第1讲-有理数的相关概念

合集下载

有理数的概念ppt课件

有理数的概念ppt课件

3,543.60,27是正数.
情境引入
在巴黎奥运会,网球女子单打金牌赛中,中国选手郑钦文
2比0战胜克罗地亚选手维基奇,为中国网球夺得首枚奥运会女
单金牌。
这些数你熟悉吗?你
会对它们进行分类吗?
2是正数;
0既不是正数也不是负数.
情境引入
在巴黎奥运会举重男子61公斤级决赛中,中国队选手李发
彬最终总成绩310公斤(抓举143公斤,挺举167公斤)夺冠,卫
人教版数学七年级上册
第一章 有理数
1.2 有理数及其大小比较
1.2.1 有理数的概念
−5℃
25℃
情境引入
在巴黎奥运会跳水男子3米板决赛中,来自潮汕的中国选手
谢思埸以总分543.60分夺得金牌,成功卫冕,帮助中国跳水队
实现该项目的三连冠,这也是中国代表团的第27枚金牌.
这些数你熟悉吗?你
会对它们进行分类吗?
正数
0
(2)非负数包括________和_______;
负数
0
(3)非正数包括________和_______;
自然数
正整数
(4)非负整数包括________和_______,又称为________;
0
正分数
整数
(5)非负分数包括________和_______;
整数
负分数
(6)非正分数包括________和_______.
课堂小结
有 关 概 念
可以写成分数形式的数称为有理数.
正整数


有理数的分类





整数 0
负整数


正分数
分数

六升七暑期第1讲.有理数的概念(人教版)

六升七暑期第1讲.有理数的概念(人教版)

第1讲有理数中考内容中考要求A B C 有理数理解有理数的意义能比较有理数的大小数轴了解实数与数轴上的点一一对应能用数轴上的点表示有理数相反数和绝对值借助数轴理解相反数和绝对值的意义;了解a的意义能求实数的相反数与绝对值中考大纲知识网络图1.1正数与负数知识概述一.正数与负数1.正数:像3,1.8%,3.5这样大于0的数叫做正数.正数都大于0.2.负数:像3-这样在正数前加上符号“-”(负)号的数叫做负数.-, 2.7负数都小于0.3.符号:一个数前面的“+”,“-”号叫做它的符号.+表示是同一个正数.正数前面的“+”号可以省略,注意3与3负数前面的“-”号不可以省略.4.用正数和负数表示具有相反意义的量:如果正数表示某种意义,那么负数表示它的相反意义,反之亦然.-.比如:用正数表示向南,那么向北3km可以用负数表示为3km“相反意义的量”包括两个方面的含意:一是相反意义;二是要有量.二.“0”的特殊性1.0既不是正数,也不是负数;2.0是正数与负数的分界;3.0是自然数;4.0的意义:(1)0有时表示没有,比如文具盒中有0支铅笔,表示没有铅笔;(2)0有时是一个数,比如0℃是一个确定的温度;(3)0有时也作为基准,比如海拔高度为0m表示的是海平面的平均高度.三.常见名词:非负数:正数和零统称为非负数;非正数:负数和零统称为非正数;【例1】(2018•海珠区一模)某种药品说明书上标明保存温度是(20±3)℃,则该药品在( )范围内保存最合适. A .17℃~20℃ B .20℃~23℃C .17℃~23℃D .17℃~24℃【练习1】(2018•海曙区模拟)四个足球与足球规定质量偏差如下:(超过为正,不足为负).质量相对最合规定的是( ) A .+10 B .﹣20 C .﹣3 D .+5【巩固】(2017秋•平阳县期末)下列一组数:﹣8,0,﹣32,﹣(﹣5.7),其中负数的个数有( )A .1个B .2个C .3个D .4个【例2】(2017秋•青秀区期末)某食品厂从生产的袋装食品中抽出样品10袋,检测每袋的质量是否合标准,超过或不足的部分用正数或负数来表示,记录如表: 与标准质量的差值/克 ﹣5﹣216袋数13321这批样品的总质量比标准质量多还是少?多或少几克?若每袋标准质量为500克,则抽样检测的总质量是多少克?【练习2】(2017秋•海口期末)有20筐白菜,以每筐25千克为标准,超过或不足的千克数分别用正、负数来表示,记录如下: 与标准质量的差值(单位:千克) ﹣3 ﹣2 ﹣1.5 0 1 2.5筐数142328小试牛刀再接再厉(1)20筐白菜中,最重的一筐比最轻的一筐重多少千克?(2)与标准重量比较,20筐白菜总计超过或不足多少千克?(3)若这20筐白菜的进货价为每千克x元,售价为每千克y元(x<y),则出售这批白菜可获利润多少元?(用含x、y的代数式表示)(注:第(1)、(2)小题列出算式,并计算)【巩固】(2017秋•长汀县月考)10袋小麦以每袋450kg为准,超过的千克数记为正数,不足的千克数记为负数.分别记做:﹣6、4、3、﹣2、﹣3、1、0、5、8、﹣5,与标准质量相比较,(1)这10袋小麦总计超过或不足多少千克?(2)10袋小麦总质量多少千克?1.2有理数一.有理数1. 整数:正整数、0、负整数统称为整数.所有的正整数组成正整数集合,所有的负整数组成负整数集合. 2. 分数:正分数、负分数统称为分数.有限小数和无限循环小数可以化为分数,所以我们也把它们看成分数. 3. 有理数:整数和分数统称为有理数. 4. 有理数的分类:(1)()⎧⎧⎫⎪⎬⎪⎨⎭⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数自然数整数零有理数按定义分类负整数正分数分数负分数(2)()()⎧⎧⎪⎨⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正整数正有理数正分数有理数按符号分类零零既不是正数,也不是负数负整数负有理数负分数【例1】.(2017秋•九龙坡区期末)在0,2.1,﹣4,﹣3.2这四个数中,是负分数的是( ) A .0 B .2.1 C .﹣4 D .﹣3.2【练习1】(2017秋•钦州期末)在有理数﹣3,0,,,3.7,﹣2.5中,非负数的个数为( )知识概述小试牛刀A.2B.3C.4D.5【巩固】(2017秋•房山区期末)在“1,﹣0.3,+,0,﹣3.3”这五个数中,非负有理数是.(写出所有符合题意的数)再接再厉【例2】(2017秋•防城港期末)如果一对有理数a,b使等式a﹣b=a•b+1成立,那么这对有理数a,b叫做“共生有理数对”,记为(a,b),根据上述定义,下列四对有理数中不是“共生有理数对”的是()A.(3,)B.(2,)C.(5,)D.(﹣2,﹣)总述归纳:有趣的“”①是自然数;②是偶数;③是整数;④是有理数;⑤是非正数;⑥是非负数;⑦既不是正数,也不是负数,是正数和负数的分界;⑧有时表示没有,有时是一个确定的数,有时也作为基准.1.3数轴一. 数轴数轴:在数学中,可以用一条直线上的点表示数,这条直线叫做数轴.它满足以下要求: 1. 原点:在直线上任取一个点表示数0,这个点叫做原点.原点是数轴的基准点.2. 正方向:通常规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向.3. 选取适当的长度为单位长度,直线上从原点向右,每隔一个单位长度取一个点,依次表示1,2,3,…;从原点向左,用类似的方法依次表示1-,2-,3-,…. 4. 原点、正方向和单位长度是数轴的三要素. 二. 数轴的画法1. 画一条水平的直线(一般画水平的数轴);2. 在这条直线上适当位置取一实心点作为原点:3. 确定向右的方向为正方向,用箭头表示;4. 选取适当的长度作单位长度,用细短线画出,并对应标注各数,同时要注意同一数轴的单位长度要一致.三. 有理数与数轴的关系1. 一切有理数都可以用数轴上的点表示出来.2. 数轴上的点并不全是有理数,如π也可以在数轴上表示,但π并不是有理数.3. 正有理数位于原点的右边,负有理数位于原点的左边. 四. 利用数轴比较有理数的大小在数轴上,右边的点所对应的数总比左边的点所对应的数大. 因此,正数总大于零,负数总小于零,正数大于负数.知识概述【例1】(2018•太原二模)下列四个数表示在数轴上,它们对应的点中,离原点最远的是()A.﹣2B.﹣1C.0D.1【练习1】(2017秋•蒙阴县期末)数轴上的点A到原点的距离是4,则点A表示的数为()A.4B.﹣4C.4或﹣4D.2或﹣2【例2】(2017秋•卫辉市期末)在数轴上的点A、B位置如图所示,则线段AB 的长是()A.7.5B.﹣2.5C.2.5D.﹣7.5【巩固】(2017秋•邵阳县期末)小红在写作业时,不慎将一滴墨水滴在数轴上,根据图中的数据,请确定墨迹遮盖住的整数共有个.小试牛刀再接再厉1.4相反数知识概述一.相反数1.相反数的概念:只有符号不同的两个数叫做互为相反数.互为相反数,a表示任意一个数,可以是正数、负数,也可以是0.(1)一般地,a与a(2)特别地,0的相反数是0.(3)相反数是成对出现的.2.相反数的几何意义:互为相反数的两个数在数轴上对应的点应分别位于原点两侧,并且到原点的距离相等.3.求任意一个数的相反数,只要在这个数的前面添上“-”号即可.二.多重符号的化简1.一个正数前面不管有多少个“+”号,都可以全部去掉;2.一个正数前面有偶数个“-”号,也可以把“-”号全部去掉;3.一个正数前面有奇数个“-”号,则化简后只保留一个“-”号4.口诀“奇负偶正”,其中“奇偶”是指正数前面的“-”号的个数,“负正”是指化简的最后结果的符号【例1】(2018•东莞市模拟)下列各数中,其相反数等于本身的是()A.﹣1B.0C.1D.2018【练习1】(2018•武侯区模拟)如果a与互为相反数,则a等于()A.B.C.2D.﹣2【例2】(2018•康巴什一模)如图,数轴上的点A表示的数为a,则a的相反数等于()A.﹣2B.2C.D.【练习2】(2018•东阳市模拟)如图,数轴上有A,B,C,D四个点,其中表示﹣2的相反数的点是()A.点A B.点B C.点C D.点D1.5绝对值一.绝对值1.绝对值的概念:一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作a.2.绝对值的几何意义:一个数a的绝对值就是数轴上表示数a的点与原点的距离.小试牛刀再接再厉知识概述3. 绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.即:(1)如果0a >,那么a a =;(2)如果0a =,那么0a =;(3)如果0a <,那么a a =-.可整理为:(0)0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩,或(0)(0)a a a a a ≥⎧=⎨-<⎩,或(0)(0)a a a a a >⎧=⎨-≤⎩ 4. 绝对值具有非负性,取绝对值的结果总是正数或0.即:||0a ≥二. 有理数的比较大小1. 两个负数,绝对值大的反而小.2. 正数大于零,零大于负数,正数大于负数.3. 利用数轴:在数轴上,右边的点所对应的数总比左边的点所对应的数大.【例1】(2018•武冈市一模)2的相反数和绝对值分别是( )A .2,2B .﹣2,2C .﹣2,﹣2D .2,﹣2【练习1】(2018•成都模拟)下列各数与﹣8 相等的是( )A .|﹣8|B .﹣|﹣8|C .﹣42D .﹣(﹣8)【巩固】(2017秋•江岸区期末)绝对值最小的数是( )A .0.000001B .0C .﹣0.000001D .﹣100000【例2】(2017秋•綦江区期末)如图,在数轴上,若示有理数a 的点在原点的左边,表示有理数b 的点在原点的右边,则式子|a ﹣b |﹣(﹣b )化简的结果是( )小试牛刀再接再厉A.a﹣2b B.2a C.a D.﹣a+2b(2018春•武邑县校级月考)若|x|=|y|,那么x与y之间的关系是()【练习2】A.相等B.互为相反数C.相等或互为相反数D.无法判断【巩固】(2017秋•上杭县期中)已知x>3,化简:|3﹣x|=.总述归纳:大家一起说说——绝对值.①绝对值等于它本身的数是;②绝对值大于它本身的数是;③绝对值等于它的相反数的数是;④绝对值最小的有理数是;⑤绝对值最小的正整数是;⑥绝对值最小的负整数是.。

第1讲 有理数的概念

第1讲 有理数的概念

--------有理数的概念(★)1. 使学生体会具有相反意义的量,并能用有理数表示,掌握有理数的分类;2. 能用数轴上的点表示有理数,理解相反数和绝对值的意义;3. 会求有理数的相反数和绝对值,会利用绝对值的意义解决实际问题。

【课前导入】小明在书上看到,冬日的一天,某地的最高气温为15℃,最低气温达到-12℃,平均气温是0 ℃,这里面的数是什么数?【答案】15是正数 ,-12是负数,0既不是正数也不是负数.随着同学们视野的拓展,小学学过的自然数、分数和小数已经不能满足认知需要了.譬如一些具有相反意义的量,收入300元和支出200元,向东50米和向西30米,零上6C ︒和零下4C ︒等等,它们不但意义相反,而且表示一定的数量,怎么表示它们呢?我们把一种意义的量规定为正的,把另一种和它意义相反的量规定为负的,这样就产生了正数和负数.正数:像3、1、0.33+等的数,叫做正数.在小学学过的数,除0外都是正数.正数都大于0. 负数:像1-、 3.12-、175-、2008-等在正数前加上“-”(读作负)号的数,叫做负数.负数都小于0. 0既不是正数,也不是负数.一个数字前面的“+”,“-”号叫做它的符号.正数前面的“+”可以省略,注意3与3+表示是同一个正数.用正、负数表示相反意义的量:如果正数表示某种意义,那么负数表示它的相反的意义,反之亦然. 譬如:用正数表示向南,那么向北3km 可以用负数表示为3km -.“相反意义的量”包括两个方面的含意:一是相反意义;二是相反意义的基础上要有量.【知识结构】【知识点一:有理数的概念和分类】 有理数:按定义整数与分数统称有理数.()⎧⎧⎫⎪⎬⎪⎨⎭⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数自然数整数零有理数按定义分类负整数正分数分数负分数 ()()⎧⎧⎪⎨⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正整数正有理数正分数有理数按符号分类零零既不是正数,也不是负数负整数负有理数负分数 注:⑴正数和零统称为非负数;⑵负数和零统称为非正数; ⑶正整数和零统称为非负整数; ⑷负整数和零统称为非正整数.【例1】 ⑴如果收入2000元,可以记作2000+元,那么支出5000元,记为 .⑵高于海平面300米的高度记为海拔300+米,则海拔高度为600-米表示 . ⑶某地区5月平均温度为20C ︒,记录表上有5月份5天的记录分别为 2.7+,0,1.4+,3-,4.7-,那么这5项记录表示的实际温度分别是 . ⑷向南走200-米,表示 .【解析】 ⑴5000-元;⑵低于海平面600米的高度;⑶22.7C ︒,20C ︒,21.4C ︒,17C ︒,15.3C ︒;⑷向北走200米.【例2】 珠穆朗玛峰海拔高度为8848米,吐鲁番盆地海拔高度为155-米,则海平面为 【解析】 0米;海拔高度也称绝对高度,就是某地与海平面的高度差,通常以平均海平面做标准来计算,是表示地面某个地点高出海平面的垂直距离。

第一讲 有理数的相关概念

第一讲    有理数的相关概念

第一讲 有理数的相关概念一、知识要点回顾(一)负数的应用,有理数的分类1、负数的意义:引入负数是我们实际的需要,我们通常用正、负来表示一对相反意义的量。

例1: 上升1m 表示为+1m ,则下降2m 表示为 。

例2:“某种机器零件规定其直径误差不得超过±0.8mm ”这是什么意思? 2、 和 统称为有理数。

按数的符号分: 按有理数定义分,有理数有理数注意:有限小数和无限循环小数都属于有理数。

例1.将下列各数序号填到相应的括号内:①-7.2,②34,③-9,④1.4,⑤0,⑥3.14,⑦π,⑧1245,⑨-2.5,⑩20%整数集合:正分数集合:非负数集合: 分数集合:例2. a 一定是正数,-a 一定是负数吗?回答并举例: (二)数轴1、数轴的三要素: 、 、 。

在数轴上,右边的数总比左边的数 。

最小的正整数是 ,最大的负整数是 。

2、相反数:只有 不同两个数,我们称一个是另一个的相反数。

例如:2和 ,a 和 。

本质:只有 不同,其它不变。

特别的:0的相反数是 。

※ x +y 的相反数是 ,a -b 的相反数是 。

牢记:正数的相反数是 ,负数的相反数是 ,相反数等于它本身的数是 。

3、相反数的代数意义:a>0时,-a 0; a<0时,-a 0; a =0时,-a 0.(a 可以代表任意有理数)相反数的几何意义: 表示互为相反数的两个点位于原点的 ,且到原点的 相等。

4、会进行符号的化简:例:-(-2)= ;+[-(+2)]= ;-(x +y )= ; 特别提醒:相反数的学习对绝对值的化简至关重要。

一定要把握住相反数的本质。

(三)绝对值△※1、概念:在数轴上,一个数所对应的点到原点的 叫做该数的绝对值。

记作: △任何数的绝对值一定一个 数,即:|a| 0.⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧____________________________________________________________________⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧_______________________________________________整数2、代数意义: (a>0) 正数的绝对值等于△※ |a|= (a=0) 0的绝对值是 |a|=(a<0)负数的绝对值等于例:绝对值等于本身的数是 ;3△绝对值等于正数的数有两个,它们 。

有理数ppt课件

有理数ppt课件

03
有理数的混合运算
顺序法则
总结词
在进行有理数的混合运算时,应遵循运算的顺序法则,即先进行乘除运算,再进 行加减运算。
详细描述
在数学中,有理数的混合运算需要遵循一定的顺序,即先进行乘除运算,再进行 加减运算。这是由于乘除运算是全域性的,而加减运算不是。因此,在进行混合 运算时,必须先完成乘除运算,然后再进行加减运算。
有理数的性质
总结词
有理数具有封闭性、有序性、可数性等性质。
详细描述
有理数具有封闭性,即有理数的四则运算结果仍为有理数。有理数具有有序性 ,可以比较大小和排列。有理数还具有可数性,即有理数集与自然数集之间存 在一一对应关系。
有理数在数学中的地位
总结词
有理数是数学中基本且重要的概念之一,是解决实际问题的重要 工具。
04
有理数的应用
在日常生活中的应用
80%
购物时找零钱
在购物时,我们经常使用到有理 数,如找零钱,计算折扣等。
100%
测量和计算
在日常生活中,我们经常需要进 行测量和计算,如长度、重量、 时间等,这些都需要用到有理数 。
80%
金融计算
在金融领域,如股票交易、保险 计算等,都需要用到有理数进行 计算。
有理数可以用于描述几何图形的长度、面积和体 积等属性。
有理数在数学中的未来发展
数学教育改革
01
随着数学教育的发展,有理数作为基础数学知识,将在数学教
育中得到更加广泛的重视和应用。
数学与其他学科的交叉
02
有理数作为数学的基础概念,将进一步与其他学科进行交叉融
合,促进跨学科的发展。
数学研究的新领域
03
随着数学研究的不断深入,有理数理论将进一步发展,并应用

1 有理数的基本概念

1  有理数的基本概念

有理数的基本概念知识点睛1. 用正、负数表示相反意义的量:“相反意义的量”包括两个方面的含意:一是相反意义;二是相反意义的基础上要有量. 2. 有理数:按定义整数与分数统称有理数.()⎧⎧⎫⎪⎬⎪⎨⎭⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数自然数整数零有理数按定义分类负整数正分数分数负分数 ()()⎧⎧⎪⎨⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正整数正有理数正分数有理数按符号分类零零既不是正数,也不是负数负整数负有理数负分数 ✧ ⑴正数和零统称为非负数; ⑵负数和零统称为非正数;⑶正整数和零统称为非负整数; ⑷负整数和零统称为非正整数. 3. 数轴:规定了原点、正方向和单位长度的直线.有理数与数轴的关系:错例原因无原点没有正方向单位长度不统一没有单位长度4. 相反数:只有符号不同的两个数互称为相反数.特别地,0的相反数是0. (1)代数意义:只有符号不同的两个数.相反数必须成对出现,不能单独存在⑵几何意义:一对相反数在数轴上应分别位于原点两侧,并且到原点的距离相等.两点是关于原点对称的 ⑶求任意一个数的相反数,只要在这个数的前面添上“—”号即可.——奇负偶正⑷互为相反数的两个数的和为零,即若a 与b 互为相反数,则0a b +=,若0a b +=则a 与b 互为相反数. 5. 绝对值:几何意义:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离.数a 的绝对值记作a .✧ 绝对值具有非负性,取绝对值的结果总是正数或0. 例如:若0a b c ++=,则0a =,0b =,0c = 代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0. ✧ 比较两个负有理数的大小:两个负数,绝对值大的反而小.2312234✧ 一切有理数都可以用数轴上的点表示出来. ✧ 数轴上的点不都代表有理数,如π.利用数轴比较有理数的大小:✧ 数轴上右边的数总大于左边的数.✧ 正数总大于零,负数总小于零,正数大于负数.例题精讲【例1】 ⑴ 如果收入2000元,可以记作2000+元,那么支出5000元,记为 .⑵ 高于海平面300米的高度记为海拔300+米,则海拔高度为600-米表示 . ⑶ 某地区5月平均温度为20C ︒,记录表上有5月份5天的记录分别为 2.7+,0,1.4+,3-,4.7-,那么这5项记录表示的实际温度分别是 . ⑷ 向南走200-米,表示 . 【解析】 ⑴5000-元;⑵低于海平面600米的高度;⑶22.7C ︒,20C ︒,21.4C ︒,17C ︒,15.3C ︒;⑷向北走200米.【例2】 珠穆朗玛峰海拔高度为8848米,吐鲁番盆地海拔高度为155-米,则海平面为 【解析】 0米【例3】 耐克饮料公司生产的一种瓶装饮料外包装上印有“60030±(mL )”字样,请问“30mL ±”是什么含义?质检局对该产品抽查5瓶,容量分别为603mL ,611mL ,589mL ,573mL , 627mL ,问抽查产品的容量是否合格? 【解析】 “60030±(mL )”表示:若每瓶饮料容量记为a ,则570630a ≤≤.抽查的5瓶容均是合格的. 【例4】 下列数中,哪些属于负数?哪些属于非正数?属于正分数?哪些属于非负有理数?4.5-,6,0, 2.4,π,12-,0.313-,3.14,11-【解析】 属于负数的有: 4.5-,12-,0.313-,11-;属于非正数的有:0, 4.5-,12-,0.313-,11-;属于正分数的有: 2.4,3.14;属于非负有理数的有:6,0, 2.4,3.14【例5】 把下列各数分别填在题后相应的集合中:05207385378131422,,,,,,,,--+--.. 正数集合:(07353782.,,,……+) 负数集合:(----52813142,,,…….)整数集合:(085312,,,,……-+-)分数集合:(--52073783142,,,……..)正整数集合:(+532,……) 负整数集合:(--81,……) 正分数集合:(07378.,……) 负分数集合:(--523142,…….)【例6】 ⑴在数轴上表示下列各数,再按大小顺序用“<”号连接起来. 4-,0, 4.5-,112-,2,3.5,1,122⑵(2006年乌鲁木齐中考题)如右图所示,数轴的一部分被墨水污染了,被污染的部分内含有的整数为_________.(1-,0,1,2.)【解析】 ⑴先画出数轴,在数轴上方标注所求数(如图下所示),根据数轴上的大小顺序,按从左到右依次用“<”号连接起来.即:114.5410122 3.522-<-<-<<<<<-1.3 2.6-112-4.5102123.5【例7】 数轴上有一点到原点的距离是5.5,那么这个点表示的数是 _________. 【解析】 5.5±.【例8】 在数轴上,下面说法中不正确的是( ).D A .两个正数,小的离原点B .两个有理数,大数对应的点在右边C .两个负数,较大的数对应的点离原点近D .两个有理数,大的离原点较远【例9】 m -的相反数是 ,1m -+的相反数是 ,m n a b +-+的相反数是 . 【解析】 m ,1m -,m n a b --+-.【例10】 如果0a <,化简下列各数的符号,并说出是正数还是负数⑴()a -+;⑵()a --;⑶[]()a -+-;⑷[]()a ---;⑸(){}a -+--⎡⎤⎣⎦【解析】 ⑴()a a -+=-,是正数;⑵()a a --=,是负数;⑶[]()a a -+-=,是负数;(4)[]()a a ---=-,是正数;⑸(){}a a -+--=-⎡⎤⎣⎦,是正数.【例11】 下列说法错误的是( )A .(3)+-与(3)--互为相反数B .(3)+-与(3)++互为相反数C .(3)+-与(3)-+互为相反数D .3-与(3)--互为相反数 【解析】 选择C .【例12】 绝对值等于5的整数有 个,绝对值小于5的整数有 个 (2;9个) 【例13】 已知x y -++=320,求下列代数式的值。

第一章.有理数知识点归纳总结

第一章.有理数知识点归纳总结

第一章 有理数1、正数和负数的有关概念(1)正数:比0大的数叫做正数;负数:比0小的数叫做负数;0既不是正数,也不是负数。

(2)正数和负数表示相反意义的量。

2、有理数的概念及分类有理数是整数和分数的统称。

通常有两种分类:0⎧⎧⎪⎪⎨⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数整数负整数有理数正分数分数负分数⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正整数正数正分数有理数负整数负数负分数 3、有关数轴(1)数轴的三要素:原点、正方向、单位长度。

数轴是一条直线。

(2)所有有理数都可以用数轴上的点来表示,但数轴上的点不一定都是有理数。

(3)数轴上,右边的数总比左边的数大;表示正数的点在原点的右侧,表示负数的点在原点的左侧。

4、绝对值与相反数(1)绝对值:在数轴上表示数a 的点与原点的距离,叫做a 的绝对值,记作:a 。

一个正数的绝对值等于本身,一个负数的绝对值等于它的相反数,0的绝对值是0.(0)0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩(2)相反数:符号不同、绝对值相等的两个数互为相反数。

若a 、b 互为相反数,则a+b=0;相反数是本身的是0,正数的相反数是负数,负数的相反数是正数。

(3)绝对值最小的数是0;绝对值是本身的数是非负数。

任何数的绝对值是非负数。

本身之迷①倒数是它本身的数是±1②绝对值是它本身的数是非负数(正数和0)③平方等于它本身的数是0,1 ④立方等于经本身的数是±1,0 ⑤偶数次幂等于本身的数是0、1 ⑥奇数次幂等于本身的数是±1,0 ⑦相反数是它本身的数是0数之最①最小的正整数是1 ②最大的负整数是-1 ③绝对值最小的数是0 ④平方最小的数是0 ⑤最小的非负数是0 ⑥最大的非正数0 ⑦没有最大和最小的有理数 ⑧没有最大的正数和最小的负数5、利用绝对值比较大小两个正数比较:绝对值大的那个数大;两个负数比较:先算出它们的绝对值,绝对值大的反而小。

第1讲 与有理数有关的概念

第1讲  与有理数有关的概念

尖子生假期培优有理数考点·方法·破译1.了解负数的产生过程,能够用正、负数表示具有相反意义的量. 2.会进行有理的分类,体会并运用数学中的分类思想.3.理解数轴、相反数、绝对值、倒数的意义.会用数轴比较两个有理数的大小,会求一个数的相反数、绝对值、倒数.经典·考题·赏析【例1】写出下列各语句的实际意义⑴向前-7米⑵收人-50元⑶体重增加-3千克【解法指导】用正、负数表示实际问题中具有相反意义的量.而相反意义的量包合两个要素:一是它们的意义相反.二是它们具有数量.而且必须是同类两,如“向前与自后、收入与支出、增加与减少等等”解:⑴向前-7米表示向后7米⑵收入-50元表示支出50元⑶体重增加-3千克表示体重减小3千克.【变式题组】01.如果+10%表示增加10%,那么减少8%可以记作( )A . -18%B . -8%C . +2%D . +8% 02.(金华)如果+3吨表示运入仓库的大米吨数,那么运出5吨大米表示为( )A . -5吨B . +5吨C . -3吨D . +3吨03.(山西)北京与纽约的时差-13(负号表示同一时刻纽约时间比北京晚).如现在是北京时间l 5:00,纽约时问是____【例2】在-227,π,0.033.3这四个数中有理数的个数( )A . 1个B . 2个C . 3个D . 4个【解法指导】有理数的分类:⑴按正负性分类,有理数0⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正整数正有理数正分数负整数负有理数负份数;按整数、分数分类,有理数⎧⎧⎪⎪⎨⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数整数0负整数正分数分数负分数;其中分数包括有限小数和无限循环小数,因为π=3.1415926…是无限不循环小数,它不能写成分数的形式,所以π不是有理数,-227是分数0.033.3是无限循环小数可以化成分数形式,0是整数,所以都是有理数,故选C .【变式题组】01.在7,0.1 5,-12,-301.31.25,-18,100.l ,-3 001中,负分数为 ,整数为 ,正整数 .02.(河北秦皇岛)请把下列各数填入图中适当位置15,-19,215,-138,0.1.-5.32,123, 2.333【例3】(宁夏)有一列数为-1,12,-13,14.-15,16,…,找规律到第2007个数是 .【解法指导】从一系列的数中发现规律,首先找出不变量和变量,再依变量去发现规律.击归纳去猜想,然后进行验证.解本题会有这样的规律:⑴各数的分子部是1;⑵各数的分母依次为1,2,3,4,5,6,…⑶处于奇数位置的数是负数,处于偶数位置的数是正数,所以第2007个数的分子也是1.分母是2007,并且是一个负数,故答案为-12007.【变式题组】 01.(湖北宜宾)数学解密:第一个数是3=2 +1,第二个数是5=3 +2,第三个数是9=5+4,第四十数是17=9+8…观察并精想第六个数是 . 02.(毕节)毕选哥拉斯学派发明了一种“馨折形”填数法,如图则?填____. 03.(茂名)有一组数l ,2,5,10,17,26…请观察规律,则第8个数为____.【例4】(2008年河北张家口)若l +m2的相反数是-3,则m 的相反数是____.【解法指导】理解相反数的代数意义和几何意义,代数意义只有符号不同的两个数叫互为相反数.几何意义:在数轴上原点的两旁且离原点的距离相等的两个点所表示的数叫互为相反数,本题m2=-4,m =-8【变式题组】01.(四川宜宾)-5的相反数是( )A .5B . 15C . -5D . -1502.已知a 与b 互为相反数,c 与d 互为倒数,则a +b +cd =______03.如图为一个正方体纸盒的展开图,若在其中的三个正方形A 、B 、C 内分别填人适当的数,使得它们折成正方体.若相对的面上的两个数互为相反数,则填人正方形A 、B 、C 内的三个数依次为( )A . - 1 ,2,0B . 0,-2,1C . -2,0,1D . 2,1,0【例5】(湖北)a 、b 为有理数,且a >0,b <0,|b |>a ,则a ,b 、-a ,-b 的大小顺序是( )A . b <-a <a <-bB . –a <b <a <-bC . –b <a <-a <bD . –a <a <-b <b【解法指导】理解绝对值的几何意义:一个数的绝对值就是数轴上表示a 的点到原点的距离,即|a |,用式子表示为|a |=0)0(0)(0)a a a a a >⎧⎪=⎨⎪-<⎩(.本题注意数形结合思想,画一条数轴标出a 、b ,依相反数的意义标出-b ,-a ,故选A .【变式题组】01.推理①若a =b ,则|a |=|b |;②若|a |=|b |,则a =b ;③若a ≠b ,则|a |≠|b |;④若|a |≠|b |,则a ≠b ,其中正确的个数为( )A . 4个B . 3个C . 2个D . 1个 02.a 、b 、c 三个数在数轴上的位置如图,则|a |a +|b |b +|c |c= .03.a 、b 、c 为不等于O 的有理散,则a |a |+b |b |+c|c |的值可能是____.【例6】(江西课改)已知|a -4|+|b -8|=0,则a +bab的值.【解法指导】本题主要考查绝对值概念的运用,因为任何有理数a 的绝对值都是非负数,即|a |≥0.所以|a -4|≥0,|b -8|≥0.而两个非负数之和为0,则两数均为0.解:因为|a -4|≥0,|b -8|≥0,又|a -4|+|b -8|=0,∴|a -4|=0,|b -8|=0即a -4=0,b -8=0,a =4,b =8.故a +b ab =1232=38【变式题组】01.已知|a |=1,|b |=2,|c |=3,且a >b >c ,求a +b +C . 02.(毕节)若|m -3|+|n +2|=0,则m +2n 的值为( )A . -4B . -1C . 0D . 403.已知|a |=8,|b |=2,且|a -b |=b -a ,求a 和b 的值【例7】(第l 8届迎春杯)已知(m +n )2+|m |=m ,且|2m -n -2|=0.求mn 的值. 【解法指导】本例关键是通过分析(m +n )2+|m |的符号,挖掘出m 的符号特征,从而把问题转化为(m +n )2=0,|2m -n -2|=0,找到解题途径.解:∵(m +n )2≥0,|m |≥O∴(m +n )2+|m |≥0,而(m +n )2+|m |=m ∴ m ≥0,∴(m +n )2+m =m ,即(m +n )2=0 ∴m +n =O ① 又∵|2m -n -2|=0 ∴2m -n -2=0 ②由①②得m =23,n =-23,∴ mn =-49【变式题组】01.已知(a +b )2+|b +5|=b +5且|2a -b –l |=0,求a -B . 02.(第16届迎春杯)已知y =|x -a |+|x +19|+|x -a -96|,如果19<a <96.a ≤x ≤96,求y的最大值.演练巩固·反馈提高01.观察下列有规律的数12,16,112,120,130,142…根据其规律可知第9个数是( )A .156 B . 172 C . 190 D . 111002.(芜湖)-6的绝对值是( )A . 6B . -6C . 16D . -1603.在-227,π,8..0.3四个数中,有理数的个数为( )A . 1个B . 2个C . 3个D . 4个 04.若一个数的相反数为a +b ,则这个数是( )A . a -bB . b -aC . –a +bD . –a -b 05.数轴上表示互为相反数的两点之间距离是6,这两个数是( )A . 0和6B . 0和-6C . 3和-3D . 0和3 06.若-a 不是负数,则a ( )A . 是正数B . 不是负数C . 是负数D . 不是正数 07.下列结论中,正确的是( )①若a =b ,则|a |=|b | ②若a =-b ,则|a |=|b | ③若|a |=|b |,则a =-b ④若|a |=|b |,则a =b A . ①② B . ③④ C . ①④ D . ②③08.有理数a 、b 在数轴上的对应点的位置如图所示,则a 、b ,-a ,|b |的大小关系正确的是( )A . |b |>a >-a >bB . |b | >b >a >-aC . a >|b |>b >-aD . a >|b |>-a >b09.一个数在数轴上所对应的点向右移动5个单位后,得到它的相反数的对应点,则这个数是____.10.已知|x +2|+|y +2|=0,则xy =____.11.a 、b 、c 三个数在数轴上的位置如图,求|a |a +|b |b +|abc |abc +|c |c12.若三个不相等的有理数可以表示为1、a 、a +b 也可以表示成0、b 、ba的形式,试求a 、b 的值.13.已知|a|=4,|b|=5,|c|=6,且a>b>c,求a+b-C.14.|a|具有非负性,也有最小值为0,试讨论:当x为有理数时,|x-1|+|x-3|有没有最小值,如果有,求出最小值;如果没有,说明理由.15.点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为|AB|.当A、B两点中有一点在原点时,不妨设点A在原点,如图1,|AB|=|OB|=|b|=|a-b| 当A、B两点都不在原点时有以下三种情况:①如图2,点A、B都在原点的右边|AB|=|OB|-|OA|=|b|-|a|=b-a=|a-b|;②如图3,点A、B都在原点的左边,|AB|=|OB|-|OA|=|b|-|a|=-b-(-a)=|a-b|;③如图4,点A、B在原点的两边,|AB|=|OB|-|OA|=|b|-|a|=-b-(-a)=|a-b|;综上,数轴上A、B两点之间的距离|AB|=|a-b|.回答下列问题:⑴数轴上表示2和5的两点之间的距离是, 数轴上表示-2和-5的两点之间的距离是, ,数轴上表示1和-3的两点之间的距离是;⑶当代数式|x+1|+|x-2|取最小值时,相应的x的取值范围是.培优升级·奥赛检测01.(重庆市竞赛题)在数轴上任取一条长度为199919的线段,则此线段在这条数轴上最多能盖住的整数点的个数是( )A . 1998B . 1999C . 2000D . 2001 02.(第l 8届希望杯邀请赛试题)在数轴上和有理数a 、b 、c 对应的点的位置如图所示,有下列四个结论:①abc <0;②|a -b |+|b -c |=|a -c |;③(a -b )(b -c )(c -a )>0;④|a |<1-bc .其中正确的结论有( )A . 4个B . 3个C . 2个D . 1个 03.如果a 、b 、c 是非零有理数,且a +b +c =0.那么a |a |+b |b |+c |c |+abc|abc |的所有可能的值为( )A . -1B . 1或-1C . 2或-2D . 0或-2 04.已知|m |=-m ,化简|m -l |-|m -2|所得结果( )A . -1B . 1C . 2m -3D . 3- 2m05.如果0<p <15,那么代数式|x -p |+|x -15|+|x -p -15|在p ≤x ≤15的最小值( )A . 30B . 0C . 15D . 一个与p 有关的代数式 06.|x +1|+|x -2|+|x -3|的最小值为 .07.若a >0,b <0,使|x -a |+|x -b |=a -b 成立的x 取值范围 . 08.(武汉市选拔赛试题)非零整数m 、n 满足|m |+|n |-5=0所有这样的整数组(m ,n )共有 组 09.若非零有理数m 、n 、p 满足|m |m +|n |n +|p |p =1.则2mnp |3mnp |= .10.(19届希望杯试题)试求|x -1|+|x -2|+|x -3|+…+|x -1997|的最小值.11.已知(|x +1|+|x -2|)(|y -2|+|y +1|)(|z -3|+|z +1|)=36,求x +2y +3的最大值和最小值.12.电子跳蚤落在数轴上的某点k0,第一步从k0向左跳1个单位得k1,第二步由k1向右跳2个单位到k2,第三步由k2向左跳3个单位到k3,第四步由k3向右跳4个单位到k4…按以上规律跳100步时,电子跳蚤落在数轴上的点k100新表示的数恰好19.94,试求k0所表示的数.13.某城镇,沿环形路上依次排列有五所小学,它们顺扶有电脑15台、7台、1l台、3台,14台,为使各学校里电脑数相同,允许一些小学向相邻小学调出电脑,问怎样调配才能使调出的电脑总台数最小?并求出调出电脑的最少总台数.。

有理数的定义及相关概念

有理数的定义及相关概念

拓展题
0是整数吗?自然数一定是整数吗?0一定是正整数 吗?整数一定是自然数吗?
2、下列说法正确的是( ) A.正整数和正分数统称为正有理数。 B.正整数和负分数统称为整数。 C.正整数、负整数、正分数、负分数统称为有理数。 D.0不是有理数。
3、既不是正数又不是整数的有理数是( )
A.0和正分数
B.只有负分数
C.负整数和负分数
D.正整数和正分数
4、下列不是有理数的有( )
1、数集可以用大括号表示,也可以用圆圈表示。
2、一个数集内的数有无限多个时,我们不能全部写 出,要用“…”,如非负整数集{0,1,2,3,4…}。
3、一个数集内不能有两个一样的数。 4、所有的有理数组成的数集叫做有理数集;
那么,什么叫做整数集,正数集, 自然数集,非负 整数集?
知 1、把下列各数填入相应的集合
A.3.1415926 B.0
C.0.666……
D.π
5、下列说法错误的是( A.自然数一定是有理数 C.自然数一定是非负数
) B.自然数一定是整数 D.整数一定是自然数
6.说出下列生活情景中用到的数所属的集合. ⑴摩托车的里程表上读出的数;
⑵中央电视台播放的天气预报中,播报各地的 气温所用到的数; ⑶老师批改试卷时用到的数; ⑷烤鸭店的柜台上的电子秤上读出的数; ⑸表示某关概念 整数和分数统称为有理数。
正整数、零和负整数统称为整数,正分数和 负分数统称为分数。
非负数:大于等于0的数叫非负数即a≥0 非正数:小于等于0的数叫非正数即a≤0
非正整数: 小于等于0的整数; 非负整数: 大于等于0的整数
2:数的分类
按定义来分
正整数
整数零
…0.…67

有理数ppt课件

有理数ppt课件
有理数ppt课件
汇报人:可编辑 2023-12-23
目录
• 有理数的定义与性质 • 有理数的运算 • 有理数的混合运算 • 有理数的应用 • 有理数的扩展知识
01
有理数的定义与性质
有理数的定义
总结词
有理数是可以表示为两个整数之 比的数。
详细描述
有理数包括整数和分数,它们都 可以表示为两个整数之比。整数 可以看作分母为1的有理数。
乘方的性质
乘方运算具有一些基本性质,如 $a^{m+n}=a^mtimes a^n$, $(a^m)^n=a^{mn}$等。
有理数的开方运算
开方的定义
开方运算是指求一个数的平方根 或立方根等,表示为根式形式。
例如,$sqrt{16}=4$。
开方的性质
开方运算具有一些基本性质,如 $sqrt[n]{a^n}=a$,
有理数的性质
总结词
有理数具有封闭性、有序性、对称性和稠密性等性质。
详细描述
有理数集是一个封闭的集合,即对于任何两个有理数,都可以通过加、减、乘、除等运算得到另一个有理数。有 理数集是有序的,可以比较大小并建立大小关系。有理数集具有对称性,即对于任意一个有理数,都存在一个相 反数。有理数集是稠密的,即在任意两个不相等的有理数之间,都存在另一个有理数。
02
有理数的运算
加法运算
总结词
有理数加法运算的基本规则
详细描述
有理数的加法运算可以通过将绝对值相加,然后根据同号或异号来决定结果的符 号。例如,两个正数相加,结果仍然是正数;两个负数相加,结果仍然是负数; 一个正数和一个负数相加,结果的正负取决于正数的数量。
减法运算
总结词
有理数减法运算的基本规则

第1讲 有理数的概念

第1讲 有理数的概念

第一讲 有理数的概念一:知识点精析:1、正数、负数、零、非负数;正数与负数表示一对具有相反意义的量;2、整数和分数统称为有理数;3、数轴:规定了原点、正方向、单位长度的一条直线叫做数轴。

在数轴上,正数在原点的右侧,负数在原点左侧;数轴上右边的数总比大;数形结合,。

4、相反数:只有符号不同的两个数互为相反数,互为相反数的两个数和为零,正数的相反数是负数,负数的相反数是正数,零的,相反数是零,a 的相反数是a -,互为相反数的两个数到原点的距离相等。

5、绝对值:一个数的绝对值就是这个数在数轴上的点到原点的距离,(这是绝对值的几何意义)(1)正数的绝对值等于它本身,负数的绝对值等于它的相反,数零的绝对值是零,⎪⎪⎩⎪⎪⎨⎧<-=>=0000a a a a a a(2)一个数的绝对值永远为非负数,(3)几个非负数的和为零,则这几个数同时为零,(4)()a x a a x ±=≥=则,0(5)比较两个数大小的方法:两个负数做比较,绝对值大的反而小,(6)中点公式:在数轴b a 、对应的点的中点为2b a + 二、典型例题:1、a -表示负数吗?为什么?下列数,表示正数的有___________,表示负数的有_______3-π,2-2π,a ,12+x ,12+-x ,a a 1+,a1- 2、若记向东50米记作50+,一天,出租车王师傅从A 地出发,沿笔直的公路向东走了3500米,接着又向西走了6200米,接着又向东走了4500米,最后又向西走了3500米,请问王师傅最后在A 地的__________(东、西)方向_________米。

3、若b a >,则0____b a -;若b a <,则0____b a -;若b a =,则0____b a -4、比较大小:(1)651______431--;(2)ππ-4______3-;(3)若10<<a ,比较大小:32,,,1,a a a a a -(4)若01<<-a ,比较大小:32,,,1,a a a aa -5、(1)数轴上与-3距离17个单位的数是___________(2)数轴上有B A 、两点,如果点A 对应的数是-6,且B A 、两点的距离为7,那么点B 对应的数是_______6、点B A 、分别是数-3、21-在数轴上的对应点,使线段AB 沿数轴向右移动到AB ,且线段AB 的中点对应的数是3,则点A 对应的数是_________,点A 移动的距离是_____7、有理数c b a 、、在数轴上的位置如图,化简c a b a c b a --+--+228、设c b a 、、为非负数,化简abcabc c c b b a a +++ 9、若00<>b a ,,则使得b a b x a x -=-+-成立的x 的取值范围是________10、已知()05432=++++-z y x ,则=++zy x 111_________ A 层次1、若09819=+b a ,则ab 是( )A 正数B 非正数C 负数D 非负数2、有理数a 等于它的倒数,有理数b 等于它的相反数,则20162016b a +等于_______3、2017个不全相等的有理数之和为零,则这1997个有理数中()A 至少有一个是零B 至少有1008个正数C 至少有一个负数D 至多有2015个负数4、数轴上坐标是整数的点称为整点,某数轴的单位长度是1cm ,若在这个数轴上随意画出一条长为2107cm 的线段AB ,则线段AB 盖住的整点有()个A 2106或2017B 2106或2018C 2107或2018D 2107或20195、有如下结论;甲:c b a 、、中至少有两个互为相反数,则0=++c b a ;乙:c b a 、、中至少有两个互为相反数,则()()()0222=-++++a c c b b a ; 丙:c b a 、、中至少有两个互为相反数,则()()()0=-++a c c b b a其中正确的结论个数是()A 0B 1C 2D 3 6、已知有理数a 在数轴上原点的右方,有理数b 在数轴上原点的左方,那么() A b ab < B b ab > C 0>+b a D 0>-b aB 层次7、已知有理数c b a 、、在数轴上的对应位置如图:则b a c a c -+-+-1化简后的结果是__________8、已知数轴上有B A 、两点,B A 、之间的距离为1,点A 与原点O 的距离为3,那么所有满足条件的点B 与原点O 的距离和为_______9、如果数轴上点A 与原点O 的距离为3,点B 与原点O 的距离为5,那么B A 、两点间的距离为__________10、计算机利用的是二进制,他它共有两个数码0,1,将一个十进制数转化为二进制数,只需把该数写成若干n 2的和,依次写出1或0即可,如:1001121212020211901234=⨯+⨯+⨯+⨯+⨯=为二进制的五位数,则十进制的240化为二进制,是_________位数11、问题:不,你能比较2016201721072016与的大小吗?为了解决这个问题,写出它的一般形式,即比较()nn n n 11++与的大小(n 是自然数),然后我们从分析Λ,,,321===n n n ,这些较简单的情形入手,从中发现规律,经过归纳猜想得出结论:,(1)通过计算:比较下列各组数的大小,在横线上填写><=56453423126____5;5____4;4____3;3____2;2____1(2)从第(1)题的结果归纳,可以猜想出()nn n n 11++与的大小关系是__________ (3)根据上面归纳,猜想到的结论,比较下列两个数的大小:201620172107_____201612、一张纸片第一次将它撕成6片,第二次又将其中一小块撕成6片,如此继续下去,第二次撕后共得小纸片______片,第三次共得小纸片______片,第十次后共得小纸片______片,第n 次后共得小纸片______片。

人教版七年级数学上册第一章有理数的概念(教案)

人教版七年级数学上册第一章有理数的概念(教案)
4.有理数的应用
-解决实际问题
-判断有理数的大小关系
-有理数的混合运算
5.练习题与例题
-各类有理数运算的练习题
-涉及实际应用的有理数问题
-提高学生对有理数概念的理解和应用能力例题解析
二、核心素养目标
1.培养学生数学抽象能力:通过有理数的概念学习,使学生能够抽象出数的本质属性,理解数的分类及其意义,形成数学的抽象思维。
-举例:应用有理数解决温度变化、方向位移等问题。
2.教学难点
(1)有理数概念的理解:学生容易混淆有理数与整数、分数的关系,难以把握有理数的本质。
-突破方法:通过具体例子,让学生感受到有理数包含整数和分数,理解有理数的无限性和可表示性。
(2)相反数和绝对值的概念:学生难以理解相反数的意义,以及绝对值表示的实际意义。
其次,在新课讲授环节,我注意到有些学生在理解有理数概念和性质时显得有些吃力。在讲解过程中,我尽量使用简洁明了的语言,并通过举例来阐述。然而,可能由于讲解速度过快,部分学生还没来得及消化吸收就进入了下一个环节。针对这个问题,我计划在今后的教学中适当放慢讲解速度,增加课堂互动,让学生有更多机会提问和思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了有理数的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对有理数的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
2.提升逻辑推理素养:引导学生掌握有理数的运算规律,学会运用逻辑推理解决问题,培养严谨的数学逻辑思维。
3.增强数学建模意识:通过实际问题的引入和解决,让学生学会运用有理数知识建立数学模型,提高解决实际问题的能力。

第一节 有理数及相关概念(含答案)...七年级数学 学而思

第一节 有理数及相关概念(含答案)...七年级数学 学而思

第一节 有理数及相关概念1、有理数整数与分数统称有理数 2、有理数的分类⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数负有理数是负数)零(既不是正数,也不正分数正整数正有理数有理数(按符号)负分数正分数分数负整数自然数零自然数正整数有理数(按定义)--------注:①小学学过的π不是有理数;②“四非”:即非负数,非负整数,非正数,非正整数(不要丢掉“0”); ③“0”既不是正数也不是负数:④有理数的分类标准必须一致,一类是按照定义,一类是按照符号. 3.数轴规定了原点、正方向和单位长度的直线叫做数轴. 注:①数轴的三要素:原点、正方向、单位长度:②有理数都能在数轴表示出来,但数轴上的点不都代表有理数,比如丌. 4.相反数只有符号不同的两个数互称为相反数,特别地,0的相反数是0. 注:① 若a 与b 互为相反数,则a+b=0,反之也成立;②在数轴上,表示互为相反数的两个点,位于原点的两侧,且到原点的距离相等.5.绝对值(1)绝对值的几何意义:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离.数a 的绝对值记作 |a | ; (2)绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0. 注:① 任何一个数a 的绝对值都是非负数,即|a |≥0;②去绝对值时,一定要注意绝对值里面的符号,若绝对值里面是非负数,去掉绝对值等于它本身;若绝对值里面是负数,去掉绝对值等于它的相反数,即去绝对值口诀为“非负为本身,负数为相反”.6.倒数与负倒数(1)倒数:若a 与b 的乘积是1,则称a 与b 互为倒数;反之,若a 与b 互为倒数,则a .b=1: 注:①0没有倒数;②求带分数的倒数时要先将其变成假分数,然后再求倒数;③求小数的倒数,应先将小数化成分数,然后再求倒数.(2)负倒数:若a 与b 的乘积是一1,则称a 与b 互为负倒数;反之,若a 与b 互为负倒数,则a .b= -1.1.比较有理数大小的常用方法(1)数轴法 :数轴上右边的数比左边的数大; (2)代数法:正数大干非正数,零大于一切负数;(简记为:负数<0<正数) (3)绝对值法:对于两个负数,绝对值大的反而小.(4)特殊值法 :给题目中的字母一个特定的值,然后代入求值,进而比较大小. 2.数学思想方法(1)初步理解分类讨论的思想;分类讨论 ,就是当问题所给的对象不能进行统一研究时,就需要对研究对象按某个标准分类,然后对每一类分别研究得出结果,最后综合各类结果得到整 个问题的解答.实质上,分类讨论是“化整为零,各个击破,再积零为整”的 数学策略。

初一数学暑假第01讲-有理数的定义

初一数学暑假第01讲-有理数的定义

第一讲 有理数的基本概念及运算一、正数、负数1.正数【概念】像220.123π+,,,…这样大于0的数都是正数。

2.负数【概念】像47-,-3.14,-2015…这样在正数前加上“-”(读作负)号的数,叫做负数。

【注意】:(1)正数大于0,负数小于0;(2)0既不是正数,也不是负数;(3)正数前面的“+”可以省略,注意3与3+表示是同一个正数,负号不能省略。

3.相反意义的量【概念】如果正数表示某种意义,那么负数表示它的相反的意义,反之亦然。

【举例】用正数表示向东,那么向西3km 可以用负数表示为-3km 。

【注意】“相反意义的量”包括两个方面的含意:一是相反意义;二是相反意义的基础上要有量。

(1)如果收入500元,记作+500元,那么支出237元记作________。

(2)甲,乙两地海拔高度分别是+500米,-250米,那么甲地比乙地高出 。

(3)汽车向东行驶5千米记作+5千米,那么向西行驶3千米记作 。

(4)牛牛最喜欢吃方便面,有一次他连续吃了5包的方便面。

已知方便面外包装上印有 “1005±(g )”字样,细心的牛牛老师对每包方便面都进行称重,质量分别为103g ,101g , 99g ,105g ,95g ,请问,牛牛老师吃的方便面合格吗?知识点1例1(5)下面说法正确的是()A.带正号的数就是正数,带负号的数就是负数B.任何一个正数前面加上“—”,就是一个负数C.0是最小的正数D.a既是正数,又是负数练一练1(1)向南走-23米表示。

(2)成都地区6月平均温度为25℃,记录表上有6月份5天的记录分别为+2.7,0, +1.4, -3,-4.7,那么这5项记录表示的实际温度分别是(3)七名同学的体重以48kg为标准,超过记为正,不足记为负,记录如下编号1234567与标准体重的差(kg) -3.0+1.5+0.80+0.3+1.2+0.5最接近标准体重的学生体重是多少?按体重的轻重排列时,恰好居中的是哪位同学?二、有理数1.有理数【概念】整数与分数统称有理数。

第一讲数系扩张--有理数一

第一讲数系扩张--有理数一

第一讲 数系扩张--有理数(一)一、【问题引入与归纳】1、正负数,数轴,相反数,有理数等概念。

2、有理数的两种分类:3、有理数的本质定义,能表成m n (0,,n m n ≠互质)。

4、性质:① 顺序性(可比较大小);② 四则运算的封闭性(0不作除数);③ 稠密性:任意两个有理数间都存在无数个有理数。

5、绝对值的意义与性质:① (0)||(0)a a a a a ≥⎧=⎨-≤⎩ ② 非负性 2(||0,0)a a ≥≥ ③ 非负数的性质: i )非负数的和仍为非负数。

ii )几个非负数的和为0,则他们都为0。

二、【典型例题解析】:1、若||||||0,a b ab ab a b ab+-f 则的值等于多少? 2. 如果m 是大于1的有理数,那么m 一定小于它的( )A.相反数B.倒数C.绝对值D.平方3、已知两数a 、b 互为相反数,c 、d 互为倒数,x 的绝对值是2,求220062007()()()x a b cd x a b cd -+++++-的值。

4、如果在数轴上表示a 、b 两上实数点的位置,如下图所示,那么||||a b a b -++化简的结果等于(A.2aB.2a -C.0D.2b5、已知2(3)|2|0a b -+-=,求b a 的值是( )A.2B.3C.9D.66、 有3个有理数a,b,c ,两两不等,那么,,a b b c c a b c c a a b------中有几个负数? 7、 设三个互不相等的有理数,既可表示为1,,a b a +的形式式,又可表示为0,b a,b 的形式,求20062007a b +。

8、 三个有理数,,a b c 的积为负数,和为正数,且||||||||||||a b c ab bc ac X a b c ab bc ac=+++++则321ax bx cx +++的值是多少? 9、若,,a b c 为整数,且20072007||||1a b c a -+-=,试求||||||c a a b b c -+-+-的值。

有理数的概念和运算法则

有理数的概念和运算法则

有理数的概念和运算法则一、有理数的概念1.有理数的定义:有理数是可以表示为两个整数比的数,包括正整数、负整数、0、正分数和负分数。

2.整数:正整数、负整数和0。

3.分数:正分数和负分数,分子和分母都是整数,且分母不为0。

4.真分数:分子小于分母的分数。

5.假分数:分子大于或等于分母的分数。

6.带分数:由一个整数和一个真分数组成的数。

二、有理数的运算法则1.加法法则:a.同号相加,取相同符号,并把绝对值相加。

b.异号相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值。

c.0加任何数等于任何数。

d.任何数加0等于任何数。

2.减法法则:a.减去一个数等于加上这个数的相反数。

b.减法可以转化为加法,即减去一个数等于加上这个数的相反数。

3.乘法法则:a.同号相乘,取相同符号,并把绝对值相乘。

b.异号相乘,取相反符号,并把绝对值相乘。

c.0乘任何数等于0。

d.任何数乘0等于0。

4.除法法则:a.同号相除,取相同符号,并把绝对值相除。

b.异号相除,取相反符号,并把绝对值相除。

c.除以0没有意义,除数不能为0。

5.乘方法则:a.正数的任何正整数次幂都是正数。

b.负数的任何正整数次幂都是负数。

c.正数的任何负整数次幂都是正数。

d.负数的任何负整数次幂都是正数。

e.0的任何正整数次幂都是0。

f.0的任何负整数次幂都没有意义。

三、有理数的混合运算1.运算顺序:a.先算乘方。

b.再算乘除。

c.最后算加减。

d.同级运算,从左到右依次进行。

e.如果有括号,先算括号里面的。

2.运算律:a.加法结合律:三个数相加,可以先算任意两个数的和,结果不变。

b.乘法结合律:三个数相乘,可以先算任意两个数的积,结果不变。

c.加法交换律:两个数相加,交换加数的位置,结果不变。

d.乘法交换律:两个数相乘,交换因数的位置,结果不变。

e.分配律:一个数乘以两个数的和,等于这个数分别乘以这两个加数,然后把乘积相加。

四、有理数的应用1.化简:将复杂的分数或带分数化为简化形式。

第一章 有理数知识点、考点、难点总结归纳

第一章 有理数知识点、考点、难点总结归纳

第一章有理数知识点、考点、难点总结归纳有理数是初中数学中的重要概念,它是进一步学习数学的基础。

下面我们来详细总结归纳一下有理数的知识点、考点和难点。

一、有理数的定义有理数是整数(正整数、0、负整数)和分数的统称。

整数可以看作是分母为 1 的分数。

分数则是两个整数的比值,形式为\(\frac{m}{n}\)(其中\(n\neq 0\))。

二、有理数的分类1、按定义分类整数:正整数、0、负整数。

分数:正分数、负分数。

2、按性质分类正有理数:正整数、正分数。

负有理数:负整数、负分数。

三、数轴数轴是规定了原点、正方向和单位长度的直线。

数轴的作用:1、可以直观地表示有理数,任何一个有理数都可以用数轴上的一个点来表示。

2、可以比较有理数的大小,数轴上右边的数总比左边的数大。

四、相反数只有符号不同的两个数叫做互为相反数。

例如,\(5\)的相反数是\(-5\),\(-3\)的相反数是\(3\),\(0\)的相反数是\(0\)。

相反数的性质:1、互为相反数的两个数之和为\(0\),即\(a +(a) = 0\)。

2、数轴上表示相反数的两个点位于原点两侧,且到原点的距离相等。

五、绝对值数轴上表示数\(a\)的点与原点的距离叫做数\(a\)的绝对值,记作\(\vert a\vert\)。

绝对值的性质:1、正数的绝对值是它本身,即当\(a > 0\)时,\(\vert a\vert = a\)。

2、 0 的绝对值是 0,即\(\vert 0\vert = 0\)。

3、负数的绝对值是它的相反数,即当\(a < 0\)时,\(\vert a\vert = a\)。

绝对值的计算:例如,\(\vert -5\vert = 5\),\(\vert 3\vert = 3\)。

六、有理数的大小比较1、正数大于 0,0 大于负数,正数大于负数。

2、两个负数比较大小,绝对值大的反而小。

例如,比较\(-3\)和\(-5\)的大小,因为\(\vert -3\vert =3\),\(\vert -5\vert = 5\),\(3 < 5\),所以\(-3 >-5\)。

第一讲------------有理数

第一讲------------有理数

第一讲 有理数Ⅰ、主要知识回顾㈠ 有关概念1、 、 和 统称整数, 和 统称分数, 和 统称有理数 . 负分数, 如722-,-0.3(即103-),.0.3,53-.... 2、规定了 、 和 的直线叫做数轴在数轴上表示的两个数, 边的数总比 边的数大.3、只有符号不同的两个数称互为相反数.如211 和 互为相反数. 在数轴上表示互为相反数的两数的点分别位于原点的 ,且与原点的距离 。

我们还规定:0的相反数是 . 通常把在一个数前面添上“-”号,表示这个数的 . 例如 -(-4)=4, -(+5.5)=-5.5同样,在一个数前面添上“+”号,表示这个数本身. 例如 +(-4)=-4,+(+12)=12.4、我们把在数轴上表示数a 的点与 的距离叫做数a 的绝对值。

记作|a|例如,在数轴上表示数-6与表示数6的点与原点的距离都是6,所以-6和6的绝对值都是6,记作|-6|=|6|=6.同样可知|-4|= ,|+1.7|= .一个正数的绝对值是它 ; 0的绝对值是 ;一个负数的绝对值是它的 . 不论有理数a 取何值,它的绝对值总是 或 (通常也称 ).即对任意有理数a ,总有|a| 0.5、有理数大小比较的一般法则:(1) 负数小于0,0小于正数,负数小于正数;(2) 两个正数,应用已有的方法比较;(3) 两个负数,绝对值大的反而 .如:-1 -0.01; --;-0.3 31-;⎪⎭⎫ ⎝⎛--91 101-- ㈡运算1、有理数的加法法则:(1) 同号两数相加,取 的符号,并把 相加;(2) 绝对值不等的异号两数相加,取 加数的符号,并用较大的绝对值 较小的绝对值;(3) 互为相反数的两个数相加得 ;(4) 一个数同0相加,仍得 .注意:一个有理数由符号和绝对值两部分组成,所以进行加法运算时,必须分别确定和的符号和绝对值.如:(+2)+(-11)= ;(+20)+(+12)= ;12123⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭ ;(-3.4)+4.3= 2、有理数减法法则:减去一个数,等于加上这个数的 .如;(1)(+2)-(-3)=(-2)+( ); (2)0 - (-4)= 0 +( );(3)(-6)- 3 =(-6)+( ); (4)1 - (+39) = 1 +( ).3、有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对植相乘.任何数同0相乘,都得0.如:(-5)×(-6)= ;1124⎛⎫-⨯= ⎪⎝⎭ 不等于0的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为 ; 当负因数有偶数个时,积为几个不等于0的数相乘,首先确定积的 ,然后把 相乘.几个数相乘,有一个因数为0,积就为 .如: ()()153222⎛⎫-⨯-⨯⨯-⨯= ⎪⎝⎭ ; ()()58.1 3.140-⨯-⨯⨯= 4、有理数除法则:除以一个数等于乘上这个数的 .注意:0不能作除数.因为除法可化为乘法,所以有理数的除法有与乘法类似的法则:两数相除,同号得 ,异号得 ,并把 相除.0除以任何一个 的数,都得0.如;()618÷-= ; ⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛-5251= ;⎪⎭⎫ ⎝⎛-÷54256= 5、n 个相同的因数a 相乘,即a ·a ·…·a ,记作n an 个这种求几个相同因数的积的运算,叫做乘方,乘方的结果叫做幂.在n a 中, 叫作底数, 叫做指数,n a 读作a 的n 次方,也可读作a 的n 次幂. 正数的任何次幂都是 ;负数的奇次幂是 ,负数的偶次幂是 .计算:()31-= ; ()101-= ;()31.0= ;423⎪⎭⎫ ⎝⎛= 6、加法交换律:两个数相加,交换加数的位置, 不变.即 a + b =加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.即 ( a + b )+ c = + ( + )计算:(1) (+26)+(-18)+5+(-16)(2) ⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+++⎪⎭⎫ ⎝⎛-218312417211321乘法交换律: 两个数相乘,交换因数的位置, 不变。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1讲-有理数的相关概念一、正数和负数在数学发展历史上,从发现自然数开始,随着人类文明进步,我们又逐渐定义了分数和小数等.在生活和学习中,我们会需要记录一些具有相反意义的量,比如:零下4︒C 和零上6︒C ,收入20元和支出30元,向东30米和向西100米等等.这些数据不仅意义相反,而且表示一定的量,为了表示它们,我们定义了正负数:1.用正负数表示相反意义的量: 我们把一种意义的量规定为正的,把另一种与它具有相反意义的量规定为负的,分别用正数和负数表示,给数字前面加上正号表示正数,加上负号表示负数.【例】以上几个例子分别记为:4-︒C 和6+︒C ,20+元和20-元,30+米和100-米.2.正数:像30、+6、12、π这样的数叫做正数,正数都大于零;3.负数:在正数前面加上“-”号的数叫做负数,比如:20-、 3.14-、0.001-、172-.【注】①表示正数时,“+”号可以省略,但表示负数时,“-”号一定不能省略;②数0既不是正数也不是负数.二、有理数的概念及分类1.有理数:整数与分数统称为有理数. 2.有理数的分类:(1)有理数按性质分类:⎧⎧⎫⎪⎪⎬⎨⎪⎭⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数自然数整数零有理数负整数正分数分数负分数 (2)有理数按符号分类 ⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎪⎨⎪⎪⎩⎩正整数正有理数正分数有理数零(既不是正数,也不是负数)负整数负有理数负分数(3)小数的分类【注】注意以下几个概念的区分:非负数:正数和零;非正数:负数和零;非负整数:正整数和零;非正整数:负整数和零;非负有理数:正有理数和零;非正有理数:负有理数和零.⎧⎪⎧⎨⎨⎪⎩⎩有限小数小数无限循环小数无限小数无限不循环小数——不可化成分数,是无理数——可化成分数,是有理数三、数轴1.数轴:数轴是一条规定了原点、正方向和单位长度的直线. 【注】原点、正方向和单位长度称为数轴的三要素;①原点:表示数0的点;②正方向:数字从小到大排列的方向,一般规定向右为正方向; ③单位长度:人为规定的代表“1”的线段的长度.2.数轴的画法(1)画一条水平直线;(2)在这条直线上取一点作为原点; (3)一般用箭头表示正方向;(4)选取适当的长度为单位长度,用细短线画出刻度,并将数字对应标在数轴下方.【例】一个标准的数轴: 【注】画数轴的常见错误:①三要素缺失:没有原点、正方向箭头或者单位长度刻度; ②单位长度不统一:相邻两个刻度之间间距不一样;③方向不统一:数字增大的方向不是正方向,或者数字排列混乱.3.数轴与有理数的关系①任何一个有理数均可用数轴上的一个点来表示; 但数轴上的点不一定代表有理数,比如π. ②数轴上两个点表示的数,右边的总比左边的大;③数轴直观地说明了,正数大于零,负数小于零,正数大于负数. 4.数轴与数学思想①数形结合思想:数轴形象地反映了数和点之间的对应关系;②分类讨论思想:数轴表现了有理数的一种分类方法,即分成正数、负数和零. 四、相反数&倒数1.相反数:如果两个数只有符号不同,那么我们称其中一个数为另一个数的相反数,也称这两个数互为相反数.特别地,0的相反数是0.【例】5+与5-互为相反数;5-是5+的相反数;【注】相反数必须成对出现,单独一个数不能说是相反数.“5-是相反数”是错误的. 2.相反数的性质:(1)代数性质:若a 与b 互为相反数,则0a b +=;反之,若0a b +=,则a 与b 互为相反数.(2)几何性质:一对相反数在数轴上对应的点分别位于原点两侧,并且到原点的距离相等,即这两点是关于原点对称的.3.倒数:乘积为1的两个有理数互为倒数.【例】2与12,3-与13-,38-与83-. 4.负倒数:乘积为1-的两个有理数互为负倒数.【例】2与12-,3-与13,38-与83.【注】①0没有倒数,也没有负倒数;②倒数是它的本身的数1或-1.五、绝对值1.绝对值:数轴上表示数a 的点与原点的距离叫做数a 的绝对值,记作a . 2.绝对值运算:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.(0)0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩3.绝对值的性质: (1)非负性:||0a ≥;(2)双解性:若||||a b =,则a b =或a b =-.【注】如果若干个非负数的和为0,那么这若干个非负数都必为0.例如,若||||||a b c ++=0,则a =0,b =0,c =0. 【例1】(1)仔细思考以下各对量: ①胜二局与负三局;②气温为3C -︒与气温升高30C ︒; ③盈利5万元与亏损5万元;④增加10%与减少20%.其中具有相反意义的量有( ) A .1对 B .2对C .3对D .4对(2)①我国现采用国际通用的公历纪年法,如果我们把公元2017年记作+2017年,那么,处于公元前500年的春秋战国时期可表示为___________.②如果80m 表示向东走80m ,那么60m -表示________________.③A ,B 两地海拔高度分别是120米,10-米,则B 地比A 地低________米.(3)学而思饮料公司生产的一种瓶装饮料外包装上印有“60030(ml)±””字样,请问“60030(ml)±”是什么含义?质检局对该产品抽查5瓶,容量分别为603ml ,611ml ,589ml ,573ml ,627ml ,问抽查产品的容量是否合格?【解析】(1)C ;[①③④具有相反意义];(2)①500-年,②向西走60m ,③130;(3)“(ml)600±30”表示每瓶饮料容量最小可以是()ml 600-30,最大可以是()ml 600+30,抽出的5瓶容量均在()ml 600-30与()ml 600+30之间,因此合格.【例2】(1)下列说法错误的是( ) A .0既不是正数也不是负数B .正整数和负整数统称整数C .整数和分数统称有理数D .正有理数包括正整数和正分数(2)把下列各数分别填在所属分类里:5-,0, 3.14-,32, 2.4-,227,327,π, 5.5-,.24,311-,3.14159,34-,2003①正数:{” }; ②负数:{ ”}; ③非负整数:{ ”}; ④分数:{ ”}; ⑤非正有理数:{ ”};【解析】(1)B ;(2)①正数:{32,227,327,π,.24,3.14159,2003}; ②负数:{5-,34-, 3.14-, 2.4-, 5.5-,311-};③非负整数:{0,32,2003};④分数:{ 3.14-, 2.4-,227,327, 5.5-,.24,311-,3.14159,34-};⑤非正有理数:{5-,0, 3.14-, 2.4-, 5.5-,311-,34-};49【例3】(1)下面图形是数轴的是( )A .”””””””””””””””””B .”””””””””””””””C .””””””””””””””””””D .(2)如图所示,数轴的一部分被墨水污染了,被污染的部分内含有的整数为_______.(3)已知:点A 在数轴上的位置如图所示,点B 也在数轴上,且A 、B 两点之间的距离是2,则点B 表示的数是______.(4)在数轴上标出下列各数:0, 4.2,132,2,+7,113,并用“<”连接.【解析】(1)C ;(2)-1,0,1,2; (3)1-或5-;(4)图略,114.22013732-<-<<<<+.【例4】(1)一个点沿着数轴的正方向从原点起移动2个单位长度后,又向反方向移动6个单位长度,则这个点表示的数是__________.(2)一个小虫在数轴上先向右爬2个单位,再向左爬6个单位,所在位置正好距离数轴原点2个单位,则小虫的起始位置所表示的数是________.(3)数轴上的点A 对应的数是1-,一只蚂蚁从A 点出发沿着数轴向右以每秒3个单位长度的速度爬行至B 点后,用2秒的时间吃光了B 点处的蜜糖,又沿原路以原速度返回A 点,共用去6秒,则蚂蚁爬行的路程是几个单位长度?B 点与A 点的距离是多少个单位长度?B 点对应的数是多少?【解析】(1)4-(2)6或2;(3)蚂蚁6s 共爬行()6-2⨯3=12个单位长度;B 点到A 点的距离为12÷2=6个单位长度; 所以B 点对应的数是5.【例5】(1)2017-的相反数是________,2017与________互为相反数.(2)已知有理数a 、b 在数轴上表示如图,则a 、b 、a -、b -的大小,正确的是(””””) A .a b a b -<-<< ””B .a b b a <-<<-C .b a a b -<<-< ””D .a b b a <<-<-(3)下列说法正确的是(””””) A .一个数的相反数一定是负数” B .π和.-314互为相反数 C .所有的有理数都有相反数””””””””D .13和31互为相反数【解析】(1)2017,2017-;(2)C ;(3)C . 【例6】我们可以用字母表示数,比如a 、b 都能代表一个数,在一个数的前面添上“-”号,就得到这个数的相反数.(1)5的相反数是_______;13的相反数是_______,0的相反数是_______,数a 的相反数是________;(2)5-的相反数是_______,12-的相反数是________,4-的相反数是________;数a -的相反数是________;(3)(2)--的相反数是________;(5)+-的相反数是________,数()a -+的相反数是________,数()a --的相反数是_______;()a b ---与________互为相反数.【例7】如果a <0,化简下列各数的符号,并说出是正数还是负数 ①()a -+; ②()a --; ③[()]a -+-; ④[()]a ---; ⑤{[()]}a -+--; ⑥{{{{{[()]}}}}}a -----+--【解析】①()a a -+=-,正数;②()a a --=,负数;③[()]a a -+-=,负数;④a -,正数;⑤{[()]}a a -+--=-,正数;⑥{{{{{[()]}}}}}a a -----+---=,正数. 【例8】(1)2017-的倒数是________,2017与________互为负倒数.(2)一个数的倒数等于它本身,这个数是_________;一个数的倒数等于它的相反数,则这个数________.54BA 13-1(3)已知a 、b 为有理数,在数轴上如图所示,则(””””)A .a b 11<1<B .a b 11<<1C .b a 11<<1D .b a 111<<(1)12017-;12017-;(2)1或-1,不存在;(2)B .【例9】(1)2017-的绝对值是_________,|2017|--的相反数是________,|2017|-与________互为倒数.(2)①绝对值不大于3的整数有________;②绝对值大于2而小于5的负整数是________.(3)①若m 、n 满足||||=m n -2+-30,则mn 的值等于________;②||||x y =--7,则xy =________.(4)已知|5|a =,||2b =,则||a b -的值是__________.(2)①0,±1,±2,±3;②-4,-3; (3)6,0; (4)3或7.【例10】(1)下列说法正确的个数(””””) ①()a --表示正数;②||a 一定是正数,||a -一定是负数;③绝对值等于本身的数只有两个,是0和1;④如果||||a b >,则a b >. A .0个B .1个C .2个D .3个(2)若x 表示有理数,则||x --一定是(””””) A .正数B .负数C .非正数D .非负数(3)下列说法正确的是(””””)A .若a 表示有理数,则a -表示非正数B .和为零的两数互为相反数C .一个数的绝对值必是正数D .若||||a b >,则a b <<0【解析】(1)A ;(2)C ;(3)B .1-a 01b【课后作业】 【练1】(1)如果节约16吨水记作+16吨,则浪费6吨水记作__________.(2)在体育课的跳远比赛中,以4.00米为标准,若小东跳出了4.22米,可记做+0.22,那么小东跳出了3.85米,记作___________.(3)把下列各数填入表示它所在的大括号:.-24,3,2.008,10-3,114,.-015,0,()--2,3.14,||--4.正有理数:{ } 非负整数:{ } 负分数:{ }【解析】(1)-6吨;(2).-015;”(3)正有理数:3,2.008,114,()--2,3.14;非负整数:3,0,()--2;负分数:.-24,10-3,.-015.【练2】(1)下列说法正确的是( )A .在有理数中,零的意义仅仅表示没有B .正有理数和负有理数组成全体有理数C .0.5既不是整数,也不是分数,因而它不是有理数D .零既不是正数,也不是负数(2)下列说法不正确的是( ) A .绝对值等于本身的数是非负数 B .倒数等于本身的数有2个 C .有理数可分为整数和分数D .两个负数比较大小,绝对值越大的数越大【解析】(1)D ;(2)D .【练3】(1)如图,表示数轴正确的是(””””)”””””””””””””””””A .”””””””””””””””””””””””””””””””””””””””””B .”””””””””””””””””””C .”””””””””””””””””””””””””””””””””””””””””D .(2)已知点A ,点B 在数轴上,点A 表示数为-2,A 、B 两点的距离为5,则点B 表示的数是________.(3)在数轴上标出下列各数,并用“<”比较它们的大小:-3,+1,122,.-15,5.(4)已知,a b 为有理数,在数轴上的位置如图所示,则a 1,b1,0,1的大小关系为_______________.【解析】(1)C ;””(2)3或-7;(3)大小关系如下:13 1.51252-<-<+<<;(4)1101a b<<<.【练4】(1)点A 在数轴上距原点为3个单位,且位于原点左侧,若将A 向右移动4个单位,再向左移动2个单位,这时A 点表示的数是________.(2)一只小虫在数轴上先向右爬3个单位,再向左爬7个单位,正好停在-2的位置,则小虫的起始位置所表示的数是( ) A .-4 B .4 C .2 D .0【解析】(1)1-;(2)C . 【练5】(1)37与________互为相反数;a 1-2是________的相反数.(2)()--2的相反数是________;b +4是________的相反数.(3){[()]}--+-4=________;{[()]}----5与________互为相反数.”【练6】(1)||||x y 2-2+7-3=0,求xy =________.(2)4-27的倒数是________,3.75的负倒数是___________.(3)给出下面说法:①互为相反数的两数的绝对值相等;②一个数的绝对值等于本身,这个数不是负数;③若||m m >,则0m <;④若||||a b >,则a b >,其中正确的有______.【解析】(1)6;(2)7-18;4-15;(3)①②③.。

相关文档
最新文档