美四边形;②解:∵四边形BCGE是垂美四边形,∴由(1)得:CG2+BE2=CB2+GE2,∵AC=4,AB=5,∴BC===3,∵正方形ACFG和正方形ABDE,∴CG=AC=4,BE=AB=5,∴GE2=CG2+BE2﹣CB2=(4)2+(5)2﹣32=73,∴GE=.16.解:(1)观察猜想结论:AB+AC=BD+CE,理由如下:如图①,∵DB⊥BC,EC⊥BC,∴∠B=∠C=90°,∠DAE=90°,∴∠D+∠DAB=∠DAB+∠EAC=90°,∴∠D=∠EAC,在△ADB和△EAC中,,∴△ADB≌△EAC(AAS),∴BD=AC,EC=AB,∴BC=AB+AC=BD+CE,故答案为:是,AB+AC=BD+CE;(2)问题解决如图②,过D作DE⊥AB,交BA的延长线于E,由(1)得:△ABC≌△DEA(AAS),∴DE=AB=6,AE=BC===12,Rt△BDE中,BE=AB+AE=18,由勾股定理得:BD===6;(3)拓展延伸如图③,过D作DE⊥BC于E,作DF⊥AB于F,则四边形DEBF是矩形,同(1)得:△CED≌△AFD(AAS),∴CE=AF,DE=DF,∴四边形DEBF是正方形,设AF=x,则BF=DE=DF=x+5,在Rt△ADF中,由勾股定理得:x2+(x+5)2=()2,解得:x=,或x=﹣(舍去),∴AF=,DF=,∴BD=DF=,四边形ABCD的面积=正方形DEBF的面积=()2=,△ABD的面积=AB×DF=×5×=,∴△BCD的面积=四边形ABCD的面积﹣△ABD的面积=BD×CG=﹣=51,∴CG==6.17.(1)解:如图1中,∵AB=BD,∠BAD=45°,∴∠BDA=∠BAD=45°,∴∠ABD=90°,∵四边形ABCD是平行四边形,∴E、C重合时BF=BD=AB,在Rt△ABF中,∵AF2=AB2+BF2,∴(2)2=(2BF)2+BF2,∴BF=2,AB=4,在Rt△ABD中,AD==4;(2)证明:如图2中,在AF上截取AK=HD,连接BK,∵∠AFD=∠ABF+∠2=∠FGD+∠3,∠ABF=∠FGD=90°,∴∠2=∠3,在ABK和△DBH中,,∴△ABK≌△DBH,∴BK=BH,∠6=∠1,AK=DH,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠4=∠1=∠6=45°,∴∠5=∠ABD﹣∠6=45°,∴∠5=∠1,在△FBK和△FBH中,,∴△FBK≌△FBH,∴KF=FH,∵AF=AK+KF,∴AF=DH+FH;(3)解:连接AN并延长到Q,使NQ=AN,连接GQ,取AD的中点O,连接OG,∵∠AGD=90°,∴点G的轨迹是以O为圆心,以OG为半径的弧,且OG=4,当O,G,Q在同一条直线上时,QG的值最小,∴OQ=10,OG=4,∴GQ最小值为6,∵MN是△AGQ的中位线,∴MN的最小值为3.18.解:(1)∵把△BCE沿CE折叠,使点B落在点F处,∴∠BEC=∠FEC,∵GH∥CE,∴∠FGE=∠CEB,∠GFE=∠FEC,∴∠EGF=∠EFG,∴EG=EF,∴△EFG是等腰三角形;(2)如图①,取CE的中点M,连接FM,∵把△BCE沿CE折叠,使点B落在点F处,∴∠EFC=∠B=90°,∴EM=FM,∵AB∥CD,GH∥CE,∴四边形GECH是平行四边形,∴GH=CE,∵F是GH中点,∴FG=EM,∴四边形GEMF是平行四边形,∴GE=FM,由(1)知,GE=EF,∴EG=GF=EF,∴△EFG是等边三角形,∴∠FGE=60°;(3)由(2)知,BE=EF,AE=EF,∴AE=BE=AB=15,∴CH=AE=15,∴DH=30﹣15=15,∴AH===25,如图②,过E作EN⊥AF于N,∴∠ANE=∠B=90°,∵CE∥AH,∴∠EAN=∠BEC,∴△AEN∽△ECB,∴=,∴=,∴AN=9,∴AF=18,∴FH=25﹣18=7.19.解:(1)如图1,过D作DH⊥AB于H,∵A(﹣4,0),B(4,0),∴OA=OB=4,∴AB=8,∵四边形ABCD的面积为32∴8DH=32,∴DH=4,∵四边形ABCD是菱形,∴AD=AB=8,∴AH===4,∴OH=AH﹣OA=4﹣4,∴D(4﹣4,4);(2)如图1,延长EF交x轴于G,∵四边形ABCD是平行四边形,∴CD∥AB,∴∠C=∠FBG,∠CEF=∠FGB,∵CF=BF,∴△CEF≌△BGF(AAS),∴EF=FG,CE=BG,∴EG=2EF,过E作EP⊥x轴于P,∴EP=DH=4,∵CD=AB=8,∴设D(a,4)则C(8+a,4),∵点E为CD的中点,∴E(4+a,4),∴AP=8+a,PG=4﹣a,∴PE2=AP•PG,∴(8+a)•(4﹣a)=16,∴a=2﹣2(负值舍去),∴AP=6+2,PG=6﹣2,∴AE==4,EG==4,∴AE+2EF=AE+EG=4+8;(3)∵四边形ABCD是矩形,∴AB=CD=8,AD=BC=4,∴AC==4,作B关于AC的对称点M′,连接BM′交AC于E,则BM′=2BE=2×=2×=,过M′作M′N⊥AB于N交AC于M,则此时,BM+MN的值最小,且BM+MN的最小值=M′N,∵∠M′EM=∠CEB=90°,BE=,BC=4,∴CE=,∴CM=2CE=,∴AM=,∴AM2﹣AN2=BM2﹣BN2,∴()2﹣AN2=42﹣(8﹣AN)2,∴AN=,∴MN==,∴M′N=,∴BM+MN的最小值为.20.解:(1)∵,∴a﹣4=0,b+6=0,∴a=4,b=﹣6,∵四边形OABC是正方形,点B的横坐标为a,∴OA=4,∵四边形DEFG为长方形,点G的坐标为(b,﹣b),∴F的纵坐标为:﹣b=6,OD=6,∵DE=OA,∴OE=OD﹣DE=OD﹣OA=6﹣4=2,∴F(﹣2,6)(2)∵OE=2,AD=2OA+OE=2×4+2=10,AE=OA+OE=4+2=6,长方形DEFG以每秒1个单位长度的速度向右平移,∴当0<t≤2,t≥10时,S=0;当2<t≤6时,点E'在OA上,如图1所示:S=OC•OE′=4(t﹣2)=4t﹣8;当6<t<10时,点D'在OA上,如图2所示:S=AB•AD'=4(10﹣t)=40﹣4t;∴S=;(3)∵D′G′=DG=6,当三角形PD'G'的面积为15时,∴点P到D′G′的距离为5,∵长方形DEFG以每秒1个单位长度的速度向右平移,点P从点O出发,沿正方形的边以每秒2个单位长度的速度顺时针方向运动(即O→C→B→A→O→C),∵当点P再次运动到AO、OC时,△PD'G'的面积<15,∴分两种情况:①当t=3s时,点P在BC的中点处,如图3所示:即PC=2,DG向右平移了3个单位长度,OD′=OD﹣3=6﹣3=3,此时,PC+OD′=2+3=5,即点P到D′G′的距离为5,P的坐标为:(2,4),OE′=D′E′﹣OD′=4﹣3=1,∴S=OC•OE′=4×1=4;②当t=5s时,点P在AB的中点处,如图4所示:即AP=2,DG向右平移了5个单位长度,OD′=OD﹣5=6﹣5=1,此时,OA+OD′=4+1=5,即点P到D′G′的距离为5,P的坐标为:(4,2),OE′=D′E′﹣OD′=4﹣1=3,∴S=OC•OE′=4×3=12.。

中考数学总复习《四边形的综合题》练习题附带答案

中考数学总复习《四边形的综合题》练习题附带答案

中考数学总复习《四边形的综合题》练习题附带答案一、单选题1.如图,两个平行四边形的面积分别为18、12,两阴影部分的面积分别为a、b (a>b),则(a−b)等于()A.3B.4C.5D.6 2.如图,在矩形ABCD中,对角线AC、BD相交于点O,∠ABD=60°,则∠BOC的大小为()A.30°B.60°C.90°D.120°3.若一个多边形的内角和是外角和的2.5倍,则该多边形为()A.五边形B.六边形C.七边形D.八边形4.如图,矩形ABCD对角线相交于点O,∠AOB=60°,AB=4,则矩形的对角线AC 为()A.4 B.8 C.4√3D.10 5.一个长方形的周长为28厘米,长的2倍比宽的3倍多3厘米,则这个长方形的面积是()A.45平方厘米B.35平方厘米C.25平方厘米D.20平方厘米6.如图,在矩形ABCD中,对角线AC,BD相交于点O,AE垂直平分BO,AE=√3cm,则OD=()A.1cm B.1.5cm C.2cm D.3cm 7.如图,矩形纸片ABCD中,AB=4,AD=8 ,将纸片沿EF折叠使点B与点D 重合,折痕EF与BD相交于点O,则DF的长为()A.3B.4C.5D.6 8.如图,⊙O的半径为4,点P是⊙O外的一点PO=10,点A是⊙O上的一个动点,连接PA,直线l垂直平分PA,当直线l与⊙O相切时PA的长度为()A.10B.212C.11D.434 9.已知平行四边形一边长为8,一条对角线长为6,则另一条对角线α满足()A.10<α<22B.4<α<20C.4<α<28D.2<α<1410.如图,两张等宽的纸条交又重叠在一起,重叠的部分为四边形ABCD,若测得A,C之间的距离为6cm,点B,D之间的距离为8cm,则线段AB的长为()A.a2B.5cm C.2√7cm D.6cm 11.如图,E、F分别是正方形ABCD的边AB、BC上的点,BE=CF,连接CE、DF,将∠BCE绕着正方形的中心O按逆时针方向旋转到∠CDF的位置,则旋转角是( )A .45°B .60°C .90°D .120°12.Rt∠ABC 两直角边的长分别为6cm 和8cm ,则连接这两条直角边中点的线段长为( ) A .10cmB .3cmC .4cmD .5cm二、填空题13.如图,点E 在边长为2的正方形ABCD 内,满足∠AEB =90°,若∠DAE =30°,则图中阴影部分的面积为 .14.把一把直尺和一块三角板如图放置,若∠1=42°,则∠2的度数为 °.15.已知 ▱ABCD 中一条对角线分 ∠A 为35°和45°,则 ∠B = 度. 16.如图,在一块长AB =26m ,宽BC =18m 的长方形草地上,修建三条宽均为3m 的长方形小路,则这块草地的绿地面积(图中空白部分)为 m 217.如图,在∠ABC 中,∠ABC =90°,E 为AC 的中点,AD∠BE 交BC 于D ,若AD=152,BE =5,则BD = .18.如图,在四边形ABCD中,∠A=90°,AB=12,AD=5.点M、N分别为线段BC、AB上的动点(含端点,但点M不与点B重合),点E、F分别为DM、MN的中点,则EF长度的最大值是.三、综合题19.如果抛物线C1:y=ax2+bx+c与抛物线C2:y=−ax2+dx+e的开口方向相反,顶点相同,我们称抛物线C2是C1的“对顶”抛物线.(1)求抛物线y=x2−4x+7的“对顶”抛物线的表达式;(2)将抛物线y=x2−4x+7的“对顶”抛物线沿其对称轴平移,使所得抛物线与原抛物线y=x2−4x+7形成两个交点M、N,记平移前后两抛物线的顶点分别为A、B,当四边形AMBN是正方形时求正方形AMBN的面积.(3)某同学在探究“对顶”抛物线时发现:如果抛物线C1与C2的顶点位于x轴上,那么系数b与d,c与e之间的关系是确定的,请写出它们之间的关系.20.解答题(1)如图1,在平行四边形ABCD 中,已知点E 在AB 上,点F 在CD 上,且AE=CF .求证:DE=BF ;(2)如图2,AB 是∠O 的直径,点C 在AB 的延长线上,CD 与∠O 相切于点D ,若∠C=20°,求∠CDA 的度数.21.如图,▱ABCD 放置在平面直角坐标系申,已知点A (-2,0)、B (-6,0)、D(0,3).点C 在反比例函数y=k x的图象上。

2020年中考数学复习专题练:《四边形综合 》(包含答案)

2020年中考数学复习专题练:《四边形综合 》(包含答案)

2020年中考数学复习专题练:《四边形综合 》1.如图①所示,已知正方形ABCD 和正方形AEFG ,连接DG ,BE .(1)发现:当正方形AEFG 绕点A 旋转,如图②所示.①线段DG 与BE 之间的数量关系是 ;②直线DG 与直线BE 之间的位置关系是 ;(2)探究:如图③所示,若四边形ABCD 与四边形AEFG 都为矩形,且AD =2AB ,AG =2AE 时,上述结论是否成立,并说明理由.(3)应用:在(2)的情况下,连接BG 、DE ,若AE =1,AB =2,求BG 2+DE 2的值(直接写出结果).2.如图1,在正方形ABCD 中,点E 是CD 上一点(不与C ,D 两点重合),连接BE ,过点C 作CH ⊥BE 于点F ,交对角线BD 于点G ,交AD 边于点H ,连接GE ,(1)求证:△DHC ≌△CEB ;(2)如图2,若点E 是CD 的中点,当BE =8时,求线段GH 的长;(3)设正方形ABCD 的面积为S 1,四边形DEGH 的面积为S 2,当的值为时,的值为 .3.在平面直角坐标系中,四边形AOBC是矩形,点O(0,0),点A(6,0),点B(0,8).以点A为中心,顺时针旋转矩形AOBC,得到矩形ADEF,点O,B,C的对应点分别为D,E,F,记旋转角为α(0°<α<90°).(I)如图①,当α=30°时,求点D的坐标;(Ⅱ)如图②,当点E落在AC的延长线上时,求点D的坐标;(Ⅲ)当点D落在线段OC上时,求点E的坐标(直接写出结果即可).4.如图,BD是平行四边形ABCD的对角线,DE⊥AB于点E,过点E的直线交BC于点G,且BG=CG.(1)求证:GD=EG.(2)若BD⊥EG垂足为O,BO=2,DO=4,画出图形并求出四边形ABCD的面积.(3)在(2)的条件下,以O为旋转中心顺时针旋转△GDO,得到△G′D'O,点G′落在BC上时,请直接写出G′E的长.5.(1)【探索发现】如图1,在正方形ABCD中,点M,N分别是边BC,CD上的点,∠MAN=45°,若将△DAN 绕点A顺时针旋转90°到△BAG位置,可得△MAN≌△MAG,若△MCN的周长为8,则正方形ABCD的边长为.(2)【类比延伸】如图2,在四边形ABCD中,AB=AD,∠BAD=120°,∠B+∠D=180°,点M,N分别在边BC,CD上的点,∠MAN=60°,请判断线段BM,DN,MN之间的数量关系,并说明理由.(3)【拓展应用】如图3,在四边形ABCD中,AB=AD=2,∠ADC=120°,点M,N分别在边BC,CD上,连接AM,MN,AN,△ABM是等边三角形,AM⊥AD于点A,∠DAN=15°,请直接写出△CMN 的周长.6.(1)如图1,在△ABC中,AB>AC,点D,E分别在边AB,AC上,且DE∥BC,若AD=2,AE=,则的值是;(2)如图2,在(1)的条件下,将△ADE绕点A逆时针方向旋转一定的角度,连接CE 和BD,的值变化吗?若变化,请说明理由;若不变化,请求出不变的值;(3)如图3,在四边形ABCD中,AC⊥BC于点C,∠BAC=∠ADC=θ,且tanθ=,当CD=6,AD=3时,请直接写出线段BD的长度.7.如图1,长方形ABCD中,∠DAB=∠B=∠DCB=∠D=90°,AD=BC=6,AB=CD=10.点E为射线DC上的一个动点,把△ADE沿直线AE翻折得△AD′E.(1)当D′点落在AB边上时,∠DAE=°;(2)如图2,当E点与C点重合时,D′C与AB交点F,①求证:AF=FC;②求AF长.(3)连接D′B,当∠AD′B=90°时,求DE的长.8.在平面直角坐标系中,点O是坐标原点,A(0,m),B(n,O),AC∥OB,且AC=OB,连接BC交x轴于点F,其中m、n满足方程+n2+8n+16=0.(1)求A、B两点坐标;(2)过A做AE⊥BC于E,延长AE交x轴于点D,动点P从点B出发以每秒2个单位的速度向x轴正半轴方向运动,设△PFD的面积为S,请用含t的式子表示S,并直接写出t的取值范围;(3)在(2)的条件下,连接PE,将△PED沿PE翻折到△PEG的位置(点D与点G对应),当四边形PDEG为菱形时,求点P和点G的坐标.9.已知四边形ABCD和四边形CEFG都是正方形,且AB>CE.(1)如图1,连接BG、DE.求证:BG=DE;(2)如图2,如果正方形CEFG绕点C旋转到某一位置恰好使得CG∥BD,BG=BD.①求∠BDE的度数;②若正方形ABCD的边长是,请求出△BCG的面积.10.【综合与实践】如图①,在正方形ABCD中,点E、F分别在射线CD、BC上,且BF=CE,将线段FA绕点F顺时针旋转90°得到线段FG,连接EG,试探究线段EG和BF的数量关系和位置关系.【观察与猜想】任务一:“智慧小组”首先考虑点E、F的特殊位置如图②,当点E与点D重合,点F与点C重合时,易知:EG与BF的数量关系是,EG与BF的位置关系是.【探究与证明】任务二:“博学小组”同学认为E、F不一定必须在特殊位置,他们分两种情况,一种是点E、F分别在CD、BC边上任意位置时(如图③);一种是点E、F在CD、BC边的延长线上的任意位置时(如图④),线段EG与BF的数量关系与位置关系仍然成立.请你选择其中一种情况给出证明.【拓展与延伸】“创新小组”同学认为,若将“正方形ABCD”改为“矩形ABCD,且=k(k≠1)”,点E、F分别在射线CD、BC上任意位置时,仍将线段FA绕点F顺时针旋转90°,并适当延长得到线段FG,连接EG(如图⑤),则当线段BF、CE、AF、FG满足一个条件时,线段EG与BF的数量关系与位置关系仍然成立.(请你在横线上直接写出这个条件,无需证明)11.在平面直角坐标系xOy中,四边形OADC为正方形,点D的坐标为(4,4),动点E沿边AO从A向O以每秒1cm的速度运动,同时动点F沿边OC从O向C以同样的速度运动,连接AF、DE交于点G.(1)试探索线段AF、DE的关系,写出你的结论并说明理由;(2)连接EF、DF,分别取AE、EF、FD、DA的中点H、I、J、K,则四边形HIJK是什么特殊平行四边形?请在图①中补全图形,并说明理由.(3)如图②当点E运动到AO中点时,点M是直线EC上任意一点,点N是平面内任意一点,是否存在点N使以O,C、M、N为顶点的四边形是菱形?若存在,请直接写出点N的坐标;若不存在,请说明理由.12.综合与实践动手操作:第一步:在矩形纸片ABCD的边BC,AD上分别取两点E,F,使CE=AF;第二步:分别以DE,BF为对称轴将△CDE与△ABF翻折得到△C'DE与△A'BF,且边C'E 与A'B交于点G,边A'F与C'D交于一点H.问题解决:(1)求证:△BEG≌△DFH;(2)请判断四边形A'HC'G的形状,并证明你发现的结论;(3)已知tan∠EBG=,A'G=6,C'G=1,求矩形纸片ABCD的面积.13.如图1,矩形ABCD中,∠ACB=30°,将△ACD绕C点顺时针旋转α(0°<α<360°)至△A'CD'位置.(1)如图2,若AB=2,α=30°,求S△BCD′.(2)如图3,取AA′中点O,连OB、OD′、BD′.若△OBD′存在,试判定△OBD′的形状.(3)当α=α1时,OB=OD′,则α1=°;当α=α2时,△OBD′不存在,则α2=°.14.已知矩形ABCD 中,AB =2,BC =m ,点E 是边BC 上一点,BE =1,连接AE .(1)沿AE 翻折△ABE 使点B 落在点F 处,①连接CF ,若CF ∥AE ,求m 的值;②连接DF ,若≤DF ≤,求m 的取值范围.(2)△ABE 绕点A 顺时针旋转得△AB 1E 1,点E 1落在边AD 上时旋转停止.若点B 1落在矩形对角线AC 上,且点B 1到AD 的距离小于时,求m 的取值范围.15.如图1,正方形ABCD 的边CD 在正方形ECGF 的边CE 上,连接BE 、DG .(1)BE 和DG 的数量关系是 ,BE 和DG 的位置关系是 ;(2)把正方形ECGF 绕点C 旋转,如图2,(1)中的结论是否还成立?若成立,写出证明过程,若不成立,请说明理由;(3)设正方形ABCD 的边长为4,正方形ECGF 的边长为3,正方形ECGF 绕点C 旋转过程中,若A 、C 、E 三点共线,直接写出DG 的长.16.如图,正方形ABCD的边长为a,射线AM是∠BAD外角的平分线,点E在边AB上运动(不与点A、B重合),点F在射线AM上,且AF=BE,CF与AD相交于点G,连结EC、EF、EG.(1)求证:CE=EF;(2)求△AEG的周长(用含a的代数式表示);(3)试探索:点E在边AB上运动至什么位置时,△EAF的面积最大.17.问题情境:矩形ABCD中,∠ACB=30°,将一块直角三角板的直角顶点P放在两对角线的交点处,以点P为旋转中心转动三角板,并保证三角板的两直角边分别与边AB、BC所在的直线相交,交点为E、F.探究1:如图1,当PE⊥AB,PF⊥BC时,则=.探究2:如图2,在(1)的基础上,将三角板绕点P逆时针旋转,旋转角为α,(0°<α<60°),试求的值.探究3:在(2)的基础上继续旋转,当60°<α<90°时,将顶点P在AC上移动且使=时,如图3,试求的值.18.在Rt△ABC中,∠B=90°,AB=6,BC=8,点D从点B出发,以每秒3个单位的速度沿B→A→C运动,到点C停止.在点D运动的过程中,过点D作DE⊥BC,垂足为E,以DE为一边在右侧作矩形DEFG,点F在BC边上,且EF:DE=4:3,连结AG,CG,设运动时间为t(秒),矩形DEFG与△ABC重叠部分面积为S.(1)当AG=CG时,求t的值.(2)当点D在边AB上运动时,求S与t的函数关系式.(3)当△ACG的面积为6时,直接写出t的值.19.如图,在四边形ABCD中,AD∥BC,∠C=90°,BC=32,DC=24,AD=42,动点P从点D出发,沿射线DA的方向以每秒4个单位长的速度运动,动点Q从点C出发,在线段CB 上以每秒2个单位长的速度向点B运动,点P,Q分别从点D,C同时出发,当点Q运动到点B时,点P随之停止运动.设运动的时间为t(秒).(1)设△BPQ的面积为S,求S与t之间的函数关系式;(2)当t为何值时,以B,P,Q三点为顶点的三角形是等腰三角形?(3)是否存在时刻t,使得PQ⊥BD?若存在,求出t的值;若不存在,请说明理由.20.(1)【发现证明】如图1,在正方形ABCD中,点E,F分别是BC,CD边上的动点,且∠EAF=45°,求证:EF=DF+BE.小明发现,当把△ABE绕点A顺时针旋转90°至△ADG,使AB与AD重合时能够证明,请你给出证明过程.(2)【类比引申】①如图2,在正方形ABCD中,如果点E,F分别是CB,DC延长线上的动点,且∠EAF=45°,则(1)中的结论还成立吗?请写出证明过程.②如图3,如果点E,F分别是BC,CD延长线上的动点,且∠EAF=45°,则EF,BE,DF之间的数量关系是(不要求证明)(3)【联想拓展】如图1,若正方形ABCD的边长为6,AE=3,求AF的长.参考答案1.解:(1)①如图②中,∵四边形ABCD和四边形AEFG是正方形,∴AE=AG,AB=AD,∠BAD=∠EAG=90°,∴∠BAE=∠DAG,在△ABE和△DAG中,,∴△ABE≌△ADG(SAS),∴BE=DG;②如图2,延长BE交AD于T,交DG于H.由①知,△ABE≌△DAG,∴∠ABE=∠ADG,∵∠ATB+∠ABE=90°,∴∠ATB+∠ADG=90°,∵∠ATB=∠DTH,∴∠DTH+∠ADG=90°,∴∠DHB=90°,∴BE⊥DG,故答案为:BE=DG,BE⊥DG;(2)数量关系不成立,DG=2BE,位置关系成立.如图③中,延长BE交AD于T,交DG于H.∵四边形ABCD与四边形AEFG都为矩形,∴∠BAD=∠EAG,∴∠BAE=∠DAG,∵AD=2AB,AG=2AE,∴==,∴△ABE∽△ADG,∴∠ABE=∠ADG,=,∴DG=2BE,∵∠ATB+∠ABE=90°,∴∠ATB+∠ADG=90°,∵∠ATB=∠DTH,∴∠DTH+∠ADG=90°,∴∠DHB=90°,∴BE⊥DG;(3)如图④中,作ET⊥AD于T,GH⊥BA交BA的延长线于H.设ET=x,AT=y.∵△AHG∽△ATE,∴===2,∴GH=2x,AH=2y,∴4x2+4y2=4,∴x2+y2=1,∴BG2+DE2=(2x)2+(2y+2)2+x2+(4﹣y)2=5x2+5y2+20=25.2.证明(1)∵四边形ABCD是正方形,∴CD=BC,∠HDC=∠BCE=90°,∴∠DHC+∠DCH=90°,∵CH⊥BE,∴∠EFC=90°,∴∠ECF+∠BEC=90°,∴∠CHD=∠BEC,∴△DHC≌△CEB(AAS).(2)解:∵△DHC≌△CEB,∴CH=BE,DH=CE,∵CE=DE=CD,CD=CB,∴DH=BC,∵DH∥BC,∴.∴GC=2GH,设GH=x,则,则CG=2x,∴3x=8,∴x=.即GH=.(3)解:∵,∴,∵DH=CE,DC=BC,∴,∵DH∥BC,∴,∴,,设S△DGH =9a,则S△BCG=49a,S△DCG=21a,∴S△BCD=49a+21a=70a,∴S1=2S△BCD=140a,∵S△DEG :S△CEG=4:3,∴S△DEG=12a,∴S2=12a+9a=21a.∴.故答案为:.3.解:(I)过点D作DG⊥x轴于G,如图①所示:∵点A(6,0),点B(0,8).∴OA=6,OB=8,∵以点A为中心,顺时针旋转矩形AOBC,得到矩形ADEF,∴AD=AO=6,α=∠OAD=30°,DE=OB=8,在Rt△ADG中,DG=AD=3,AG=DG=3,∴OG=OA﹣AG=6﹣3,∴点D的坐标为(6﹣3,3);(Ⅱ)过点D作DG⊥x轴于G,DH⊥AE于H,如图②所示:则GA=DH,HA=DG,∵DE=OB=8,∠ADE=∠AOB=90°,∴AE===10,∵AE×DH=AD×DE,∴DH===,∴OG=OA﹣GA=OA﹣DH=6﹣=,DG===,∴点D的坐标为(,);(Ⅲ)连接AE,作EG⊥x轴于G,如图③所示:由旋转的性质得:∠DAE=∠AOC,AD=AO,∴∠OAC=∠ADO,∴∠DAE=∠ADO,∴AE∥OC,∴∠GAE=∠AOD,∴∠DAE=∠GAE,在△AEG和△AED中,,∴△AEG≌△AED(AAS),∴AG=AD=6,EG=ED=8,∴OG=OA+AG=12,∴点E的坐标为(12,8).4.证明:(1)如图1,延长EG交DC的延长线于点H,∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,AB=CD,AB∥CD,∵AB∥CD,∴∠H=GEB,且BG=CG,∠BGE=∠CGH,∴△CGH≌△BGE(AAS)∴GE=GH,∵DE⊥AB,DC∥AB,∴DC⊥DE,且GE=GH,∴DG=EG=GH;(2)如图1:∵DB⊥EG,∴∠DOE=∠DEB=90°,且∠EDB=∠EDO,∴△DEO∽△DBO,∴∴DE×DE=4×(2+4)=24,∴DE=2,∴EO===2,∵AB∥CD,∴, ∴HO =2EO =4, ∴EH =6,且EG =GH , ∴EG =3,GO =EG ﹣EO =, ∴GB ===,∴BC =2=AD , ∴AD =DE ,∴点E 与点A 重合,如图2:∵S 四边形ABCD =2S △ABD ,∴S 四边形ABCD =2××BD ×AO =6×2=12;(3)如图3,过点O 作OF ⊥BC ,∵旋转△GDO ,得到△G ′D 'O ,∴OG =OG ',且OF ⊥BC ,∴GF =G 'F ,∵OF ∥AB ,∴==,∴GF=BG=,∴GG'=2GF=,∴BG'=BG﹣GG'=,∵AB2=AO2+BO2=12,∵EG'=AG'==,=.5.解:(1)如图1中,∵△MAN≌△MAG,∴MN=GM,∵DN=BG,GM=BG+BM,∴MN=BM+DN,∵△CMN的周长为:MN+CM+CN=8,∴BM+CM+CN+DN=8,∴BC+CD=8,∴BC=CD=4,故答案为4;(2)如图2中,结论:MN=NM+DN.延长CB至E,使BE=DN,连接AE,∵∠ABC+∠D=180°,∠ABC+∠ABE=180°,∴∠D=∠ABE,在△ABE和△ADN中,,∴△ABE≌△ADN(SAS),∴AN=AE,∠DAN=∠BAE,∵∠BAD=2∠MAN,∴∠DAN+∠BAM=∠MAN,∴∠MAN=∠EAM,在△MAN和△MAE中,,∴△MAN≌△MAE(SAS),∴MN=EM=BE+BM=BM+DN,即MN=BM+DN;(3)如图3,延长BA,CD交于G,∵∠BAM=60°,∠MAD=90°,∴∠BAD=150°,∴∠GAD=30°,∵AD=2,∴DG=1,AG=,∵∠DAN=15°,∴∠GAN=45°,∴AG=GN=,∴BG=2+,∴BC=2BG=4+2,CG=BG=2+3,∴CD=CG﹣DG=2+2,由(2)得,MN=BM+DN,∴△CMN的周长=CM+CN+MN=CN+DN+CM+BM=BC+CD=4+2+2+2=6+4.6.解:(1)∵DE∥BC,∴===;故答案为:;(2)的值不变化,值为;理由如下:由(1)得:DE∥B,∴△ADE∽△ABC,∴=,由旋转的性质得:∠BAD=∠CAE,∴△ABD∽△ACE,∴==;(3)在AB上截取AM=AD=3,过M作MN∥BC交AC于N,把△AMN绕A逆时针旋转得△ADE,连接CE,如图所示:则MN⊥AC,DE=MN,∠DAE=∠BAC,∴∠AED=∠ANM=90°,∵AC⊥BC于点C,∠BAC=∠ADC=θ,且tanθ==,∴BC:AC:AB=3:4:5,同(2)得:△ABD∽△ACE,∴==,∵MN∥BC,∴△AMN∽△ABC,∴=,∴MN=×AM=×3=,∵∠BAC=∠ADC=θ,∴∠DAE=∠ADC=θ,∴AE∥CD,∴∠CDE+∠AED=180°,∴∠CDE=90°,∴CE===,∴BD=CE=×=.7.解:(1)由题意知△ADE≌△AD′E,∴∠DAE=∠D′AE,∵D′点落在AB边上时,∠DAE+∠D′AE=90°,∴∠DAE=∠D′AE=45°,故答案为:45;(2)①如图2,由题意知∠ACD=∠ACD′,∵四边形ABCD是矩形,∴AB∥CD,∴∠ACD=∠BAC,∴∠ACD′=∠BAC,∴AF=FC;②设AF=FC=x,则BF=10﹣x,在Rt△BCF中,由BF2+BC2=CF2得(10﹣x)2+62=x2,解得x=6.8,即AF=6.8;(3)如图3,∵△AD′E≌△ADE,∴∠AD′E=∠D=90°,∵∠AD′B=90°,∴B、D′、E三点共线,又∵△ABD′∽△BEC,AD′=BC,∴△ABD′≌△BEC,∴BE=AB=10,∵BD′===8,∴DE=D′E=10﹣8=2;如图4,∵∠ABD″+∠CBE=∠ABD″+∠BAD″=90°,∴∠CBE=∠BAD″,在△ABD″和△BEC中,∵,∴△ABD″≌△BEC,∴BE=AB=10,∴DE=D″E=8+10=18.综上所知,DE=2或18.8.解:(1)∵,,(n+4)2≥0,∴m﹣4=0,n+4=0,∴m=4,n=﹣4,∴A(0,4),B(﹣4,0);(2)∵AC∥OB,∴∠C=∠CBO,∠CAF=∠BOF,∵AC=OB,∴△ACF≌△OBF(ASA),∴AF=OF=2,∵OA=OB,∠OAD=∠OBF,∠BOF=∠AOD,∴△BOF≌△AOD(ASA),∴OF=OD=2,∴BD=6,①当0≤t<3时,S=PD•OF=(6﹣2t)×2=6﹣2t;②当t>3时,S=PD•OF=(2t﹣6)×2=2t﹣6;(3)①当0≤t<3,如图2,∵AO=4,OD=2,∴AD=,∵BD×OA=AD×BE,∴BE=,∴DE=,∵四边形PDEG为菱形,∴DP=DE=EG=,∵D(2,0),∴P(2﹣,0),作EH⊥BD于H,∵BE×DE=BD×EH,∴EH=,∴HD=,∴OH=,∴E(,),∵EG∥OB,∴G与E的纵坐标相同,∴G(﹣,)②当t>3时,如图3,同理求得P(2+,0),G(+,).9.(1)证明:∵四边形ABCD和四边形CEFG为正方形,∴BC=DC,CG=CE,∠BCD=∠GCE=90°.∴∠BCD+∠DCG=∠GCE+∠DCG,∴∠BCG=∠DCE.在△BCG和△DCE中,,∴△BCG≌△DCE(SAS).∴BG=DE;(2)解:①连接BE,如图2所示:由(1)可知:BG=DE,∵CG∥BD,∴∠DCG=∠BDC=45°,∴∠BCG=∠BCD+∠DCG=90°+45°=135°,∵∠GCE=90°,∴∠BCE=360°﹣∠BCG﹣∠GCE=360°﹣135°﹣90°=135°,∴∠BCG=∠BCE,在△BCG和△BCE中,,∴△BCG≌△BCE(SAS),∴BG=BE,∵BG=BD=DE,∴BD=BE=DE,∴△BDE为等边三角形,∴∠BDE=60°;②延长EC交BD于点H,过点G作GN⊥BC于N,如图3所示:在△BCE和△DCE中,,∴△BCE≌△BCG(SSS),∴∠BEC=∠DEC,∴EH⊥BD,BH=BD,∵BC=CD=,∴BD=BC=2,∴BE=2,BH=1,∴CH=1,在Rt△BHE中,由勾股定理得:EH===,∴CE=﹣1,∵∠BCG=135°,∴∠GCN=45°,∴△GCN是等腰直角三角形,∴GN=CG=(﹣1),=BC•GN=××(﹣1)=.∴S△BCG10.【观察与猜想】解:∵四边形ABCD是正方形,∴∠B=∠BCD=∠ADC=90°,AB=BC=CD=AD,∠ACB=∠ACD=45°,由旋转的性质得:GC=AC,∠ACG=90°,∴∠ACB=∠GCD=45°,在△ABC和△GDC中,,∴△ABC≌△GDC(SAS),∴AB=GD,∠GDC=∠B=90°,∴DG∥BC,△CDG是等腰直角三角形,∴DG=CD=BC,∵点E与点D重合,点F与点C重合,∴EG=BF,EG∥BF;故答案为:EG=BF,EG∥BF;【探究与证明】证明:点E、F分别在CD、BC边上任意位置时,如图③所示:作GM⊥BC,交BC延长线于M,则∠GMF=90°,MG∥DC,∵四边形ABCD是正方形,∴AB=BC,∠BCD=∠B=90°,∴∠BAF+∠BFA=90°,由旋转的性质得:GF=AF,∠AFG=90°,∴∠BFA+∠MFG=90°,∴∠BAF=∠MFG,在△ABF和△FMG中,,∴△ABF≌△FMG(AAS),∴AB=FM,BF=MG,∵AB=BC,∴BF=CM,∵BF=CE,∴MG=CE,∵MG∥CE,∴四边形CEGM是平行四边形,又∵∠GMF=90°,∴四边形CEGM是矩形,∴EG=CM,EG∥CM,∴EG=BF,EG∥BF;点E、F在CD、BC边的延长线上的任意位置时,如图④所示:作GM⊥BC,交BC延长线于M,则∠GMF=90°,MG∥DC,∵四边形ABCD是正方形,∴AB=BC,∠BCD=∠B=90°,∴∠BAF+∠BFA=90°,由旋转的性质得:GF=AF,∠AFG=90°,∴∠BFA+∠MFG=90°,∴∠BAF=∠MFG,在△ABF和△FMG中,,∴△ABF≌△FMG(AAS),∴AB=FM,BF=MG,∵AB=BC,∴BF=CM,∵BF=CE,∴MG=CE,∵MG∥CE,∴四边形CEGM是平行四边形,又∵∠GMF=90°,∴四边形CEGM是矩形,∴EG=CM,EG∥CM,∴EG=BF,EG∥BF;【拓展与延伸】解:==k(k≠1)时,线段EG与BF的数量关系与位置关系仍然成立;理由如下:作GM⊥BC,交BC延长线于M,如图⑤所示:则∠GMF=90°,MG∥DC,∵四边形ABCD是正方形,∴AB=BC,∠BCD=∠B=90°,∴∠BAF+∠BFA=90°,∠B=∠GMF,由旋转的性质得:∠AFG=90°,∴∠BFA+∠MFG=90°,∴∠BAF=∠MFG,∴△ABF∽△FMG,∴==,∵==k,∴==k,==k,∴FM=BC,GM=CE,∴BF=CM,∵MG∥CE,∴四边形CEGM是平行四边形,又∵∠GMF=90°,∴四边形CEGM是矩形,∴EG=CM,EG∥CM,∴EG=BF,EG∥BF;故答案为:==k(k≠1).11.解:(1)AF=DE.理由如下:∵四边形OADC是正方形,∴OA=AD,∠DAE=∠AOF=90°,由题意得:AE=OF,在△AOF和△DAE中,,∴△AOF≌△DAE(SAS),∴AF=DE.(2)四边形HIJK是正方形.理由如下:如图①所示:∵H、I、J、K分别是AE、EF、FD、DA的中点,∴HI=KJ=AF,HK=IJ=ED,HI∥AF,HK∥ED,∵AF=DE,∴HI=KJ=HK=IJ,∴四边形HIJK是菱形,∵△AOF≌△DAE,∴∠ADE=∠OAF,∵∠ADE+∠AED=90°,∴∠OAF+∠AED=90°,∴∠AGE=90°,∴AF⊥ED,∵HI∥AF,HK∥ED,∴HI⊥HK,∴∠KHI=90°,∴四边形HIJK是正方形.(3)存在,理由如下:∵四边形OADC为正方形,点D的坐标为(4,4),∴OA=AD=OC=4,∴C(4,0),∵点E为AO的中点,∴OE=2,E(0,2);分情况讨论:如图②所示,①当OC是以O,C、M、N为顶点的菱形的对角线时,OC与MN互相垂直平分,则M为CE 的中点,∴点M的坐标为(2,1),∵点M和N关于OC对称,∴N(2,﹣1);②当OC是以O,C、M、N为顶点的菱形的边时,若M在y轴的左侧时,∵四边形OCM'N'是菱形,∴OM'=OC=4,M'N'∥OC,∴△M'FE∽△COE,∴==2,设EF=x,则M'F=2x,OF=x+2,在Rt△OM'F中,由勾股定理得:(2x)2+(x+2)2=42,解得:x=,或x=﹣2(舍去),∴M'F=,FN=4﹣M'F=,OF=2+=,∴N'(,);若M在y轴的右侧时,作N''P⊥OC于P,∵ON''∥CM'',∴∠PON''=∠OCE,∴tan∠PON''==tan∠OCE==,设PN''=y,则OP=2y,在Rt△OPN''中,由勾股定理得:y2+(2y)2=42,解得:y=,∴PN''=,OP=,∴N''(,﹣);综上所述,存在点N使以O,C、M、N为顶点的四边形是菱形,点N的坐标为(2,﹣1)或(,)或(,﹣).12.(1)证明:∵四边形ABCD为矩形,∴BC=AD,CD=AB,∠C=∠ABC=∠A=∠ADC=90°,∵CE=AF,∴BC﹣CE=AD﹣AF,即BE=DF,在△DCE和△BAF中,,∴△DCE≌△BAF(SAS),∴∠CDE=∠ABF,∠CED=∠AFB,由折叠的性质得:∠CDE=∠C′DE,∠ABF=∠A′BF,∠CED=∠C′ED,∠AFB=∠A′FB,∵∠CDE+∠C′DE+∠HDF=90°,∠ABF+∠A′BF+∠GBE=90°,∠CED+∠C′ED+∠GEB=180°,∠AFB+∠A′FB+∠HFD=180°,∴∠HDF=∠GBE,∠GEB=∠HFD,在△BEG和△DFH中,,∴△BEG≌△DFH(ASA);(2)解:四边形A'HC'G的形状是矩形;理由如下:由折叠的性质得:∠C=∠DC′E=∠A=∠BA′F=90°,由(1)得:△BEG≌△DFH,∴∠BGE=∠DHF,∵∠BGE=∠A′GC′,∠DHF=∠A′HC′,∴∠A′GC′=∠A′HC′,∵∠DC′E+∠BA′F+∠A′GC′+∠A′HC′=90°+90°+∠A′GC′+∠A′HC′=360°,∴∠A′GC′+∠A′HC′=180°,∴∠A′GC′=∠A′HC′=90°,∴∠DC′E=∠BA′F=∠A′GC′=∠A′HC′=90°,∴四边形A'HC'G是矩形;(3)解:由(2)知:∠BGE=∠A′GC′=90°,∵tan∠EBG=,∴设EG=3x,则BG=4x,BE==5x,由折叠的性质得:CE=C′E=EG+C′G=3x+1,CD=AB=A′B=BG+A′G=4x+6,∴BC=CE+BE=3x+1+5x=8x+1,S矩形ABCD=CD•BC=4×CD•CE+2×EG•BG﹣A'G•C'G,即(4x+6)(8x+1)=4×(3x+1)(4x+6)+2×3x•4x﹣6×1,整理得:x2﹣2x=0,解得:x1=2,x2=0(不合题意舍去),∴CD=4×2+6=14,CB=8×2+1=17,∴S矩形ABCD=CD•BC=14×17=238.13.解:(1)作D'E⊥BC交BC的延长线于E,如图2所示:则∠E=90°,∵四边形ABCD是矩形,∴∠ABC=90°,AB∥CD,AD∥BC,CD=AB=2,∴∠ACD=∠BAC,∠DAC=∠ACB=30°,∵∠ACB=30°,∴BC=AB=2,∠ACD=∠BAC=60°,由旋转的性质得:CD'=CD=2,∠ACA'=30°,∴∠D'CE=180°﹣30°﹣30°﹣60°=60°,∴∠CD'E=30°,∴CE=CD'=1,D'E=CE=,∴S=BC×D'E=×2×=3;△BCD′(2)△OBD′是直角三角形,理由如下:连接OC,如图3所示:由旋转的性质得:CA'=CA,∠AD'C=∠ADC=90°,∠D'A'C=∠DAC=30°,∵O是AA′的中点,∴OC⊥AA',∴∠AOC=∠AOC=90°=∠ABC=∠AD'C,∴∠ABC+∠AOC=180°,∴A、B、C、O四点共圆,∴∠BOC=∠BAC=60°,同理;A、D'、C、O四点共圆,∴∠D'OC=∠D'A'C=30°,∴∠BOD'=90°,∴△BOD'是直角三角形;(3)若B、C、D'三点不共线,如图3所示:由(2)得:∠OBC=∠OAC,∠OD'C=∠OA'C,∠OAC=∠OA'C,∴∠OBC=∠OD'C,∵OB=OD,∴∠OBD'=∠OD'B,∴∠CBD'=∠CD'B,∴CB=CD',∵CD'=CD,∴BC=CD,这与已知相矛盾,∴B、C、D'三点共线;分两种情况:当点D'在BC的延长线上时,如图4所示:=90°;α=α1当点D'在边BC上时,如图5所示:=360°﹣90°=270°;α=α1故答案为:90°或270;时,△OBD′不存在时,分两种情况:当α=α2当O与D'重合时,如图6所示:∵CA'=CA,∠CAD'=∠CA'D'=30°,∴∠ACA'=120°,=360°﹣120°=240°;∴α=α2当O与B重合时,如图7所示:则AA'=2AB=4,∵CA=CA'=2AB=4=AA',∴△ACA'是等边三角形,∴∠A'CA=60°,=360°﹣60°=300°;∴α=α2故答案为:240°或300.14.解:(1)①如图1,∵CF∥AE ∴∠FCE=∠AEB,∠CFE=∠AEF∵△ABE翻折得到△AFE∴EF=BE=1,∠AEF=∠AEB∴∠FCE=∠CFE∴CE=EF=1∴m=BC=BE+CE=2∴m的值是2.②如图2,过点F作GH⊥AD于点G,交BC于点H ∴GH⊥BC∴∠AGF=∠FHE=90°∵四边形ABCD是矩形∴∠BAD=∠B=90°∴四边形ABHG是矩形∴GH=AB=2,AG=BH∵△ABE翻折得到△AFE∴EF=BE=1,AF=AB=2,∠AFE=∠B=90°∴∠AFG+∠EFH=∠AFG+∠FAG=90°∴∠EFH=∠FAG∴△EFH∽△FAG∴设EH=x,则AG=BH=x+1∴FG=2EH=2x∴FH=GH﹣FG=2﹣2x∴解得:x=∴AG=,FG=∵AD=BC=m∴DG=|AD﹣AG|=|m﹣|∴DF 2=DG 2+FG 2=(m ﹣)2+2≥,即可把DF 2看作关于m 的二次函数,抛物线开口向上,最小值为∵∴∵(m ﹣)2+2= 解得:m 1=,m 2=1 ∴根据二次函数图象可知,1≤m(2)如图3,过点B 1作MN ⊥AD 于点M ,交BC 于点N ∴MN ∥AB ,MN =AB =2∵AC = ∴sin ∠ACB =∵AD ∥BC ,点B 1在AC 上∴∠MAB 1=∠ACB∴sin ∠MAB 1= ∴∵点B 1到AD 的距离小于∴MB 1= 解得:∵m>0 ∴m>如图4,当E1落在边AD上,且B1在AC上时,m最大,此时,∠ACB=∠B1AE1=∠BAE∴tan∠ACB=tan∠BAE∴∴m=BC=2AB=4∴m的取值范围是<m≤415.解:(1)BE=DG.BE⊥DG;理由如下:∵四边形ABCD和四边形CEFG为正方形,∴CD=BC,CE=CG,∠BCE=∠DCG=90°,在△BEC和△DGC中,,∴△BEC≌△DGC(SAS),∴BE=DG;如图1,延长GD交BE于点H,∵△BEC≌△DGC,∴∠DGC=∠BEC,∴∠DGC+∠EBC=∠BEC+∠EBC=90°,∴∠BHG=90°,即BE⊥DG;故答案为:BE=DG,BE⊥DG.(2)成立,理由如下:如图2所示:同(1)得:△DCG≌△BCE(SAS),∴BE=DG,∠CDG=∠CBE,∵∠DME=∠BMC,∠CBE+∠BMC=90°,∴∠CDG+∠DME=90°,∴∠DOB=90°,∴BE⊥DG;(3)由(2)得:DG=EB,分两种情况:①如图3所示:∵正方形ABCD的边长为4,正方形ECGF的边长为3,∴AC⊥BD,BD=AC=AB=4,OA=OC=OB=AC=2,CE=3,∴AE=AC﹣CE=,∴OE=OA﹣AE=,在Rt△BOE中,由勾股定理得:DG=BE==;②如图4所示:OE=CE+OC=2+3=5,在Rt△BOE中,由勾股定理得:DG=BE==;综上所述,若A、C、E三点共线,DG的长为或.16.(1)证明:过点F作FH⊥AB于H,如图1所示:则∠AHF=90°,∵AM平分∠DAH,∴∠FAH=45°,∴△AFH是等腰直角三角形,∴FH=AH,AF=AH=FH,∵AF=BE,∴FH=AH=BE,∴AH+AE=BE+AE,∴HE=AB=BC,在△FEH和△ECB中,,∴△FEH≌△ECB(SAS),∴CE=EF;(2)解:∵△FEH≌△ECB,∴∠FEH=∠ECB,∵在Rt△BCE中,∠ECB+∠CEB=90°,∴∠FEH+∠CEB=90°,∴∠CEF=90°,由(1)知,CE=EF,∴△CEF是等腰直角三角形,∠ECF=∠EFC=45°,把Rt△CDG绕点C逆时针旋转90°至Rt△CBN位置,如图2所示:则∠GCN=90°,CG=CN,DG=BN,∴∠NCE=∠GCN﹣∠GCE=45°,∴∠NCE=∠GCE,在△CEG和△CEN中,,∴△CEG≌△CEN(SAS),∴GE=NE=EB+BN=EB+DG,∴△AEG的周长=AE+GE+AG=AE+EB+DG+AG=AB+AD=2a;(3)解:设AE=x,由(1)得:FH=BE=a﹣x,则△EAF的面积=AE×FH=x(a﹣x)=﹣(x﹣)2+,∴当x=,即点E在AB边中点时,△EAF的面积最大,最大值为.17.解:(1)∵矩形ABCD,∴AB⊥BC,PA=PC;∵PE⊥AB,BC⊥AB,∴PE∥BC,∴∠APE=∠PCF;∵PF⊥BC,AB⊥BC,∴PF∥AB,∴∠PAE=∠CPF.∵在△APE与△PCF中,,∴△APE≌△PCF(ASA),∴PE=CF.在Rt△PCF中,=tan30°=,∴=,故答案为:.(2)如答图1,过点P作PM⊥AB于点M,PN⊥BC于点N,则PM⊥PN.0°~30°时∵PM⊥PN,PE⊥PF,∴∠EPM=∠FPN,又∵∠PME=∠PNF=90°,∴△PME∽△PNF,∴=,由(1)知,=,∴=.同理30°~60°时,=;(3)当60°<α<90°时,将顶点P在AC上移动且使=时,如答图2,过点P作PM⊥AB于点M,PN⊥BC于点N,则PM⊥PN,PM∥BC,PN∥AB.∵PM∥BC,PN∥AB,∴∠APM=∠PCN,∠PAM=∠CPN,∴△APM∽△PCN,∴==,得CN=2PM.在Rt△PCN中,==tan30°=,∴=.∵PM⊥PN,PE⊥PF,∴∠EPM=∠FPN,又∵∠PME=∠PNF=90°,∴△PME∽△PNF,∴==.18.解:(1)∵四边形DEFG是矩形,∴DG=BF,GF=BD,∠BDG=∠BFG=90°,∴∠ADG=∠CFG=90°,由题意得:BD=3t,则AD=6﹣3t,DG=4t,CF=8﹣4t,FG=BD=3t,当AG=CG时,由勾股定理得:AG2=AD2+DG2,CG2=FG2+FC2,∴AD2+DG2=FG2+FC2,即(6﹣3t)2+(4t)2=(3t)2+(8﹣4t)2,解得:t=1,即当AG=CG时,t=1秒;(2)分两种情况:①当0<t≤1时,如图1所示:S=矩形DEFG的面积=3t×4t=12t2;即S=12t2(0<t≤1);②当1<t≤2时,如图2所示:∵∠ADH=∠B=90°,∠A=∠A,∴△ADH∽△ABC,∴=,即=,解得:DH=8﹣4t,同理得:FM=6﹣3t,∴S=×6×8﹣×2×(6﹣3t)(8﹣4t)=﹣12t2+48t﹣24;即S=﹣12t2+48t﹣24(1<t≤2);(3)分三种情况:①如图1所示:由题意得:×6×8﹣12t2﹣×4t×(6﹣3t)﹣×3t×(8﹣4t)=6,解得:t=;②如图3所示:由题意得:×4t×(6﹣3t)+×3t×(8﹣4t)+3t×4t﹣×6×8=6,解得:t=;③如图4所示:由勾股定理得:AC===10,∴CD=6+10﹣3t=16﹣3t,同(2)得:△CDE∽△CAB,∴==,即==,解得:DE=(16﹣3t),CE=(16﹣3t),由题意得EF=(16﹣3t),∴C与F重合,∴×8×(16﹣3t)=6,解得:t=;综上所述,当△ACG的面积为6时,t的值为秒或秒或秒.19.解:(1)如图1,过点P作PM⊥BC,垂足为M,则四边形PDCM为矩形.∴PM=DC=24.∵QB=32﹣t,∴S=×24×(32﹣2t)=384﹣24t(0≤t<16);(2)由图可知:CM=PD=4t,CQ=2t.以B、P、Q三点为顶点的三角形是等腰三角形,可以分三种情况:①若PQ=BQ.在Rt△PMQ中,PQ2=4t2+242,由PQ2=BQ2得4t2+242=(32﹣2t)2,解得t=;②若BP=BQ.在Rt△PMB中,BP2=(32﹣4t)2+242.由BP2=BQ2得:(32﹣4t)2+242=(32﹣2t)2即3t2﹣32t+144=0.由于△=﹣704<0,∴3t2﹣32t+144=0无解,∴PB≠BQ.③若PB=PQ.由PB2=PQ2,得4t2+242=(32﹣4t)2+242整理,得3t 2﹣64t +256=0.解得t 1=,t 2=16(舍去)综合上面的讨论可知:当t =秒或t =秒时,以B 、P 、Q 三点为顶点的三角形是等腰三角形.(3)设存在时刻t ,使得PQ ⊥BD .如图2,过点Q 作QE ⊥AD 于E ,垂足为E .∵AD ∥BC∴∠BQF =∠EPQ ,又∵在△BFQ 和△BCD 中∠BFQ =∠C =90°,∴∠BQF =∠BDC ,∴∠BDC =∠EPQ ,又∵∠C =∠PEQ =90°,∴Rt △BDC ∽Rt △QPE , ∴=,即=,解得t =9.所以,当t =9秒时,PQ ⊥BD .20.(1)【发现证明】证明:把△ABE 绕点A 顺时针旋转90°至△ADG ,如图1,∴∠BAE=∠DAG,AE=AG,∵∠EAF=45°,∴∠BAE+∠FAD=45°,∴∠DAG+∠FAD=45°,∴∠EAF=∠FAG,∵AF=AF,∴△EAF≌△GAF(SAS),∴EF=FG=DF+DG,∴EF=DF+BE;(2)【类比引申】①不成立,结论:EF=DF﹣BE;证明:如图2,将△ABE绕点A顺时针旋转90°至△ADM,∴∠EAB=∠MAD,AE=AM,∠EAM=90°,BE=DM,∴∠FAM=45°=∠EAF,∵AF=AF,∴△EAF≌△MAF(SAS),。

2020年中考数学复习专题练:《四边形综合 》(含答案)

2020年中考数学复习专题练:《四边形综合 》(含答案)

2020年中考数学复习专题练:《四边形综合 》1.如图①所示,已知正方形ABCD 和正方形AEFG ,连接DG ,BE .(1)发现:当正方形AEFG 绕点A 旋转,如图②所示.①线段DG 与BE 之间的数量关系是 ;②直线DG 与直线BE 之间的位置关系是 ;(2)探究:如图③所示,若四边形ABCD 与四边形AEFG 都为矩形,且AD =2AB ,AG =2AE 时,上述结论是否成立,并说明理由.(3)应用:在(2)的情况下,连接BG 、DE ,若AE =1,AB =2,求BG 2+DE 2的值(直接写出结果).2.如图1,在正方形ABCD 中,点E 是CD 上一点(不与C ,D 两点重合),连接BE ,过点C 作CH ⊥BE 于点F ,交对角线BD 于点G ,交AD 边于点H ,连接GE ,(1)求证:△DHC ≌△CEB ;(2)如图2,若点E 是CD 的中点,当BE =8时,求线段GH 的长;(3)设正方形ABCD 的面积为S 1,四边形DEGH 的面积为S 2,当的值为时,的值为 .3.在平面直角坐标系中,四边形AOBC是矩形,点O(0,0),点A(6,0),点B(0,8).以点A为中心,顺时针旋转矩形AOBC,得到矩形ADEF,点O,B,C的对应点分别为D,E,F,记旋转角为α(0°<α<90°).(I)如图①,当α=30°时,求点D的坐标;(Ⅱ)如图②,当点E落在AC的延长线上时,求点D的坐标;(Ⅲ)当点D落在线段OC上时,求点E的坐标(直接写出结果即可).4.如图,BD是平行四边形ABCD的对角线,DE⊥AB于点E,过点E的直线交BC于点G,且BG=CG.(1)求证:GD=EG.(2)若BD⊥EG垂足为O,BO=2,DO=4,画出图形并求出四边形ABCD的面积.(3)在(2)的条件下,以O为旋转中心顺时针旋转△GDO,得到△G′D'O,点G′落在BC上时,请直接写出G′E的长.5.(1)【探索发现】如图1,在正方形ABCD中,点M,N分别是边BC,CD上的点,∠MAN=45°,若将△DAN 绕点A顺时针旋转90°到△BAG位置,可得△MAN≌△MAG,若△MCN的周长为8,则正方形ABCD的边长为.(2)【类比延伸】如图2,在四边形ABCD中,AB=AD,∠BAD=120°,∠B+∠D=180°,点M,N分别在边BC,CD上的点,∠MAN=60°,请判断线段BM,DN,MN之间的数量关系,并说明理由.(3)【拓展应用】如图3,在四边形ABCD中,AB=AD=2,∠ADC=120°,点M,N分别在边BC,CD上,连接AM,MN,AN,△ABM是等边三角形,AM⊥AD于点A,∠DAN=15°,请直接写出△CMN 的周长.6.(1)如图1,在△ABC中,AB>AC,点D,E分别在边AB,AC上,且DE∥BC,若AD=2,AE=,则的值是;(2)如图2,在(1)的条件下,将△ADE绕点A逆时针方向旋转一定的角度,连接CE 和BD,的值变化吗?若变化,请说明理由;若不变化,请求出不变的值;(3)如图3,在四边形ABCD中,AC⊥BC于点C,∠BAC=∠ADC=θ,且tanθ=,当CD=6,AD=3时,请直接写出线段BD的长度.7.如图1,长方形ABCD中,∠DAB=∠B=∠DCB=∠D=90°,AD=BC=6,AB=CD=10.点E为射线DC上的一个动点,把△ADE沿直线AE翻折得△AD′E.(1)当D′点落在AB边上时,∠DAE=°;(2)如图2,当E点与C点重合时,D′C与AB交点F,①求证:AF=FC;②求AF长.(3)连接D′B,当∠AD′B=90°时,求DE的长.8.在平面直角坐标系中,点O是坐标原点,A(0,m),B(n,O),AC∥OB,且AC=OB,连接BC交x轴于点F,其中m、n满足方程+n2+8n+16=0.(1)求A、B两点坐标;(2)过A做AE⊥BC于E,延长AE交x轴于点D,动点P从点B出发以每秒2个单位的速度向x轴正半轴方向运动,设△PFD的面积为S,请用含t的式子表示S,并直接写出t的取值范围;(3)在(2)的条件下,连接PE,将△PED沿PE翻折到△PEG的位置(点D与点G对应),当四边形PDEG为菱形时,求点P和点G的坐标.9.已知四边形ABCD和四边形CEFG都是正方形,且AB>CE.(1)如图1,连接BG、DE.求证:BG=DE;(2)如图2,如果正方形CEFG绕点C旋转到某一位置恰好使得CG∥BD,BG=BD.①求∠BDE的度数;②若正方形ABCD的边长是,请求出△BCG的面积.10.【综合与实践】如图①,在正方形ABCD中,点E、F分别在射线CD、BC上,且BF=CE,将线段FA绕点F顺时针旋转90°得到线段FG,连接EG,试探究线段EG和BF的数量关系和位置关系.【观察与猜想】任务一:“智慧小组”首先考虑点E、F的特殊位置如图②,当点E与点D重合,点F与点C重合时,易知:EG与BF的数量关系是,EG与BF的位置关系是.【探究与证明】任务二:“博学小组”同学认为E、F不一定必须在特殊位置,他们分两种情况,一种是点E、F分别在CD、BC边上任意位置时(如图③);一种是点E、F在CD、BC边的延长线上的任意位置时(如图④),线段EG与BF的数量关系与位置关系仍然成立.请你选择其中一种情况给出证明.【拓展与延伸】“创新小组”同学认为,若将“正方形ABCD”改为“矩形ABCD,且=k(k≠1)”,点E、F分别在射线CD、BC上任意位置时,仍将线段FA绕点F顺时针旋转90°,并适当延长得到线段FG,连接EG(如图⑤),则当线段BF、CE、AF、FG满足一个条件时,线段EG与BF的数量关系与位置关系仍然成立.(请你在横线上直接写出这个条件,无需证明)11.在平面直角坐标系xOy中,四边形OADC为正方形,点D的坐标为(4,4),动点E沿边AO从A向O以每秒1cm的速度运动,同时动点F沿边OC从O向C以同样的速度运动,连接AF、DE交于点G.(1)试探索线段AF、DE的关系,写出你的结论并说明理由;(2)连接EF、DF,分别取AE、EF、FD、DA的中点H、I、J、K,则四边形HIJK是什么特殊平行四边形?请在图①中补全图形,并说明理由.(3)如图②当点E运动到AO中点时,点M是直线EC上任意一点,点N是平面内任意一点,是否存在点N使以O,C、M、N为顶点的四边形是菱形?若存在,请直接写出点N的坐标;若不存在,请说明理由.12.综合与实践动手操作:第一步:在矩形纸片ABCD的边BC,AD上分别取两点E,F,使CE=AF;第二步:分别以DE,BF为对称轴将△CDE与△ABF翻折得到△C'DE与△A'BF,且边C'E 与A'B交于点G,边A'F与C'D交于一点H.问题解决:(1)求证:△BEG≌△DFH;(2)请判断四边形A'HC'G的形状,并证明你发现的结论;(3)已知tan∠EBG=,A'G=6,C'G=1,求矩形纸片ABCD的面积.13.如图1,矩形ABCD中,∠ACB=30°,将△ACD绕C点顺时针旋转α(0°<α<360°)至△A'CD'位置.(1)如图2,若AB=2,α=30°,求S△BCD′.(2)如图3,取AA′中点O,连OB、OD′、BD′.若△OBD′存在,试判定△OBD′的形状.(3)当α=α1时,OB=OD′,则α1=°;当α=α2时,△OBD′不存在,则α2=°.14.已知矩形ABCD 中,AB =2,BC =m ,点E 是边BC 上一点,BE =1,连接AE .(1)沿AE 翻折△ABE 使点B 落在点F 处,①连接CF ,若CF ∥AE ,求m 的值;②连接DF ,若≤DF ≤,求m 的取值范围.(2)△ABE 绕点A 顺时针旋转得△AB 1E 1,点E 1落在边AD 上时旋转停止.若点B 1落在矩形对角线AC 上,且点B 1到AD 的距离小于时,求m 的取值范围.15.如图1,正方形ABCD 的边CD 在正方形ECGF 的边CE 上,连接BE 、DG .(1)BE 和DG 的数量关系是 ,BE 和DG 的位置关系是 ;(2)把正方形ECGF 绕点C 旋转,如图2,(1)中的结论是否还成立?若成立,写出证明过程,若不成立,请说明理由;(3)设正方形ABCD 的边长为4,正方形ECGF 的边长为3,正方形ECGF 绕点C 旋转过程中,若A 、C 、E 三点共线,直接写出DG 的长.16.如图,正方形ABCD的边长为a,射线AM是∠BAD外角的平分线,点E在边AB上运动(不与点A、B重合),点F在射线AM上,且AF=BE,CF与AD相交于点G,连结EC、EF、EG.(1)求证:CE=EF;(2)求△AEG的周长(用含a的代数式表示);(3)试探索:点E在边AB上运动至什么位置时,△EAF的面积最大.17.问题情境:矩形ABCD中,∠ACB=30°,将一块直角三角板的直角顶点P放在两对角线的交点处,以点P为旋转中心转动三角板,并保证三角板的两直角边分别与边AB、BC所在的直线相交,交点为E、F.探究1:如图1,当PE⊥AB,PF⊥BC时,则=.探究2:如图2,在(1)的基础上,将三角板绕点P逆时针旋转,旋转角为α,(0°<α<60°),试求的值.探究3:在(2)的基础上继续旋转,当60°<α<90°时,将顶点P在AC上移动且使=时,如图3,试求的值.18.在Rt△ABC中,∠B=90°,AB=6,BC=8,点D从点B出发,以每秒3个单位的速度沿B→A→C运动,到点C停止.在点D运动的过程中,过点D作DE⊥BC,垂足为E,以DE为一边在右侧作矩形DEFG,点F在BC边上,且EF:DE=4:3,连结AG,CG,设运动时间为t(秒),矩形DEFG与△ABC重叠部分面积为S.(1)当AG=CG时,求t的值.(2)当点D在边AB上运动时,求S与t的函数关系式.(3)当△ACG的面积为6时,直接写出t的值.19.如图,在四边形ABCD中,AD∥BC,∠C=90°,BC=32,DC=24,AD=42,动点P从点D出发,沿射线DA的方向以每秒4个单位长的速度运动,动点Q从点C出发,在线段CB 上以每秒2个单位长的速度向点B运动,点P,Q分别从点D,C同时出发,当点Q运动到点B时,点P随之停止运动.设运动的时间为t(秒).(1)设△BPQ的面积为S,求S与t之间的函数关系式;(2)当t为何值时,以B,P,Q三点为顶点的三角形是等腰三角形?(3)是否存在时刻t,使得PQ⊥BD?若存在,求出t的值;若不存在,请说明理由.20.(1)【发现证明】如图1,在正方形ABCD中,点E,F分别是BC,CD边上的动点,且∠EAF=45°,求证:EF=DF+BE.小明发现,当把△ABE绕点A顺时针旋转90°至△ADG,使AB与AD重合时能够证明,请你给出证明过程.(2)【类比引申】①如图2,在正方形ABCD中,如果点E,F分别是CB,DC延长线上的动点,且∠EAF=45°,则(1)中的结论还成立吗?请写出证明过程.②如图3,如果点E,F分别是BC,CD延长线上的动点,且∠EAF=45°,则EF,BE,DF之间的数量关系是(不要求证明)(3)【联想拓展】如图1,若正方形ABCD的边长为6,AE=3,求AF的长.参考答案1.解:(1)①如图②中,∵四边形ABCD和四边形AEFG是正方形,∴AE=AG,AB=AD,∠BAD=∠EAG=90°,∴∠BAE=∠DAG,在△ABE和△DAG中,,∴△ABE≌△ADG(SAS),∴BE=DG;②如图2,延长BE交AD于T,交DG于H.由①知,△ABE≌△DAG,∴∠ABE=∠ADG,∵∠ATB+∠ABE=90°,∴∠ATB+∠ADG=90°,∵∠ATB=∠DTH,∴∠DTH+∠ADG=90°,∴∠DHB=90°,∴BE⊥DG,故答案为:BE=DG,BE⊥DG;(2)数量关系不成立,DG=2BE,位置关系成立.如图③中,延长BE交AD于T,交DG于H.∵四边形ABCD与四边形AEFG都为矩形,∴∠BAD=∠EAG,∴∠BAE=∠DAG,∵AD=2AB,AG=2AE,∴==,∴△ABE∽△ADG,∴∠ABE=∠ADG,=,∴DG=2BE,∵∠ATB+∠ABE=90°,∴∠ATB+∠ADG=90°,∵∠ATB=∠DTH,∴∠DTH+∠ADG=90°,∴∠DHB=90°,∴BE⊥DG;(3)如图④中,作ET⊥AD于T,GH⊥BA交BA的延长线于H.设ET=x,AT=y.∵△AHG∽△ATE,∴===2,∴GH=2x,AH=2y,∴4x2+4y2=4,∴x2+y2=1,∴BG2+DE2=(2x)2+(2y+2)2+x2+(4﹣y)2=5x2+5y2+20=25.2.证明(1)∵四边形ABCD是正方形,∴CD=BC,∠HDC=∠BCE=90°,∴∠DHC+∠DCH=90°,∵CH⊥BE,∴∠EFC=90°,∴∠ECF+∠BEC=90°,∴∠CHD=∠BEC,∴△DHC≌△CEB(AAS).(2)解:∵△DHC≌△CEB,∴CH=BE,DH=CE,∵CE=DE=CD,CD=CB,∴DH=BC,∵DH∥BC,∴.∴GC=2GH,设GH=x,则,则CG=2x,∴3x=8,∴x=.即GH=.(3)解:∵,∴,∵DH=CE,DC=BC,∴,∵DH∥BC,∴,∴,,设S△DGH =9a,则S△BCG=49a,S△DCG=21a,∴S△BCD=49a+21a=70a,∴S1=2S△BCD=140a,∵S△DEG :S△CEG=4:3,∴S△DEG=12a,∴S2=12a+9a=21a.∴.故答案为:.3.解:(I)过点D作DG⊥x轴于G,如图①所示:∵点A(6,0),点B(0,8).∴OA=6,OB=8,∵以点A为中心,顺时针旋转矩形AOBC,得到矩形ADEF,∴AD=AO=6,α=∠OAD=30°,DE=OB=8,在Rt△ADG中,DG=AD=3,AG=DG=3,∴OG=OA﹣AG=6﹣3,∴点D的坐标为(6﹣3,3);(Ⅱ)过点D作DG⊥x轴于G,DH⊥AE于H,如图②所示:则GA=DH,HA=DG,∵DE=OB=8,∠ADE=∠AOB=90°,∴AE===10,∵AE×DH=AD×DE,∴DH===,∴OG=OA﹣GA=OA﹣DH=6﹣=,DG===,∴点D的坐标为(,);(Ⅲ)连接AE,作EG⊥x轴于G,如图③所示:由旋转的性质得:∠DAE=∠AOC,AD=AO,∴∠OAC=∠ADO,∴∠DAE=∠ADO,∴AE∥OC,∴∠GAE=∠AOD,∴∠DAE=∠GAE,在△AEG和△AED中,,∴△AEG≌△AED(AAS),∴AG=AD=6,EG=ED=8,∴OG=OA+AG=12,∴点E的坐标为(12,8).4.证明:(1)如图1,延长EG交DC的延长线于点H,∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,AB=CD,AB∥CD,∵AB∥CD,∴∠H=GEB,且BG=CG,∠BGE=∠CGH,∴△CGH≌△BGE(AAS)∴GE=GH,∵DE⊥AB,DC∥AB,∴DC⊥DE,且GE=GH,∴DG=EG=GH;(2)如图1:∵DB⊥EG,∴∠DOE=∠DEB=90°,且∠EDB=∠EDO,∴△DEO∽△DBO,∴∴DE×DE=4×(2+4)=24,∴DE=2,∴EO===2,∵AB∥CD,∴, ∴HO =2EO =4, ∴EH =6,且EG =GH , ∴EG =3,GO =EG ﹣EO =, ∴GB ===,∴BC =2=AD , ∴AD =DE ,∴点E 与点A 重合,如图2:∵S 四边形ABCD =2S △ABD ,∴S 四边形ABCD =2××BD ×AO =6×2=12;(3)如图3,过点O 作OF ⊥BC ,∵旋转△GDO ,得到△G ′D 'O ,∴OG =OG ',且OF ⊥BC ,∴GF =G 'F ,∵OF ∥AB ,∴==,∴GF=BG=,∴GG'=2GF=,∴BG'=BG﹣GG'=,∵AB2=AO2+BO2=12,∵EG'=AG'==,=.5.解:(1)如图1中,∵△MAN≌△MAG,∴MN=GM,∵DN=BG,GM=BG+BM,∴MN=BM+DN,∵△CMN的周长为:MN+CM+CN=8,∴BM+CM+CN+DN=8,∴BC+CD=8,∴BC=CD=4,故答案为4;(2)如图2中,结论:MN=NM+DN.延长CB至E,使BE=DN,连接AE,∵∠ABC+∠D=180°,∠ABC+∠ABE=180°,∴∠D=∠ABE,在△ABE和△ADN中,,∴△ABE≌△ADN(SAS),∴AN=AE,∠DAN=∠BAE,∵∠BAD=2∠MAN,∴∠DAN+∠BAM=∠MAN,∴∠MAN=∠EAM,在△MAN和△MAE中,,∴△MAN≌△MAE(SAS),∴MN=EM=BE+BM=BM+DN,即MN=BM+DN;(3)如图3,延长BA,CD交于G,∵∠BAM=60°,∠MAD=90°,∴∠BAD=150°,∴∠GAD=30°,∵AD=2,∴DG=1,AG=,∵∠DAN=15°,∴∠GAN=45°,∴AG=GN=,∴BG=2+,∴BC=2BG=4+2,CG=BG=2+3,∴CD=CG﹣DG=2+2,由(2)得,MN=BM+DN,∴△CMN的周长=CM+CN+MN=CN+DN+CM+BM=BC+CD=4+2+2+2=6+4.6.解:(1)∵DE∥BC,∴===;故答案为:;(2)的值不变化,值为;理由如下:由(1)得:DE∥B,∴△ADE∽△ABC,∴=,由旋转的性质得:∠BAD=∠CAE,∴△ABD∽△ACE,∴==;(3)在AB上截取AM=AD=3,过M作MN∥BC交AC于N,把△AMN绕A逆时针旋转得△ADE,连接CE,如图所示:则MN⊥AC,DE=MN,∠DAE=∠BAC,∴∠AED=∠ANM=90°,∵AC⊥BC于点C,∠BAC=∠ADC=θ,且tanθ==,∴BC:AC:AB=3:4:5,同(2)得:△ABD∽△ACE,∴==,∵MN∥BC,∴△AMN∽△ABC,∴=,∴MN=×AM=×3=,∵∠BAC=∠ADC=θ,∴∠DAE=∠ADC=θ,∴AE∥CD,∴∠CDE+∠AED=180°,∴∠CDE=90°,∴CE===,∴BD=CE=×=.7.解:(1)由题意知△ADE≌△AD′E,∴∠DAE=∠D′AE,∵D′点落在AB边上时,∠DAE+∠D′AE=90°,∴∠DAE=∠D′AE=45°,故答案为:45;(2)①如图2,由题意知∠ACD=∠ACD′,∵四边形ABCD是矩形,∴AB∥CD,∴∠ACD=∠BAC,∴∠ACD′=∠BAC,∴AF=FC;②设AF=FC=x,则BF=10﹣x,在Rt△BCF中,由BF2+BC2=CF2得(10﹣x)2+62=x2,解得x=6.8,即AF=6.8;(3)如图3,∵△AD′E≌△ADE,∴∠AD′E=∠D=90°,∵∠AD′B=90°,∴B、D′、E三点共线,又∵△ABD′∽△BEC,AD′=BC,∴△ABD′≌△BEC,∴BE=AB=10,∵BD′===8,∴DE=D′E=10﹣8=2;如图4,∵∠ABD″+∠CBE=∠ABD″+∠BAD″=90°,∴∠CBE=∠BAD″,在△ABD″和△BEC中,∵,∴△ABD″≌△BEC,∴BE=AB=10,∴DE=D″E=8+10=18.综上所知,DE=2或18.8.解:(1)∵,,(n+4)2≥0,∴m﹣4=0,n+4=0,∴m=4,n=﹣4,∴A(0,4),B(﹣4,0);(2)∵AC∥OB,∴∠C=∠CBO,∠CAF=∠BOF,∵AC=OB,∴△ACF≌△OBF(ASA),∴AF=OF=2,∵OA=OB,∠OAD=∠OBF,∠BOF=∠AOD,∴△BOF≌△AOD(ASA),∴OF=OD=2,∴BD=6,①当0≤t<3时,S=PD•OF=(6﹣2t)×2=6﹣2t;②当t>3时,S=PD•OF=(2t﹣6)×2=2t﹣6;(3)①当0≤t<3,如图2,∵AO=4,OD=2,∴AD=,∵BD×OA=AD×BE,∴BE=,∴DE=,∵四边形PDEG为菱形,∴DP=DE=EG=,∵D(2,0),∴P(2﹣,0),作EH⊥BD于H,∵BE×DE=BD×EH,∴EH=,∴HD=,∴OH=,∴E(,),∵EG∥OB,∴G与E的纵坐标相同,∴G(﹣,)②当t>3时,如图3,同理求得P(2+,0),G(+,).9.(1)证明:∵四边形ABCD和四边形CEFG为正方形,∴BC=DC,CG=CE,∠BCD=∠GCE=90°.∴∠BCD+∠DCG=∠GCE+∠DCG,∴∠BCG=∠DCE.在△BCG和△DCE中,,∴△BCG≌△DCE(SAS).∴BG=DE;(2)解:①连接BE,如图2所示:由(1)可知:BG=DE,∵CG∥BD,∴∠DCG=∠BDC=45°,∴∠BCG=∠BCD+∠DCG=90°+45°=135°,∵∠GCE=90°,∴∠BCE=360°﹣∠BCG﹣∠GCE=360°﹣135°﹣90°=135°,∴∠BCG=∠BCE,在△BCG和△BCE中,,∴△BCG≌△BCE(SAS),∴BG=BE,∵BG=BD=DE,∴BD=BE=DE,∴△BDE为等边三角形,∴∠BDE=60°;②延长EC交BD于点H,过点G作GN⊥BC于N,如图3所示:在△BCE和△DCE中,,∴△BCE≌△BCG(SSS),∴∠BEC=∠DEC,∴EH⊥BD,BH=BD,∵BC=CD=,∴BD=BC=2,∴BE=2,BH=1,∴CH=1,在Rt△BHE中,由勾股定理得:EH===,∴CE=﹣1,∵∠BCG=135°,∴∠GCN=45°,∴△GCN是等腰直角三角形,∴GN=CG=(﹣1),=BC•GN=××(﹣1)=.∴S△BCG10.【观察与猜想】解:∵四边形ABCD是正方形,∴∠B=∠BCD=∠ADC=90°,AB=BC=CD=AD,∠ACB=∠ACD=45°,由旋转的性质得:GC=AC,∠ACG=90°,∴∠ACB=∠GCD=45°,在△ABC和△GDC中,,∴△ABC≌△GDC(SAS),∴AB=GD,∠GDC=∠B=90°,∴DG∥BC,△CDG是等腰直角三角形,∴DG=CD=BC,∵点E与点D重合,点F与点C重合,∴EG=BF,EG∥BF;故答案为:EG=BF,EG∥BF;【探究与证明】证明:点E、F分别在CD、BC边上任意位置时,如图③所示:作GM⊥BC,交BC延长线于M,则∠GMF=90°,MG∥DC,∵四边形ABCD是正方形,∴AB=BC,∠BCD=∠B=90°,∴∠BAF+∠BFA=90°,由旋转的性质得:GF=AF,∠AFG=90°,∴∠BFA+∠MFG=90°,∴∠BAF=∠MFG,在△ABF和△FMG中,,∴△ABF≌△FMG(AAS),∴AB=FM,BF=MG,∵AB=BC,∴BF=CM,∵BF=CE,∴MG=CE,∵MG∥CE,∴四边形CEGM是平行四边形,又∵∠GMF=90°,∴四边形CEGM是矩形,∴EG=CM,EG∥CM,∴EG=BF,EG∥BF;点E、F在CD、BC边的延长线上的任意位置时,如图④所示:作GM⊥BC,交BC延长线于M,则∠GMF=90°,MG∥DC,∵四边形ABCD是正方形,∴AB=BC,∠BCD=∠B=90°,∴∠BAF+∠BFA=90°,由旋转的性质得:GF=AF,∠AFG=90°,∴∠BFA+∠MFG=90°,∴∠BAF=∠MFG,在△ABF和△FMG中,,∴△ABF≌△FMG(AAS),∴AB=FM,BF=MG,∵AB=BC,∴BF=CM,∵BF=CE,∴MG=CE,∵MG∥CE,∴四边形CEGM是平行四边形,又∵∠GMF=90°,∴四边形CEGM是矩形,∴EG=CM,EG∥CM,∴EG=BF,EG∥BF;【拓展与延伸】解:==k(k≠1)时,线段EG与BF的数量关系与位置关系仍然成立;理由如下:作GM⊥BC,交BC延长线于M,如图⑤所示:则∠GMF=90°,MG∥DC,∵四边形ABCD是正方形,∴AB=BC,∠BCD=∠B=90°,∴∠BAF+∠BFA=90°,∠B=∠GMF,由旋转的性质得:∠AFG=90°,∴∠BFA+∠MFG=90°,∴∠BAF=∠MFG,∴△ABF∽△FMG,∴==,∵==k,∴==k,==k,∴FM=BC,GM=CE,∴BF=CM,∵MG∥CE,∴四边形CEGM是平行四边形,又∵∠GMF=90°,∴四边形CEGM是矩形,∴EG=CM,EG∥CM,∴EG=BF,EG∥BF;故答案为:==k(k≠1).11.解:(1)AF=DE.理由如下:∵四边形OADC是正方形,∴OA=AD,∠DAE=∠AOF=90°,由题意得:AE=OF,在△AOF和△DAE中,,∴△AOF≌△DAE(SAS),∴AF=DE.(2)四边形HIJK是正方形.理由如下:如图①所示:∵H、I、J、K分别是AE、EF、FD、DA的中点,∴HI=KJ=AF,HK=IJ=ED,HI∥AF,HK∥ED,∵AF=DE,∴HI=KJ=HK=IJ,∴四边形HIJK是菱形,∵△AOF≌△DAE,∴∠ADE=∠OAF,∵∠ADE+∠AED=90°,∴∠OAF+∠AED=90°,∴∠AGE=90°,∴AF⊥ED,∵HI∥AF,HK∥ED,∴HI⊥HK,∴∠KHI=90°,∴四边形HIJK是正方形.(3)存在,理由如下:∵四边形OADC为正方形,点D的坐标为(4,4),∴OA=AD=OC=4,∴C(4,0),∵点E为AO的中点,∴OE=2,E(0,2);分情况讨论:如图②所示,①当OC是以O,C、M、N为顶点的菱形的对角线时,OC与MN互相垂直平分,则M为CE 的中点,∴点M的坐标为(2,1),∵点M和N关于OC对称,∴N(2,﹣1);②当OC是以O,C、M、N为顶点的菱形的边时,若M在y轴的左侧时,∵四边形OCM'N'是菱形,∴OM'=OC=4,M'N'∥OC,∴△M'FE∽△COE,∴==2,设EF=x,则M'F=2x,OF=x+2,在Rt△OM'F中,由勾股定理得:(2x)2+(x+2)2=42,解得:x=,或x=﹣2(舍去),∴M'F=,FN=4﹣M'F=,OF=2+=,∴N'(,);若M在y轴的右侧时,作N''P⊥OC于P,∵ON''∥CM'',∴∠PON''=∠OCE,∴tan∠PON''==tan∠OCE==,设PN''=y,则OP=2y,在Rt△OPN''中,由勾股定理得:y2+(2y)2=42,解得:y=,∴PN''=,OP=,∴N''(,﹣);综上所述,存在点N使以O,C、M、N为顶点的四边形是菱形,点N的坐标为(2,﹣1)或(,)或(,﹣).12.(1)证明:∵四边形ABCD为矩形,∴BC=AD,CD=AB,∠C=∠ABC=∠A=∠ADC=90°,∵CE=AF,∴BC﹣CE=AD﹣AF,即BE=DF,在△DCE和△BAF中,,∴△DCE≌△BAF(SAS),∴∠CDE=∠ABF,∠CED=∠AFB,由折叠的性质得:∠CDE=∠C′DE,∠ABF=∠A′BF,∠CED=∠C′ED,∠AFB=∠A′FB,∵∠CDE+∠C′DE+∠HDF=90°,∠ABF+∠A′BF+∠GBE=90°,∠CED+∠C′ED+∠GEB=180°,∠AFB+∠A′FB+∠HFD=180°,∴∠HDF=∠GBE,∠GEB=∠HFD,在△BEG和△DFH中,,∴△BEG≌△DFH(ASA);(2)解:四边形A'HC'G的形状是矩形;理由如下:由折叠的性质得:∠C=∠DC′E=∠A=∠BA′F=90°,由(1)得:△BEG≌△DFH,∴∠BGE=∠DHF,∵∠BGE=∠A′GC′,∠DHF=∠A′HC′,∴∠A′GC′=∠A′HC′,∵∠DC′E+∠BA′F+∠A′GC′+∠A′HC′=90°+90°+∠A′GC′+∠A′HC′=360°,∴∠A′GC′+∠A′HC′=180°,∴∠A′GC′=∠A′HC′=90°,∴∠DC′E=∠BA′F=∠A′GC′=∠A′HC′=90°,∴四边形A'HC'G是矩形;(3)解:由(2)知:∠BGE=∠A′GC′=90°,∵tan∠EBG=,∴设EG=3x,则BG=4x,BE==5x,由折叠的性质得:CE=C′E=EG+C′G=3x+1,CD=AB=A′B=BG+A′G=4x+6,∴BC=CE+BE=3x+1+5x=8x+1,S矩形ABCD=CD•BC=4×CD•CE+2×EG•BG﹣A'G•C'G,即(4x+6)(8x+1)=4×(3x+1)(4x+6)+2×3x•4x﹣6×1,整理得:x2﹣2x=0,解得:x1=2,x2=0(不合题意舍去),∴CD=4×2+6=14,CB=8×2+1=17,∴S矩形ABCD=CD•BC=14×17=238.13.解:(1)作D'E⊥BC交BC的延长线于E,如图2所示:则∠E=90°,∵四边形ABCD是矩形,∴∠ABC=90°,AB∥CD,AD∥BC,CD=AB=2,∴∠ACD=∠BAC,∠DAC=∠ACB=30°,∵∠ACB=30°,∴BC=AB=2,∠ACD=∠BAC=60°,由旋转的性质得:CD'=CD=2,∠ACA'=30°,∴∠D'CE=180°﹣30°﹣30°﹣60°=60°,∴∠CD'E=30°,∴CE=CD'=1,D'E=CE=,∴S=BC×D'E=×2×=3;△BCD′(2)△OBD′是直角三角形,理由如下:连接OC,如图3所示:由旋转的性质得:CA'=CA,∠AD'C=∠ADC=90°,∠D'A'C=∠DAC=30°,∵O是AA′的中点,∴OC⊥AA',∴∠AOC=∠AOC=90°=∠ABC=∠AD'C,∴∠ABC+∠AOC=180°,∴A、B、C、O四点共圆,∴∠BOC=∠BAC=60°,同理;A、D'、C、O四点共圆,∴∠D'OC=∠D'A'C=30°,∴∠BOD'=90°,∴△BOD'是直角三角形;(3)若B、C、D'三点不共线,如图3所示:由(2)得:∠OBC=∠OAC,∠OD'C=∠OA'C,∠OAC=∠OA'C,∴∠OBC=∠OD'C,∵OB=OD,∴∠OBD'=∠OD'B,∴∠CBD'=∠CD'B,∴CB=CD',∵CD'=CD,∴BC=CD,这与已知相矛盾,∴B、C、D'三点共线;分两种情况:当点D'在BC的延长线上时,如图4所示:=90°;α=α1当点D'在边BC上时,如图5所示:=360°﹣90°=270°;α=α1故答案为:90°或270;时,△OBD′不存在时,分两种情况:当α=α2当O与D'重合时,如图6所示:∵CA'=CA,∠CAD'=∠CA'D'=30°,∴∠ACA'=120°,=360°﹣120°=240°;∴α=α2当O与B重合时,如图7所示:则AA'=2AB=4,∵CA=CA'=2AB=4=AA',∴△ACA'是等边三角形,∴∠A'CA=60°,=360°﹣60°=300°;∴α=α2故答案为:240°或300.14.解:(1)①如图1,∵CF∥AE ∴∠FCE=∠AEB,∠CFE=∠AEF∵△ABE翻折得到△AFE∴EF=BE=1,∠AEF=∠AEB∴∠FCE=∠CFE∴CE=EF=1∴m=BC=BE+CE=2∴m的值是2.②如图2,过点F作GH⊥AD于点G,交BC于点H ∴GH⊥BC∴∠AGF=∠FHE=90°∵四边形ABCD是矩形∴∠BAD=∠B=90°∴四边形ABHG是矩形∴GH=AB=2,AG=BH∵△ABE翻折得到△AFE∴EF=BE=1,AF=AB=2,∠AFE=∠B=90°∴∠AFG+∠EFH=∠AFG+∠FAG=90°∴∠EFH=∠FAG∴△EFH∽△FAG∴设EH=x,则AG=BH=x+1∴FG=2EH=2x∴FH=GH﹣FG=2﹣2x∴解得:x=∴AG=,FG=∵AD=BC=m∴DG=|AD﹣AG|=|m﹣|∴DF 2=DG 2+FG 2=(m ﹣)2+2≥,即可把DF 2看作关于m 的二次函数,抛物线开口向上,最小值为∵∴ ∵(m ﹣)2+2= 解得:m 1=,m 2=1 ∴根据二次函数图象可知,1≤m(2)如图3,过点B 1作MN ⊥AD 于点M ,交BC 于点N ∴MN ∥AB ,MN =AB =2∵AC =∴sin ∠ACB =∵AD ∥BC ,点B 1在AC 上∴∠MAB 1=∠ACB∴sin ∠MAB 1=∴∵点B 1到AD 的距离小于∴MB 1=解得:∵m>0 ∴m>如图4,当E1落在边AD上,且B1在AC上时,m最大,此时,∠ACB=∠B1AE1=∠BAE∴tan∠ACB=tan∠BAE∴∴m=BC=2AB=4∴m的取值范围是<m≤415.解:(1)BE=DG.BE⊥DG;理由如下:∵四边形ABCD和四边形CEFG为正方形,∴CD=BC,CE=CG,∠BCE=∠DCG=90°,在△BEC和△DGC中,,∴△BEC≌△DGC(SAS),∴BE=DG;如图1,延长GD交BE于点H,∵△BEC≌△DGC,∴∠DGC=∠BEC,∴∠DGC+∠EBC=∠BEC+∠EBC=90°,∴∠BHG=90°,即BE⊥DG;故答案为:BE=DG,BE⊥DG.(2)成立,理由如下:如图2所示:同(1)得:△DCG≌△BCE(SAS),∴BE=DG,∠CDG=∠CBE,∵∠DME=∠BMC,∠CBE+∠BMC=90°,∴∠CDG+∠DME=90°,∴∠DOB=90°,∴BE⊥DG;(3)由(2)得:DG=EB,分两种情况:①如图3所示:∵正方形ABCD的边长为4,正方形ECGF的边长为3,∴AC⊥BD,BD=AC=AB=4,OA=OC=OB=AC=2,CE=3,∴AE=AC﹣CE=,∴OE=OA﹣AE=,在Rt△BOE中,由勾股定理得:DG=BE==;②如图4所示:OE=CE+OC=2+3=5,在Rt△BOE中,由勾股定理得:DG=BE==;综上所述,若A、C、E三点共线,DG的长为或.16.(1)证明:过点F作FH⊥AB于H,如图1所示:则∠AHF=90°,∵AM平分∠DAH,∴∠FAH=45°,∴△AFH是等腰直角三角形,∴FH=AH,AF=AH=FH,∵AF=BE,∴FH=AH=BE,∴AH+AE=BE+AE,∴HE=AB=BC,在△FEH和△ECB中,,∴△FEH≌△ECB(SAS),∴CE=EF;(2)解:∵△FEH≌△ECB,∴∠FEH=∠ECB,∵在Rt△BCE中,∠ECB+∠CEB=90°,∴∠FEH+∠CEB=90°,∴∠CEF=90°,由(1)知,CE=EF,∴△CEF是等腰直角三角形,∠ECF=∠EFC=45°,把Rt△CDG绕点C逆时针旋转90°至Rt△CBN位置,如图2所示:则∠GCN=90°,CG=CN,DG=BN,∴∠NCE=∠GCN﹣∠GCE=45°,∴∠NCE=∠GCE,在△CEG和△CEN中,,∴△CEG≌△CEN(SAS),∴GE=NE=EB+BN=EB+DG,∴△AEG的周长=AE+GE+AG=AE+EB+DG+AG=AB+AD=2a;(3)解:设AE=x,由(1)得:FH=BE=a﹣x,则△EAF的面积=AE×FH=x(a﹣x)=﹣(x﹣)2+,∴当x=,即点E在AB边中点时,△EAF的面积最大,最大值为.17.解:(1)∵矩形ABCD,∴AB⊥BC,PA=PC;∵PE⊥AB,BC⊥AB,∴PE∥BC,∴∠APE=∠PCF;∵PF⊥BC,AB⊥BC,∴PF∥AB,∴∠PAE=∠CPF.∵在△APE与△PCF中,,∴△APE≌△PCF(ASA),∴PE=CF.在Rt△PCF中,=tan30°=,∴=,故答案为:.(2)如答图1,过点P作PM⊥AB于点M,PN⊥BC于点N,则PM⊥PN.0°~30°时∵PM⊥PN,PE⊥PF,∴∠EPM=∠FPN,又∵∠PME=∠PNF=90°,∴△PME∽△PNF,∴=,由(1)知,=,∴=.同理30°~60°时,=;(3)当60°<α<90°时,将顶点P在AC上移动且使=时,如答图2,过点P作PM⊥AB于点M,PN⊥BC于点N,则PM⊥PN,PM∥BC,PN∥AB.∵PM∥BC,PN∥AB,∴∠APM=∠PCN,∠PAM=∠CPN,∴△APM∽△PCN,∴==,得CN=2PM.在Rt△PCN中,==tan30°=,∴=.∵PM⊥PN,PE⊥PF,∴∠EPM=∠FPN,又∵∠PME=∠PNF=90°,∴△PME∽△PNF,∴==.18.解:(1)∵四边形DEFG是矩形,∴DG=BF,GF=BD,∠BDG=∠BFG=90°,∴∠ADG=∠CFG=90°,由题意得:BD=3t,则AD=6﹣3t,DG=4t,CF=8﹣4t,FG=BD=3t,当AG=CG时,由勾股定理得:AG2=AD2+DG2,CG2=FG2+FC2,∴AD2+DG2=FG2+FC2,即(6﹣3t)2+(4t)2=(3t)2+(8﹣4t)2,解得:t=1,即当AG=CG时,t=1秒;(2)分两种情况:①当0<t≤1时,如图1所示:S=矩形DEFG的面积=3t×4t=12t2;即S=12t2(0<t≤1);②当1<t≤2时,如图2所示:∵∠ADH=∠B=90°,∠A=∠A,∴△ADH∽△ABC,∴=,即=,解得:DH=8﹣4t,同理得:FM=6﹣3t,∴S=×6×8﹣×2×(6﹣3t)(8﹣4t)=﹣12t2+48t﹣24;即S=﹣12t2+48t﹣24(1<t≤2);(3)分三种情况:①如图1所示:由题意得:×6×8﹣12t2﹣×4t×(6﹣3t)﹣×3t×(8﹣4t)=6,解得:t=;②如图3所示:由题意得:×4t×(6﹣3t)+×3t×(8﹣4t)+3t×4t﹣×6×8=6,解得:t=;③如图4所示:由勾股定理得:AC===10,∴CD=6+10﹣3t=16﹣3t,同(2)得:△CDE∽△CAB,∴==,即==,解得:DE=(16﹣3t),CE=(16﹣3t),由题意得EF=(16﹣3t),∴C与F重合,∴×8×(16﹣3t)=6,解得:t=;综上所述,当△ACG的面积为6时,t的值为秒或秒或秒.19.解:(1)如图1,过点P作PM⊥BC,垂足为M,则四边形PDCM为矩形.∴PM=DC=24.∵QB=32﹣t,∴S=×24×(32﹣2t)=384﹣24t(0≤t<16);(2)由图可知:CM=PD=4t,CQ=2t.以B、P、Q三点为顶点的三角形是等腰三角形,可以分三种情况:①若PQ=BQ.在Rt△PMQ中,PQ2=4t2+242,由PQ2=BQ2得4t2+242=(32﹣2t)2,解得t=;②若BP=BQ.在Rt△PMB中,BP2=(32﹣4t)2+242.由BP2=BQ2得:(32﹣4t)2+242=(32﹣2t)2即3t2﹣32t+144=0.由于△=﹣704<0,∴3t2﹣32t+144=0无解,∴PB≠BQ.③若PB=PQ.由PB2=PQ2,得4t2+242=(32﹣4t)2+242整理,得3t 2﹣64t +256=0.解得t 1=,t 2=16(舍去)综合上面的讨论可知:当t =秒或t =秒时,以B 、P 、Q 三点为顶点的三角形是等腰三角形.(3)设存在时刻t ,使得PQ ⊥BD . 如图2,过点Q 作QE ⊥AD 于E ,垂足为E .∵AD ∥BC ∴∠BQF =∠EPQ ,又∵在△BFQ 和△BCD 中∠BFQ =∠C =90°,∴∠BQF =∠BDC ,∴∠BDC =∠EPQ ,又∵∠C =∠PEQ =90°,∴Rt △BDC ∽Rt △QPE ,∴=,即=,解得t =9.所以,当t =9秒时,PQ ⊥BD .20.(1)【发现证明】证明:把△ABE 绕点A 顺时针旋转90°至△ADG ,如图1,∴∠BAE=∠DAG,AE=AG,∵∠EAF=45°,∴∠BAE+∠FAD=45°,∴∠DAG+∠FAD=45°,∴∠EAF=∠FAG,∵AF=AF,∴△EAF≌△GAF(SAS),∴EF=FG=DF+DG,∴EF=DF+BE;(2)【类比引申】①不成立,结论:EF=DF﹣BE;证明:如图2,将△ABE绕点A顺时针旋转90°至△ADM,∴∠EAB=∠MAD,AE=AM,∠EAM=90°,BE=DM,∴∠FAM=45°=∠EAF,∵AF=AF,∴△EAF≌△MAF(SAS),。

2020年九年级数学典型中考压轴题训练:《四边形综合》含答案

2020年九年级数学典型中考压轴题训练:《四边形综合》含答案

2020年九年级数学典型中考压轴题训练:《四边形综合》1.如图1,在平面直角坐标系中,四边形OABC各顶点的坐标分别为O(0,0),A(3,3)、B(9,5),C(14,0),动点P与Q同时从O点出发,运动时间为t秒,点P沿OC 方向以1单位长度/秒的速度向点C运动,点Q沿折线OA﹣AB﹣BC运动,在OA、AB、BC 上运动的速度分别为3,,(单位长度/秒),当P、Q中的一点到达C点时,两点同时停止运动.(1)求AB所在直线的函数表达式;(2)如图2,当点Q在AB上运动时,求△CPQ的面积S关于t的函数表达式及S的最大值;(3)在P、Q的运动过程中,若线段PQ的垂直平分线经过四边形OABC的顶点,求相应的t值.解:(1)设AB所在直线的函数表达式为y=kx+b,把A(3,3)、B(9,5)代入得:,解得:,∴AB所在直线的函数表达式为y=x+2;(2)如图1,由题意得:OP=t,则PC=14﹣t,过A作AD⊥x轴于D,过B作BF⊥x轴于F,过Q作QH⊥x轴于H,过A作AE⊥BF于E,交QH于G,∵A(3,3),∴OD=3,AD=3,由勾股定理得:OA=6,∵B(9,5),∴AE=9﹣3=6,BE=5﹣3=2,Rt△AEB中,AB==4,tan∠BAE===,∴∠BAE=30°,点Q过OA的时间:t==2(秒),∴AQ=(t﹣2),∴QG=AQ=,∴QH=+3=t+2,在△PQC中,PC=14﹣t,PC边上的高为t+2,t==4(秒),∴S=(14﹣t)(t+2)=﹣+t+14(2≤t≤6),∴当t=5时,S有最大值为;(3)①当0<t≤2时,线段PQ的中垂线经过点C(如图2),过Q作QG⊥x轴于G,由题意得:OQ=3t,OP=t,∠AOG=60°,∴∠OQG=30°,∴OG=t,∴CG=14﹣t,sin60°=,∴QG=×3t=t,在Rt△QGC中,由勾股定理得:QG2+CG2=QC2=PC2,可得方程()2+(14﹣t)2=(14﹣t)2,解得:t1=,t2=0(舍),此时t=,②当2<t≤6时,线段PQ的中垂线经过点A(如图3),∴AQ=AP,过A作AG⊥x轴于G,由题意得:OP=t,AQ=(t﹣2),则PG=t﹣3,AP=(t﹣2),在Rt△AGP中,由勾股定理得:AP2=AG2+PG2,可得方程:(3)2+(t﹣3)2=[(t﹣2)]2,解得:t1=,t2=(舍去),此时t=;当PQ的垂直平分线经过点C时,如图3﹣1中,易知QC=PC=14﹣t,QG=t+2,CG=14﹣t,在Rt△QCG中,(14﹣t)2=(t﹣2)2+(14﹣t)2,整理得t2﹣4t+6=0,△<0,无解.此种情形不存在.③当6<t≤10时,i)线段PQ的中垂线经过点C(如图4),∴PC=CQ,由(2)知:OA=6,AB=4,BC=10,t=+=6,∴BQ=(t﹣6),∴CQ=BC﹣BQ=10﹣(t﹣6)=25﹣t,可得方程为:14﹣t=25﹣t,解得:t=;ii)线段PQ的中垂线经过点B(如图5),∴BP=BQ,过B作BG⊥x轴于G,则BG=5,PG=t﹣9,BQ=(t﹣6),由勾股定理得:BP2=BG2+PG2,可得方程为:(5)2+(t﹣9)2=[(t﹣6)]2,解得:t1=,t2=(舍去),此时t=,综上所述,t的值为或或或.2.正方形ABCD的边长为3,点E,F分别在射线DC,DA上运动,且DE=DF.连接BF,作EH⊥BF所在直线于点H,连接CH.(1)如图1,若点E是DC的中点,CH与AB之间的数量关系是CH=AB;(2)如图2,当点E在DC边上且不是DC的中点时,(1)中的结论是否成立?若成立给出证明;若不成立,说明理由;(3)如图3,当点E,F分别在射线DC,DA上运动时,连接DH,过点D作直线DH的垂线,交直线BF于点K,连接CK,请直接写出线段CK长的最大值.解:(1)如图1,连接BE,,在正方形ABCD中,AB=BC=CD=AD,∠A=∠BCD=∠ABC=90°,∵点E是DC的中点,DE=DF,∴点F是AD的中点,∴AF=CE,在△ABF和△CBE中,∴△ABF≌△CBE,∴∠1=∠2,∵EH⊥BF,∠BCE=90°,∴C、H两点都在以BE为直径的圆上,∴∠3=∠2,∴∠1=∠3,∵∠3+∠4=90°,∠1+∠HBC=90°,∴∠4=∠HBC,∴CH=BC,又∵AB=BC,∴CH=AB.故答案为:CH=AB.(2)当点E在DC边上且不是DC的中点时,(1)中的结论CH=AB仍然成立.如图2,连接BE,,在正方形ABCD中,AB=BC=CD=AD,∠A=∠BCD=∠ABC=90°,∵AD=CD,DE=DF,∴AF=CE,在△ABF和△CBE中,∴△ABF≌△CBE,∴∠1=∠2,∵EH⊥BF,∠BCE=90°,∴C、H两点都在以BE为直径的圆上,∴∠3=∠2,∴∠1=∠3,∵∠3+∠4=90°,∠1+∠HBC=90°,∴∠4=∠HBC,∴CH=BC,又∵AB=BC,∴CH=AB.(3)如图3,,∵CK≤AC+AK,∴当C、A、K三点共线时,CK的长最大,∵∠KDF+∠ADH=90°,∠HDE+∠ADH=90°,∴∠KDF=∠HDE,∵∠DEH+∠DFH=360°﹣∠ADC﹣∠EHF=360°﹣90°﹣90°=180°,∠DFK+∠DFH=180°,∴∠DFK=∠DEH,在△DFK和△DEH中,∴△DFK≌△DEH,∴DK=DH,在△DAK和△DCH中,∴△DAK≌△DCH,∴AK=CH又∵CH=AB,∴AK=CH=AB,∵AB=3,∴AK=3,AC=3,∴CK=AC+AK=AC+AB=,即线段CK长的最大值是.3.定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.(1)如图1,在△ABC中,AB=AC,AD是△ABC的角平分线,E,F分别是BD,AD上的点.求证:四边形ABEF是邻余四边形.(2)如图2,在5×4的方格纸中,A,B在格点上,请画出一个符合条件的邻余四边形ABEF,使AB是邻余线,E,F在格点上.(3)如图3,在(1)的条件下,取EF中点M,连结DM并延长交AB于点Q,延长EF交AC于点N.若N为AC的中点,DE=2BE,QB=3,求邻余线AB的长.解:(1)∵AB=AC,AD是△ABC的角平分线,∴AD⊥BC,∴∠ADB=90°,∴∠DAB+∠DBA=90°,∠FAB与∠EBA互余,∴四边形ABEF是邻余四边形;(2)如图所示(答案不唯一),四边形AFEB为所求;(3)∵AB=AC,AD是△ABC的角平分线,∴BD=CD,∵DE=2BE,∴BD=CD=3BE,∴CE=CD+DE=5BE,∵∠EDF=90°,点M是EF的中点,∴DM=ME,∴∠MDE=∠MED,∵AB=AC,∴∠B=∠C,∴△DBQ∽△ECN,∴,∵QB=3,∴NC=5,∵AN=CN,∴AC=2CN=10,∴AB=AC=10.4.如图,线段AB=8,射线BG⊥AB,P为射线BG上一点,以AP为边作正方形APCD,且点C、D与点B在AP两侧,在线段DP上取一点E,使∠EAP=∠BAP,直线CE与线段AB相交于点F(点F与点A、B不重合).(1)求证:△AEP≌△CEP;(2)判断CF与AB的位置关系,并说明理由;(3)求△AEF的周长.解:(1)证明:∵四边形APCD正方形,∴DP平分∠APC,PC=PA,∴∠APD=∠CPD=45°,∴△AEP≌△CEP(SAS);(2)CF⊥AB,理由如下:∵△AEP≌△CEP,∴∠EAP=∠ECP,∵∠EAP=∠BAP,∴∠BAP=∠FCP,∵∠FCP+∠CMP=90°,∠AMF=∠CMP,∴∠AMF+∠PAB=90°,∴∠AFM=90°,∴CF⊥AB;(3)过点C作CN⊥PB.∵CF⊥AB,BG⊥AB,∴FC∥BN,∴∠CPN=∠PCF=∠EAP=∠PAB,又AP=CP,∴△PCN≌△APB(AAS),∴CN=PB=BF,PN=AB,∵△AEP≌△CEP,∴AE=CE,∴AE+EF+AF=CE+EF+AF=BN+AF=PN+PB+AF=AB+CN+AF=AB+BF+AF=2AB=16.5.已知:正方形ABCD,等腰直角三角形的直角顶点落在正方形的顶点D处,使三角板绕点D旋转.(1)当三角板旋转到图1的位置时,猜想CE与AF的数量关系,并加以证明;(2)在(1)的条件下,若DE=1,AE=,CE=3,求∠AED的度数;(3)若BC=4,点M是边AB的中点,连结DM,DM与AC交于点O,当三角板的一边DF 与边DM重合时(如图2),若OF=,求CN的长.解:(1)CE=AF;证明:在正方形ABCD,等腰直角三角形CEF中,FD=DE,CD=CA,∠ADC=∠EDF=90°∴∠ADF=∠CDE,∴△ADF≌△CDE,∴CE=AF,(2)∵DE=1,AE=,CE=3,∴EF=,∴AE2+EF2=AF2∴△AEF为直角三角形,∴∠AEF=90°∴∠AED=∠AEF+DEF=90°+45°=135°;(3)∵M是AB中点,∴MA=AB=AD,∵AB∥CD,∴===,在Rt△DAM中,DM===2,∴DO=,∵OF=,∴DF=,∵∠DFN=∠DCO=45°,∠FDN=∠CDO,∴△DFN∽△DCO,∴=,∴=,∴DN=,∴CN=CD﹣DN=4﹣=6.如图,在平面直角坐标系中,四边形ABCD是平行四边形,AD=6,若OA、OB的长是关于x的一元二次方程x2﹣7x+12=0的两个根,且OA>OB.(1)求OA、OB的长.(2)若点E为x轴上的点,且S△AOE=,试判断△AOE与△AOD是否相似?并说明理由.(3)在直线AB上是否存在点F,使以A、C、F为顶点的三角形是等腰三角形?如果存在,请直接写出点F的坐标.解:(1)x2﹣7x+12=0,因式分解得,(x﹣3)(x﹣4)=0,由此得,x﹣3=0,x﹣4=0,所以,x1=3,x2=4,∵OA>OB,∴OA=4,OB=3;(2)S△AOE=×4•OE=,解得OE=,∵==,==,∴=,又∵∠AEO=∠OAD=90°,∴△AOE∽△AOD;(3)∵四边形ABCD是平行四边形,AD=6,∴BC=AD=6,∵OB=3,∴OC=6﹣3=3,由勾股定理得,AC===5,易求直线AB的解析式为y=x+4,设点F的坐标为(a,a+4),则AF2=a2+(a+4﹣4)2=a2,CF2=(a﹣3)2+(a+4)2=a2+a+25,①若AF=AC,则a2=25,解得a=±3,a=3时,a+4=×3+4=8,a=﹣3时,a+4=×(﹣3)+4=0,所以,点F的坐标为(3,8)或(﹣3,0);②若CF=AC,则a2+a+25=25,整理得,25a2+42a=0,解得a=0(舍去),a=﹣,a+4=×(﹣)+4=,所以,点F的坐标为(﹣,),③若AF=CF,则a2=a2+a+25,解得a=﹣,a+4=×(﹣)+4=﹣,所以,点F的坐标为(﹣,﹣),综上所述,点F的坐标为(3,8)或(﹣3,0)或(﹣,)或(﹣,﹣)时,以A、C、F为顶点的三角形是等腰三角形.7.如图①,在矩形ABCD中,点P从AB边的中点E出发,沿着E﹣B﹣C匀速运动,速度为每秒2个单位长度,到达点C后停止运动,点Q是AD上的点,AQ=10,设△APQ的面积为y,点P运动的时间为t秒,y与t的函数关系如图②所示.(1)图①中AB=8 ,BC=18 ,图②中m=20 ;(2)当t=1秒时,试判断以PQ为直径的圆是否与BC边相切?请说明理由;(3)点P在运动过程中,将矩形沿PQ所在直线折叠,则t为何值时,折叠后顶点A的对应点A′落在矩形的一边上.解:(1)∵点P从AB边的中点E出发,速度为每秒2个单位长度,∴AB=2BE,由图象得:t=2时,BE=2×2=4,∴AB=2BE=8,AE=BE=4,t=11时,2t=22,∴BC=22﹣4=18,当t=0时,点P在E处,m=△AEQ的面积=AQ×AE=×10×4=20;故答案为:8,18,20;(2)当t=1秒时,以PQ为直径的圆不与BC边相切,理由如下:当t=1时,PE=2,∴AP=AE+PE=4+2=6,∵四边形ABCD是矩形,∴∠A=90°,∴PQ===2,设以PQ为直径的圆的圆心为O',作O'N⊥BC于N,延长NO'交AD于M,如图1所示:则MN=AB=8,O'M∥AB,MN=AB=8,∵O'为PQ的中点,∴O''M是△APQ的中位线,∴O'M=AP=3,∴O'N=MN﹣O'M=5<,∴以PQ为直径的圆不与BC边相切;(3)分三种情况:①当点P在AB边上,A'落在BC边上时,作QF⊥BC于F,如图2所示:则QF=AB=8,BF=AQ=10,∵四边形ABCD是矩形,∴∠A=∠B=∠BCD=∠D=90°,CD=AB=8,AD=BC=18,由折叠的性质得:PA'=PA,A'Q=AQ=10,∠PA'Q=∠A=90°,∴A'F==6,∴A'B=BF﹣A'F=4,在Rt△A'BP中,BP=4﹣2t,PA'=AP=8﹣(4﹣2t)=4+2t,由勾股定理得:42+(4﹣2t)2=(4+2t)2,解得:t=;②当点P在BC边上,A'落在BC边上时,连接AA',如图3所示:由折叠的性质得:A'P=AP,∴∠APQ'=∠A'PQ,∵AD∥BC,∴∠AQP=∠A'PQ,∴∠APQ=∠AQP,∴AP=AQ=A'P=10,在Rt△ABP中,由勾股定理得:BP==6,又∵BP=2t﹣4,∴2t﹣4=6,解得:t=5;③当点P在BC边上,A'落在CD边上时,连接AP、A'P,如图4所示:由折叠的性质得:A'P=AP,A'Q=AQ=10,在Rt△DQA'中,DQ=AD﹣AQ=8,由勾股定理得:DA'==6,∴A'C=CD﹣DA'=2,在Rt△ABP和Rt△A'PC中,BP=2t﹣4,CP=BC﹣BP=18﹣(2t﹣4)=22﹣2t,由勾股定理得:AP2=82+(2t﹣4)2,A'P2=22+(22﹣2t)2,∴82+(2t﹣4)2=22+(22﹣2t)2,解得:t=;综上所述,t为或5或时,折叠后顶点A的对应点A′落在矩形的一边上.8.已知:如图①,矩形ABCD中,AB=4,AD=6,点P是AD的中点,点F是AB上的动点,PE⊥PF交BC所在直线于点E,连接EF.(1)EF的最小值是为 5 ;(2)点F从A点向B点运动的过程中,∠PFE的大小是否改变?请说明理由;(3)如图②延长FP交CD延长线于点M,连接EM、Q点是EM的中点.①当AF=1时,求PQ的长;②请直接写出点F从A点运动到B点时,Q点经过的路径长为.解:(1)当PF和PE最短时,EF有最小值,此时点F与A重合,如图1所示:则四边形PABE是矩形,∴PE=AB=4,∵四边形ABCD是矩形,∴BC=AD=6,CD=AB=4,∠A=∠ADC=90°,∵点P是AD的中点,∴PA=3,即PF=3,由勾股定理得:EF===5,即EF的最小值为5;故答案为:5;(2)∠PFE的大小不改变,理由如下:作EG⊥AD于G,如图2所示:则EG=CD=4,∵PE⊥PF,∴∠EPF=90°,∴∠APF+∠GPE=90°,∵∠APF+∠AFP=90°,∴∠AFP=∠GPE,又∵∠A=∠EPF=90°,∴△APF∽△GEP,∴==,∴tan∠PFE==,∴∠PFE的大小不改变;(3)①如图,∵∠ADC=90°,∴∠PDM=90°,在△APF和△DPM中,,∴△APF≌△DPM(ASA),∴AF=DM=1,PF=FM,∴CM=4+1=5,∵PE⊥PF,∴PE垂直平分FM,∴EF=EM,设CE=x,则BE=6﹣x,由勾股定理得:EF2=bf2+BE2=32+(6﹣x)2,EM2=CE2+CM2=x2+52,∴32+(6﹣x)2=x2+52解得:x=,∴CE=,EM==,∵∠EPF=90°,Q点是EM的中点,∴PQ=EM=;②如图③中,点Q的运动轨迹是线段QQ1.作QH⊥AD于H.当点F与A重合时,点Q是矩形CDPE对角线DE的中点,则QH=2,DH=,当点F与B重合时,点Q1在AD的延长线上,设BE1=M1E1=m,在Rt△CM1E1中,m2=(m﹣6)2+82,解得:m=,∴CE1=﹣6=,∴DQ1=CE1=,∴HQ1=+=,在Rt△HQQ1中,QQ1==,∴点P的运动路径为;故答案为:.9.在平面直角坐标系中,O为原点,四边形ABCO是矩形,点A,C的坐标分别是A(0,2)和C(2,0),点D是对角线AC上一动点(不与A,C重合),连结BD,作DE⊥DB,交x轴于点E,以线段DE,DB为邻边作矩形BDEF.(1)填空:点B的坐标为(2,2).(2)是否存在这样的点D,使得△DEC是等腰三角形?若存在请求出AD的长度;若不存在,请说明理由:(3)①求证:;②设AD=x,矩形BDEF的面积为y,求y关于x的函数关系式并求出当点D运动到何处时,y有最小值?解:(1)∵四边形AOCB是矩形,∴BC=OA=2,OC=AB=2,∠BCO=∠BAO=90°,∴B(2,2);故答案为(2,2);(2)存在;理由如下:∵OA=2,OC=2,∵tan∠ACO===,∴∠ACO=30°,∠ACB=60°,分两种情况:①当E在线段CO上时,△DEC是等腰三角形,观察图象可知,只有ED=EC,如图1所示:∴∠DCE=∠EDC=30°,∴∠DBC=∠BCD=60°,∴△DBC是等边三角形,∴DC=BC=2,在Rt△AOC中,∠ACO=30°,OA=2,∴AC=2AO=4,∴AD=AC﹣CD=4﹣2=2,∴当AD=2时,△DEC是等腰三角形;②当E在OC的延长线上时,△DCE是等腰三角形,只有CD=CE,∠DBC=∠DEC=∠CDE =15°,如图2所示:∴∠ABD=∠ADB=75°,∴AB=AD=2,综上所述,满足条件的AD的值为2或2;(3)①证明:过点D作MN⊥AB交AB于M,交OC于N,如图3所示:∵A(0,2)和C(2,0),∴直线AC的解析式为y=﹣x+2,设D(a,﹣a+2),∴DN=﹣a+2,BM=2﹣a,∵∠BDE=90°,∴∠BDM+∠NDE=90°,∠BDM+∠DBM=90°,∴∠DBM=∠EDN,∵∠BMD=∠DNE=90°,∴△BMD∽△DNE,∴===;②作DH⊥AB于H,如图4所示:在Rt△ADH中,∵AD=x,∠DAH=∠ACO=30°,∴DH=AD=x,AH===x,∴BH=2﹣x,在Rt△BDH中,BD===,∴DE=BD=,∴矩形BDEF的面积为y=()2=(x2﹣6x+12)=x2﹣2x+4,∴y=(x﹣3)2+,∵>0,∴x=3时,y有最小值,即当点D运动到距A点的距离为3时,y有最小值.10.如图,已知正方形ABCD的边长为4、点P是AB边上的一个动点,连接CP,过点P作PC的垂线交AD于点E,以PE为边作正方形PEFG、顶点G在线段PC上,对角线EG、PF 相交于点O.(1)若AP=1,则AE=;(2)①点O与△APE的位置关系是点O在△APE的外接圆上,并说明理由;②当点P从点A运动到点B时,点O也随之运动,求点O经过的路径长;(3)在点P从点A到点B的运动过程中,线段AE的大小也在改变,当AP= 2 ,AE 达到最大值,最大值是 1 .解:(1)∵四边形ABCD、四边形PEFG是正方形,∴∠A=∠B=∠EPG=90°,PF⊥EG,AB=BC=4,∠OEP=45°,∴∠AEP+∠APE=90°,∠BPC+∠APE=90°,∴∠AEP=∠BPC,∴△APE∽△BCP,∴,即,解得:AE=;故答案为:;(2)①点O在△APE的外接圆上,理由是:证明:如图1,取PE的中点Q,连接AQ,OQ,∵∠POE=90°,∴OQ=PE,∵△APE是直角三角形,∴点Q是Rt△APE外接圆的圆心,∴AQ=PE,∴OQ=AQ=EQ=PQ,∴O在以Q为圆心,以OQ为半径的圆上,即点O在△APE的外接圆上;(到圆心的距离等于半径的点必在此圆上),故答案为:点O在△APE的外接圆上;②连接OA、AC,如图2所示,∵四边形ABCD是正方形,∴∠B=90°,∠BAC=45°,∴AC==4,∵A、P、O、E四点共圆,∴∠OAP=∠OEP=45°,∴点O在AC上,当P运动到点B时,O为AC的中点,OA=AC=2,即点O经过的路径长为2;(3)设AP=x,则BP=4﹣x,由(1)得:△APE∽△BCP,∴,∴,∴AE=(x﹣2)2+1,∴x=2时,AE的最大值为1,即当AP=2时,AE的最大值为1.故答案为:2,1.11.正方形ABCD的边长为6cm,点E、M分别是线段BD、AD上的动点,连接AE并延长,交边BC于F,过M作MN⊥AF,垂足为H,交边AB于点N.(1)如图1,若点M与点D重合,求证:AF=MN;(2)如图2,若点M从点D出发,以1cm/s的速度沿DA向点A运动,同时点E从点B 出发,以cm/s的速度沿BD向点D运动,运动时间为ts.①设BF=ycm,求y关于t的函数表达式;②当BN=2AN时,连接FN,求FN的长.解:(1)∵四边形ABCD是正方形,∴AD=AB,∠BAD=90°,∵MN⊥AF,∴∠AHM=90°,∴∠BAF+∠MAH=∠MAH+∠AMH=90°,∴∠BAF=∠AMH,在△AMN与△ABF中,,∴△AMN≌△ABF,∴AF=MN;(2)①∵AB=AD=6,∴BD=6,由题意得,DM=t,BE=t,∴AM=6﹣t,DE=6﹣t,∵AD∥BC,∴△ADE∽△FBE,∴,即,∴y=;②∵BN=2AN,∴AN=2,BN=4,由(1)证得∠BAF=∠AMN,∵∠ABF=∠MAN=90°,∴△ABF∽△MAN,∴=,即=,∴BF=,由①求得BF=,∴=,∴t=2,∴FN==5cm.12.如图,在矩形ABCD中,AB=3,BC=4,将对角线AC绕对角线交点O旋转,分别交边AD、BC于点E、F,点P是边DC上的一个动点,且保持DP=AE,连接PE、PF,设AE=x (0<x<3).(1)填空:PC=3﹣x,FC=x;(用含x的代数式表示)(2)求△PEF面积的最小值;(3)在运动过程中,PE⊥PF是否成立?若成立,求出x的值;若不成立,请说明理由.解:(1)∵四边形ABCD是矩形∴AD∥BC,DC=AB=3,AO=CO∴∠DAC=∠ACB,且AO=CO,∠AOE=∠COF∴△AEO≌△CFO(ASA)∴AE=CF∵AE=x,且DP=AE∴DP=x,CF=x,DE=4﹣x,∴PC=CD﹣DP=3﹣x故答案为:3﹣x,x(2)∵S△EFP =S梯形EDCF﹣S△DEP﹣S△CFP,∴S△EFP=﹣﹣×x×(3﹣x)=x2﹣x+6=(x﹣)2+∴当x=时,△PEF面积的最小值为(3)不成立理由如下:若PE⊥PF,则∠EPD+∠FPC=90°又∵∠EPD+∠DEP=90°∴∠DEP=∠FPC,且CF=DP=AE,∠EDP=∠PCF=90°∴△DPE≌△CFP(AAS)∴3﹣x=4﹣x则方程无解,∴不存在x的值使PE⊥PF,即PE⊥PF不成立.13.如图,在平面直角坐标系中,四边形OABC的顶点O是坐标原点,点A在第一象限,点C在第四象限,点B在x轴的正半轴上.∠OAB=90°且OA=AB,OB,OC的长分别是二元一次方程组的解(OB>OC).(1)求点A和点B的坐标;(2)点P是线段OB上的一个动点(点P不与点O,B重合),过点P的直线l与y轴平行,直线l交边OA或边AB于点Q,交边OC或边BC于点R.设点P的横坐标为t,线段QR的长度为m.已知t=4时,直线l恰好过点C.①当0<t<3时,求m关于t的函数关系式;②当m=时,求点P的横坐标t的值.解:(1)方程组的解为:,∵OB>OC,∴OB=6,OC=5,∴点B的坐标为:(6,0),过点A作AM⊥x轴于M,如图1所示:∵∠OAB=90°且OA=AB,∴△AOB是等腰直角三角形,∴OM=BM=AM=OB=×6=3,∴点A的坐标为:(3,3);(2)①过点C作CN⊥x轴于N,如图2所示:∵t=4时,直线l恰好过点C,∴ON=4,CN===3,∴点C的坐标为:(4,﹣3),设直线OC的解析式为:y=kx,把C(4,﹣3)代入得:﹣3=4k,∴k=﹣,∴直线OC的解析式为:y=﹣x,∴R(t,﹣t),设直线OA的解析式为:y=k′x,把A(3,3)代入得:3=3k′,∴k′=1,∴直线OA的解析式为:y=x,∴Q(t,t),∴QR=t﹣(﹣t)=t,即:m=t;②分三种情况:当0<t<3时,m=t,m=,则t=,解得:t=2;当3≤t<4时,设直线AB的解析式为:y=px+q,把A(3,3)、B(6,0)代入得,解得:,∴直线AB的解析式为:y=﹣x+6,∴Q(t,﹣t+6),R(t,﹣t),∴m=﹣t+6﹣(﹣t)=﹣t+6,∵m=,∴﹣t+6=,解得:t=10>4(不合题意舍去);当4≤t<6时,设直线BC的解析式为:y=ax+b,把B(6,0)、C(4,﹣3)代入得,解得:,∴直线BC的解析式为:y=x﹣9,∴Q(t,﹣t+6),R(t,t﹣9),∴m=﹣t+6﹣(t﹣9)=﹣t+15,∵m=,∴﹣t+15=,解得:t=;综上所述,满足条件的点P的横坐标t的值为2或.14.在菱形ABCD中,∠ABC=60°,点P是对角线BD上一动点,将线段CP绕点C顺时针旋转120°到CQ,连接DQ.(1)如图1,求证:△BCP≌△DCQ;(2)如图2,连接QP并延长,分别交AB、CD于点M、N.①求证:PM=QN;②若MN的最小值为2,直接写出菱形ABCD的面积为8.(1)证明:四边形ABCD是菱形,∴BC=DC,AB∥CD,∴∠PBM=∠PBC=∠ABC=30°,∠ABC+∠BCD=180°,∴∠BCD=180°﹣∠ABC=120°由旋转的性质得:PC=QC,∠PCQ=120°,∴∠BCD=∠DCQ,∴∠BCP=∠DCQ,在△BCP和△DCQ中,,∴△BCP≌△DCQ(SAS);(2)①证明:由(1)得:△BCP≌△DCQ,∴BP=DQ,∠QDC=∠PBC=∠PBM=30°.在CD上取点E,使QE=QN,如图2所示:则∠QEN=∠QNE,∴∠QED=∠QNC=∠PMB,在△PBM和△QDE中,,∴△PBM≌△QDE(AAS),∴PM=QE=QN.②解:由①知PM=QN,∴MN=PQ=PC,∴当PC⊥BD时,PC最小,此时MN最小,则PC=2,BC=2PC=4,=2××42=8;∴菱形ABCD的面积=2S△ABC故答案为:8.15.如图,在△ABC中,AB=14,∠B=45°,tan A=,点D为AB中点.动点P从点D出发,沿DA方向以每秒1个单位长度的速度向终点A运动,点P关于点D对称点为点Q,以PQ为边向上作正方形PQMN.设点P的运动时间为t秒.(1)当t=秒时,点N落在AC边上.(2)设正方形PQMN与△ABC重叠部分面积为S,当点N在△ABC内部时,求S关于t的函数关系式.(3)当矩形PQMN的对角线所在直线将△ABC的分为面积相等的两部分时,直接写出t 的值.解:(1)如图1,作CG⊥AB于点G,设BG=h,∵∠B=45°,AB=14,∴CG=BG=h,AG=14﹣h,∵tan A==,即=,解得:h=8,则AG=6,∵DP=DQ=t,∴PN=PQ=2t,由PN∥CG知△APN∽△AGC,∴=,即=,解得:t=,故答案为:.(2)①如图2,∵四边形PQMN是正方形,∴∠BQM=90°,∵∠B=45°,∴BQ=MQ,即7﹣t=2t,解得t=,故当0<t≤时,S=(2t)2=4t2;②如图3,∵∠BQF=90°,∠B=45°,∴BQ=FQ=7﹣t,∠BFQ=∠MFE=45°,则MF=MQ﹣QF=3t﹣7,∵∠M=90°,∴ME=MF=3t﹣7,则S=(2t)2﹣×(3t﹣7)2=﹣t2+21t﹣(<t<);综上,S=.(3)S=AB•CG=×14×8=56,△ABC①如图4,作HR⊥AB于点R,∵四边形PQMN为正方形,且PM为对角线,∴∠HPB=∠B=45°,∴HR=PB=×(14﹣7+t)=,∵PM将△ABC面积平分,∴S△PBH =S△ABC,则•(7+t)•=×56,解得t=﹣7+4(负值舍去);②如图5,作KT⊥AB于T,设KT=4m,由tan A==知AT=3m,∵∠KQT=45°,∴KT=QT=4m,则AQ=3m+4m=7m,又AQ=14﹣(7﹣t)=7+t,则7m=7+t,∴m=,∵直线NQ将△ABC面积平分,∴S△AKQ =S△ABC,即×7m×4m=×56,整理,得:m2=2,则()2=2,解得:t=﹣7+7(负值舍去),综上,t的值为4﹣7或7﹣7.16.如图,正方形OABC的边OA,OC在坐标轴上,点B的坐标为(﹣4,4).点P从点A 出发,以每秒1个单位长度的速度沿x轴向点O运动;点Q从点O同时出发,以相同的速度沿x轴的正方向运动,规定点P到达点O时,点Q也停止运动.连接BP,过P点作BP的垂线,与过点Q平行于y轴的直线l相交于点D.BD与y轴交于点E,连接PE.设点P运动的时间为t(s).(1)∠PBD的度数为45°,点D的坐标为(t,t)(用t表示);(2)求证:PE=AP+CE;(3)当t为何值时,△PBE为等腰三角形?解:(1)如图1,由题可得:AP=OQ=1×t=t(秒)∴AO=PQ.∵四边形OABC是正方形,∴AO=AB=BC=OC,∠BAO=∠AOC=∠OCB=∠ABC=90°.∵DP⊥BP,∴∠BPD=90°.∴∠BPA=90°﹣∠DPQ=∠PDQ.∵AO=PQ,AO=AB,∴AB=PQ.在△BAP和△PQD中,,∴△BAP≌△PQD(AAS).∴AP=QD,BP=PD.∵∠BPD=90°,BP=PD,∴∠PBD=∠PDB=45°.∵AP=t,∴DQ=t.∴点D坐标为(t,t).故答案为:45°,(t,t).(2)延长OA到点F,使得AF=CE,连接BF,如图2所示.在△FAB和△ECB中,,∴△FAB≌△ECB.∴FB=EB,∠FBA=∠EBC.∵∠EBP=45°,∠ABC=90°,∴∠ABP+∠EBC=45°.∴∠FBP=∠FBA+∠ABP=∠EBC+∠ABP=45°.∴∠FBP=∠EBP.在△FBP与△EBP中,,∴△FBP≌△EBP(SAS).∴FP=EP.∴EP=FP=FA+AP=CE+AP.(3)①若PB=PE,由△PAB≌△DQP得PB=PD,显然PB≠PE,∴这种情况应舍去.②若EB=EP,则∠PBE=∠BPE=45°.∴∠BEP=90°.∴∠PEO=90°﹣∠BEC=∠EBC.在△POE和△ECB中,,∴△POE≌△ECB(AAS).∴OE=CB=OC.∴点E与点C重合(EC=0).∴点P与点O重合(PO=0).∵点B(﹣4,4),∴AO=CO=4.此时t=AP=AO=4.③若BP=BE,在Rt△BAP和Rt△BCE中,,∴Rt△BAP≌Rt△BCE(HL).∴AP=CE.∵AP=t,∴CE=t.∴PO=EO=4﹣t.∵∠POE=90°,∴PE==(4﹣t).延长OA到点F,使得AF=CE,连接BF,如图2所示.在△FAB和△ECB中,,∴△FAB≌△ECB.∴FB=EB,∠FBA=∠EBC.∵∠EBP=45°,∠ABC=90°,∴∠ABP+∠EBC=45°.∴∠FBP=∠FBA+∠ABP=∠EBC+∠ABP=45°.∴∠FBP=∠EBP.在△FBP和△EBP中,,∴△FBP≌△EBP(SAS).∴FP=EP.∴EP=FP=FA+AP=CE+AP.∴EP=t+t=2t.∴(4﹣t)=2t.解得:t=4﹣4∴当t为4秒或(4﹣4)秒时,△PBE为等腰三角形.17.如图,在平面直角坐标系xOy中,点C的坐标为(0,4),点A为x轴正半轴上的一个动点,以AC为对角线作正方形ABCD(点B在点D右侧),设点A的坐标为(a,0)(a ≠4).(1)当a=2时.①求正方形ABCD的边长;②求点B的坐标.(2)0<a<4时,试判断△BOD的形状,并说明理由.(3)是否存在a,使得△AOC与△BOD全等?若存在,求出a的值;若不存在,说明理由.解:(1)当a=2时,如图1中,作DM⊥AO于M,DN⊥OC于N,连接OD、AC、BD,AC 与BD交于点G,①在Rt△AOC中,∵∠AOC=90°,OC=4,OA=2,∴AC===2,∵四边形ABCD是正方形,∴∠CDA=90°,CD=AD=AB=BC,∴2CD2=20,∴CD=,∴正方形边长为.②∵∠DMO=∠MON=∠DNO=90°,∴四边形DMON是矩形,∴∠MDN=∠CDA=90°,∴∠CDN=∠ADM,在△CDN和△ADM中,,∴△CDN≌△ADM,∴DN=DM,CN=AM,∴四边形DMON是正方形,设边长为a,B(m,n)则2+a=4﹣a,∴a=1,∴点D坐标(﹣1,1),∵DG=GB,G(1,2),∴=1,=2,∴m=n=3,∴点B坐标为(3,3).(2)结论:△BOD是直角三角形.理由:如图2中,作DM⊥AO于M,DN⊥OC于N,BH⊥OC于H,BG⊥OA于G.由(1)可知△CDN≌△ADM,同理可证△CBH≌△ABG,∴DN=DM,BH=BG,∴OD平分∠COM,OB平分∠COA,∴∠DOC=∠BOC=45°,∴∠DOB=90°,∴△DOB是直角三角形.(3)①如图2中,当OA=OD时,△AOC≌△ODB,设OA=OD=a,则DM=OM=ON=DN=a,∵CN=AM,∴4﹣a=a+a,∴a=4﹣4.②如图3中,当OC=OD=4时,△AOC≌△BOD,设OA=a,∵OC=OD=4,∴ON=ND=DM=OM=2,∵CN=AM,∴4+2=a﹣2,∴a=4+4.综上所述当a=4﹣4或4+4时,△AOC与△BOD全等.18.如图1,已知等腰Rt△ABC中,E为边AC上一点,过E点作EF⊥AB于F点,以为边作正方形,且AC=3,EF=.(1)如图1,连接CF,求线段CF的长;(2)将等腰Rt△ABC绕点旋转至如图2的位置,连接BE,M点为BE的中点,连接MC,MF,求MC与MF关系.解:(1)如图1,∵△ABC是等腰直角三角形,AC=3,∴AB=3,过点C作CM⊥AB于M,连接CF,∴CM=AM=AB=,∵四边形AGEF是正方形,∴AF=EF=,∴MF=AM﹣AF=﹣,在Rt△CMF中,CF===;(2)CM=FM,CM⊥FM,理由:如图2,过点B作BH∥EF交FM的延长线于H,连接CF,CH,∴∠BHM=∠EFM,∵四边形AGEF是正方形,∴EF=AF∵点M是BE的中点,∴BM=EM,在△BMH和△EMF中,,∴△BMH≌△EMF(AAS),∴MH=MF,BH=EF=AF∵四边形AGEF是正方形,∴∠FAG=90°,EF∥AG,∵BH∥EF,∴BH∥AG,∴∠BAG+∠ABH=180°,∴∠CBH+∠ABC+∠BAC+∠CAG=180°.∵△ABC是等腰直角三角形,∴BC=AC,∠ABC=∠BAC=45°,∴∠CBH+∠CAG=90°,∵∠CAG+∠CAF=90°,∴∠CBH=∠CAF,在△BCH和△ACF中,,∴△BCH≌△ACF(SAS),∴CH=CF,∠BCH=∠ACF,∴∠HCF=∠BCH+∠BCF=∠ACF+∠BCF=90°,∴△FCH是等腰直角三角形,∵MH=MF,∴CM=FM,CM⊥FM;19.如图(1),在△ABC中,AB=AC,∠BAC=90°,AD⊥BC于点D,BC=20cm,AD=10cm.点P从点B出发,在线段BC上以每秒2cm的速度向点C匀速运动,与此同时,垂直于AD 的直线l从点A沿AD出发,以每秒1cm的速度沿AD方向匀速平移,分别交AB、AC、AD 于M、N、E.当点P到达点C时,点P与直线l同时停止运动,设运动时间为t秒(t>0).(1)在运动过程中(点P不与B、C重合),连接PN,求证:四边形MBPN为平行四边形;(2)如图(2),以MN为边向下作正方形MFGN,FG交AD于点H,连结PF、PG,当0<t <时,求△PFG的面积最大值;(3)在整个运动过程中,观察图(2)、(3),是否存在某一时刻t,使△PFG为等腰三角形?若存在,直接写出t的值;若不存在,请说明理由.(1)证明:∵l⊥AD,BC⊥AD,∴l∥BC,∴,∵AB=AC,∴AM=AN,∵∠BAC=90°,∴ME=NE,∴MN=2AE=2t,∵BP=2t,∴MN=BP,∴四边形MBPN为平行四边形;(2)解:∵四边形MFGN是正方形,∴FG=MN=MF=2AE=2t,∵EH=MF=2t,∴DH=AD﹣AH=10﹣3t,∴S=FG•DH=×2t×(10﹣3t)=﹣3(t﹣)2+,△PFG∵a=﹣3<0,0<t<,∴当t=时,S最大=;△PFG(3)解:存在,当t=或t=5或t=10时,△PFG为等腰三角形;理由如下:利用勾股定理得:PF2=2(10﹣3t)2,PG2=(10﹣3t)2+(10﹣t)2,又FG2=(2t)2,当PF=FG时,则2(10﹣3t)2=(2t)2,解得:t=,当PF=PG时,2(10﹣3t)2=(10﹣3t)2+(10﹣t)2,解得:t=5,或t=0(舍去);当FG=PG时,(2t)2=(10﹣3t)2+(10﹣t)2,解得:t=10,或t=(舍去);综上所述,t=或t=5或t=10时,△PFG为等腰三角形.20.如图,在直角坐标系中,长方形ABCD(每个内角都是90°)的顶点的坐标分别是A(0,m),B(n,0),(m>n>0),点E在AD上,AE=AB,点F在y轴上,OF=OB,BF的延长线与DA的延长线交于点M,EF与AB交于点N.(1)试求点E的坐标(用含m,n的式子表示);(2)求证:AM=AN;(3)若AB=CD=12cm,BC=20cm,动点P从B出发,以2cm/s的速度沿BC向C运动的同时,动点Q从C出发,以vcm/s的速度沿CD向D运动,是否存在这样的v值,使得△ABP与△PQC全等?若存在,请求出v值;若不存在,请说明理由.解:(1)过E作EG⊥AO于G.∵∠EGA=∠EAB=∠AOB=90°,∴∠EAG+∠AEG=90°,∠EAG+∠BAO=90°,∴∠BAO=∠AEG,∵AE=AB,∴△EGA≌△AOB(AAS),∴EG=OA=m,AG=OB=n∴E(m,m+n).(2)∵OB=OF,∠BOF=90°,∴∠OFB=∠OBF=45°,∵△EGA≌△AOB,∴AG=OB=OF,∴OA=FG=EG,∴∠GFE=45°,∴∠EFB=90°,∴∠NAE=∠NFB=90°,∵∠ANE=∠FNB,∴∠AEN=∠ABM,∵∠EAN=∠BAM=90°,EA=BA,∴△EAN≌△BAM(ASA),∴AN=AM.(3)如图,∵△ABP与△PCQ全等,∠ABP=∠PCQ=90°∴有两种情形:①当AB=CD,PB=CP时,t==5(s),∴v=,②当AB=PC,CQ=PB时,PB=20﹣12=8,∴t==4(s),∴v===2.。

2020年中考数学总复习单元综合检测五:四边形

2020年中考数学总复习单元综合检测五:四边形

单元综合检测五四边形(120分钟150分)一、选择题(本大题共10小题,每小题4分,满分40分)1.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于A.60°B.72°C.90°D.108°【解析】设这个正多边形的边数为n,则(n-2)·180°=540°,解得n=5,所以这个正多边形的每一个外角等于=72°.2.菱形具有而一般平行四边形不具有的性质是A.对边相等B.对角相等C.对角线互相平分D.对角线互相垂直【解析】平行四边形的性质:对边相等,对角相等,对角线互相平分.菱形的性质:对边相等,邻边相等,对角相等,对角线互相垂直平分,并且每一条对角线平分一组对角.比较得出D 选项符合题意.3.已知四边形ABCD是平行四边形,对角线AC,BD交于点O,E是BC的中点,以下说法错误的是A.OA=OCB.OE=DCC.∠BOE=∠OBAD.∠OBE=∠OCE【解析】∵四边形ABCD是平行四边形,∴AB∥DC,OA=OC,∴选项A正确;又∵E是BC的中点,∴OE是△BCD的中位线,∴OE=DC,∴选项B正确;∵OE∥AB,∴∠BOE=∠OBA,∴选项C正确;∵OB≠OC,∴∠OBE≠∠OCE,∴选项D错误.4.如图,菱形ABCD的对角线AC,BD相交于点O,AC=8,BD=6,过点O作OH⊥AB,垂足为H,则点O到边AB的距离OH等于A.2B.C.D.【解析】在菱形ABCD中,∵AC⊥BD,OA=4,OB=3,∴AB==5,∴S△AOB=·OA·OB=·AB·OH,∴OH=.5.从六边形的一个顶点出发,可以画出x条对角线,它们将六边形分成y个三角形,则x,y的值分别为A.4,3B.3,3C.3,4D.4,4【解析】从n边形一个顶点出发,可以连的对角线的条数是(n-3),分成的三角形的个数是(n-2),所以x=3,y=4.6.如图,在长方形ABCD中,AB=5,第一次平移将长方形ABCD沿AB方向向右平移4个单位长度,得到长方形A1B1C1D1,第二次平移将长方形A1B1C1D1沿A1B1方向向右平移4个单位长度,得到长方形A2B2C2D2,……第n次平移将长方形A n-1B n-1C n-1D n-1沿A n-1B n-1方向向右平移4个单位长度,得到长方形A n B n C n D n(n>2).若AB n的长为45,则n=A.10B.11C.16D.9【解析】由平移关系知AB=5,AB1=5+4,AB2=5+4+4,…所以AB n=5+4n.当AB n的长为45时,5+4n=45,解得n=10.7.如图,在▱ABCD中,点E,F分别在CD,BC的延长线上,AE∥BD,EF⊥BF,∠ABC=60°,EF=3,则AB的长是A.B.1 C.D.【解析】∵四边形ABCD是平行四边形,∴AB∥DC,AB=CD.∵AE∥BD,∴四边形ABDE 是平行四边形,∴AB=DE=CD,即D为CE的中点.∵EF⊥BC,∴∠EFC=90°.∵AB∥CD,∴∠DCF=∠ABC=60°,∴CE=EF÷sin 60°=3÷=2,∴AB=CE=.8.如图,正方形ABCD的边长为2,菱形AECF的面积为4,则EF的长是A.4B.C.2D.1【解析】连接AC,∵正方形ABCD的边长为2,∴AC=4.∵菱形AECF的面积为4,∴AC×EF=4,解得EF=2.9.如图,点E,F分别在菱形ABCD的边AB,AD上,且AE=DF,BF交DE于点G,延长BF交CD的延长线于点H.若=2,则的值为A. B. C. D.【解析】设菱形ABCD的边长为3a.因为四边形ABCD是菱形,=2,AE=DF,所以AE=DF=a,AF=BE=2a.因为AB∥CD,所以,所以HD=AB=a,HF=HB.因为AB∥CD,所以,所以BG=HB,所以.10.如图,在矩形ABCD中,AB=8,AD=3,点E从D向C以每秒1个单位的速度运动,以AE 为一边在AE的右下方作正方形AEFG,同时垂直于CD的直线MN也从C向D以每秒2个单位的速度运动,设运动时间为t秒.当直线MN和正方形AEFG开始有公共点时,t=A.秒B.秒C.秒D.秒【解析】如图,过点F作FQ⊥CD于点Q.∵在正方形AEFG中,∠AEF=90°,AE=EF,∴∠1+∠2=90°.∵∠DAE+∠1=90°,∴∠DAE=∠2.易证△ADE≌△EQF,∴AD=EQ=3.当直线MN和正方形AEFG有公共点时,DQ+CM≥8,∴t+3+2t≥8,解得t≥.故经过秒时,直线MN与正方形AEFG开始有公共点.二、填空题(本大题共4小题,每小题5分,满分20分)11.若一个多边形的内角和是外角和的5倍,则这个多边形是十二边形.【解析】设这个多边形的边数为n,则(n-2)·180°=5×360°,解得n=12.12.如图,在菱形ABCD中,过点C作CE⊥BC交对角线BD于点E,且DE=CE,则∠ABC= 60°.【解析】∵四边形ABCD是菱形,∴∠BDC=∠CBD=∠ABD.又DE=CE,∴∠BDC=∠DCE.设∠DBC=x°,则∠BDC=x°,∠BCD=90°+x°,∴3x+90=180,解得x=30,∴∠ABC=2x°=60°.13.如图,以正方形ABCD的顶点B为直角顶点,作等腰直角三角形BEF,连接AF,FC,当E,F,C三点在一条直线上时,若BE=,AF=3,则正方形ABCD的面积是5.【解析】∵四边形ABCD是正方形,△BEF是等腰直角三角形,∴AB=BC,BE=BF,∠ABC=∠EBF=90°,∴∠ABF=∠EBC,∴△ABF≌△CBE,∴AF=CE=3.过点B作BH⊥EC于点H.∵BE=BF=,BH⊥EC,∴BH=FH=1,∴CH=EC-EH=2.∵BC2=BH2+CH2=5,∴正方形ABCD的面积为5.14.在▱ABCD中,AD=8,AE平分∠BAD交BC于点E,DF平分∠ADC交BC于点F,且EF=2,则AB的长为3或5.【解析】本题分两种情况讨论:①如图1,∵AE平分∠BAD,DF平分∠ADC,∴∠BAE=∠DAE,∠ADF=∠CDF.又∵在▱ABCD中,AD∥BC,∴∠BEA=∠DAE,∠ADF=∠CFD,∴∠BAE=∠BEA,∠CDF=∠CFD,∴BA=BE,CD=CF.又∵AB=CD,∴BE=CF=AB.∵BE+CF-EF=BC,∴2AB-2=8,∴AB=5;②如图2,∵AE平分∠BAD,DF平分∠ADC.同理可得BA=BE,CD=CF,又∵AB=CD,∴BE=CF=AB.∵BE+CF+EF=BC,∴2AB+2=8,∴AB=3.综上,AB的长为3或5.三、(本大题共2小题,每小题8分,满分16分)15.如图,在矩形ABCD中,E,F分别是AD,BC边上的点,AE=CF,∠EFB=45°,AB=6,BC=14,求AE的长.解:过点E作EH⊥BC于点H,则BH=AE.∵∠EFH=45°,∴FH=EH=AB=6.设AE=a,则BH=FC=a,∴a+6+a=14,解得a=4,即AE=4.16.如图,∠MON=∠PMO,OP=x-3,OM=4,ON=3,MN=5,MP=11-x.求证:四边形OPMN是平行四边形.证明:在△MON中,OM=4,ON=3,MN=5,∴OM2+ON2=MN2,∴△MON是直角三角形,∴∠MON=∠PMO=90°.在Rt△POM中,OP=x-3,OM=4,MP=11-x,由勾股定理得OM2+MP2=OP2,即42+(11-x)2=(x-3)2,解得x=8,∴OP=x-3=8-3=5,MP=11-x=11-8=3,∴OP=MN,MP=ON,∴四边形OPMN是平行四边形.四、(本大题共2小题,每小题8分,满分16分)17.如图,在四边形ABCD中,AD∥BC,BC⊥DC,AE交CD于点E,CF交AB于点F,∠DAE=∠BCF.(1)求证:AE∥CF;(2)若AE平分∠DAB,∠B=48°,则∠FCD=24°.解:(1)∵BC⊥DC,∴∠BCD=90°.又∵AD∥BC,∴∠ADC=180°-∠BCD=90°.在Rt△ADE中,∠DEA=90°-∠DAE,而∠DAE=∠BCF,∴∠FCE=90°-∠BCF=90°-∠DAE=∠DEA,∴AE∥CF.(2)提示:∵AD∥BC,∠B=48°,∴∠BAD=180°-48°=132°.又∵AE平分∠DAB,∴∠DAE=∠BAD=66°.由(1)知AE∥CF,∠ADE=90°,∴∠FCD=∠AED=90°-∠DAE=90°-66°=24°.18.如图,点E,G在▱ABCD的边AD上,EG=ED,EF=EC.求证:AF=BG.证明:∵EG=ED,EF=EC,∴四边形FGCD是平行四边形,∴FG∥DC,FG=DC.∵四边形ABCD是平行四边形,∴AB∥DC,AB=DC,∴AB∥FG,AB=FG,∴四边形ABGF是平行四边形,∴AF=BG.五、(本大题共2小题,每小题10分,满分20分)19.如图,BD是△ABC的角平分线,点E,F分别在边BC,AB上,且DE∥AB,EF∥AC.(1)如图1,求证:BE=AF;(2)如图2,若∠A=∠C=60°,请直接写出2个面积等于△ABC面积的一半的三角形或四边形.解:(1)∵DE∥AB,EF∥AC,∴四边形ADEF是平行四边形,∠ABD=∠BDE,∴AF=DE.∵BD是△ABC的角平分线,∴∠ABD=∠DBE,∴∠DBE=∠BDE,∴BE=DE,∴BE=AF.(2)△ABD,△BDC(或四边形AFED,四边形FDCE)(答案不唯一)提示:∵∠A=∠C=60°,∴AB=BC.∵BD是△ABC的角平分线,∴BD是AC的中线,∴△ABD的面积=△BDC的面积=△ABC的面积的一半.∵DE∥AB,EF∥AC,∴AF=BF,BE=EC,∴四边形AFED的面积=四边形FDCE的面积=△ABC的面积的一半.20.如图,在矩形ABCD中,点E在边AD上,连接CE,以CE为边向右上方作正方形CEFG,作FH⊥AD,垂足为H,连接AF.(1)求证:FH=ED;(2)若AB=3,AD=5,当AE=1时,求∠FAD的度数.解:(1)∵四边形CEFG是正方形,∴CE=EF.∵∠FEC=∠FEH+∠CED=90°,∠DCE+∠CED=90°,∴∠FEH=∠DCE.在△FEH和△ECD中,∴△FEH≌△ECD,∴FH=ED.(2)在矩形ABCD中,AB=3,AD=5,∴CD=AB=3.∵AE=1,∴DE=4.∵△FEH≌△ECD,∴FH=DE=4,EH=CD=3,∴AH=4,∴AH=FH.∵∠FHE=90°,∴∠FAD=45°.六、(本题满分12分)21.如图,在▱ABCD和矩形ABEF中,AC与DF相交于点G.(1)试说明DF=CE;(2)若AC=BF=DF,求∠ACE的度数.解:(1)∵四边形ABCD是平行四边形,∴AB=DC,AB∥DC.又∵四边形ABEF是矩形,∴AB=EF,AB∥EF,∴DC=EF,DC∥EF,∴四边形DCEF是平行四边形,∴DF=CE.(2)连接AE.∵四边形ABEF是矩形,∴BF=AE.又∵AC=BF=DF,∴AC=AE=CE,∴△AEC是等边三角形,∴∠ACE=60°.七、(本题满分12分)22.如图,在菱形ABCD中,G是BD上一点,连接CG并延长交BA的延长线于点F,交AD 于点E.(1)求证:AG=GC;(2)求证:AG2=GE·GF.证明:(1)∵在菱形ABCD中,AD=CD,∠ADG=∠CDG,又DG=DG,∴△AGD≌△CGD,∴AG=GC.(2)∵在菱形ABCD中,AB∥CD,∴∠F=∠DCG.由(1)已证得△AGD≌△CGD,∴∠DAG=∠DCG,∴∠F=∠DAG.又∵∠AGF=∠EGA,∴△AGE∽△FGA,∴,即AG2=GE·GF.八、(本题满分14分)23.已知正方形ABCD,P为射线AB上的一点,以BP为边作正方形BPEF,使点F在线段CB的延长线上,连接EA,EC.(1)如图1,若点P在线段AB的延长线上,求证:EA=EC.(2)若点P在线段AB上.①如图2,连接AC,当P为AB的中点时,判断△ACE的形状,并说明理由;②如图3,设AB=a,BP=b,当EP平分∠AEC时,求a∶b的值及∠AEC的度数.解:(1)在正方形ABCD和正方形BPEF中,AB=BC,BP=BF=PE=EF,∠BFE=∠BPE=90°,∴AP=CF,∴△APE≌△CFE(SAS),∴EA=EC.(2)①△ACE为直角三角形.理由:在正方形BPEF中,∠BPE=90°,∴∠APE=90°.∵P为AB的中点,∴AP=BP.∵BP=PE,∴AP=PE,∴∠PAE=∠PEA=45°.在正方形ABCD中,∠CAB=45°,∴∠CAE=90°,∴△ACE为直角三角形.②连接BE.∵EP平分∠AEC,∴∠AEP=∠CEP.在正方形BPEF中,PE∥BF,∴∠CEP=∠ECF,∴∠AEP=∠ECF.又∵∠APE=∠EFC=90°,∴△APE∽△EFC,∴,即,解得a=b(舍负),∴a∶b=∶1.∵BE=BP=b,∴BE=BC,∴∠BEC=∠ECF,∴∠EBF=∠BEC+∠ECF=2∠ECF.∵∠AEC=2∠CEP,∠CEP=∠ECF,∴∠AEC=∠EBF=45°.。

2020年中考数学压轴题专题讲解:四边形综合题(含答案)

2020年中考数学压轴题专题讲解:四边形综合题(含答案)

备战2020年中考数学压轴题专题讲解:四边形综合题1.如图,四边形ABCD是菱形,120BAD∠=︒,点E在射线AC上(不包括点A和点)C,过点E的直线GH交直线AD于点G,交直线BC于点H,且//GH DC,点F在BC的延长线上,CF AG=,连接ED,EF,DF.(1)如图1,当点E在线段AC上时,①判断AEG∆的形状,并说明理由.②求证:DEF∆是等边三角形.(2)如图2,当点E在AC的延长线上时,DEF∆是等边三角形吗?如果是,请证明你的结论;如果不是,请说明理由.2.(1)如图1,在四边形ABCD中,AB AD=,180B D∠+∠=︒,E,F分别是边BC,CD上的点,且12EAF BAD∠=∠,则BE,EF,DF之间的数量关系是EF BE DF=+.(2)如图2,若E,F分别是边BC,CD延长线上的点,其他条件不变,则BE,EF,DF 之间的数量关系是什么?请说明理由.(3)如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30︒的A处,舰艇乙在指挥中心南偏东70︒的B处,并且两舰艇到指挥中心的距离相等,接到行动命令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50︒的方向以80海里/小时的速度前进,1.5小时后,指挥中心观察到舰艇甲、乙分别到达E,F处,且两舰艇与指挥中心O 连线的夹角70EOF∠=︒,试求此时两舰艇之间的距离.3.将一个等边三角形纸片AOB 放置在平面直角坐标系中,点(0,0)O ,点(6,0)B .点C 、D 分别在OB 、AB 边上,//DC OA ,23CB =.()I 如图①,将DCB ∆沿射线CB 方向平移,得到△D C B '''.当点C 平移到OB 的中点时,求点D '的坐标;()II 如图②,若边D C ''与AB 的交点为M ,边D B ''与ABB ∠'的角平分线交于点N ,当BB '多大时,四边形MBND '为菱形?并说明理由.()III 若将DCB ∆绕点B 顺时针旋转,得到△D C B '',连接AD ',边D C ''的中点为P ,连接AP ,当AP 最大时,求点P 的坐标及AD '的值.(直接写出结果即可).4.如图(1),在ABC ∆中,AB AC =,90BAC ∠=︒,AD BC ⊥于点D ,20BC cm =,10AD cm =.点P 从点B 出发,在线段BC 上以每秒2cm 的速度向点C 匀速运动,与此同时,垂直于AD 的直线t 从点A 沿AD 出发,以每秒1cm 的速度沿AD 方向匀速平移,分别交AB 、AC 、AD 于M 、N 、E .当点P 到达点C 时,点P 与直线l 同时停止运动,设运动时间为t 秒(0)t >.(1)在运动过程中(点P 不与B 、C 重合),连接PN ,求证:四边形MBPN 为平行四边形;(2)如图(2),以MN 为边向下作正方形MFGN ,FG 交AD 于点H ,连结PF 、PG ,当1003t <<时,求PFG ∆的面积最大值; (3)在整个运动过程中,观察图(2)、(3),是否存在某一时刻t ,使PFG ∆为等腰三角形?若存在,直接写出t 的值;若不存在,请说明理由.5.如图①,在矩形ABCD 中,动点P 从点A 出发,以1/cm s 的速度沿AD 向终点D 移动,设移动时间为()t s ,连接PC ,以PC 为一边作正方形PCEF ,连接DE 、DF ,设PCD ∆的面积为2()y cm ,y 与t 之间的函数关系如图②所示. (1)AB = cm ,AD = cm ;(2)当t 为何值时,DEF ∆的面积最小?请求出这个最小值; (3)当t 为何值时,DEF ∆为等腰三角形?请简要说明理由.6.如图,在平行四边形ABCD 中,AC BC ⊥,10AB =.6AC =.动点P 在线段BC 上从点B 出发沿BC 方向以每秒1个单位长的速度匀速运动;动点Q 在线段DC 上从点D 出发沿DC 的力向以每秒1个单位长的速度匀速运动,过点P 作PE BC ⊥.交线段AB 于点E .若P 、Q 两点同时出发,当其中一点到达终点时整个运动随之停止,设运动时间为t 秒.(1)当t 为何值时,//QE BC ?(2)设PQE ∆的面积为S ,求出S 与t 的函数关系式:(3)是否存在某一时刻t ,使得PQE ∆的面积S 最大?若存在,求出此时t 的值; 若不存在,请说明理由.(4)是否存在某一时刻t ,使得点Q 在线段EP 的垂直平分线上?若存在,求出此时t 的值;若不存在,请说明理由.7.如图一,在射线DE的一侧以AD为一条边作矩形ABCD,53AD=,5CD=,点M是线段AC上一动点(不与点A重合),连结BM,过点M作BM的垂线交射线DE于点N,连接BN.(1)求CAD∠的大小;(2)问题探究:动点M在运动的过程中,①是否能使AMN∆为等腰三角形,如果能,求出线段MC的长度;如果不能,请说明理由.②MBN∠的大小是否改变?若不改变,请求出MBN∠的大小;若改变,请说明理由.(3)问题解决:如图二,当动点M运动到AC的中点时,AM与BN的交点为F,MN的中点为H,求线段FH的长度.8.如图,点E,F分别在正方形ABCD的边CD,BC上,且DE CF=,点P在射线BC上(点P不与点F重合).将线段EP绕点E顺时针旋转90︒得到线段EG,过点E作GD的垂线QH,垂足为点H,交射线BC于点Q.(1)如图1,若点E是CD的中点,点P在线段BF上,线段BP,QC,EC的数量关系为+=.BP QC EC(2)如图2,若点E不是CD的中点,点P在线段BF上,判断(1)中的结论是否仍然成立.若成立,请写出证明过程;若不成立,请说明理由.(3)正方形ABCD的边长为6,3QC=,请直接写出线段BP的长.=,1AB DE9.小波在复习时,遇到一个课本上的问题,温故后进行了操作、推理与拓展.(1)温故:如图1,在ABC ∆中,AD BC ⊥于点D ,正方形PQMN 的边QM 在BC 上,顶点P ,N 分别在AB ,AC 上,若BC a =,AD h =,求正方形PQMN 的边长(用a ,h 表示).(2)操作:如何画出这个正方形PQMN 呢?如图2,小波画出了图1的ABC ∆,然后按数学家波利亚在《怎样解题》中的方法进行操作:先在AB 上任取一点P ',画正方形P Q M N '''',使点Q ',M '在BC 边上,点N '在ABC ∆内,然后连结BN ',并延长交AC 于点N ,画NM BC ⊥于点M ,NP NM ⊥交AB 于点P ,PQ BC ⊥于点Q ,得到四边形PQMN .(3)推理:证明图2中的四边形PQMN 是正方形.(4)拓展:小波把图2中的线段BN 称为“波利亚线”,在该线上截取NE NM =,连结EQ ,EM (如图3),当90QEM ∠=︒时,求“波利亚线” BN 的长(用a ,h 表示).请帮助小波解决“温故”、“推理”、“拓展”中的问题.10.性质探究如图①,在等腰三角形ABC 中,120ACB ∠=︒,则底边AB 与腰AC 的长度之比为 3 .理解运用(1)若顶角为120︒的等腰三角形的周长为843+,则它的面积为;(2)如图②,在四边形EFGH中,EF EG EH==.①求证:EFG EHG FGH∠+∠=∠;②在边FG,GH上分别取中点M,N,连接MN.若120EF=,直接写出FGH∠=︒,10线段MN的长.类比拓展顶角为2α的等腰三角形的底边与一腰的长度之比为(用含α的式子表示).11.如图1,在矩形ABCD中,3BC=,动点P从B出发,以每秒1个单位的速度,沿射线t s.BC方向移动,作PAB∆关于直线PA的对称PAB∆',设点P的运动时间为()(1)若23AB=.①如图2,当点B'落在AC上时,显然PAB∆'是直角三角形,求此时t的值;②是否存在异于图2的时刻,使得PCB∆'是直角三角形?若存在,请直接写出所有符合题意的t的值?若不存在,请说明理由.(2)当P点不与C点重合时,若直线PB'与直线CD相交于点M,且当3t<时存在某一时刻有结论45PAMt>的任意时刻,结论“45∠=︒”是否总是PAM∠=︒成立,试探究:对于3成立?请说明理由.12.如图,在以点O为中心的正方形ABCD中,4AD=,连接AC,动点E从点O出发沿∆的外→以每秒1个单位长度的速度匀速运动,到达点C停止.在运动过程中,ADEO C接圆交AB于点F,连接DF交AC于点G,连接EF,将EFG∆.∆沿EF翻折,得到EFH (1)求证:DEF∆是等腰直角三角形;(2)当点H 恰好落在线段BC 上时,求EH 的长;(3)设点E 运动的时间为t 秒,EFG ∆的面积为S ,求S 关于时间t 的关系式.13.操作体验:如图,在矩形ABCD 中,点E 、F 分别在边AD 、BC 上,将矩形ABCD 沿直线EF 折叠,使点D 恰好与点B 重合,点C 落在点C '处.点P 为直线EF 上一动点(不与E 、F 重合),过点P 分别作直线BE 、BF 的垂线,垂足分别为点M 和N ,以PM 、PN为邻边构造平行四边形PMQN . (1)如图1,求证:BE BF =;(2)特例感知:如图2,若5DE =,2CF =,当点P 在线段EF 上运动时,求平行四边形PMQN 的周长;(3)类比探究:若DE a =,CF b =.①如图3,当点P 在线段EF 的延长线上运动时,试用含a 、b 的式子表示QM 与QN 之间的数量关系,并证明;②如图4,当点P 在线段FE 的延长线上运动时,请直接用含a 、b 的式子表示QM 与QN 之间的数量关系.(不要求写证明过程)14.在矩形ABCD 中,连结AC ,点E 从点B 出发,以每秒1个单位的速度沿着B A C →→的路径运动,运动时间为t (秒).过点E 作EF BC ⊥于点F ,在矩形ABCD 的内部作正方形EFGH .(1)如图,当8AB BC ==时,①若点H 在ABC ∆的内部,连结AH 、CH ,求证:AH CH =;②当08t <时,设正方形EFGH 与ABC ∆的重叠部分面积为S ,求S 与t 的函数关系式;(2)当6AB=,8BC=时,若直线AH将矩形ABCD的面积分成1:3两部分,求t的值.15.如图,在平面直角坐标系xOy中,矩形ABCD的边4AB=,6BC=.若不改变矩形ABCD 的形状和大小,当矩形顶点A在x轴的正半轴上左右移动时,矩形的另一个顶点D始终在y 轴的正半轴上随之上下移动.(1)当30OAD∠=︒时,求点C的坐标;(2)设AD的中点为M,连接OM、MC,当四边形OMCD的面积为212时,求OA的长;(3)当点A移动到某一位置时,点C到点O的距离有最大值,请直接写出最大值,并求此时cos OAD∠的值.参考答案1、【解答】(1)①解:AEG ∆是等边三角形;理由如下: 四边形ABCD 是菱形,120BAD ∠=︒,//AD BC ∴,AB BC CD AD ===,//AB CD ,1602CAD BAD ∠=∠=︒, 180BAD ADC ∴∠+∠=︒, 60ADC ∴∠=︒, //GH DC ,60AGE ADC ∴∠=∠=︒, 60AGE EAG AEG ∴∠=∠=∠=︒, AEG ∴∆是等边三角形;②证明:AEG ∆是等边三角形, AG AE ∴=, CF AG =, AE CF ∴=,四边形ABCD 是菱形, 120BCD BAD ∴∠=∠=︒, 60DCF CAD ∴∠=︒=∠,在AED ∆和CFD ∆中,AD CD EAD FCD AE CF =⎧⎪∠=∠⎨⎪=⎩,()AED CFD SAS ∴∆≅∆DE DF ∴=,ADE CDF ∠=∠,60ADC ADE CDE ∠=∠+∠=︒, 60CDF CDE ∴∠+∠=︒,即60EDF ∠=︒, DEF ∴∆是等边三角形;(2)解:DEF ∆是等边三角形;理由如下: 同(1)①得:AEG ∆是等边三角形, AG AE ∴=,CF AG =, AE CF ∴=,四边形ABCD 是菱形, 120BCD BAD ∴∠=∠=︒,1602CAD BAD ∠=∠=︒, 60FCD CAD ∴∠=︒=∠,在AED ∆和CFD ∆中,AD CD EAD FCD AE CF =⎧⎪∠=∠⎨⎪=⎩,()AED CFD SAS ∴∆≅∆, DE DF ∴=,ADE CDF ∠=∠,60ADC ADE CDE ∠=∠-∠=︒, 60CDF CDE ∴∠-∠=︒,即60EDF ∠=︒, DEF ∴∆是等边三角形.2、【解答】解:(1)延长FD 到点G ,使DG BE =,连结AG ,如图1所示: 在ABE ∆和ADG ∆中,90BE DG B ADG AB AD =⎧⎪∠=∠=︒⎨⎪=⎩,()ABE ADG SAS ∴∆≅∆, AE AG ∴=,BAE DAG ∠=∠,12EAF BAD ∠=∠, GAF DAG DAF BAE DAF BAD EAF EAF ∴∠=∠+∠=∠+∠=∠-∠=∠,在AEF ∆和GAF ∆中,AE AG EAF GAF AF AF =⎧⎪∠=∠⎨⎪=⎩,()AEF AGF SAS ∴∆≅∆, EF FG ∴=,FG DG DF BE DF =+=+, EF BE DF ∴=+,故答案为:EF BE DF =+;(2)BE ,EF ,DF 之间的数量关系是:EF BE DF =-;理由如下: 在CB 上截取BM DF =,连接AM ,如图2所示:180B D ∠+∠=︒,180ADC ADF ∠+∠=︒,B ADF ∴∠=∠,在ABM ∆和ADF ∆中,AB ADB ADF BM DF=⎧⎪∠=∠⎨⎪=⎩,()ABM ADF SAS ∴∆≅∆,AF AM ∴=,DAF BAM ∠=∠,BAD MAF ∴∠=∠,2BAD EAF ∠=∠,2MAF EAF ∴∠=∠,MAE EAF ∴∠=∠,在FAE ∆和MAE ∆中,AE AEFAE MAE AF AM=⎧⎪∠=∠⎨⎪=⎩,()FAE MAE SAS ∴∆≅∆,EF EM BE BM BE DF ∴==-=-,即EF BE DF =-;(3)连接EF ,延长AE 、BF 相交于点C ,如图3所示:3090(9070)140AOB ∠=︒+︒+︒-︒=︒,70EOF ∠=︒,12EOF AOB ∴∠=∠,OA OB =,(9030)(7050)180OAC OBC ∠+∠=︒-︒+︒+︒=︒,∴符合(1)中的条件,即结论EF AE BF =+成立,1.5(6080)210EF ∴=⨯+=(海里).答:此时两舰艇之间的距离是210海里.3、【解答】解:(Ⅰ)如图①中,作DH BC ⊥于H .AOB ∆是等边三角形,//DC OA ,60DCB AOB ∴∠=∠=︒,60CDB A ∠=∠=︒,CDB ∴∆是等边三角形, 23CB =DH CB ⊥,3CH HB ∴==3DH =,(63D ∴,3),3C B '=,233CC ∴'=-,233DD CC ∴'='=-,(33D ∴'+3).(Ⅱ)当3BB '=时,四边形MBND '是菱形.理由:如图②中,ABC ∆是等边三角形,60ABO ∴∠=︒,180120ABB ABO '∴∠=︒-∠=︒, BN 是ACC '∠的角平分线, 1602NBB ABB D C B ''∴∠'=∠=︒=∠'',//D C BN ''∴,//AB B D ''∴四边形MBND '是平行四边形,60ME C MCE '''∠=∠=︒,60NCC NC C ''∠=∠=︒,∴△MC B ''和NBB '∆是等边三角形,MC CE '∴=,NC CC '=,23B C ''=,四边形MBND '是菱形,BN BM ∴=,132BB B C '''∴==;(Ⅲ)如图连接BP ,在ABP ∆中,由三角形三边关系得,AP AB BP <+,∴当点A ,B ,P 三点共线时,AP 最大,如图③中,在△D BC ''中,由P 为D C ''的中点,得AP D C ''⊥,3PD '=,3CP ∴=,639AP ∴=+=,在Rt APD '∆中,由勾股定理得,AD '==此时15(2P ,.4、【解答】(1)证明:l AD ⊥,BC AD ⊥,//l BC ∴, ∴AM ANAB AC =,AB AC =,AM AN ∴=,90BAC ∠=︒,ME NE ∴=,22MN AE t ∴==,2BP t =,MN BP ∴=,∴四边形MBPN 为平行四边形;(2)解:四边形MFGN 是正方形,22FG MN MF AE t ∴====,2EH MF t ==,103DH AD AH t ∴=-=-,2115252(103)3()2233PFG S FG DH t t t ∆∴==⨯⨯-=--+,30a =-<,1003t <<,∴当53t =时,PFG S ∆最大253=;(3)解:存在,当t =5t =或10t =时,PFG ∆为等腰三角形;理由如下:利用勾股定理得:222(103)PF t =-,222(103)(10)PG t t =-+-,又22(2)FG t =, 当PF FG =时,则222(103)(2)t t -=,解得:t =,当PF PG =时,2222(103)(103)(10)t t t -=-+-,解得:5t =,或0t =(舍去);当FG PG =时,222(2)(103)(10)t t t =-+-,解得:10t =,或103t =(舍去);综上所述,t =5t =或10t =时,PFG ∆为等腰三角形.5、【解答】解:(1)由图②知:5AD =,当0t =时,P 与A 重合,152y AD CD =⨯⨯=,1552CD ⨯⨯=,2CD cm =,四边形ABCD 是矩形,2AB CD cm ∴==,故答案为:2,5;(2)由题意得:AP t =,5PD t =-,112(5)522y CD PD t t ∴==-=-,四边形EFPC 是正方形,12DEF PDC EFPC S S S ∆∆∴+=正方形,222PC PD CD =+,22222(5)1029PC t t t ∴=+-=-+,222111913(1029)(5)4(4)22222DEF S t t t t t t ∆∴=-+--=-+=-+,当t 为4时,DEF ∆的面积最小,且最小值为32;(3)当DEF ∆为等腰三角形时,分四种情况:①当FD FE =时,如下图所示,过F 作FG AD ⊥于G ,四边形EFPC 是正方形,PF EF PC ∴==,90FPC ∠=︒,PF FD ∴=,FG PD ⊥, 12PG DG PD ∴==, 90FPG CPD CPD DCP ∠+∠=∠+∠=︒,FPG DCP ∴∠=∠,90FGP PDC ∠=∠=︒,()FPG PDC AAS ∴∆≅∆,2PG DC ∴==,4PD ∴=,541AP ∴=-=,即1t =;②当DE DF =时,如下图所示,E 在AD 的延长线上,此时正方形EFPC 是正方形,2PD CD ==,523AP t ∴==-=;③当DE EF =时,如下图所示,过E 作EG CD ⊥于G ,FE DE EC ==,112CG DG CD ∴===, 同理得:()PDC CGE AAS ∆≅∆,1PD CG ∴==,514AP t ∴==-=,④当DF EF =时,如下所示,2PC EF PF ===,且PC BC ⊥,此时P 与D 重合,5t =, 综上,当1t s =或3s 或4s 或5s 时,DEF ∆为等腰三角形.6、【解答】解:(1)如图1,记EQ 与AC 的交点为G ,AC BC ⊥,90ACB ∴∠=︒,在Rt ABC ∆中,10AB =,6AC =,根据勾股定理得,8BC =,3tan 4AC B BC ==, 四边形ABCD 是平行四边形,10CD AB ∴==,8AD BC ==,由运动知,BP t =,DQ t =,8PC t ∴=-,10CQ t =-,PE BC ⊥,90BPE ∴∠=︒,在Rt BPE ∆中,3sin 5B =,4cos 5B =,3tan 4PE PE B BP t ===, 34PE t ∴=, //EQ BC ,90PEQ BPE ∴∠=∠=︒,∴四边形CPEG 是矩形,34CG PE t ∴==, //EQ BC ,CGQ CAD ∴∆∆∽, ∴CG CQ AC CD=, ∴3104610t t -=. 409t ∴=;(2)如图2,过点Q 作QH BC ⊥交BC 的延长线于H ,四边形ABCD 是平行四边形,//AB CD ∴,DCH B ∴∠=∠,在Rt CHQ ∆中,3sin 105QH QH QCH CQ t ∠===-, 3(10)5QH t ∴=-,4cos 105CH CH HCQ CQ t ∠===-, 4(10)5CH t ∴=-, 498(10)1655PH PC CH t t t ∴=+=-+-=-, ()()2133919327404010161610()25452554093QPH QHPE S S S t t t t t t ∆⎡⎤⎛⎫⎛⎫∴=-=-+⨯--⨯-⨯-=--+ ⎪ ⎪⎢⎥⎣⎦⎝⎭⎝⎭梯形,点E 在线段AB 上,∴点P 在线段BC 上,08t ∴<,点Q 在CD 上,010t ∴<<,08t ∴<, 即:2274040()(08)4093S t t =--+<;(3)由(2)知,2274040()(08)4093S t t =--+<;409t ∴=时,403S =最大;(4)如图3,过点Q 作QM PE ⊥于M ,交AC 于N , 点Q 在线段EP 的垂直平分线上,1328PM PE t ∴==,同(2)的方法得,3(10)5CN t =-,易知,四边形PCNM 是矩形,PM CN ∴=,∴33(10)85t t =-,8013t ∴=.7、【解答】解:(1)如图一(1)中,四边形ABCD 是矩形,90ADC ∴∠=︒,53tan 353DC DAC AD ∠===,30DAC ∴∠=︒.(2)①如图一(1)中,当AN NM =时,90BAN BMN ∠=∠=︒,BN BN =,AN NM =, Rt BNA Rt BNM(HL)∴∆≅∆,BA BM ∴=,在Rt ABC ∆中,30ACB DAC ∠=∠=︒,5AB CD ==, 210AC AB ∴==,60BAM ∠=︒,BA BM =,ABM ∴∆是等边三角形,5AM AB ∴==,5CM AC AM ∴=-=.如图一(2)中,当AN AM =时,易证15AMN ANM ∠=∠=︒,90BMN ∠=︒,75CMB ∴∠=︒,30MCB ∠=︒,180753075CBM ∴∠=︒-︒-︒=︒,CMB CBM ∴∠=∠,3CM CB ∴==,综上所述,满足条件的CM 的值为5或53②结论:30MBN ∠=︒大小不变.理由:如图一(1)中,180BAN BMN ∠+∠=︒,A ∴,B ,M ,N 四点共圆,30MBN MAN ∴∠=∠=︒.如图一(2)中,90BMN BAN ∠=∠=︒,A ∴,N ,B ,M 四点共圆,180MBN MAN ∴∠+∠=︒,180DAC MAN ∠+∠=︒,30MBN DAC ∴∠=∠=︒,综上所述,30MBN ∠=︒.(3)如图二中,AM MC =,BM AM CM ∴==,2AC AB ∴=,AB BM AM ∴==,ABM ∴∆是等边三角形,60BAM BMA ∴∠=∠=︒,90BAN BMN ∠=∠=︒,30NAM NMA ∴∠=∠=︒,NA NM ∴=,BA BM =,BN ∴垂直平分线段AM ,52FM ∴=,53cos303FM NM ∴==︒,90NFM ∠=︒,NH HM =,12FH MN ∴==8、【解答】解:(1)BP QC EC +=;理由如下: 四边形ABCD 是正方形,BC CD ∴=,90BCD ∠=︒,由旋转的性质得:90PEG ∠=︒,EG EP =,90PEQ GEH ∴∠+∠=︒,QH GD ⊥,90H ∴∠=︒,90G GEH ∠+∠=︒,PEQ G ∴∠=∠,又90EPQ PEC ∠+∠=︒,90PEC GED ∠+∠=︒, EPQ GED ∴∠=∠,在PEQ ∆和EGD ∆中,EPQ GEDEP EG PEQ G∠=∠⎧⎪=⎨⎪∠=∠⎩,()PEQ EGD ASA ∴∆≅∆,PQ ED ∴=,BP QC BC PQ CD ED EC ∴+=-=-=,即BP QC EC +=;故答案为:BP QC EC +=;(2)(1)中的结论仍然成立,理由如下:由题意得:90PEG ∠=︒,EG EP =,90PEQ GEH ∴∠+∠=︒,QH GD ⊥,90H ∴∠=︒,90G GEH ∠+∠=︒,PEQ G ∴∠=∠,四边形ABCD 是正方形,90DCB ∴∠=︒,BC DC =,90EPQ PEC ∴∠+∠=︒,90PEC GED ∠+∠=︒,GED EPQ ∴∠=∠,在PEQ ∆和EGD ∆中,EPQ GEDEP EG PEQ G∠=∠⎧⎪=⎨⎪∠=∠⎩,()PEQ EGD ASA ∴∆≅∆,PQ ED ∴=,BP QC BC PQ CD ED EC ∴+=-=-=,即BP QC EC +=;(3)分两种情况:①当点P 在线段BC 上时,点Q 在线段BC 上,由(2)可知:BP EC QC =-,36AB DE ==,2DE ∴=,4EC =,413BP ∴=-=;②当点P 在线段BC 上时,点Q 在线段BC 的延长线上,如图3所示:同(2)可得:()PEQ EGD AAS ∆≅∆,2PQ DE ∴==,1QC =,1PC PQ QC ∴=-=,615BP BC PC ∴=-=-=;综上所述,线段BP 的长为3或5.9、【解答】(1)解:如图1中,//PN BC,APN ABC∴∆∆∽,∴PN AEBC AD=,即PN h PNa h-=,解得ah PNa h=+(2)能画出这样的正方形,如图2中,正方形PNMQ即为所求.(3)证明:如图2中,由画图可知:90QMN PQM NPQ BM N∠=∠=∠=∠''=︒,∴四边形PNMQ是矩形,//MN M N'',∴△BN M BNM''∆∽,∴M N BN MN BN'''=,同理可得:P N BN PN BN '''=∴M N P N MN PN''''=,M N P N''='',MN PN∴=,∴四边形PQMN是正方形(4)如图,过点N作ND ME⊥于点D图3MN EN =,ND ME ⊥,NEM MNE ∴∠=∠,ED DM =90BMN QEM ∠=∠=︒90EQM EMQ ∴∠+∠=︒,90EMQ EMN ∠+∠=︒EMN EQM ∴∠=∠,且MN QN =,90QEM NDM ∠=∠=︒()QEM MDN AAS ∴∆≅∆12EQ DM EM ∴==,90BMN QEM ∠=∠=︒90BEQ NEM ∴∠+∠=︒,90BME NME ∠+∠=︒BEQ BME ∴∠=∠,且MBE MBE ∠=∠BEQ BME ∴∆∆∽ ∴12BQ BE EQ BE BM EM ===,2BM BE ∴=,2BE BQ =4BM BQ ∴=3QM BQ MN ∴==,5BN BQ = ∴3355MN BQ BN BQ ==55()33ahBN MN a h ∴==+10、【解答】性质探究解:作CD AB ⊥于D ,如图①所示:则90ADC BDC ∠=∠=︒,AC BC =,120ACB ∠=︒,AD BD ∴=,30A B ∠=∠=︒,2AC CD ∴=,AD =,2AB AD ∴==,∴AB AC =;理解运用(1)解:如图①所示:同上得:2AC CD =,AD =,8AC BC AB ++=+,48CD ∴+=+解得:2CD =,AB ∴=,ABC ∴∆的面积11222AB CD =⨯=⨯=故答案为:(2)①证明:EF EG EH ==,EFG EGF ∴∠=∠,EGH EHG ∠=∠,EFG EHG EGF EGH FGH ∴∠+∠=∠+∠=∠; ②解:连接FH ,作EP FH ⊥于P ,如图②所示: 则PF PH =,由①得:120EFG EHG FGH ∠+∠=∠=︒,360120120120FEH ∴∠=︒-︒-︒=︒,EF EH =,30EFH ∴∠=︒,152PE EF ∴==,PF ∴==,2FH PF ∴==,点M 、N 分别是FG 、GH 的中点,MN ∴是FGH ∆的中位线, 1532MN FH ∴==;类比拓展解:如图③所示:作AD BC ⊥于D ,AB AC =,BD CD ∴=,12BAD BAC α∠=∠=,sin BDAB α=,sin BD AB α∴=⨯,22sin BC BD AB α∴==⨯,∴2sin 2sin BC AB AB AB αα==;故答案为:2sin α.11、【解答】解:(1)①如图1中,四边形ABCD 是矩形,90ABC ∴∠=︒,2221AC AB BC ∴=+=PCB ACB ∠'=∠,90PB C ABC ∠'=∠=︒, PCB ACB ∴∆'∆∽,∴CB PB CB AB ''=,∴2123323PB -'=,274PB ∴'=-.274t PB ∴==-. ②如图21-中,当PCB ∠’ 90=︒时,四边形ABCD 是矩形,90D ∴∠=︒,23AB CD ==,3AD BC ==,22(23)33DB ∴'=-=,3CB CD DB ∴'=-'=,在Rt PCB ∆'中,222B P PC B C '=+',222(3)(3)t t ∴=+-,2t ∴=.如图22-中,当PCB ∠’ 90=︒时,在Rt ADB ∆'中,223DB AB AD '='-=, 33CB ∴'=在Rt PCB ∆’中则有:222(33)(3)t t +-=,解得6t =. 如图23-中,当CPB ∠’ 90=︒时,易证四边形ABP ’为正方形,易知23t =.综上所述,满足条件的t 的值为2s 或6s 或23s .(2)如图31-中,45PAM ∠=︒2345∴∠+∠=︒,1445∠+∠=︒又翻折,12∴∠=∠,34∠=∠,又ADM AB ∠=∠’ M ,AM AM =, ()AMD AMB AAS ∴∆≅∆',AD AB ∴=’ AB =,即四边形ABCD 是正方形,如图,设APB x ∠=.90PAB x ∴∠=︒-,DAP x ∴∠=,易证MDA ∆≅△B ’ ()AM HL , BAM DAM ∴∠=∠,翻折,PAB PAB ∴∠=∠’ 90x =︒-, DAB ∴∠’ PAB =∠’ 902DAP x -∠=︒-, 12DAM DAB ∴∠=∠’ 45x =︒-,45MAP DAM PAD ∴∠=∠+∠=︒.12、【解答】(1)证明:四边形ABCD 是正方形, 45DAC CAB ∴∠=∠=︒,FDE CAB ∴∠=∠,DFE DAC ∠=∠, 45FDE DFE ∴∠=∠=︒, 90DEF ∴∠=︒,DEF ∴∆是等腰直角三角形;(2)设OE t =,连接OD , 90DOE DAF ∴∠=∠=︒, OED DFA ∠=∠,DOE DAF ∴∆∆∽,∴22OEODAF AD ==,∴2AF t =,又AEF ADG ∠=∠,EAF DAG ∠=∠,AEF ADG ∴∆∆∽, ∴AE AFAD AG =, ∴42AG AE AD AF t ==,又AE OA OE t =+=+,∴AG =,EG AE AG ∴=-=当点H 恰好落在线段BC 上454590DFH DFE HFE ∠=∠+∠=︒+︒=︒, ADF BFH ∴∆∆∽,∴FH FB FD AD ==, //AF CD ,∴FG AF DG CD ==∴FG DF =∴=,解得:1t =-,2t =(舍去),EG EH ∴====-;(3)过点F 作FK AC ⊥于点K ,由(2)得EG =,DE EF =,90DEF ∠=︒,DEO EFK ∴∠=∠,()DOE EKF AAS ∴∆≅∆,FK OE t ∴==, 31242EFG t S EG FK ∆+∴==13、【解答】(1)证明:如图1中,四边形ABCD 是矩形,//AD BC ∴,DEF EFB ∴∠=∠,由翻折可知:DEF BEF ∠=∠,BEF EFB ∴∠=∠,BE BF ∴=.(2)解:如图2中,连接BP ,作EH BC ⊥于H ,则四边形ABHE 是矩形,EH AB =.5DE EB BF ===,2CF =,7AD BC ∴==,2AE =,在Rt ABE ∆中,90A ∠=︒,5BE =,2AE =,225221AB ∴=-=,BEF PBE PBF S S S ∆∆∆=+,PM BE ⊥,PN BF ⊥, ∴111222BF EH BE PM BF PN =+, BE BF =,21PM PN EH ∴+==,四边形PMQN 是平行四边形,∴四边形PMQN 的周长2()221PM PN =+=(3)①证明:如图3中,连接BP ,作EH BC ⊥于H .ED EB BF a ===,CF b =,AD BC a b ∴==+,AE AD DE b ∴=-=, 22EH AB a b ∴==-,EBP BFP EBF S S S ∆∆∆-=,∴111222BE PM BF PN BF EH -=, BE BF =,22PM PN EH a b ∴-==-,四边形PMQN 是平行四边形,22()QN QM PM PN a b ∴-=-=-.②如图4,当点P 在线段FE 的延长线上运动时,同法可证:22QM QN PN PM a b -=-=-.14、【解答】解:(1)①如图1中,四边形EFGH 是正方形,AB BC =,BE BG ∴=,AE CG =,90BEH BGH ∠=∠=︒,90AEH CGH ∴∠=∠=︒,EH HG =,()AEH CGH SAS ∴∆≅∆,AH CH ∴=.②如图1中,当04t <时,重叠部分是正方形EFGH ,2S t =.如图2中,当48t <时,重叠部分是五边形EFGMN ,2211882(8)163222ABC AEN CGM S S S S t t t ∆∆∆=--=⨯⨯-⨯-=-+-.综上所述,22(04)1632(48)t t S t t t ⎧<=⎨-+-<⎩. (2)如图31-中,设直线AH 交BC 于M ,当4BM CM ==时,直线AH 将矩形ABCD 的面积分成1:3两部分.//EH BM ,∴AE EH AB BM =, ∴664t t -=, 125t ∴=. 如图32-中,设直线长AH 交CD 于M 交BC 的延长线于K ,当3CM DM ==时,直线AH 将矩形ABCD 的面积分成1:3两部分,易证8AD CK ==,//EH BK ,∴AE EH AB BK=,∴6616t t -=, 4811t ∴=. 如图33-中,当点E 在线段AC 上时,设直线AH 交CD 于M ,交BC 的延长线于N .当CM DM =时,直线AH 将矩形ABCD 的面积分成1:3两部分,易证8AD CN ==.在Rt ABC ∆中,226810AC =+=,//EF AB ,∴CE EFCA AB =,∴16106tEF-=,3(16)5EF t ∴=-,//EH CN ,∴EH AECN AC =,∴3(16)65810t t --=,解得727t =.当正方形EFGH 在AC 的左边时,由EH AE CN AC =,可得3(16)65410t t --=,解得12t =.综上所述,满足条件的t 的值为125或4811或727或12.15、【解答】解:(1)如图1,过点C 作CE y ⊥轴于点E ,矩形ABCD 中,CD AD ⊥,90CDE ADO ∴∠+∠=︒,又90OAD ADO ∠+∠=︒,30CDE OAD ∴∠=∠=︒,∴在Rt CED ∆中,122CE CD ==,2223DE CD CE =-=在Rt OAD ∆中,30OAD ∠=︒,132OD AD ∴==,∴点C 的坐标为(2,33)+(2)M 为AD 的中点,3DM ∴=,6DCM S ∆=, 又212OMCD S =四边形,92ODM S ∆∴=,9OAD S ∆∴=,设OA x =、OD y =,则2236x y +=,192xy =,222x y xy ∴+=,即x y =,将x y =代入2236x y +=得218x =, 解得32x =(负值舍去),32OA ∴=(3)OC 的最大值为8,如图2,M 为AD 的中点,3OM ∴=,225CM CD DM =+=,8OC OM CM ∴+=,当O 、M 、C 三点在同一直线时,OC 有最大值8,连接OC ,则此时OC 与AD 的交点为M ,过点O 作ON AD ⊥,垂足为N , 90CDM ONM ∠=∠=︒,CMD OMN ∠=∠,CMD OMN ∴∆∆∽, ∴CDDMCMON MN OM ==,即4353ON MN ==, 解得95MN =,125ON =,65AN AM MN ∴=-=,在Rt OAN ∆中,22655OA ON AN =+=,5cos 5ANOAD OA ∴∠==.。

中考数学专卷2020届中考数学总复习(21)四边形-精练精析(1)及答案解析

中考数学专卷2020届中考数学总复习(21)四边形-精练精析(1)及答案解析

图形的性质——四边形1一.选择题(共9小题)1.在下列所给出的4个图形中,对角线一定互相垂直的是()A.长方形 B.平行四边形C.菱形 D.直角梯形2.如图,在Rt△ABC中,∠ACB=90°,AC=BC=6cm,动点P从点A出发,沿AB方向以每秒cm 的速度向终点B运动;同时,动点Q从点B出发沿BC方向以每秒1cm的速度向终点C运动,将△PQC沿BC翻折,点P的对应点为点P′.设Q点运动的时间为t秒,若四边形QP′C P 为菱形,则t的值为()A.B.2 C.D.33.一个多边形的内角和是外角和的2倍,则这个多边形是()A.四边形B.五边形C.六边形D.八边形4.五边形的内角和是()A.180°B.360°C.540°D.600°5.将一个n边形变成n+1边形,内角和将()A.减少180°B.增加90°C.增加180°D.增加360°6.六盘水市“琼都大剧院”即将完工,现需选用同一批地砖进行装修,以下不能镶嵌的地板是()A.正五边形地砖 B.正三角形地砖 C.正六边形地砖 D.正四边形地砖7.平行四边形的对角线一定具有的性质是()A.相等 B.互相平分 C.互相垂直 D.互相垂直且相等8如图,▱ABCD中,BC=BD,∠C=74°,则∠ADB的度数是()A.16° B.22° C.32° D.68°9.在平行四边形ABCD中,点E在AD上,且AE:ED=3:1,CE的延长线与BA的延长线交于点F,则S△AFE:S四边形ABCE为()A.3:4 B.4:3 C.7:9 D.9:7二.填空题(共7小题)10.在四边形ABCD中,已知AB∥CD,请补充一个条件_________ ,使得四边形ABCD是平行四边形.11.五边形的内角和为_________ .12.如图,在边长为2的菱形ABCD中,∠B=45°,AE为BC边上的高,将△ABE沿AE所在直线翻折得△AB1E,则△AB1E与四边形AECD重叠部分的面积是_________ .13.正多边形的一个外角等于20°,则这个正多边形的边数是_________ .14.如图,▱ABCD中,AE⊥BD于E,∠EAC=30°,AE=3,则AC的长等于_________ .15.在▱ABCD中,BC边上的高为4,AB=5,AC=2,则▱ABCD的周长等于_________ .16.如图,在▱ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF、CF,则下列结论中一定成立的是_________ .(把所有正确结论的序号都填在横线上)①∠DCF=∠BCD;②EF=CF;③S△BEC=2S△CEF;④∠DFE=3∠AEF.三.解答题(共8小题)17.已知:如图,在▱ABCD中,O为对角线BD的中点,过点O的直线EF分别交AD,BC于E,F两点,连结BE,DF.(1)求证:△DOE≌△BOF;(2)当∠DOE等于多少度时,四边形BFDE为菱形?请说明理由.18.如图,▱ABCD的对角线AC、BD相交于点O,EF过点O且与AB,CD分别相交于点E、F,求证:△AOE≌△COF.19.如图,已知▱ABCD水平放置在平面直角坐标系xOy中,若点A,D的坐标分别为(﹣2,5),(0,1),点B(3,5)在反比例函数y=(x>0)图象上.(1)求反比例函数y=的解析式;(2)将▱ABCD沿x轴正方向平移10个单位后,能否使点C落在反比例函数y=的图象上?并说明理由.20.如图,在▱ABCD中,E,F分别为BC,AB中点,连接FC,AE,且AE与FC交于点G,AE 的延长线与DC的延长线交于点N.(1)求证:△ABE≌△NCE;(2)若AB=3n,FB=GE,试用含n的式子表示线段AN的长.21.如图,在平行四边形ABCD中,∠B=∠AFE,EA是∠BEF的角平分线.求证:(1)△ABE≌△AFE;(2)∠FAD=∠CDE.22.已知:如图,▱ABCD中,O是CD的中点,连接AO并延长,交BC的延长线于点E.(1)求证:△AOD≌△EOC;(2)连接AC,DE,当∠B=∠AEB=_________ °时,四边形ACED是正方形?请说明理由.23.如图,在▱ABCD中,E是AD边上的中点,连接BE,并延长BE交CD的延长线于点F.(1)证明:FD=AB;(2)当▱ABCD的面积为8时,求△FED的面积.24.已知BD垂直平分AC,∠BCD=∠ADF,AF⊥AC,(1)证明四边形ABDF是平行四边形;(2)若AF=DF=5,AD=6,求AC的长.图形的性质——四边形1参考答案与试题解析一.选择题(共9小题)1在下列所给出的4个图形中,对角线一定互相垂直的是()A.长方形 B.平行四边形B.C.菱形 D.直角梯形考点:多边形.分析:根据菱形的对角线互相垂直即可判断.解答:解:菱形的对角线互相垂直,而长方形、平行四边形、直角梯形的对角线不一定互相垂直.故选:C.点评:本题考查了长方形、平行四边形、菱形、直角梯形的性质.常见四边形中,菱形与正方形的对角线互相垂直.2.如图,在Rt△ABC中,∠ACB=90°,AC=BC=6cm,动点P从点A出发,沿AB方向以每秒cm 的速度向终点B运动;同时,动点Q从点B出发沿BC方向以每秒1cm的速度向终点C运动,将△PQC沿BC翻折,点P的对应点为点P′.设Q点运动的时间为t秒,若四边形QP′CP 为菱形,则t的值为()A.B.2 C.D.3考点:菱形的性质;翻折变换(折叠问题).专题:压轴题;动点型.分析:首先连接PP′交BC于O,根据菱形的性质可得PP′⊥CQ,可证出PO∥AC,根据平行线分线段成比例可得=,再表示出AP、AB、CO的长,代入比例式可以算出t的值.解答:解:连接PP′交BC于O,∵若四边形QPCP′为菱形,∴PP′⊥QC,∴∠POQ=90°,∵∠ACB=90°,∴PO∥AC,∴=,∵设点Q运动的时间为t秒,∴AP=t,QB=t,∴QC=6﹣t,∴CO=3﹣,∵AC=CB=6,∠ACB=90°,∴AB=6,∴=,解得:t=2,故选:B.点评:此题主要考查了菱形的性质,勾股定理,平行线分线段成比例,关键是熟记平行线分线段成比例定理的推论:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例.推出比例式=,再表示出所需要的线段长代入即可.3.一个多边形的内角和是外角和的2倍,则这个多边形是()A.四边形B.五边形C.六边形D.八边形考点:多边形内角与外角.分析:此题可以利用多边形的外角和和内角和定理求解.解答:解:设所求正n边形边数为n,由题意得(n﹣2)•180°=360°×2解得n=6.则这个多边形是六边形.故选:C.点评:本题考查多边形的内角和与外角和、方程的思想.关键是记住内角和的公式与外角和的特征:任何多边形的外角和都等于360°,多边形的内角和为(n﹣2)•180°.4.五边形的内角和是()A.180°B.360°C.540°D.600°考点:多边形内角与外角.专题:常规题型.分析:直接利用多边形的内角和公式进行计算即可.解答:解:(5﹣2)•180°=540°.故选:C.点评:本题主要考查了多边形的内角和定理,是基础题,熟记定理是解题的关键.5.将一个n边形变成n+1边形,内角和将()A.减少180°B.增加90°C.增加180°D.增加360°考点:多边形内角与外角.专题:计算题.分析:利用多边形的内角和公式即可求出答案.解答:解:n边形的内角和是(n﹣2)•180°,n+1边形的内角和是(n﹣1)•180°,因而(n+1)边形的内角和比n边形的内角和大(n﹣1)•180°﹣(n﹣2)•180=180°.故选:C.点评:本题主要考查了多边形的内角和公式,是需要识记的内容.6.六盘水市“琼都大剧院”即将完工,现需选用同一批地砖进行装修,以下不能镶嵌的地板是()A.正五边形地砖B.正三角形地砖C.正六边形地砖D.正四边形地砖考点:平面镶嵌(密铺).分析:几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.360°为正多边形一个内角的整数倍才能单独镶嵌.解答:解:A、正五边形每个内角是180°﹣360°÷5=108°,不是360°的约数,不能镶嵌平面,符合题意;B、正三角形的一个内角度数为180﹣360÷3=60°,是360°的约数,能镶嵌平面,不符合题意;C、正六边形的一个内角度数为180﹣360÷6=120°,是360°的约数,能镶嵌平面,不符合题意;D、正四边形的一个内角度数为180﹣360÷4=90°,是360°的约数,能镶嵌平面,不符合题意.故选:A.点评:本题考查了平面密铺的知识,注意掌握只用一种正多边形镶嵌,只有正三角形,正四边形,正六边形三种正多边形能镶嵌成一个平面图案.7.平行四边形的对角线一定具有的性质是()A.相等B.互相平分C互相垂直D.互相垂直且相等考点:平行四边形的性质.分析:根据平行四边形的对角线互相平分可得答案.解答:解:平行四边形的对角线互相平分,故选:B.点评:此题主要考查了平行四边形的性质,关键是掌握平行四边形的性质:①边:平行四边形的对边相等.②角:平行四边形的对角相等.③对角线:平行四边形的对角线互相平分.8.如图,▱ABCD中,BC=BD,∠C=74°,则∠ADB的度数是()A.16°B.22°C.32°D.68°考点:平行四边形的性质;等腰三角形的性质.分析:根据平行四边形的性质可知:AD∥BC,所以∠C+∠ADC=180°,再由BC=BD 可得∠C=∠BDC,进而可求出∠ADB的度数.解答:解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠C+∠ADC=180°,∵∠C=74°,∴∠ADC=106°,∵BC=BD,∴∠C=∠BDC=74°,∴∠ADB=106°﹣74°=32°,故选:C.点评:本题考查了平行四边形的性质:对边平行以及等腰三角形的性质,属于基础性题目,比较简单.9.在平行四边形ABCD中,点E在AD上,且AE:ED=3:1,CE的延长线与BA的延长线交于点F,则S△AFE:S四边形ABCE为()A.3:4 B.4:3 C.7:9 D.9:7考点:平行四边形的性质;相似三角形的判定与性质.专题:几何图形问题.分析:利用平行四边形的性质得出△FAE∽△FBC,进而利用相似三角形的性质得出=,进而得出答案.解答:解:∵在平行四边形ABCD中,∴AE∥BC,AD=BC,∴△FAE∽△FBC,∵AE:ED=3:1,∴=,∴=,∴S△AFE:S四边形ABCE=9:7.故选:D.点评:此题主要考查了平行四边形的性质和相似三角形的判定与性质,得出=是解题关键.二.填空题(共7小题)10.在四边形ABCD中,已知AB∥CD,请补充一个条件AB=CD或AD∥BC,使得四边形ABCD 是平行四边形.考点:平行四边形的判定.专题:开放型.分析:根据平行四边形的判定定理:两组对边分别平行的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形;两组对角分别相等的四边形是平行四边形.即可选出答案.(答案不唯一)解答:解:可补充的条件是AB=CD或AD∥BC,理由是:∵在四边形ABCD中,已知AB∥CD,∴根据平行四边形的判定定理:一组对边平行且相等的四边形是平行四边形,可补充一个条件AB=CD.∵AB∥CD,AD∥CD,∴四边形ABCD是平行四边形(有两组对边分别平行线=的四边形是平行四边形,即可补充一个条件是AD∥BC,故答案为: AB=CD或AD∥BC.点评:此题主要考查学生对平行四边形的判定这一知识点的理解和掌握,此题答案不唯一,可根据已知条件,选一个最简单的填入即可.11.五边形的内角和为540°.考点:多边形内角与外角.专题:常规题型.分析:根据多边形的内角和公式(n﹣2)•180°计算即可.解答:解:(5﹣2)•180°=540°.故答案为:540°.点评:本题主要考查了多边形的内角和公式,熟记公式是解题的关键,是基础题.12.如图,在边长为2的菱形ABCD中,∠B=45°,AE为BC边上的高,将△ABE沿AE所在直线翻折得△AB1E,则△AB1E与四边形AECD重叠部分的面积是2﹣2 .考点:菱形的性质;翻折变换(折叠问题).分析:首先设CD与AB1交于点O,由在边长为2的菱形ABCD中,∠B=45°,AE为BC边上的高,可求得AE的长,继而求得△ABB1、△AEB1、△COB1的面积.则可求得答案.解答:解:如图,设CD与AB1交于点O,∵在边长为2的菱形ABCD中,∠B=45°,AE为BC边上的高,∴AE=,由折叠易得△ABB1为等腰直角三角形,∴S△ABB1=BA•AB1=2,S△ABE=1,∴CB1=2BE﹣BC=2﹣2,∵AB∥CD,∴∠OCB1=∠B=45°,又由折叠的性质知,∠B1=∠B=45°,∴CO=OB1=2﹣.∴S△COB1=OC•OB1=3﹣2,∴重叠部分的面积为:2﹣1﹣(3﹣2)=2﹣2.点评:此题考查了菱形的性质以及等腰直角三角形的性质.此题难度不大,注意掌握数形结合思想的应用.13.正多边形的一个外角等于20°,则这个正多边形的边数是18 .考点:多边形内角与外角.分析:根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.解答:解:因为外角是20度,360÷20=18,则这个多边形是18边形.故答案为:18点评:根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.14.如图,▱ABCD中,AE⊥BD于E,∠EAC=30°,AE=3,则AC的长等于4.考点:平行四边形的性质;解直角三角形.专题:几何图形问题.分析:设对角线AC和BD相交于点O,在直角△AOE中,利用三角函数求得OA的长,然后根据平行四边形的对角线互相平分即可求得.解答:解:∵在直角△AOE中,cos∠EAC=,∴OA===2,又∵四边形ABCD是平行四边形,∴AC=2OA=4.故答案是:4.点评:本题考查了三角函数的应用,以及平行四边形的性质:平行四边形的对角线互相平分,正确求得OA的长是关键.15.在▱ABCD中,BC边上的高为4,AB=5,AC=2,则▱ABCD的周长等于12或20 .考点:平行四边形的性质.专题:分类讨论.分析:根据题意分别画出图形,BC边上的高在平行四边形的内部和外部,进而利用勾股定理求出即可.解答:解:如图1所示:∵在▱ABCD中,BC边上的高为4,AB=5,AC=2,∴EC==2,AB=CD=5,BE==3,∴AD=BC=5,∴▱ABCD的周长等于:20,如图2所示:∵在▱ABCD中,BC边上的高为4,AB=5,AC=2,∴EC==2,AB=CD=5,BE==3,∴BC=3﹣2=1,∴▱ABCD的周长等于:1+1+5+5=12,则▱ABCD的周长等于12或20.故答案为:12或20.点评:此题主要考查了平行四边形的性质以及勾股定理等知识,利用分类讨论得出是解题关键.16.如图,在▱ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF、CF,则下列结论中一定成立的是①②④.(把所有正确结论的序号都填在横线上)①∠DCF=∠BCD;②EF=CF;③S△BEC=2S△CEF;④∠DFE=3∠AEF.考点:平行四边形的性质;全等三角形的判定与性质;直角三角形斜边上的中线.专题:几何图形问题;压轴题.分析:分别利用平行四边形的性质以及全等三角形的判定与性质得出△AEF≌△DMF(ASA),得出对应线段之间关系进而得出答案.解答:解:①∵F是AD的中点,∴AF=FD,∵在▱ABCD中,AD=2AB,∴AF=FD=CD,∴∠DFC=∠DCF,∵AD∥BC,∴∠DFC=∠FCB,∴∠DCF=∠BCF,∴∠DCF=∠BCD,故此选项正确;延长EF,交CD延长线于M,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠A=∠MDF,∵F为AD中点,∴AF=FD,在△AEF和△DFM中,,∴△AEF≌△DMF(ASA),∴FE=MF,∠AEF=∠M,∵CE⊥AB,∴∠AEC=90°,∴∠AEC=∠ECD=90°,∵FM=EF,∴FC=FM,故②正确;③∵EF=FM,∴S△EFC=S△CFM,∵MC>BE,∴S△BEC<2S△EFC故S△BEC=2S△CEF错误;④设∠FEC=x,则∠FCE=x,∴∠DCF=∠DFC=90°﹣x,∴∠EFC=180°﹣2x,∴∠EFD=90°﹣x+180°﹣2x=270°﹣3x,∵∠AEF=90°﹣x,∴∠DFE=3∠AEF,故此选项正确.故答案为:①②④.点评:此题主要考查了平行四边形的性质以及全等三角形的判定与性质等知识,得出△AEF≌△DME是解题关键.三.解答题(共8小题)17.已知:如图,在▱ABCD中,O为对角线BD的中点,过点O的直线EF分别交AD,BC于E,F两点,连结BE,DF.(1)求证:△DOE≌△BOF;(2)当∠DOE等于多少度时,四边形BFDE为菱形?请说明理由.考点:平行四边形的性质;全等三角形的判定与性质;菱形的判定.专题:几何综合题.分析:(1)利用平行四边形的性质以及全等三角形的判定方法得出△DOE≌△BOF (ASA);(2)首先利用一组对边平行且相等的四边形是平行四边形得出四边形EBFD是平行四边形,进而利用垂直平分线的性质得出BE=ED,即可得出答案.解答:(1)证明:∵在▱ABCD中,O为对角线BD的中点,∴BO=DO,∠EDB=∠FBO,在△EOD和△FOB中,∴△DOE≌△BOF(ASA);(2)解:当∠DOE=90°时,四边形BFDE为菱形,理由:∵△DOE≌△BOF,∴OE=OF,又∵OB=OD∴四边形EBFD是平行四边形,∵∠EOD=90°,∴EF⊥BD,∴四边形BFDE为菱形.点评:此题主要考查了平行四边形的性质以及全等三角形的判定与性质和菱形的判定等知识,得出BE=DE是解题关键.18.如图,▱ABCD的对角线AC、BD相交于点O,EF过点O且与AB,CD分别相交于点E、F,求证:△AOE≌△COF.考点:平行四边形的性质;全等三角形的判定.专题:证明题.分析:根据平行四边形的性质得出OA=OC,AB∥CD,推出∠EAO=∠FCO,证出△AOE≌△COF即可.解答:证明:∵四边形ABCD是平行四边形,∴OA=OC,AB∥CD,∴∠EAO=∠FCO,在△AOE和△COF中,,∴△AOE≌△COF(ASA).点评:本题考查了平行四边形的性质,平行线的性质,全等三角形的判定的应用,关键是根据平行四边形的性质得出AO=CO.19.如图,已知▱ABCD水平放置在平面直角坐标系xOy中,若点A,D的坐标分别为(﹣2,5),(0,1),点B(3,5)在反比例函数y=(x>0)图象上.(1)求反比例函数y=的解析式;(2)将▱ABCD沿x轴正方向平移10个单位后,能否使点C落在反比例函数y=的图象上?并说明理由.考点:平行四边形的性质;反比例函数图象上点的坐标特征;待定系数法求反比例函数解析式;坐标与图形变化-平移.专题:数形结合.分析:(1)利用待定系数法把B(3,5)代入反比例函数解析式可得k的值,进而得到函数解析式;(2)根据A、D、B三点坐标可得AB=5,AB∥x轴,根据平行四边形的性质可得AB∥CD∥x 轴,再由C点坐标可得▱ABCD沿x轴正方向平移10个单位后C点坐标为(15,1),根据反比例函数图象上点的坐标特点可得点C落在反比例函数y=的图象上.解答:解:(1)∵点B(3,5)在反比例函数y=(x>0)图象上,∴k=15,∴反比例函数的解析式为y=;(2)平移后的点C能落在y=的图象上;∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∵点A,D的坐标分别为(﹣2,5),(0,1),点B(3,5),∴AB=5,AB∥x轴,∴DC∥x轴,∴点C的坐标为(5,1),∴▱ABCD沿x轴正方向平移10个单位后C点坐标为(15,1),∴平移后的点C能落在y=的图象上.点评:此题主要考查了平行四边形的性质,以及待定系数法求反比例函数和反比例函数图象上点的坐标特点,根据题意得到AB=5,AB∥x轴是解决问题的关键.20.如图,在▱ABCD中,E,F分别为BC,AB中点,连接FC,AE,且AE与FC交于点G,AE 的延长线与DC的延长线交于点N.(1)求证:△ABE≌△NCE;(2)若AB=3n,FB=GE,试用含n的式子表示线段AN的长.考点:平行四边形的性质;全等三角形的判定与性质;相似三角形的判定与性质.专题:几何综合题.分析:(1)根据平行四边形的性质可得AB∥CN,由此可知∠B=∠ECN,再根据全等三角形的判定方法ASA即可证明△ABE≌△NCE;(2)因为AB∥CN,所以△AFG∽△CNG,利用相似三角形的性质和已知条件即可得到含n的式子表示线段AN的长.解答:(1)证明:∵四边形ABCD是平行四边形,∴AB∥CN,∴∠B=∠ECN,∵E是BC中点,∴BE=CE,在△ABE和△NCE中,,∴△ABE≌△NCE(ASA).(2)∵AB∥CN,∴△AFG∽△CNG,∴AF:CN=AG:GN,∵AB=CN,∴AF:AB=AG:GN,∵AB=3n,F为AB中点∴FB=GE,∴GE=n,∴=,解得AE=3n,∴AG=2n,GE=n,EN=3n,∴AN=AG+GE+EN=2n+n+3n=6n.点评:本题考查了平行四边形的性质、全等三角形的判定和性质以及相似三角形的平和性质,题目的综合性较强,难度中等.21.如图,在平行四边形ABCD中,∠B=∠AFE,EA是∠BEF的角平分线.求证:(1)△ABE≌△AFE;(2)∠FAD=∠CDE.考点:平行四边形的性质;全等三角形的判定与性质.专题:证明题.分析:(1)根据角平分线的性质可得∠1=∠2,再加上条件∠B=∠AFE,公共边AE,可利用AAS证明△ABE≌△AFE;(2)首先证明AF=CD,再证明∠B=∠AFE,∠AFD=∠C可证明△AFD≌△DC E进而得到∠FAD=∠CDE.解答:证明:(1)∵EA是∠BEF的角平分线,∴∠1=∠2,在△ABE和△AFE中,,∴△ABE≌△AFE(AAS);(2)∵△ABE≌△AFE,∴AB=AF,∵四边形ABCD是平行四边形,∴AB=CD,AD∥CB,AB∥CD,∴AF=CD,∠ADF=∠DEC,∠B+∠C=180°,∵∠B=∠AFE,∠AFE+∠AFD=180°,∴∠AFD=∠C,在△AFD和△DCE中,,∴△AFD≌△DCE(AAS),∴∠FAD=∠CDE.点评:此题主要考查了平行四边形的性质,以及全等三角形的判定与性质,关键是正确证明△AFD≌△DCE.22.已知:如图,▱ABCD中,O是CD的中点,连接AO并延长,交BC的延长线于点E.(1)求证:△AOD≌△EOC;(2)连接AC,DE,当∠B=∠AEB=45 °时,四边形ACED是正方形?请说明理由.考点:平行四边形的性质;全等三角形的判定与性质;正方形的判定.专题:几何综合题.分析:(1)根据平行线的性质可得∠D=∠OCE,∠DAO=∠E,再根据中点定义可得DO=CO,然后可利用AAS证明△AOD≌△EOC;(2)当∠B=∠AEB=45°时,四边形ACED是正方形,首先证明四边形ACED是平行四边形,再证对角线互相垂直且相等可得四边形ACED是正方形.解答:证明:(1)∵四边形ABCD是平行四边形,∴AD∥BC.∴∠D=∠OCE,∠DAO=∠E.∵O是CD的中点,∴OC=OD,在△ADO和△ECO中,,∴△AOD≌△EOC(AAS);(2)当∠B=∠AEB=45°时,四边形ACED是正方形.∵△AOD≌△EOC,∴OA=OE.又∵OC=OD,∴四边形ACED是平行四边形.∵∠B=∠AEB=45°,∴AB=AE,∠BAE=90°.∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.∴∠COE=∠BAE=90°.∴▱ACED是菱形.∵AB=AE,AB=CD,∴AE=CD.∴菱形ACED是正方形.故答案为:45.点评:此题主要考查了全等三角形的判定与性质,以及正方形的判定,关键是掌握对角线互相垂直且相等的平行四边形是正方形.23.如图,在▱ABCD中,E是AD边上的中点,连接BE,并延长BE交CD的延长线于点F.(1)证明:FD=AB;(2)当▱ABCD的面积为8时,求△FED的面积.考点:平行四边形的性质;全等三角形的判定与性质.分析:(1)利用已知得出△ABE≌△DFE(AAS),进而求出即可;(2)首先得出△FED∽△FBC,进而得出=,进而求出即可.解答:(1)证明:∵在平行四边形ABCD中,E是AD边上的中点,∴AE=ED,∠ABE=∠F,在△ABE和△DFE中,∴△ABE≌△DFE(AAS),∴FD=AB;(2)解:∵DE∥BC,∴△FED∽△FBC,∵△ABE≌△DFE,∴BE=EF,S△FBC=S▱ABCD,∴=,∴=,∴=,∴△FED的面积为:2.点评:此题主要考查了全等三角形的判定与性质以及平行四边形的性质以及相似三角形的判定与性质等知识,得出S△FBC=S平行四边形ABCD是解题关键.24.已知BD垂直平分AC,∠BCD=∠ADF,AF⊥AC,(1)证明四边形ABDF是平行四边形;(2)若AF=DF=5,AD=6,求AC的长.考点:平行四边形的判定;线段垂直平分线的性质;勾股定理.分析:(1)先证得△ADB≌△CDB求得∠BCD=∠BAD,从而得到∠ADF=∠BAD,所以AB∥FD,因为BD⊥AC,AF⊥AC,所以AF∥BD,即可证得.(2)先证得平行四边形是菱形,然后根据勾股定理即可求得.解答:(1)证明:∵BD垂直平分AC,∴AB=BC,AD=DC,在△ADB与△CDB中,,∴△ADB≌△CDB(SSS)∴∠BCD=∠BAD,∵∠BCD=∠ADF,∴∠BAD=∠ADF,∴AB∥FD,∵BD⊥AC,AF⊥AC,∴AF∥BD,∴四边形ABDF是平行四边形,(2)解:∵四边形ABDF是平行四边形,AF=DF=5,∴▱ABDF是菱形,∴AB=BD=5,∵AD=6,设BE=x,则DE=5﹣x,∴AB2﹣BE2=AD2﹣DE2,即52﹣x2=62﹣(5﹣x)2解得:x=,∴=,∴AC=2AE=.点评:本题考查了平行四边形的判定,菱形的判定和性质以及勾股定理的应用.。

2020年中考数学压轴题专项训练:四边形的综合(含答案)

2020年中考数学压轴题专项训练:四边形的综合(含答案)

2020年数学中考压轴题专项训练:四边形的综合1.如图,四边形ABCD是直角梯形,AD∥BC,AB⊥AD,且AB=AD+BC,E是DC的中点,连结BE并延长交AD的延长线于G.(1)求证:DG=BC;(2)F是AB边上的动点,当F点在什么位置时,FD∥BG;说明理由.(3)在(2)的条件下,连结AE交FD于H,FH与HD长度关系如何?说明理由.(1)证明:∵AD∥BC,∴∠DGE=∠CBE,∠GDE=∠BCE,∵E是DC的中点,即DE=CE,∴△DEG≌△CEB(AAS),∴DG=BC.(2)解:当F运动到AF=AD时,FD∥BG.理由:由(1)知DG=BC,∵AB=AD+BC,AF=AD,∴BF=BC=DG,∴AB=AG,∵∠BAG=90°,∴∠AFD=∠ABG=45°,∴FD∥BG.(3)解:结论:FH=HD.理由:由(1)知GE=BG,又由(2)知△ABG为等腰直角三角形,所以AE⊥BG,∵FD∥BG,∴AE⊥FD,∵△AFD为等腰直角三角形,∴FH=HD.2.如图,在矩形ABCD中,过BD的中点O作EF⊥BD,分别与AB、CD交于点E、F.连接DE、BF.(1)求证:四边形BEDF是菱形;(2)若M是AD中点,联结OM与DE交于点N,AD=OM=4,则ON的长是多少?(1)证明:∵四边形ABCD是矩形,∴AB∥CD,∴∠DFO=∠BEO,∵∠DOF=∠EOB,OD=OB,∴△DOF≌△BOE(AAS),∴DF=BE,∴四边形BEDF是平行四边形,∵EF⊥BD,∴四边形BEDF是菱形.(2)解:∵DM=AM,DO=OB,∴OM∥AB,AB=2OM=8,∴DN=EN,ON=BE,设DE=EB=x,在Rt△ADE中,则有x2=42+(8﹣x)2,解得x=5,∴ON=.3.(1)如图1,四边形EFGH中,FE=EH,∠EFG+∠EHG=180°,点A,B分别在边FG,GH 上,且∠AEB=∠FEH,求证:AB=AF+BH.(2)如图2,四边形EFGH中,FE=EH,点M在边EH上,连接FM,EN平分∠FEH交FM 于点N,∠ENM=α,∠FGH=180°﹣2α,连接GN,HN.①找出图中与NH相等的线段,并加以证明;②求∠NGH的度数(用含α的式子表示).(1)证明:如图1中,延长BH到M,使得HM=FA,连接EM.∵∠F+∠EHG=180°,∠EHG+∠EHM=180°,∴∠F=∠EHM,∵AE=HE,FA=HM,∴△EFA≌△EHM(SAS),∴EA=EM,∠FEA=∠HEM,∵∠EAB=∠FEH,∴∠FEA+∠BEH=∠HEM+∠BEH=∠BEM=∠FEH,∴∠AEB=∠BEM,∵BE=BE,EA=EM,∴△AEB≌△MEB(SAS),∴AB=BM,∵BM=BH+HM=BH+AF,∴AB=AF+BH.(2)解:①如图2中,结论:NH=FN.理由:∵NE平分∠FEH,∴∠FEN=∠HEN,∵EF=EH,EN=EN,∴△ENF≌△ENH(SAS),∴NH=FN.②∵△ENF≌△ENH,∴∠ENF=∠ENH,∵∠ENM=α,∴∠ENF=∠ENH=180°﹣α,∴∠MNH=180°﹣α﹣α=180°﹣2α,∵∠FGH=180°﹣2α,∴∠MNH=∠FGH,∵∠MNH+∠FNH=180°,∴∠FGH+∠FNH=180°,∴F,G,H,N四点共圆,∵NH=NF,∴=,∴∠NGH=∠NGF=∠FGH=90°﹣α.4.如图,已知△ABC中,∠ACB=90°,AC=4,BC=3,点M、N分别是边AC、AB上的动点,连接MN,将△AMN沿MN所在直线翻折,翻折后点A的对应点为A′.(1)如图1,若点A′恰好落在边AB上,且AN=AC,求AM的长;(2)如图2,若点A′恰好落在边BC上,且A′N∥AC.①试判断四边形AMA′N的形状并说明理由;②求AM、MN的长;(3)如图3,设线段NM、BC的延长线交于点P,当且时,求CP的长.解:(1)如图1中,在Rt△ABC中,∵∠C=90°,AC=4,BC=3,∴AB===5,∵∠A=∠A,∠ANM=∠C=90°,∴△ANM∽△ACB,∴=,∴=,∴AM=.(2)①如图2中,∵NA′∥AC,∴∠AMN=∠NMA′,由翻折可知:MA=MA′,∠AMN=∠NMA′,∴∠MNA′=∠A′MN,∴A′N=A′M,∴AM=A′N,∵AM∥A′N,∴四边形AMA′N是平行四边形,∵MA=MA′,∴四边形AMA′N是菱形.②连接AA′交MN于O.设AM=MA′=x,∵MA′∥AB,∴=,∴=,解得x=,∴AM=,∴CM=,∴CA′===,∴AA′===,∵四边形AMA′N是菱形,∴AA′⊥MN,OM=ON,OA=OA′=,∴OM===,∴MN=2OM=.(3)如图3中,作NH⊥BC于H.∵NH∥AC,∴==∴==∴NH=,BH=,∴CH=BC﹣BH=3﹣=,∴AM=AC=,∴CM=AC﹣AM=4﹣=,∵CM∥NH,∴=,∴=,∴PC=1.5.如图,四边形ABCD为平行四边形,AD=1,AB=3,∠DAB=60°,点E为边CD上一动点,过点C作AE的垂线交AE的延长线于点F.(1)求∠D的度数;(2)若点E为CD的中点,求EF的值;(3)当点E在线段CD上运动时,是否存在最大值?若存在,求出该最大值;若不存在,请说明理由.解:(1)如图1中,∵四边形ABCD是平行四边形,∴AB∥CB,∠ADC+∠DAB=180°,∵∠DAB=60°,∴∠ADC=120°.(2)如图1中,作AH⊥CD交CD的延长线于H.在Rt△ADH中,∵∠H=90°,∠ADH=60°,AD=2,∴AH=AD•sin60°=,DH=AD•cos60°=,∵DE=EC=,∴EH=DH+DE=2,∴AE===,∵CF⊥AF,∴∠F=∠H=90°,∵∠AEH=∠CEF,∴△AEH∽△CEF,∴=,∴=,∴EF=.(3)如图2中,作△AFC的外接圆⊙O,作AH⊥CD交CD的郯城县于H,作OK⊥CD于K,交⊙O于M,作FP∥CD交AD的延长线于P,作MN∥CD交AD的延长线于M,作NQ⊥CD于Q.∵DE∥PF,∴=,∵AD是定值,∴PA定值最大时,定值最大,观察图象可知,当点F与点M重合时,PA定值最大,最大值=AN的长,由(2)可知,AH=,CH=,∠H=90°,∴AC===,∴OM=AC=,∵OK∥AH,AO=OC,∴KH=KC,∴OK==,∴MK=NQ=﹣,在Rt△NDQ中,DN===﹣,∴AN=AD+DN=+,∴的最大值==+.6.如图,在边长为2的正方形ABCD中,点P是射线BC上一动点(点P不与点B重合),连接AP、DP,点E是线段AP上一点,且∠ADE=∠APD,连接BE.(1)求证:AD2=AE•AP;(2)求证BE⊥AP;(3)直接写出的最小值.(1)证明:∵∠DAE=∠PAD,∠ADE=∠APD,∴△ADE∽△APD,∴=,∴AD2=AE•AP(2)证明:∵四边形ABCD是正方形,∴AD=AB,∠ABC=90°,∴AB2=AE•AP,∴=,∵∠BAE=∠PAB,∴△ABE∽△APB,∴∠AEB=∠ABP=90°,∴BE⊥AP.(3)∵△ADE∽△APD,∴=,∴=,∵AD=2,∴DE最小时,的值最小,如图,作△ABE的外接圆⊙O,连接OD,OE,易知OE=1,OD=,∴DE≥OD﹣OE=﹣1,∴DE的最小值为﹣1,∴的最小值=.7.在正方形ABCD中,点E是BC边上一点,连接AE.(1)如图1,点F为AE的中点,连接CF.已知tan∠FBE=,BF=5,求CF的长;(2)如图2,过点E作AE的垂线交CD于点G,交AB的延长线于点H,点O为对角线AC 的中点,连接GO并延长交AB于点M,求证:AM+BH=BE.解:(1)Rt△ABE中,BF为中线,BF=5,∴AE=10,FE=5,作FP⊥BC于点P,Rt△BFP中,,∴BP=3,FP=4,在等腰三角形△BFE中,BE=2BP=6,由勾股定理求得,∴CP=8﹣3=5,∴;(2)∵∠ACD=∠BAC=45°,AO=CO,∠AOM=∠COG,∴证明△AMO≌△CGO(ASA),∴AM=GC,过G作GP垂直AB于点P,得矩形BCGP,∴CG=PB,∵AB=PG,∠AEB=∠H,∠ABE=∠GPH,∴△ABE≌△GPH(ASA),∴BE=PH=PB+BH=CG+BH=AM+BH.8.阅读理解:如图1,若一个四边形的两条对角线互相垂直,则称这个四边形为垂美四边形.(1)概念理解:如图2,在四边形ABCD中,AB=AD,CB=CD,问四边形ABCD是垂美四边形吗?请说明理由;(2)性质探究:如图1,试在垂美四边形ABCD中探究AB2,CD2,AD2,BC2之间的关系,并说明理由;(3)解决问题:如图3,分别以Rt△ABC的直角边AC和斜边AB为边向外作正方形ACFG 和正方形ABDE,连结CE、BG、GE、CE交BG于点N,交AB于点M.已知AC=,AB=2,求GE的长.解:(1)如图2,四边形ABCD是垂美四边形;理由如下:连接AC、BD交于点E,∵AB=AD,∴点A在线段BD的垂直平分线上,∵CB=CD,∴点C在线段BD的垂直平分线上,∴直线AC是线段BD的垂直平分线,∴AC⊥BD,即四边形ABCD是垂美四边形;(2)猜想结论:AB2+CD2=AD2+BC2,证明:如图1,在四边形ABCD中,∵AC⊥BD,∴∠AOD=∠AOB=∠BOC=∠COD=90°,由勾股定理得:AB2+CD2=AO2+BO2+OD2+OC2AD2+BC2=AO2+BO2+OD2+OC2∴AB2+CD2=AD2+BC2,(3)如图3,连接CG,BE,∵∠CAG=∠BAE=90°,∴∠CAG+∠BAC=∠BAE+∠BAC,即∠GAB=∠CAE,在△GAB和△CAE中,FMNG图 3EDCAB∴△GAB≌△CAE(SSS),∴∠ABG=∠AEC,∵∠AEC+∠AME=90°,∴∠ABG+∠BMN=90°,∴∠BNC=90°,即BG⊥CE,∴四边形CGEB是垂美四边形,由(2)得:EG2+BC2=CG2+BE2∵,AB=2,∴BC=1,,,∴EG2=CG2+BE2﹣BC2=6+8﹣2=13,∴.9.已知:如图,长方形ABCD中,∠A=∠B=∠B=∠D=90°,AB=CD=4米,AD=BC=8米,点M是BC边的中点,点P从点A出发,以1米/秒的速度沿AB方向运动再过点B沿BM方向运动,到点M停止运动,点O以同样的速度同时从点D出发沿着DA方向运动,到点A停止运动,设点P运动的时间为x秒.(1)当x=2秒时,线段AQ的长是 6 米;(2)当点P在线段AB上运动时,图中阴影部分的面积发生改变吗?请你作出判断并说明理由.(3)在点P,Q的运动过程中,是否存在某一时刻,使得BP=DQ?若存在,求出点P 的运动时间x的值;若不存在,请说明理由.解:(1)∵四边形ABCD是矩形,∴AD=BC=8,∵DQ=2,∴AQ=AD﹣DQ=8﹣2=6,故答案为6.(2)结论:阴影部分的面积不会发生改变.理由:连结AM,作MH⊥AD于H.则四边形ABMH是矩形,MH=AB=4.∵S阴=S△APM+S△AQM=×x×4+(8﹣x)×4=16,∴阴影面积不变;(3)当点P在线段AB上时,BP=4﹣x,DQ=x.∵BP=DQ,∴4﹣x=x,∴x=3.当点P在线段BM上时,BP=x﹣4,DQ=x.∵BP=DQ,∴x﹣4=x,∴x=6.所以当x=3或6时,BP=DQ.10.A,B,C,D是长方形纸片的四个顶点,点E、F、H分别是边AB、BC、AD上的三点,连结EF、FH.(1)将长方形纸片ABCD按图①所示的方式折叠,FE、FH为折痕,点B、C、D折叠后的对应点分别为B'、C'、D',点B'在FC'上,则∠EFH的度数为90°;(2)将长方形纸片ABCD按图②所示的方式折叠,FE、FH为折痕,点B、C、D折叠后的对应点分别为B'、C'、D',若∠B'FC'=18°,求∠EFH的度数;(3)将长方形纸片ABCD按图③所示的方式折叠,FE、FH为折痕,点B、C、D折叠后的对应点分别为B'、C'、D',若∠EFH=m°,求∠B'FC'的度数为180°﹣2m°.解:(1)∵沿EF,FH折叠,∴∠BFE=∠B'FE,∠CFH=∠C'FH,∵点B′在FC′上,∴∠EFH=(∠BFB'+∠CFC')=×180°=90°,故答案为:90°;(2)∵沿EF,FH折叠,∴可设∠BFE=∠B'FE=x,∠C'FH=∠CFH=y,∵2x+18°+2y=180°,∴x+y=81°,∴∠EFH=x+18°+y=99°;(3)∵沿EF,FH折叠,∴可设∠BFE=∠B'FE=x,∠C'FH=∠CFH=y,∴∠EFH=180°﹣∠BFE﹣∠CFH=180°﹣(x+y),即x+y=180°﹣m°,又∵∠EFH=∠EFB'﹣∠B'FC'+∠C'FH=x﹣∠B'FC'+y,∴∠B'FC'=(x+y)﹣∠EFH=180°﹣m°﹣m°=180°﹣2m°,故答案为:180°﹣2m°.11.勾股定理是数学史上非常重要的一个定理.早在2000多年以前,人们就开始对它进行研究,至今已有几百种证明方法.在欧几里得编的《原本》中证明勾股定理的方法如下,请同学们仔细阅读并解答相关问题:如图,分别以Rt△ABC的三边为边长,向外作正方形ABDE、BCFG、ACHI.(1)连接BI、CE,求证:△ABI≌△AEC;(2)过点B作AC的垂线,交AC于点M,交IH于点N.①试说明四边形AMNI与正方形ABDE的面积相等;②请直接写出图中与正方形BCFG的面积相等的四边形.(3)由第(2)题可得:正方形ABDE的面积+正方形BCFG的面积=正方形ACHI的面积,即在Rt△ABC中,AB2+BC2=AC2.(1)证明:∵四边形ABDE、四边形ACHI是正方形,∴AB=AE,AC=AI,∠BAE=∠CAI=90°,∴∠EAC=∠BAI,在△ABI和△AEC中,,∴△ABI≌△AEC(SAS);(2)①证明:∵BM⊥AC,AI⊥AC,∴BM∥AI,∴四边形AMNI的面积=2△ABI的面积,同理:正方形ABDE的面积=2△AEC的面积,又∵△ABI≌△AEC,∴四边形AMNI与正方形ABDE的面积相等.②解:四边形CMNH与正方形BCFG的面积相等,理由如下:∵Rt△ABC中,AB2+BC2=AC2,∴正方形ABDE的面积+正方形BCFG的面积=正方形ACHI的面积,由①得:四边形AMNI与正方形ABDE的面积相等,∴四边形CMNH与正方形BCFG的面积相等;(3)解:由(2)得:正方形ABDE的面积+正方形BCFG的面积=正方形ACHI的面积;即在Rt△ABC中,AB2+BC2=AC2;故答案为:正方形ACHI,AC2.12.在长方形纸片ABCD中,点E是边CD上的一点,将△AED沿AE所在的直线折叠,使点D 落在点F处.(1)如图1,若点F落在对角线AC上,且∠BAC=54°,则∠DAE的度数为18 °.(2)如图2,若点F落在边BC上,且AB=6,AD=10,求CE的长.(3)如图3,若点E是CD的中点,AF的沿长线交BC于点G,且AB=6,AD=10,求CG 的长.解:(1)∵四边形ABCD是矩形,∴∠BAD=90°,∵∠BAC=54°,∴∠DAC=90°﹣54°=36°,由折叠的性质得:∠DAE=∠FAE,∴∠DAE=∠DAC=18°;故答案为:18;(2)∵四边形ABCD是矩形,∴∠B=∠C=90°,BC=AD=10,CD=AB=6,由折叠的性质得:AF=AD=10,EF=ED,∴BF===8,∴CF=BC﹣BF=10﹣8=2,设CE=x,则EF=ED=6﹣x,在Rt△CEF中,由勾股定理得:22+x2=(6﹣x)2,解得:x=,即CE的长为;(3)连接EG,如图3所示:∵点E是CD的中点,∴DE=CE,由折叠的性质得:AF=AD=10,∠AFE=∠D=90°,FE=DE,∴∠EFG=90°=∠C,在Rt△CEG和△FEG中,,∴Rt△CEG≌△FEG(HL),∴CG=FG,设CG=FG=y,则AG=AF+FG=10+y,BG=BC﹣CG=10﹣y,在Rt△ABG中,由勾股定理得:62+(10﹣y)2=(10+y)2,解得:y=,即CG的长为.13.如图,矩形ABCD中,AB=6cm,AD=8cm,点P从点A出发,以每秒一个单位的速度沿A→B→C的方向运动;同时点Q从点B出发,以每秒2个单位的速度沿B→C→D的方向运动,当其中一点到达终点后两点都停止运动.设两点运动的时间为t秒.(1)当t=7 时,两点停止运动;(2)设△BPQ的面积面积为S(平方单位)①求S与t之间的函数关系式;②求t为何值时,△BPQ面积最大,最大面积是多少?解:(1)∵四边形ABCD是矩形,∴AD=BC=8cm,AB=CD=6cm,∴BC+AD=14cm,∴t=14÷2=7,故答案为7.(2)①当0<t<4时,S=•(6﹣t)×2t=﹣t2+6t.当4≤t<6时,S=•(6﹣t)×8=﹣4t+24.当6<t≤7时,S=(t﹣6)•(2t﹣8)=t2﹣10t+24.②当0<t<4时,S=•(6﹣t)×2t=﹣t2+6t=﹣(t﹣3)2+9,∵﹣1<0,∴t=3时,△PBQ的面积最大,最小值为9.当4≤t<6时,S=•(6﹣t)×8=﹣4t+24,∵﹣4<0,∴t=4时,△PBQ的面积最大,最大值为8,当6<t≤7时,S=(t﹣6)•(2t﹣8)=t2﹣10t+24=(t﹣5)2﹣1,t=7时,△PBQ的面积最大,最大值为3,综上所述,t=3时,△PBQ的面积最大,最大值为9.14.综合实践:问题情境数学活动课上,老师和同学们在正方形中利用旋转变换探究线段之间的关系探究过程如下所示:如图1,在正方形ABCD中,点E为边BC的中点.将△DCE以点D为旋转中心,顺时针方向旋转,当点E的对应点E'落在边AB上时,连接CE'.“兴趣小组”发现的结论是:①AE'=C'E';“卓越小组”发现的结论是:②DE=CE',DE⊥CE'.解决问题(1)请你证明“兴趣小组”和“卓越小组”发现的结论;拓展探究证明完“兴趣小组”和“卓越小组”发现的结论后,“智慧小组”提出如下问题:如图2,连接CC',若正方形ABCD的边长为2,求出CC'的长度.(2)请你帮助智慧小组写出线段CC'的长度.(直接写出结论即可)(1)证明:①∵△DE'C'由△DEC旋转得到,∴DC'=DC,∠C'=∠DCE=90°.又∵四边形ABCD是正方形,∴DA=DC,∠A=90°,∴DA=DC',∵DE'=DE',∴Rt△DAE≌Rt△DC'E′(HL),∴AE'=C'E'.②∵点E为BC中点,C'E'=AE'=CE,∴点E'为AB的中点.∴BE′=CE,又∵DC=BC,∠DCE=∠CBE'=90°,∴△DCE≌△CBE'(SAS),∴DE=CE',∠CDE=∠E'CB,∵∠CDE+∠DEC=90°,∴∠E'CB+∠CED=90°,∴DE⊥CE'.(2)解:如图2中,作C′M⊥CD于M,交AB于N.∵AB∥CD,C′M⊥CD,∴C′M⊥AB,∴∠DMC′=∠C′NE′=∠DC′E′=90°,∴∠MDC′+∠DC′M=90°,∠DC′M+∠E′CN=90°,∴∠MDC′=∠E′C′N,∴△DMC′∽△C′NE′,∴===2,设NE′=x,则AM=AN=1+x,C′M=2x,C′N=(1+x),∵MN=AD=2,∴2x+(1+x)=2,解得x=,∴CM=2﹣(1+)=,MC=,∴CC′===.15.在△ABC中,AD平分∠BAC交BC于D,∠MDN的两边分别与AB,AC相交于M,N两点,且DM=DN.(1)如图甲,若∠C=90°,∠BAC=60°,AC=9,∠MDN=120°,ND∥AB.①写出∠MDA=90 °,AB的长是18 .②求四边形AMDN的周长.(2)如图乙,过D作DF⊥AC于F,先补全图乙再证明AM+AN=2AF.解:(1)①∵AD平分∠BAC,∴∠BAD=∠CAD=∠BAC=30°,∵ND∥AB,∴∠NDA=∠BAD=30°,∴∠MDA=∠MDN﹣∠NDA=120°﹣30°=90°,∵∠C=90°,∠BAC=60°,∴∠ABC=30°,∴AC=AB,∴AB=2AC=18,故答案为:90,18;②∵∠ABC=30°,ND∥AB,∴∠NDC=30°,又∵∠MDN=120°,∴∠MDB=30°,∴∠MAD=∠NAD=∠ADN=∠MBD=30°,∴BM=MD,DN=AN,∵DM=DN,∴BM=MD=DN=AN,在Rt△ADM中,设MD=x,则AM=2x,BM=MD=DN=AN=x,∵AB=18,∴3x=18,∴x=6,∴AM=12,MD=DN=AN=6,∴四边形AMDN的周长=AM+MD+DN+AN=12+6+6+6=30;(2)补全图如图乙所示:证明:过点D作DE⊥AB于E,如图丙所示:∵DE⊥AB,DF⊥AC,AD平分∠BAC,∴∠DEM=∠DFN=90°,DE=DF,在Rt△DEA和Rt△DFA中,,∴Rt△DEA≌Rt△DFA(HL),∴AE=AF,在Rt△DEM和Rt△DFN中,,∴Rt△DEM≌Rt△DFN(HL),∴EM=FN,∴AM+AN=AE+EM+AF﹣NF=2AF.。

【北师大版2020中考数学专项复习】:四边形综合复习

【北师大版2020中考数学专项复习】:四边形综合复习

【2020中考数学专项复习】:四边形综合复习【考纲要求】1.探索并了解多边形的内角和与外角和公式,了解正多边形的概念.2.掌握平行四边形、矩形、菱形、正方形、梯形、直角梯形、等腰梯形的概念和性质,了解它们之间的关系;了解四边形的不稳定性.3.探索并掌握平行四边形的有关性质和四边形是平行四边形的条件.4.探索并掌握矩形、菱形、正方形的有关性质和四边形是矩形、菱形、正方形的条件.5.探索并了解等腰梯形的有关性质和四边形是等腰梯形的条件.6.通过探索平面图形的镶嵌,知道任意一个三角形、四边形或正六边形可以镶嵌平面,并能运用这几种图形进行简单的镶嵌设计.【知识网络】【考点梳理】考点一、四边形的相关概念1.多边形的定义:在平面内,由不在同一直线上的一些线段首尾顺次相接组成的封闭图形叫做多边形.2.多边形的性质:(1)多边形的内角和定理:n边形的内角和等于(n-2)·180°;(2)推论:多边形的外角和是360°;(3)对角线条数公式:n边形的对角线有条;(4)正多边形定义:各边相等,各角也相等的多边形是正多边形.3.四边形的定义:同一平面内,由不在同一条直线上的四条线段首尾顺次相接组成的图形叫做四边形.4.四边形的性质:(1)定理:四边形的内角和是360°; (2)推论:四边形的外角和是360°. 考点二、特殊的四边形1.平行四边形及特殊的平行四边形的性质2. 平行四边形及特殊的平行四边形的判定【要点诠释】面积公式:S 菱形 =21ab=ch.(a 、b 为菱形的对角线 ,c 为菱形的边长 ,h 为c 边上的高) S 平行四边形 =ah. a 为平行四边形的边,h 为a 上的高)考点三、梯形1.梯形的定义:一组对边平行而另一组对边不平行的四边形叫做梯形.(1)互相平行的两边叫做梯形的底;较短的底叫做上底,较长的底叫做下底.(2)不平行的两边叫做梯形的腰.(3)梯形的四个角都叫做底角.2.直角梯形:一腰垂直于底的梯形叫做直角梯形.3.等腰梯形:两腰相等的梯形叫做等腰梯形.4.等腰梯形的性质:(1)等腰梯形的两腰相等; (2)等腰梯形同一底上的两个底角相等. (3)等腰梯形的对角线相等.5.等腰梯形的判定方法:(1)两腰相等的梯形是等腰梯形(定义);(2)同一底上的两个角相等的梯形是等腰梯形;(3)对角线相等的梯形是等腰梯形.6.梯形中位线:连接梯形两腰中点的线段叫梯形的中位线.7.面积公式: S=(a+b)h(a、b是梯形的上、下底,h是梯形的高).【要点诠释】解决四边形问题常用的方法(1)有些四边形问题可以转化为三角形问题来解决.(2)有些梯形的问题可以转化为三角形、平行四边形问题来解决.(3)有时也可以运用平移、轴对称来构造图形,解决四边形问题.考点四、平面图形1.平面图形的镶嵌的定义:用形状、大小完全相同的一种或几种平面图形进行拼接,彼此之间不留空隙,不重叠地铺成一片,这就是平面图形的镶嵌,又称做平面图形的密铺.2.平面图形镶嵌的条件:(1)同种正多边形镶嵌成一个平面的条件:周角是否是这种正多边形的一个内角的整倍数.在正多边形里只有正三角形、正四边形、正六边形可以镶嵌.(2)n种正多边形组合起来镶嵌成一个平面的条件:①n个正多边形中的一个内角的和的倍数是360°;②n个正多边形的边长相等,或其中一个或n个正多边形的边长是另一个或n个正多边形的边长的整数倍.【典型例题】类型一、特殊的四边形1.如图所示,已知P 、R 分别是矩形ABCD 的边BC 、CD 上的点,E 、F 分别是PA 、PR 的中点,点P 在BC 上从B 向C 移动,点R 不动,那么下列结论成立的是( )A .线段EF 的长逐渐增大B .线段EF 的长逐渐变小C .线段EF 的长不变D .无法确定AB CD EFP R【思路点拨】此题的考点是矩形的性质;三角形中位线定理.【答案】C.2.过正方形ABCD 的顶点A 作线段AE 使DC=DE ,交DC 于G ,作DF ⊥AE ,连接CE.(1)若∠CDE=60°,AB=1,求DF 的长;(2)作∠CDE 平分线,交AE 于P ,交CE 与Q ,连接BP ,求证:; (3)若AD=2,DF=1,求PQ 的长.【思路点拨】(1)根据等边三角形三线合一,相似,勾股定理可求得;(2)巧妙运用旋转和四点共圆的知识即可.【答案与解析】(1)作EH⊥DC于H, (2)连PC,BD,AC,易证△PDE≌△PDC(SAS)【总结升华】考查了正方形的性质,勾股定理以及四点共圆,是一道综合性很强的运算证明相结合的中档题.举一反三:【变式】如图,E是正方形ABCD外的一点,连接AE、BE、DE,且∠EBA=∠ADE,点F在DE上,连接AF,BE=DF.(1)求证:△ADF≌△ABE;【答案】证明:(1)∵四边形正ABCD是正方形,∴AB=AD,∵在△ADF和△ABE中,AD ABADF EBADF BE=⎧⎪∠=∠⎨⎪=⎩,∴△ADF≌△ABE;(2)理由如下: 由(1)有△ADF ≌△ABE,∴AF=AE ,∠1=∠2,在正方形ABCD 中,∠BAD=90°,∴∠BAF+∠3=90°,∴∠BAF+∠4=90°,∴∠EAF=90°,∴△EAF 是等腰直角三角形,∴EF 2=AE 2+AF 2,∴EF 2=2AE 2,∴EF=2AE ,即DE-DF=2AE ,∴DE-BE=2AE .【高清课堂:四边形综合复习 例2】 3.如图,在直角梯形ABCD 中,AD ∥BC ,∠B=90°,AB=8,,CA=CD ,E 、F 分别是线段AD 、AC 上的动点(点E 与点A 、D 不重合),且∠FEC=∠ACB ,设DE=x ,CF=y.(1)求AC 和AD 的长;(2)求y 与x 的函数关系式;(3)当△EFC 为等腰三角形时,求x 的值.【思路点拨】本题涉及到的考点有相似三角形的判定与性质;等腰三角形的判定;直角梯形;锐角三角34tan =∠CAD函数的定义.【答案与解析】(1)∵AD∥BC,∠B=90°,过点C作CH⊥AD于点H,∴CH=AB=8,则AH=6.∵CA=CD,∴AD=2AH=12.(2)∵CA=CD,∴∠CAD=∠D.∵∠FEC=∠ACB,∠ACB=∠CAD,∴∠FEC=∠D.∵∠AEC=∠1+∠FEC=∠2+∠D,∴∠1=∠2.∴△AEF∽△DCE.(3)若△EFC为等腰三角形.①当EC=EF时,此时△AEF≌△DCE,∴AE=CD.∵12-x=10,∴x=2.②当FC=FE时,有∠FCE=∠FEC=∠CAE,③当CE=CF时,有∠CFE=∠CEF=∠CAE,【总结升华】本题考查了相似三角形的判定和性质、等腰三角形的判定、直角梯形及锐角三角形函数的定义等知识;应用相似的性质,得到比例式,借助比例式解题是很重要的方法,做题时注意应用,对于等腰三角形问题要注意分类讨论也是比较重要的,注意掌握.举一反三:【变式】在直角梯形ABCD中,AB∥DC,AB⊥BC,∠A=60°,AB=2CD,E、F分别为AB、AD的中点,连结EF、EC、BF、CF.⑴判断四边形AECD的形状(不证明);⑵在不添加其它条件下,写出图中一对全等的三角形,用符号“≌”表示,并证明.⑶若CD=2,求四边形BCFE的面积.【答案】(1)平行四边形;(2)△BEF≌△CDF或(△AFB≌△EBC≌△EFC)证明:连接DE,∵AB=2CD,E为AB中点,∴DC=EB,又∵DC∥EB,∴四边形BCDE 是平行四边形,∵AB ⊥BC ,∴四边形BCDE 为矩形,∴∠AED=90°,∠CDE=∠BED=90°,BE=CD ,∴∠DFE=180°-60°=120°,∵EF=DF ,∴∠FDE=∠FED=30°.∴∠CDF=∠BEF=120°,在△BEF 和△FDC 中, 120DF EF CDF BEF DC BE =⎧⎪∠=∠=︒⎨⎪=⎩,∴△BEF ≌△CDF (SAS ).(3)若CD=2,则AD=4,∵∠A=60°,∵四边形AECD 为平行四边形,类型二、四边形与其他知识的综合运用4. 有矩形纸片ABCD ,AB=2,AD=1,将纸片折叠,使顶点A 与边CD 上的点E 重合.(1)如果折痕FG分别与AD、AB交于点F、G,AF=23,求DE的长;(2)如果折痕FG分别与CD、DA交于点F、G,△AED的外接圆与直线BC相切,求折痕FG的长.【思路点拨】(1)根据AF,AD的长可以求得DF的长,根据折叠知EF=AF,再根据勾股定理即可计算得到DE的长;FOE相似于直角三角形ADE,求得OF的长,从而根据轴对称的性质得到FG=2OF.【高清课堂:四边形综合复习例3】5.已知如图,在Rt△ABC中,∠C=90°,AC=3,AB=5.点P从点C出发沿CA以每秒1个单位的速度向点A匀速运动;点Q从点A出发沿AB以每秒1个单位长的速度向点B匀速运动,点P、Q同时出发,当点P到达点A时停止运动,点Q也随之停止.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB-BC-CP于点E.设点P、Q运动的时间是t秒(t>0).在点E运动的过程中,四边形QBED 成为直角梯形时,t的值为 .t.【答案与解析】①如图,当DE∥QB时.∵DE⊥PQ,∴PQ⊥QB,四边形QBED是直角梯形,.此时∠APQ=90°.由△AQP∽△ABC,得AQAB=APAC,即353t t-=.解得t=158.【总结升华】本题考查了相似三角形的判定和性质、勾股定理等知识,是中考压轴题.6 .如图,在平面直角坐标系中,O为坐标原点,点A的坐标为(-8,0),直线BC经过点B(-8,6),C(0,6),将四边形OABC绕点O按顺时针方向旋转а度得到四边形OAB'C',此时直线OA’、直线B’C’分别与直线BC相交于点P、Q.(1)四边形OABC的现状是,当а=90°时,BP:BQ的值是;(2)①如图,当四边形OA’B’C’的顶点B’落在y轴正半轴时,求BP:BQ的值;②如图,当四边形OA’B’C’的顶点B’落在直线BC上时,求△OPB'的面积;(3)在四边形OA’B’C’旋转过程中,当0<а°≤180°时,是否存在这样的点P和点Q,使BP=0.5BQ?若存在,请直接写出点P的坐标;若不存在,请说明理由.【思路点拨】(1)根据有一个角是直角的平行四边形进行判断当α=90°时,就是长与宽的比;(2)①利用相似三角形求得CP的比,就可求得BP,PQ的值;②根据勾股定理求得PB′的长,再根据三角形的面积公式进行计算.∴CQ=3,BQ=BC+CQ=11.②在△OCP 和△B ′A ′P 中,90OPC B PA OCP A OC B A ''∠=∠⎧⎪'∠=∠=︒⎨⎪''=⎩, ∴△OCP ≌△B ′A ′P (AAS ).(3)如图1,当点P 在点B 左侧时,OP=PQ=BQ+BP=3x ,在Rt △PCO 中,(8+x )2+62=(3x )2,解得 x 1=1+362,x 2=1-362(不符实际,舍去).∴PC=BC+BP=9+362,∴P 1(-9-362,6). 如图2,当点P 在点B 右侧时,举一反三:【变式】如图,直角梯形ABCD 中,BC AD ∥,90BCD ∠=°,且2tan 2CD AD ABC =∠=,,过点D 作AB DE ∥,交BCD ∠的平分线于点E ,连接BE .(1)求证:BCCD =;(2)将BCE △绕点C ,顺时针旋转90°得到DCG △,连接EG..求证:CD 垂直平分EG. (3)延长BE 交CD 于点P .求证:P 是CD 的中点.【答案】(1)延长DE 交BC 于F , ∵AD ∥BC ,AB ∥DF , ∴AD=BF ,∠ABC=∠DFC . 在Rt △DCF 中,∵CD=2AD=2BF ,ADGECB∴BF=CF,∴BC=BF+CF=12CD+12CD=CD.即BC=CD.(2)∵CE平分∠BCD,∴∠BCE=∠DCE,由(1)知BC=CD,∵CE=CE,∴△BCE≌△DCE,∴BE=DE,由图形旋转的性质知CE=CG,BE=DG,∴DE=DG,∴C,D都在EG的垂直平分线上,∴CD垂直平分EG.(3)连接BD,由(2)知BE=DE,∴∠1=∠2.∵AB∥DE,∴∠3=∠2.∴∠1=∠3.∵AD∥BC,∴∠4=∠DBC.由(1)知BC=CD,∴∠DBC=∠BDC,∴∠4=∠BDP.又∵BD=BD,∴△BAD≌△BPD,中考总复习:四边形综合复习--巩固练习(提高)【巩固练习】一、选择题1.如图,在中,,是上异于、的一点,则的值是().A.16 B.20 C.25 D.302. 如图1,在矩形中,动点从点出发,沿→→→方向运动至点处停止.设点运动的路程为,的面积为,如果关于的函数图象如图2所示,则当时,点应运动到(). A.处B.处C.处D.处3.(2019•孝感)如图,在菱形ABCD中,∠A=60°,E、F分别是AB,AD的中点,DE、BF相交于点G,连接BD,CG.有下列结论:①∠BGD=120°;②BG+DG=CG;③△BDF≌△CGB;④S△ABD=AB2其中正确的结论有(). A.1个 B.2个 C.3个 D.4个4.一个正方形纸片,用剪刀沿一条不过任何顶点的直线将其剪成两部分;拿出其中一部分,再沿一条不过任何顶点的直线将其剪成两部分;又从得到的三部分中拿出其中之一,还是沿一条不过任何顶点的直线将其剪成两部分……如此下去,最后得到了34个六十二边形和一些多边形纸片,则至少要剪的刀数是( ).A. 2004 B. 2005 C. 2006 D. 20075.如图所示,已知菱形OABC ,点C 在x 轴上,直线y =x 经过点A ,菱形OABC 的面积是.若反比例函数的图象经过点B ,则此反比例函数表达式为( ). A .B .C .D .第5题 第6题6. 如图,正方形ABCD 的边长为2,将长为2的线段QR 的两端放在正方形的相邻的两边上同时滑动.如果Q 点从A 点出发,沿图中所示方向按A→B→C→D→A 滑动到A 止,同时点R 从B 点出发,沿图中所示方向按B→C→D→A→B 滑动到B 止,在这个过程中,线段QR 的中点M 所经过的路线围成的图形的面积为( ).A .2B .C .D .二、填空题7. 如图,将两张长为8,宽为2的矩形纸条交叉,使重叠部分是一个菱形,容易知道当两张纸条垂直 时,菱形的周长有最小值8,那么菱形周长的最大值是_________.第7题 第8题4π-ππ1-A BCQRM D8. 如图,在等腰梯形中,,= 4=,=45°.直角三角板含45°角的顶点在边上移动,一直角边始终经过点,斜边与交于点.若为等腰三角形,则的长等于____________.9.(2019•锦州)如图,正方形A1B1B2C1,A2B2B3C2,A3B3B4C3,…,A n B n B n+1C n,按如图所示放置,使点A1、A2、A3、A4、…、A n在射线OA上,点B1、B2、B3、B4、…、B n在射线OB上.若∠AOB=45°,OB1=1,图中阴影部分三角形的面积由小到大依次记作S1,S2,S3,…,S n,则S n=________________-.第9题第10题10.(2019•深圳)如图,Rt△ABC中,∠C=90°,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点O,连接OC,已知AC=5,OC=6,则另一直角边BC的长为.11.(2019•天津)如图,已知正方形ABCD的边长为1,以顶点A、B为圆心,1为半径的两弧交于点E,以顶点C、D为圆心,1为半径的两弧交于点F,则EF的长为.第11题第12题点E ,在射线DC 上取点F ,使得∠DEF=120°. (1)当点E 是AB 的中点时,线段DF 的长度是______; (2)若射线EF 经过点C ,则AE 的长是_______.三、解答题13.如图,在边长为4cm 的正方形ABCD 中,点E ,F ,G ,H 分别按A ⇒B ,B ⇒C ,C ⇒D ,D ⇒A 的方向同时出发,以1cm/s 的速度匀速运动.在运动过程中,设四边形EFGH 的面积为S (cm 2),运动时间为t (s ).(1)试证明四边形EFGH 是正方形;(2)写出S 关于t 的函数关系式,并求运动几秒钟时,面积最小,最小值是多少?(3)是否存在某一时刻t ,使四边形EFGH 的面积与正方形ABCD 的面积比是5:8?若存在,求出t 的值;若不存在,请说明理由.14.如图,在矩形ABCD 中,AB=3,AD=1,点P 在线段AB 上运动,设AP=x ,现将纸片还原,使点D 与P 重合,得折痕EF (点E 、F 为折痕与矩形边的交点,再将纸片还原。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年中考数学总复习《四边形》专题一、选择题1.下列命题中,不正确的是().A. 平行四边形的对角线互相平分B. 矩形的对角线互相垂直且平分C. 菱形的对角线互相垂直且平分D. 正方形的对角线相等且互相垂直平分2.从一个七边形的某个顶点出发,分别连接这个点与其余各顶点,可以把一个七边形分割成( )个三角形.A. 6B. 5C. 8D. 73.如图,在▱ABCD中,M是BC延长线上的一点,若∠A=135°,则∠MCD的度数是()A. 45°B. 55°C. 65°D. 75°4.一个多边形截去一个角后,形成新多边形的内角和为2520°,则原多边形边数为()A. 13B. 15C. 13或15D. 15或16或175.如图,若要使平行四边形ABCD成为菱形.则需要添加的条件是()A. AB=CDB. AD=BCC. AB=BCD. AC=BD6.如下图,平行四边形ABCD的周长为40,△BOC的周长比△AOB的周长多10,则AB长为()A. 20B. 15C. 10D. 57.如图,在□ABCD中,EF//AB,GH//AD,EF与GH交于点O,则该图中的平行四边形的个数共有()A. 7 个B. 8个C. 9个D. 11个8.如图,在七边形ABCDEFG中,AB,ED的延长线相交于O点.若图中∠1,∠2,∠3,∠4的角度和为220°,则∠BOD的度数为( )A. 40°B. 45°C. 50°D. 60°9.若一个菱形的两条对角线长分别是5cm和10cm,则与该菱形面积相等的正方形的边长是()A. 6cmB. 5cmC. cmD. 7.5cm10.能够铺满地面的正多边形组合是()A. 正三角形和正五边形B. 正方形和正六边形C. 正方形和正五边形D. 正五边形和正十边形二、填空题11.一个多边形对角线的数目是边数的2倍,这样的多边形的边数是________ .12.如图,BD是□ABCD的对角线,点E、F在BD上,要使四边形AECF 是平行四边形,还需增加的一个条件是________13.已知平行四边形ABCD中,AB=5,AE平分∠DAB交BC所在直线于点E,CE=2,则AD=________.14.如图:矩形ABCD的对角线相交于点O,AB=4cm,∠AOB=60°,则AD=________ cm.15.八年级(3班)同学要在广场上布置一个矩形花坛,计划用鲜花摆成两条对角线.如果一条对角线用了20盆红花,还需要从花房运来________盆红花.如果一条对角线用了25盆红花,还需要从花房运来________盆红花.16.在正三角形、正方形、正五边形、正六边形中不能镶嵌成一个平面图案的是________ .17.已知菱形的周长为40cm,两条对角线之比3:4,则菱形面积为________cm2.18.梯形ABCD的底AB的长度等于底CD的2倍,也等于腰AD的2倍,设对角线AC的长为3,腰BC的长为4,则梯形ABCD的高为________.19.如图,在▱ABCD中,AD=4,AB=8,∠A=30°,以点A为圆心,AD 的长为半径画弧交AB于点E,连接CE,则阴影部分的面积是________ .(结果保留π)20.如图所示,在平行四边形ABCD中,分别以AB、AD为边作等边△ABE 和等边△ADF,分别连接CE、CF和EF,则下列结论中一定成立的是________ (把所有正确结论的序号都填在横线上).①△CDF≌△EBC;②△CEF是等边三角形;③∠CDF=∠EAF;④EF ⊥CD.三、解答题21.如图,已知▱ABCD中,AE平分∠BAD,CF平分∠BCD,分别交BC、AD于E、F.求证:AF=EC.22.如图,四边形ABCD中,AB∥DC,∠B=90°,F为DC上一点,且AB=FC,E为AD上一点,EC交AF于点G,EA=EG.求证:ED=EC.23.如图,平行四边形ABCD的对角线AC和BD相交于点O ,E ,F分别为OB ,OD的中点,过点O任作一直线分别交AB ,CD于点G ,H.试说明:GF∥EH.24.如图,BD是△ABC的角平分线,点E,F分别在BC,AB上,且DE ∥AB,EF∥AC.(1)求证:BE=AF;(2)若∠ABC=60°,BD=12,求DE的长及四边形ADEF的面积.25.如图,正方形ABCD的边长为8cm,E、F、G分别是AB、CD、DA 上的动点,且AE=BF=CG=DH.(1)求证:四边形EFGH是正方形;(2)判断直线EG是否经过某一定点,说明理由;(3)求四边形EFGH面积的最小值.26.如图,四边形ABCD中,AE平分∠BAD,DE平分∠ADC.(1)如果∠B+∠C=120°,则∠AED的度数=________.(直接写出结果)(2)根据(1)的结论,猜想∠B+∠C与∠AED之间的关系,并证明.27.如图1,△ABD和△BDC都是边长为1的等边三角形。

(1)四边形ABCD是菱形吗?为什么?(2)如图2,将△BDC沿射线BD方向平移到△B1D1C1的位置,则四边形ABC1D1 是平行四边形吗?为什么?(3)在△BDC移动过程中,四边形ABC1D1有可能是矩形吗?如果是,请在图3中画出四边形ABC1D1为矩形时的图形,并直接写出点B移动的距离(不要求写出过程);如果不是,请说明理由。

参考答案一、选择题1.B2. B3. A4. D5. C6.D7. C8. A9.B 10. D二、填空题11.7 12.BE=DF(答案不唯一)13.3或7 14.4 15.19;24 16.正五边形17.96cm2 18.19.12﹣π 20.①②③三、解答题21.证明:∵四边形ABCD为平行四边形,∴AD∥BC∠BAD=∠BCD,∴AF∥EC,∴∠DAE=∠AEB,∵AE平分∠BAD,CF平分∠BCD,∴∠DAE=∠BAD,∠FCB=∠BCD,∴∠DAE=∠FCB=∠AEB,∴AE∥FC,∴四边形AECF为平行四边形,∴AF=CE22.解:证明:∵AB∥DC,FC=AB,∴四边形ABCF是平行四边形.∵∠B=90°,∴四边形ABCF是矩形.∴∠AFC=90°,∴∠D=90°﹣∠DAF,∠ECD=90°﹣∠CGF.∵EA=EG,∴∠EAG=∠EGA.∵∠EGA=∠CGF,∴∠DAF=∠CGF.∴∠D=∠ECD.∴ED=EC23.证明:连结EG ,FH ,由□ABCD得OA=OC ,OB=OD ,又OE=OB ,OF=OD ,∴OE=OF ,再证△AOG≌△COH得OG=OH ,∴四边形EHFG是平行四边形,∴GF∥EH.24.(1)证明:∵DE∥AB,EF∥AC,∴四边形ADEF是平行四边形,∠ABD=∠BDE,∴AF=DE,∵BD是△ABC的角平分线,∴∠ABD=∠DBE,∴∠DBE=∠BDE,∴BE=DE,∴BE=AF;(2)解:如图,过点D作DG⊥AB于点G,过点E作EH⊥BD于点H,∵∠ABC=60°,BD是∠ABC的平分线,∴∠ABD=∠EBD=30°,∴DG=BD=×12=6,∵BE=DE,∴BH=DH=BD=6,∴BE==.∴DE=BE=,∴四边形ADEF的面积为:DE•DG=.25.(1)证明:∵四边形ABCD是正方形,∴∠A=∠B=90°,AB=DA,∵AE= DH,∴BE= AH,∴△AEH≌△BFE,∴EH=FE,∠AHE=∠BEF,同理:FE=GF=HG,∴EH= FE=GF=HG,∴四边形EFGH是菱形,∵∠A=90°,∴∠AHE+∠AEH=90°,∴∠BEF+∠AEH=90°,∴∠FEH=90°,∴菱形EFGH是正方形;(2)解:直线EG经过正方形ABCD的中心,理由如下:连接BD交EG于点O,∵四边形ABCD是正方形,∴AB∥DC,AB=DC∴∠EBD=∠GDB,∵AE= CG,∴BE= DG,∵∠EOB=∠GOD,∴△EOB≌△GOD,∴BO=DO,即点O为BD的中点,∴直线EG经过正方形ABCD的中心;(3)解:设AE= DH=x,则AH=8-x,在Rt△AEH中,EH2=AE2+AH2=x2+(8-x)2= 2x2-16x+64=2(x-4)2+32,∴四边形EFGH面积的最小值为32cm².26.(1)60°(2)解:∠AED= (∠B+∠C).理由如下:在四边形ABCD中,∵∠BAD+∠CDA+∠B+∠C=360°,∴∠BAD+∠CDA=360°﹣(∠B+∠C),又∵AE平分∠BAD,DE平分∠ADC,∴∠EAD= ∠BAD,∠EDA= ∠ADC,∴∠EAD+∠EDA= ∠BAD+ ∠ADC= [360°﹣(∠B+∠C)],在△AED中,又∵∠AED=180°﹣(∠EAD+∠EDA),=180°﹣ [360°﹣(∠B+∠C)],= (∠B+∠C),故∠AED= (∠B+∠C).27.(1)解:四边形ABCD是菱形理由如下:∵△ABD和△BDC都是边长为1的等边三角形。

∴AB=AD=CD=BC=DB,∴AB=AD=CD=BC,∴四边形ABCD是菱形(2)解:四边形ABC1D1是平行四边形理由:∵∠ABD =∠=60°∴AB∥新网又∵AB= ,∴四边形是平行四边形(3)解:四边形有可能是矩形点B移动的距离是1。

相关文档
最新文档