结构地震反应分析与抗震验算
工程结构抗震设计基础 Part.1 第2章2 结构的弹性地震反应分析与抗震验算规定
2.8 建筑结构的抗震验算规定 2.8.1 一般规定 1、地震作用及计算方法 总的考虑: (1) 在抗震计算中,一般可在建筑结构的两个主轴方向 分别考虑水平地震作用,各方向的水平地震作用由该方 向的抗侧力构件承担; (2) 有斜交的抗侧力构件的结构,宜分别考虑各抗侧力 构件方向的水平地震作用;
(3) 对于质量和刚度明显不均匀、不对称的结构,应
(3) 按式(3-110)求顶部附加水平地震作用Δ Fn;
(4) 按式(3-111)求各质点的水平地震作用Fi(i=1,2,…,n); (5) 按力学方法求各层结构的地震作用效应。
《例题2-7》
试按振型分解法和底部剪力法计算下图所示三层框架 结构相应于多遇地震时的各楼层地震剪力。设防烈度8度,
近震,场地类别Ⅲ类。 (ml=116620 kg,m2=110850kg,
(弯矩、剪力、轴力或变形等); 最后,按一定的组合原则,将各振型的作用效应
进行组合便得到多自由度体系的水平地震作用效应。
1
振型的地震作用
单自由度:
多自由度: 振型分解后,相应于振型j质点i的位移地震反应 质点产生的惯性力为质点所受的地震作用:
2 振型的最大地震作用 利用反应谱,可求出振型的最大地震作用:
或
结构底部总剪力FEk为
FEk
2 1GE FEj j 1 n n j Gi X j ji G j 1 1 i 1 E n 2
(3 102)
记
所以
FEk 1Geq
(3 105)
式中:FEk——结构总水平地震作用(底部剪力)标准值; α 1——相应于结构基本周期T1时的地震影响系数值,按图3-25反应谱 或式(3-40)确定; Geq——结构等效总重力荷载; GE——结构总重力荷载代表值,GE =Σ Gi , Gi为集中于质点i的重力 荷载代表值(见后面式(3-120))。 β ——等效总重力荷载换算系数,对于单质点体系等于1.0,对于二 层以上的多层建筑,其值在0.8~0.98之间。《抗震规范》规定,多质点体 系取0.85;
结构地震反应分析与抗震验算计算题【最新版】
结构地震反应分析与抗震验算计算题3.1 单自由度体系,结构自振周期T=0.5S,质点重量G=200kN,位于设防烈度为8 度的Ⅱ类场地上,该地区的设计基本地震加速度为0.30g,设计地震分组为第一组,试计算结构在多遇地霞作用时的水平地震作用。
3.2 结构同题3.1,位于设防烈度为8度的Ⅳ类场地上,该地区的设计基本地震加速度为0.20g,设计地设分组为第二组,试计算结构在多遇地震作用时的水平地震作用。
3.3 钢筋混凝土框架结构如图所示,横梁刚度为无穷大,混凝土强度等级均为C25,一层柱截面450mm#215;450mm,二、三层柱截面均为400mm#215;400mm,试用能量法计算结构的自振周期T1。
3.4 题3.2的框架结构位于设防烈度为8度的Ⅱ类场地上,该地区的设计基本地震加速度为0.20g,设计地震分组为第二组,试用底部剪力法计算结构在多遇地震作用时的水平地震作用。
3.5 三层框架结构如图所示,横梁刚度为无穷大,位于设防烈度为8度的Ⅱ类场地上,该地区的设计基本地震加速为0.30g, 设计地震分组为第一组。
结构各层的层间侧移刚度分别为k1=7.5#215;105kN/m,k2=9.1#215;105kN/m,k3=8.5#215;105 kN/m,各质点的质量分别为m1=2#215;106kg, m2=2#215;106kg, m3=1.5#215;105kg,结构的自震频率分别为ω1=9.62rad/s,ω2=26.88 rad/s, ω3=39.70 rad/s,各振型分别为:要求:①用振型分解反应谱法计算结构在多遇地震作用时各层的层间地震力;②用底部剪力法计算结构在多遇地震作用时各层的层间地震剪力。
3.6 已知某两个质点的弹性体系(图3-6),其层间刚度为k1=k2=20800kN/m,,质点质量为m1=m2=50#215;103kg试求该体系的自振周期和振型。
3.7 有一钢筋混凝土三层框架(图3-7),位于Ⅱ类场地,设计基本加速度为0.2g,设计地震组别为第一组,已知结构各阶周期和振型为T1=0.467s ,T2=0.208s,T3=0.134s,试用振型分解反应谱法求多遇地震下框架底层地震剪力和框架顶点位移。
抗震作业第三章
第三章 结构地震反应分析与抗震极限状态计算 思考题3.1 什么是地震动反应谱和抗震设计反应谱反应谱的影响因素和特点是什么答:根据给定的地面运动加速度记录和体系的阻尼比,计算出质点的最大绝对加速度S a ,与体系的自振周期T ,绘制成一条曲线-地震加速度反应谱,不同的阻尼比可以绘制出不同曲线。
规范根据同一类场地在各级烈度地震作用下地面运动的 ,分别计算出的反应谱曲线,再进行统计分析,求出最有代表性的平均反应谱曲线作为设计依据;通常称之为抗震设计反应谱。
反应谱影响因素:受地震动特性即峰值、频谱、持续时间的影响。
特点是随机性。
3.2 什么是地震影响系数其谱曲线的形状参数有何特点答:单自由度体系绝对加速度反应)(T Sa 与重力加速度g 之比。
3.3 什么是地震作用怎样确定单自由度弹性体系的地震作用答:地震作用:地面振动过程中作用在结构上的惯性力就是地震荷载,可理解为能反映地震影响的等效荷载,实际上,地震荷载是由于地面运动引起的动态作用,属于间接作用,应称为“地震作用”,而不应称为“地震荷载”。
确定单自由度弹性体系的地震作用: 水平方向:E Ek G T F )(α= 竖直方向:E v Evk G F max ,α=3.4 抗震设计中的重力荷载代表值是什么其中可变组合值系数的物理含义如何答:重力荷载代表值是指地震作用下计算有关效应标准值时,永久性结构构配件、非结构构件和固定设备等自重标准值加上可变动荷载组合值。
变组合值系数的物理含义:是根据可变重力荷载与地震的遇合概率确定的。
3.5 多自由度集中质量体系地震下的运动方程如何说明方程中各参数的含义。
答:)(}]{[)}(]{[)}(]{[)}(]{[t x R M t x K t x C t x M g •••••-=++3.6 写出振型质量、振型参与质量、振型参与系数的表达式。
答:振型质量:{}[]{}j Tj j x M x M =振型参与质量:{}[]{}j Rpj x M R M =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n m m m m 0...0][21⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=nn n n n n c c c c c c c c c c .....................][212222111211⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=nn n n n n k k k k k k k k k k .....................][212222111211)(t x 0&&振型参与系数:jpj j M M V =3.7 简述多自由度体系地震反应的振型分解法与振型分解反应谱法的原理和步骤。
地震作用与结构抗震验算
第一节地震作用
• 2.按作用大小分 • 地震作用按其作用大小可分为:多遇地震作用、基本地震作用和预
估的罕遇地震作用。下节主要介绍多遇地震作用的计算方法。
• 四、水平地震作用与风荷载的区别
• 水平地震作用与风荷载都是以水平作用为主的形式作用在建筑物上 的,但是它们作用的表现形式和作用时间的长短是有很大区别的。因 此,在结构设计中要求结构的工作状态是不同的。
上一页
返回
第二节地震作用的计算
• 一、动力计算简图
• 实际结构在地震作用下颠簸摇晃的现象十分复杂。在计算地震作用 时,为了将实际问题的主要矛盾突显出来,然后运用理论公式进行计 算设计,需将复杂的建筑结构简化为动力计算简图。
• 例如:对于图4-1(a)所示的实际结构一水塔,在确定其动力计算简图 时,常常将水箱及其支架的一部分质量集中在顶部,以质点m来表示; 而支承水箱的支架则简化为无质量而有弹性的杆件,其高度等于水箱 的重心高,其动力计算简图如图4-1(b)所示。这种动力计算体系称为 单质点弹性体系。
• 3)整根桩应一次连续压到设计标高,当必须中途 停压时,桩端应停留在软弱土层中,且停压的间隔 时间不宜超过24h;
上一页 下一页 返回
第一节地震作用
• 1.作用形式 • 风荷载是直接作用于建筑物表面上的压(吸)力,只和建筑物的体形、
高度、环境(地面粗糙度、地貌、周围的楼群)、受风面积大小等有关; 而地震作用都是由质量受振动而引发的惯性力,地震作用是通过场地、 地基、基础作用于结构上部的。 • 2.作用时间 • 风荷载的作用时间长,发生的机遇也多,因而要求结构在风荷载作 用下不能出现较大的变形,结构处于弹性工作状态;相反,发生地震 的机遇少,持续时间也短,但作用剧烈,故要求做到“小震不坏,中 震可修,大震不倒”。
第三章2 工程结构地震反应分析与抗震验算.ppt
h 1 ---直线下降段的斜率调整系数;按下式确定
h1 = 0.02 + (0.05 - z ) / 8 当h1 < 0时,取h1 = 0
h2 - -阻尼调整系数,h2 < 0.55时,取h2 = 0.55
h2
=1+
0.05 - z 0.06 +1.7z
Tg : 特征周期,见表3.2
max:水平地震系数的最大值 α max = kβ max ,β max= 2.25
结构在地震持续过程中经受的最大地震作用为
F
=
F (t ) max
= m &x&(t) + &x&g (t) max
= mSa
= mg Sa
&x&g (t) max = Gk = G
&x&g (t) max
g
G ---集中于质点处的重力荷载代表值;
g ---重力加速度
= Sa
&x&g (t) max
地震特征周期分组的特征周期值(s)
场地类别
Ⅰ
Ⅱ
Ⅲ
Ⅳ
第一组 0.25
0.35
0.45 0.65
查表确定 Tg Tg = 0.3
第二组 0.30
0.40
第三组 0.35
0.45
0.55 0.75 0.65 0.90
例:单层单跨框架。屋盖刚度为无穷大,质量集中于屋 盖处。已知设防烈度为8度,设计地震分组为二组,Ⅰ类 场地;屋盖处的重力荷载代表值G=700kN,框架柱线刚 度 ic = EIc / h = 2.6104 kN m ,阻尼比为0.05。试求该结构多 遇地震时的水平地震作用。
结构地震反应分析与抗震计算1
*惯性力
f I m(xg x)
*阻尼力
——由结构内摩擦及结构周围介质(如空气 水等)对结构运动的阻碍造成
f c cx C —— 阻尼系数
*弹性恢复力 ——由结构弹性变形产生
f r kx k —— 体系刚度
力的平衡条件:
fI fc fr 0
mx cx kx mxg
令 k c
m
2m
(
g
)
2
2
2
(
g
2 )
化简为 x(t) B sin( g t )
振幅放大系数
B
A
( g / )2
1
(
g
)
2
2
2
(
g
2 )
A —地面运动振幅 B —体系质点的振幅
1
2
0.2 0.5 1
2
5
g /
图 单自由度体系简谐地面强迫振动振幅放大系数
g / 1 达到最大值 共振
2.方程的特解II——冲击强迫振动
初位移、初速度引起 迅速衰减,可不考虑
地面运动 引起
返回目录
§3.3单自由度体系的水平地震作用与反应谱
一、水平地震作用的定义
单自由度体系的地震作用
质点所受最大惯性力,即
F
m(xg
x) max
m xg
x max
单自由度体系运动方程 m(&x&g &x&) (cx& kx)
自由振动初速度为 V xg dt
根据自由振动位移方程,可
得
x(t)
xg dtet
D
s in D t
图 体系自由振动
3.方程的特解III —— 一般强迫振动
土木工程抗震第3章教案工程结构地震反应分析与抗震验算
第3章 工程结构地震反应分析与抗震验算1、地震作用的计算方法:底部剪力法(不超过40m 的规则结构)、振型分解反应谱法、时程分析法(特别不规则、甲类和超过规定范围的高层建筑)、静力弹塑性方法。
一般的规则结构:两个主轴的振型分解反应谱法;质量和刚度分布明显不对称结构:考虑扭转或双向地震作用的振型分解反应谱法;8、9度时的大跨、长悬臂结构和9度的高层建筑:考虑竖向地震作用。
2、结构抗震理论的发展:静力法、定函数理论、反应谱法、时程分析法、非线性静力分析方法。
3、单自由度体系的运动方程:g xm kx x c x m -=++或m t F x x x e /)(22=++ωξω 。
杜哈美积分x(t)= ⎰----tt t e xd )(g dd )(sin )(1ττωτωτξω , ωξωm cm k 2,2== 单自由度体系自由振动:)sin cos ()(d d000t x xt x e t x d t ωωξωωξω++=- 。
4、最大反应之间的关系:d v a S S S 2ωω==5、地震反应谱:单自由度体系在给定的地震作用下某个最大反应与体系自振周期的关系曲线。
特点:⑴阻尼比对反应谱影响很大;⑵对于加速度反应谱,当结构周期小于某个值时幅值随周期急剧增大,大于某个值时,快速下降;⑶对于速度反应谱,当结构周期小于某个值时幅值随周期增大,随后趋于常数;⑷对于位移反应谱,幅值随周期增大。
地震反应谱是现阶段计算地震作用的基础,通过它把随时程变化的地震作用转化为最大等效侧向力。
6、单自由度体系的水平地震作用:F G k G gt x t xS mgg g a αβ===maxmax)()(β为动力系数,k 为地震系数,α=k β为水平地震影响系数。
7、抗震设计反应谱αmax 地震影响系数最大值,查表;T 为结构周期;T g 为特征周期,查表;例:单层单跨框架。
屋盖刚度为无穷大,质量集中于屋盖处。
地震作用的计算和抗震验算
17.7.2
单质点体系的地震作用
今以任一微分脉冲作用进行讨论,设它 在t=τ-dτ时开始作用,作用时间为 x dτ,则冲量大小为 g (t )d 动量增量为 mx( ) 从动量定理,得
g (t )d x
由通解式可求得当τ-dτ时,作用 一个 g (t )d 微分脉冲的位移反应为 x ( ) x ( t ) g dx( ) e sin ' (t )d 地震作用下的质点位移分析 ' 将所有微分脉冲作用后产生的自由振动叠加,得总位移反应
质点相对于地面的最大加速度反应为
10
17.7.2
单质点体系的地震作用
地震反应谱:主要反映地面运动的特性 最大相对位移 最大相对速度 最大加速度 最大反应之间的关系 在阻尼比、地面运动确定后,最大反应只是结构周期的函数。 单自由度体系在给定的地震作用下某个最大反应与体系自振周 期的关系曲线称为该反应的地震反应谱。
h=5m
地震影响系数最大值(阻尼比为0.05) (2)求水平地震影响系数
地震影响 烈度
6 0.04 ----7 0.08(0.12) 0.50(0.72) 8 0.16(0.24) 0.90(1.20) 9 0.32 1.40
查表确定
多遇地震 罕遇地震
22
17.7.2
单质点体系的地震作用
例:单层单跨框架。屋盖刚度为无穷大,质量集中于屋 盖处。已知设防烈度为8度,设计地震分组为二组,Ⅰ类 场地;屋盖处的重力荷载代表值G=700kN,框架柱线刚 度 ,阻尼比为0.05。试求该结构多 遇地震时的水平地震作用。 解: (1)求结构体系的自振周期 (2)求水平地震影响系数 查表确定
地震特征周期分组的特征周期值(s)
结构地震反应分析与抗震计算
结构地震反应分析与抗震计算在预处理阶段,需要收集建筑物的详细信息,包括结构材料、几何形状、质量分布等。
然后,需要将建筑物的几何形状和结构材料转化为数学模型,以进行分析。
通常,结构可以被简化为一系列的节点和连接的元素,如梁、柱、板等。
接下来,需要定义地震输入。
地震输入通常以地震加速度时程或响应谱的形式表示。
地震加速度时程描述了地震时间上的加速度变化,而响应谱则给出了不同周期下的响应加速度值。
这些输入可以从地震记录仪测得,或者根据地震规范中的规定选取。
进行分析时,可以使用两种常用的地震反应分析方法:静态分析和动态分析。
静态分析假设结构在地震事件中是处于静止状态的,只考虑地震引起的重力和地震力。
这种方法适用于刚性结构或地震荷载相对较小的情况。
动态分析则更加精确,考虑了结构的质量、刚度以及地震引起的动态效应。
动态分析可以分为模态分析和时程分析两种方法。
模态分析通过提取结构的振型(模态)和频率来计算结构的地震反应。
时程分析则根据地震加速度时程逐步计算结构的运动响应。
完成分析后,需要评估结构的地震反应。
常见的评估指标包括最大位移、最大加速度、最大内力等。
根据评估结果,可以对结构进行优化或确定抗震设防要求。
最后,需要对分析结果进行后处理。
后处理包括对分析结果的可视化和解读,以便于设计师和工程师进行决策和调整。
抗震计算的原则是确保在地震事件中建筑物的结构稳定性和人员安全。
根据地震规范和建筑设计准则,建筑物需要具备足够的刚度和抗震能力。
刚度可以通过增加梁、柱、墙等结构组件的尺寸和数量来提高。
抗震能力可以通过使用抗震墙、抗震支撑等增加结构的抗侧向荷载能力。
此外,抗震计算还需要考虑不同地震作用下的结构响应,如水平加速度、垂直加速度、剪切力、弯矩等。
根据地震规范中的设防水平要求,可以确定结构的抗震性能等级。
抗震习题
结构地震反应分析与抗震验算计算题3.1 单自由度体系,结构自振周期T=0.5S,质点重量G=200kN,位于设防烈度为8 度的Ⅱ类场地上,该地区的设计基本地震加速度为0.30g,设计地震分组为第一组,试计算结构在多遇地霞作用时的水平地震作用。
3.2 结构同题3.1,位于设防烈度为8度的Ⅳ类场地上,该地区的设计基本地震加速度为0.20g,设计地设分组为第二组,试计算结构在多遇地震作用时的水平地震作用。
3.3 钢筋混凝土框架结构如图所示,横梁刚度为无穷大,混凝土强度等级均为C25,一层柱截面450mm×450mm,二、三层柱截面均为 400mm×400mm,试用能量法计算结构的自振周期 T1。
3.4 题3.2的框架结构位于设防烈度为8度的Ⅱ类场地上,该地区的设计基本地震加速度为0.20g,设计地震分组为第二组,试用底部剪力法计算结构在多遇地震作用时的水平地震作用。
3.5 三层框架结构如图所示,横梁刚度为无穷大,位于设防烈度为8度的Ⅱ类场地上,该地区的设计基本地震加速为0.30g, 设计地震分组为第一组。
结构各层的层间侧移刚度分别为k1=7.5×105kN/m,k2=9.1×105kN/m,k3=8.5×105kN/m,各质点的质量分别为m1=2×106kg, m2=2×106kg, m3=1.5×105kg,结构的自震频率分别为ω1=9.62rad/s, ω2=26.88 rad/s, ω3=39.70 rad/s, 各振型分别为:要求:①用振型分解反应谱法计算结构在多遇地震作用时各层的层间地震剪力;②用底部剪力法计算结构在多遇地震作用时各层的层间地震剪力。
3.6 已知某两个质点的弹性体系(图3-6),其层间刚度为k1=k2=20800kN/m,,质点质量为m1=m2=50×103kg。
试求该体系的自振周期和振型。
抗震作业第三章
第三章 结构地震反应分析与抗震极限状态计算 思考题3.1 什么是地震动反应谱和抗震设计反应谱反应谱的影响因素和特点是什么答:根据给定的地面运动加速度记录和体系的阻尼比,计算出质点的最大绝对加速度S a ,与体系的自振周期T ,绘制成一条曲线-地震加速度反应谱,不同的阻尼比可以绘制出不同曲线。
规范根据同一类场地在各级烈度地震作用下地面运动的 ,分别计算出的反应谱曲线,再进行统计分析,求出最有代表性的平均反应谱曲线作为设计依据;通常称之为抗震设计反应谱。
反应谱影响因素:受地震动特性即峰值、频谱、持续时间的影响。
特点是随机性。
3.2 什么是地震影响系数其谱曲线的形状参数有何特点答:单自由度体系绝对加速度反应)(T Sa 与重力加速度g 之比。
3.3 什么是地震作用怎样确定单自由度弹性体系的地震作用答:地震作用:地面振动过程中作用在结构上的惯性力就是地震荷载,可理解为能反映地震影响的等效荷载,实际上,地震荷载是由于地面运动引起的动态作用,属于间接作用,应称为“地震作用”,而不应称为“地震荷载”。
确定单自由度弹性体系的地震作用:水平方向:E Ek G T F )(α= 竖直方向:E v Evk G F max ,α= 3.4 抗震设计中的重力荷载代表值是什么其中可变组合值系数的物理含义如何答:重力荷载代表值是指地震作用下计算有关效应标准值时,永久性结构构配件、非结构构件和固定设备等自重标准值加上可变动荷载组合值。
变组合值系数的物理含义:是根据可变重力荷载与地震的遇合概率确定的。
3.5 多自由度集中质量体系地震下的运动方程如何说明方程中各参数的含义。
)(t x答:)(}]{[)}(]{[)}(]{[)}(]{[t x R M t x K t x C t x M g •••••-=++3.6 写出振型质量、振型参与质量、振型参与系数的表达式。
答:振型质量:{}[]{}j Tj j x M x M =振型参与质量:{}[]{}j Rpj x M R M =振型参与系数:jpj j M M V =3.7 简述多自由度体系地震反应的振型分解法与振型分解反应谱法的原理和步骤。
地震作用和结构抗震验算
地震作用和结构抗震验算地震是地球表面或内部地壳发生震动的现象,它是由于地壳运动中的应力积累和释放所引起的。
地震作用对结构物有着严重的破坏力,因此建筑结构的抗震设计和验算非常重要。
本文将介绍地震的作用机理以及结构抗震验算的方法。
地震作用机理:地震作用是由地壳运动引起的震动传递到建筑物上造成的。
地震的震源是地壳运动过程中的断层破裂,震中是地震能量释放的地点,位于震中周围的区域被称为震源区。
地震波是地壳运动所引起的能量在地球中传播时所激发的波动。
地震波包含三种类型:纵波、横波和表面波。
纵波是一种相对较快的波动,其振动方向与传播方向一致。
横波是振动方向垂直于传播方向的波动。
表面波是短周期的波动,其主要分为Rayleigh波和Love波。
Rayleigh波是一种振动旋转的表面波,而Love波是横向振动的表面波。
地震波在地下传播到地表后,将引起建筑结构的震动。
地震作用主要包括地震波引起的惯性作用、地震波引起的弹性变形作用和地震波引起的地基反力作用。
惯性作用是由于地震波的振动引起结构物惯性力的作用,迫使结构产生振动。
弹性变形作用是指结构物在地震波的激励下产生的临时弹性变形。
地基反力作用是指在地震波的力作用下,地基上产生的反向力。
结构抗震验算的方法:结构抗震验算是指通过对结构物在地震作用下的力学行为进行计算和分析,来确定结构抗震性能的一种方法。
常见的结构抗震验算方法包括动力弹塑性时程分析、静力弹塑性分析和模态超静定校验分析。
动力弹塑性时程分析是目前最为常用的抗震验算方法之一、它通过建立结构动力方程,利用数值求解方法得到结构在地震波作用下的时程反应。
这个方法可以考虑结构的非线性性质,如塑性材料的非线性、接触的失效等。
静力弹塑性分析是一种较为简化的抗震验算方法。
它是通过假设地震作用时结构处于静力平衡状态,根据结构的强度和刚度性能进行计算。
这个方法适用于一些简单的结构和小震级地震的验算。
模态超静定校验分析是一种结构验算方法,它通过分析结构的模态形式来确定结构的抗震性能。
3结构地震反应分析与地震计算
3结构地震反应分析与地震计算地震是一种地壳的自然现象,会引起地面的震动和振动。
当地震发生时,建筑物、桥梁、水坝等结构物都会受到不同程度的影响,其中包括结构的振动、变形和破坏等。
为了能够预测和分析地震对结构物造成的影响,以及为了确保结构的安全性,结构地震反应分析和地震计算成为重要的工具。
以下将对这两个概念进行详细介绍。
结构地震反应分析是指通过数学、力学和计算方法,对结构物在地震作用下的动力响应进行分析和计算。
这个过程通常包括以下几个步骤:1.确定地震特性:通过研究地震波、地震地质条件等,确定地震的特性,例如震级、震源和烈度。
2.建立结构模型:将结构物抽象为数学模型,包括结构的几何形状、材料特性和支撑条件等。
3.地震荷载计算:根据地震的特性和结构模型,计算结构所受到的地震荷载,包括地震加速度、速度和位移等。
4.结构响应分析:使用动力学原理和数值计算方法,分析和计算结构在地震作用下的响应,包括振动频率、震动模态和振幅等。
地震计算是根据地震反应分析的结果,对结构物进行力学计算和设计,以确保结构的安全性和抗震性能。
1.结构强度和刚度计算:根据结构的材料特性和地震反应分析结果,计算结构的强度和刚度,以确保在地震作用下结构不会发生破坏或过度变形。
2.结构的动力位移和加速度控制:根据结构的使用要求和抗震等级,计算和控制结构的动力位移和加速度,确保结构在地震作用下不会对使用者造成危险。
3.结构的抗震设计:根据结构地震反应分析结果和设计规范,对结构进行抗震设计和加固,以提高结构的抗震能力和安全性。
结构地震反应分析和地震计算是确保结构的抗震性能和安全性的重要工具。
通过合理的分析和计算,可以对结构在地震条件下的响应进行准确预测,确保结构不会因地震而倒塌或破坏,最大程度保护人们的生命安全。
建筑抗震课件(第三章 地震作用和结构抗震验算)
筑 震作用(即结构地震惯性力)是间接作用,而不称为荷载,但 为了应用方便,将地震作用等效为某种形式的荷载作用,
抗 这就是等效地震荷载。
震
3.1 概述
第 3.1.2 质点体系及其自由度
三
实际结构在地震作用下摇晃的现象十分复杂。在计 算地震作用时,为了将实际问题的主要矛盾突出来,
三 质点自振周期变化的曲线为地震反应谱。 由于地震的随机性,即使在同一地点、同一烈度,每次地震的地面加速
章 度记录也很不一致,因此需要根据大量的强震记录计算出对应于每一条 强震记录的反应谱曲线,然后统计求出最有代表性的平均曲线作为设计 依据,这种曲线称为标准反应谱曲线。
建 筑 抗 震 各种因素对反应谱的影响
章 运用理论公式进行计算设计,需将复杂的建筑结构
简化为动力计算简图。
单质点弹性体系
建 筑 多质点弹性体系 抗 震
3.1 概述
第 单质点弹性体系 三 章
常常将水箱及其支 架的一部分质量集 中在顶部,以质点 m来表示
建
筑
抗
震
水塔
支承水箱的支架 则简化为无质量 而有弹性的杆件, 其高度等于水箱
的重心高
3.1 概述
建 去的微量,故:
筑
m[x(t) xg (t)] kx(t)
抗
震
3.3单质点弹性体系的水平地震作用计算
第
这样,在地震作用下,质点在任一时刻的相对位移
三 将与该时刻的瞬时惯性力成正比。因此,可认为这一相
章 对位移是在惯性力的作用下引起的,虽然惯性力并不是
真实作用于质点上的力,但惯性力对结构体系的作用和
地震作用与结构抗震验算
地震作用与结构抗震验算地震作用与结构抗震验算?这个话题听起来有点沉重,是不是?你是不是一听就想:“哎呀,这又是啥复杂的东西?是不是要我们做啥高深的计算?”放心,我不是要给你讲一堆难懂的公式和公式背后的晦涩原理。
咱们今天聊聊这个事儿,尽量让它简单、轻松,还能让你一听就懂。
毕竟,谁不想在地震来临时,既能保命,又能保住家里那点心爱的家具和“千金难买”的遥控器呢,对吧?首先嘛,地震这一东西,大家都知道,来的时候毫无征兆。
你说它不来吧,又好像就随时可能给你来个“地动山摇”。
你说它来了吧,就真是让人哭笑不得。
房子摇一摇、墙皮掉一掉,心脏就跟着一阵阵跳。
你看,大家都希望地震来得时候,房子能稳稳地、不动摇,咱才有安全感。
而这其中的关键,就是“抗震设计”,就好比你穿上防震服一样,给建筑戴上一层保护膜。
说到抗震设计,咱们就得聊聊它的一个核心问题——结构抗震验算。
这个名字听着挺复杂,但其实它就是让建筑在地震中不至于像纸糊的一样塌了。
验算的过程其实就是在模拟地震的情况下,看看你的房子能不能顶得住摇晃。
这个“摇晃”可不是轻轻的晃几下,地震可是有劲儿的,它能让你的房子像玩具一样乱抖。
所以下面的验算可得仔细了,不能马虎。
你可以想象,房子就像是一台复杂的机器,每一根梁、每一根柱子、每一块墙都好比机器的零部件。
每个零件都有自己的承重能力和抗震能力。
你想象一下,如果其中某个零部件不行,地震一来,整个机器就“嘎嘎嘎”地坏掉了。
所以,验算就是要检查每个部分的强度、灵活性,确保它们能在摇晃中保持稳定,保证整个建筑不出事儿。
不过,地震不是“随便”就能设计出来的。
设计师得根据地震的强度、建筑的高度、地基的好坏这些因素来算。
你如果住在一个地震带,比如说咱们常说的四川、云南那些地方,设计师可能就得给你的房子加点“装备”,比如说用更强的材料,或者增加一些特殊的支撑结构。
这个就是为了让你在地震来临时,房子能承受住震动,不至于崩塌。
地震的力量可不是闹着玩的。
结构地震反应分析与抗震计算
4.直接动力分析理论---时程分析法 将实际地震加速度时程记录(简称地震记录 earth-
quakerecord)作为动荷载输入,进行结构的地震响应分 析。对结构进行弹塑性计算。
5.非线性静力分析方法(Push Over Analysis) 此外,地震、脉动风荷载等都是随机荷载,当然可以用 随机振动理论来进行地震反应的统计特征分析; 还可以以地震时输入结构的能量进行设计。使结构所吸收 的能量不致造成结构破坏为依据的理论等。 但这些方法还没有列入抗震设计规范,因此未被抗震设计 普遍使用 。
..
.
m x t c x t kx t F t
发现地面运动对质点的影响,相当于在质点上加了一个动荷载
..
其数值大小是 m xg t方向与地面加速度方向相反。
13
运动方程的求解(参见高数和结构力学下册)书.
二、 地震反应谱
单自由度体系在给定的地震作用下某个最大反应与体系 自振周期的关系曲线称为该反应的地震反应谱。
第三章 结构地震反应分析与抗震计算
§3.1 概述
一、几个基本概念:
1、结构地震作用:是指地面震动在结构上产生动 力荷载,俗称为地震荷载,属于间接作用。 2、结构地震反应:由地震引起的结构振动,包括 结构的位移反应、速度反应、加速度反应及内力 和变形 等。 3、结构动力特性: 结构的自振周期、振动频率、 阻尼、振型等。 4、结构的地震反应分析:是结构地震作用的计算 方法,应属于结构动力学的范畴。
G ---重力荷载代表值 ζ:阻尼比
k ---地震系数(反映震级、震中距、地基等的影响)
---动力系数(反映结构的特性,如周期、阻尼等的影响)
k
目前,世界上普遍采用的方法。
5