利用雨生红球藻生产虾青素的研究进展及其产业化现状
虾青素产业化现状分析
![虾青素产业化现状分析](https://img.taocdn.com/s3/m/5ab0322c58fb770bf68a5502.png)
虾 青 素 ( 3 一 羟 基一 4 一 酮基一 B 一 萝 卜 , 3, 二 4, 二 p, 胡 素 C0 是一种 具有超 强抗 氧化 活性 的次 生 类胡 萝 卜 , 2) H0 素 在
酸、 乙烯 利 等 多种 植 物激 素均 能 诱导 雨 生红 球 藻 大量 积 累 虾青 素 。 由于 生物 反 应器 能解 决 雨生红 球藻 在 自然 条件 下生 产 虾青 素 的很 多 问题 , 例如 温度 、 二氧 化碳 、 光照 等 , 因而 国 内 外在 这 方面 的研究 方 兴 未艾 。 hn Z a g等[ 4 1 开发 出一 套 成功 运 用在 螺 旋 藻 (p Z ) 小 球 藻 ( hoel , 琊 ) 殖 s 和 M C lrl a 养 上 的“ 段 一 步法 ” 生红 球 藻 养殖 系 统 , 系统模 拟 自然 两 雨 该 环 境 中 的 开放 水 池 。 能大 大 提 高虾 青 素 生产 效 率并 节约 成
藻细 胞生 物量 ; 第二 阶段 进行 诱 导调控 , 使游 动细 胞转 化 为
雨 生红 球藻 能在 胁迫 条 件下 迅速 合成 并 大量 积 累虾 青 素 , 公认 为 自然 界 中生产 天 然虾 青 素最理 想 的工 具 。 年 被 近 来 。 用 雨生 红球 藻高 效 生产 天 然 虾 青素 已成 为 国 内外 研 利 究 的 热 点 , 由于技 术 要 求 高 , 产 工艺 复 杂 , 内 雨生 红 但 生 国 球 藻的培 养技术 尚处 于实验 室研 究阶段 , 目前主要集 中在 高
(h f ooy a 工业 发 酵 法 。 P , a hdzm ) C r i 由于 技 术 难 度 高及 受 藻 种 或 菌种 本 身 的问题 等限 制 , 天然 虾青 素 的产 量有 限 , 远 使 远
《培养条件对雨生红球藻积累虾青素的调控研究》
![《培养条件对雨生红球藻积累虾青素的调控研究》](https://img.taocdn.com/s3/m/a5431b93bb0d4a7302768e9951e79b8969026841.png)
《培养条件对雨生红球藻积累虾青素的调控研究》一、引言雨生红球藻是一种常见的水生微藻,其内含的虾青素是一种具有强大抗氧化活性的物质,在食品、化妆品和医药领域有着广泛的应用。
近年来,随着对虾青素功能的深入研究,雨生红球藻的培养及其虾青素积累的调控机制逐渐成为研究的热点。
本文将重点探讨不同培养条件对雨生红球藻积累虾青素的影响,以期为优化其培养过程和提高虾青素产量提供理论依据。
二、材料与方法1. 材料本研究所用雨生红球藻购自某生物公司,并进行了纯化与保存。
实验所用试剂均为分析纯。
2. 方法(1)培养条件设置实验设置了不同光照强度、温度、pH值、营养盐浓度等条件,以探究各因素对雨生红球藻生长及虾青素积累的影响。
(2)培养方法采用液体培养法,将雨生红球藻接种于含有不同培养条件的液体培养基中,定期观察其生长情况及虾青素含量变化。
(3)测定与分析使用分光光度计测定雨生红球藻的生长情况,采用高效液相色谱法测定虾青素含量。
对实验数据进行统计分析,探讨各因素对虾青素积累的影响。
三、结果与讨论1. 光照强度对虾青素积累的影响实验结果表明,在适宜的光照强度下,雨生红球藻的生长及虾青素积累达到最佳状态。
光照过强或过弱均会抑制虾青素的积累。
因此,在培养过程中应选择合适的光照强度,以促进雨生红球藻的生长和虾青素的积累。
2. 温度对虾青素积累的影响温度是影响雨生红球藻生长及虾青素积累的重要因素。
在适宜的温度范围内,雨生红球藻的生长及虾青素积累达到最佳状态。
当温度过高或过低时,雨生红球藻的生长受到抑制,虾青素的积累也会受到影响。
因此,在培养过程中应选择适宜的温度条件。
3. pH值对虾青素积累的影响pH值对雨生红球藻的生长及虾青素积累具有显著影响。
在适宜的pH值范围内,雨生红球藻的生长及虾青素积累达到最佳状态。
当pH值过高或过低时,会抑制雨生红球藻的生长和虾青素的积累。
因此,在培养过程中应控制好培养基的pH值。
4. 营养盐浓度对虾青素积累的影响营养盐浓度是影响雨生红球藻生长及虾青素积累的重要因素之一。
《培养条件对雨生红球藻积累虾青素的调控研究》
![《培养条件对雨生红球藻积累虾青素的调控研究》](https://img.taocdn.com/s3/m/3a1d637f6ad97f192279168884868762caaebb28.png)
《培养条件对雨生红球藻积累虾青素的调控研究》一、引言雨生红球藻是一种广泛存在于淡水环境中的微藻,具有较高的生物活性物质,特别是其积累的虾青素。
虾青素是一种重要的天然色素,具有极强的抗氧化性能,在食品、医药、化妆品等领域具有广泛的应用价值。
因此,对雨生红球藻中虾青素积累的调控研究具有重要意义。
本文将重点探讨不同培养条件对雨生红球藻积累虾青素的影响,为优化其生长和虾青素积累提供理论依据。
二、材料与方法1. 材料本研究所用雨生红球藻采自淡水湖泊,经过纯化培养后用于实验。
实验所用的试剂均为分析纯。
2. 方法(1)培养条件设置实验设置不同光照强度、温度、pH值、营养盐浓度等条件,以探究各因素对雨生红球藻生长及虾青素积累的影响。
(2)虾青素含量测定采用分光光度法测定雨生红球藻中虾青素的含量。
(3)数据处理与分析实验数据采用SPSS软件进行统计分析,用图表直观展示结果。
三、结果与讨论1. 光照强度对虾青素积累的影响实验结果显示,在一定范围内,随着光照强度的增加,雨生红球藻的虾青素含量也相应增加。
但当光照强度超过一定阈值时,虾青素含量反而下降。
这可能是由于过强的光照导致藻细胞受到光抑制,影响其正常生长和代谢。
因此,适宜的光照强度是促进雨生红球藻积累虾青素的关键因素。
2. 温度对虾青素积累的影响温度对雨生红球藻的生长和虾青素积累具有显著影响。
在适宜的温度范围内,提高温度可以促进虾青素的合成和积累。
然而,当温度超过一定限度时,藻细胞的生长和代谢活动将受到抑制,导致虾青素含量下降。
因此,适宜的温度条件对于优化雨生红球藻的虾青素积累至关重要。
3. pH值和营养盐浓度对虾青素积累的影响pH值和营养盐浓度也是影响雨生红球藻虾青素积累的重要因素。
适宜的pH值和营养盐浓度可以促进藻细胞的生长和代谢,从而提高虾青素的积累。
然而,过高或过低的pH值以及过量的营养盐都会对藻细胞的生长和虾青素的合成产生不利影响。
因此,需要控制适宜的pH值和营养盐浓度以优化雨生红球藻的虾青素积累。
海洋微藻生物技术的研究现状与进展
![海洋微藻生物技术的研究现状与进展](https://img.taocdn.com/s3/m/f407fe4bfe4733687e21aa19.png)
海洋微藻生物技术的研究现状与进展王颖新生技0811 0820212132摘要:微藻是一类在陆地、海洋分布广泛,营养丰富、光合利用度高的自养植物,细胞代谢产生的多糖、蛋白质、色素等,使其在食品、医药、基因工程、液体燃料等领域具有很好的开发前景。
本文简要综述了海洋微藻生物培养技术的研究现状,并对其应用前景进行了展望,现代高新技术为海洋微藻的研究开发利用和产业化提供了更广阔的前景。
关键词:微藻、成分、培养技术、应用微藻是指一些微观的单细胞群体,是最低等的、自养的释氧植物。
它是低等植物中种类繁多、分布极其广泛的一个类群。
无论在海洋、淡水湖泊等水域,或在潮湿的土壤、树干等处,几乎在有光和潮湿的任何地方,微藻都能生存。
海洋微藻是海洋生态系统中的主要初级生产者 ,种类多 ,繁殖快 ,在海洋生态系统的物质循环和能量流动中起着极其重要的作用。
近几十年来 ,随着现代生物技术的应用 ,分离鉴定手段的提高 ,遗传工程、基因工程等的迅猛发展 ,人类对海洋微藻的研究开发已进入一个崭新的时期。
由于海洋微藻营养丰富 ,富含微量元素和各类生物活性物质 ,而且易于人工繁殖 ,生长速度快 ,繁殖周期短 ,所以在医药、食品工业、环境监测、生物技术、可再生能源等方面具有广阔的应用前景。
1微藻中的多种成分微藻种类繁多,微藻细胞中含有:蛋白质、脂类、藻多糖、β-胡萝卜素、多种无机元素(如Cu,Fe,Se,Mn,Zn等)等高价值的营养成分和化工原料。
微藻的蛋白质含量很高,是单细胞蛋白(SCP)的一个重要来源。
微藻所含的维生素A、维生素E、硫氨素、核黄素、吡多醇、维生素B12维生素C、生物素、肌醇、叶酸、泛酸钙和烟酸等增加了其作为SCP的价值。
藻中类胡萝卜素含量较高,具有着色和营养的作用,可用来防治癌症、抗辐射、延缓衰老,增强机体免疫力等生理作用。
化学合成均为反式的β-胡萝卜素,对人体有致癌、致畸的作用,而顺式异构体在抗癌、抗心血管疾病功能比全反式异构体高,藻粉中β-胡萝卜素含量高达14%。
雨生红球藻的大规模培养以及虾青素的提取技术
![雨生红球藻的大规模培养以及虾青素的提取技术](https://img.taocdn.com/s3/m/f0a07924bb4cf7ec4bfed071.png)
雨生红球藻的大规模培养以及虾青素的提取技术【摘要】虾青素是一种强氧化剂,能够广泛的应用于医药,食品,保健及水产养殖等领域中。
雨生红球藻经过特殊的条件处理可积累大量的虾青素,是天然虾青素的最好生物来源。
大规模的培养雨生红球藻,从雨生红球藻中提取纯化虾青素,已成为生产天然虾青素的重要途径。
【关键词】雨生红球藻;虾青素;大规模培养;提取虾青素是近年来走入国际研发领域的类胡萝卜素。
它广泛存在于自然界中,也是海洋动物体内最主要的类胡萝卜素之一。
研究表明,虾青素具有强大的清除氧自由基的能力,其抗氧化性是类胡萝卜素的10 倍,是维生素 E 的550 倍,被誉为“超级抗氧”。
鉴于虾青素的抗氧化功能,且对人体的绝对安全性,在国外已被广泛应用于医药,食品,保健及水产养殖业中。
雨生红球藻(Haematococcus pluvialis)在特定的条件下可积累本身干重的1%以上的虾青素,是天然虾青素“浓缩品”和最好的生物来源。
雨生红球藻是一种淡水单细胞微藻,属绿藻门、绿藻纲、团藻目、红球藻科、红球藻属。
其具有特殊的生物学性质,即在弱光及营养丰富的条件下,以游动的绿色营养细胞存在,而在不利于其生长的条件下,以不动厚壁孢子存在,同时在体内积累大量的虾青素。
鉴于雨生红球藻此生长特点,目前国际上成功的生产模式都采用了两阶段生产方式,即先采用封闭式光生物反应器培养系统实现细胞的高密度营养生长、克服污染问题,再采用流行的开放池系统在胁迫条件下使细胞积累虾青素。
本项目旨在利用雨生红球藻的培养及虾青素的提取实验中获得的方法,结合现实生产条件,将技术应用到生产实际中,进一步的推广雨生红球藻的大规模培养和虾青素的提取技术。
一、雨生红球藻的大规模培养目前雨生红球藻的培养主要分为两个阶段:细胞生长繁殖阶段和虾青素的积累阶段。
1、细胞生长繁殖阶段雨生红球藻的生长繁殖阶段采用逐级扩大培养的方式。
各级培养所需淡水取自程海湖,营养液配制与补充均采用MAV 母液。
中科院科技成果——大规模养殖雨生红球藻生产虾青素
![中科院科技成果——大规模养殖雨生红球藻生产虾青素](https://img.taocdn.com/s3/m/63b3ab4a0242a8956aece457.png)
中科院科技成果——大规模养殖雨生红球藻生产虾青素
项目简介
利用我国丰富的微藻资源,筛选出3个适合于大规模培养的红球藻藻种(品系),分别具有耐低温和高温的特点,适应的温度范围从9-30℃,有效地延长了生产期;产量达到200-300g/m2,明显高于国外的30-100 g/m2;虾青素含量可高达3.2%,而国外好的产品为2.9%;成功地使用一步法培养,简化工艺,降低了成本,而国外采用二步法生产;可以在开放的培养系统中生产,与国外只能在封闭培养系统中小规模生产的情况相比,意味着红球藻大量培养最重要的障碍被克服,大规模工业化生产已经成为可能。
虾青素的国际市场是每年3亿美元。
2001年全世界鲑鳟鱼的产量将达到100万吨,产值37.5亿美元。
随着国内高档水产品养殖业的发展,中国将成为红球藻的消费大国,具有潜在的巨大市场。
国际市场上红球藻孢子(含2%虾青素)的售价是每公斤50美元,生产每公斤红球藻孢子可实现利润200多元。
雨生红球藻在水产养殖中的应用浅析
![雨生红球藻在水产养殖中的应用浅析](https://img.taocdn.com/s3/m/1cec5e5b6d175f0e7cd184254b35eefdc8d315fd.png)
雨生红球藻在水产养殖中的应用浅析1. 引言1.1 雨生红球藻在水产养殖中的应用浅析雨生红球藻是一种常见的淡水藻类,具有广泛的应用价值。
在水产养殖中,雨生红球藻被广泛应用于水体调理、底泥处理、水质净化等方面。
本文将从雨生红球藻的生物学特点、在水产养殖中的应用优势、具体应用案例、发展前景以及应用对比等方面进行浅析,以探讨雨生红球藻在水产养殖中的应用潜力和展望。
雨生红球藻在水产养殖中的应用主要基于其强大的生物吸附能力和生态修复作用。
其生物学特点包括生长速度快、生长适应性强、吸附能力强等特点,使其在水产养殖中具有独特的优势。
雨生红球藻在水产养殖中的应用还具有明显的经济效益和环境效益,能够有效改善水质、提高养殖效率,降低养殖成本,减少废水排放,保护水产养殖环境等方面具有重要意义。
雨生红球藻在水产养殖中的应用前景广阔,具有巨大的发展潜力。
通过对其应用价值的深入挖掘和推广应用,可以进一步提升水产养殖的可持续发展水平,促进水产业的健康发展与生态平衡。
2. 正文2.1 雨生红球藻的生物学特点雨生红球藻是一种单细胞藻类,主要生长在淡水湖泊、河流和水库等水域环境中。
其主要特点包括:1.形态小巧玲珑,直径约为10-30微米,呈现红色或橙红色,在水中具有明显的色彩;2.具有较强的生长能力和适应性,能够在较为恶劣的环境中存活繁殖;3.具有光合作用,能够利用阳光和二氧化碳进行自养生长,释放氧气,对水质起到净化和氧化作用;4.富含丰富的营养物质和生物活性物质,具有一定的抗氧化和抗炎作用,对水体中的有害物质有一定的去除效果。
雨生红球藻具有生长迅速、适应性强、生态环境友好等特点,逐渐受到水产养殖业的关注和应用。
在未来的发展中,通过深入研究其生物学特点,可以更好地发挥其在水产养殖中的作用,为行业发展提供新的支持和推动。
2.2 雨生红球藻在水产养殖中的应用优势1. 营养丰富:雨生红球藻含有丰富的蛋白质、维生素、矿物质等营养成分,可作为水产养殖中的优质饲料,帮助提高养殖动物的健康和生长速度。
2024年红球藻市场调研报告
![2024年红球藻市场调研报告](https://img.taocdn.com/s3/m/6fa6956b580102020740be1e650e52ea5518cefe.png)
2024年红球藻市场调研报告引言本报告旨在对红球藻市场进行调研,分析其市场潜力和发展趋势。
通过对红球藻行业的现状、竞争格局以及市场前景的深入研究,旨在为投资者和业内人士提供有价值的市场信息和决策依据。
红球藻概述红球藻是一种常见的微型藻类,属于红藻门,其细胞形状呈球状,具有红色的颜色。
红球藻富含丰富的蛋白质、维生素、矿物质和多种氨基酸,具有高营养价值。
红球藻广泛应用于食品、医药、保健品等领域。
红球藻市场现状目前,红球藻市场正处于快速增长的阶段。
随着人们对健康意识的提高和需求的增加,红球藻产品受到了越来越多的关注和认可。
尤其在保健品、养生食品和医疗领域,红球藻的应用趋势明显。
市场上已出现了多个红球藻品牌,并且各品牌之间的竞争日益激烈。
红球藻市场竞争格局目前,红球藻市场呈现出多品牌竞争的局面。
主要的红球藻品牌包括A公司、B公司和C公司,它们在产品质量、市场推广和品牌形象等方面都有自己的优势。
此外,国内外一些大型食品企业也纷纷进入红球藻市场,增加了市场竞争的激烈程度。
红球藻市场前景随着人们对健康生活的追求和对高品质食品的需求增加,红球藻市场有着广阔的发展前景。
红球藻作为一种富含营养的食品原料,其应用潜力巨大。
未来几年,随着相关产业链的不断完善和技术进步,红球藻产品将更好地满足市场需求,并与其他食品行业相结合,进一步推动市场的发展。
结论红球藻市场作为一个新兴的行业,具有较大的市场潜力和发展前景。
投资者和企业可以抓住红球藻市场的机遇,加大研发投入,提高产品质量,并通过市场营销手段提升品牌知名度,从而在竞争激烈的市场中取得优势地位。
此外,政府也应加强对红球藻行业的支持和规范,促进行业健康新能源市场发展。
因此,我们预计红球藻市场将继续保持快速增长的趋势,并给投资者和企业带来可观的经济效益。
以上为2024年红球藻市场调研报告,仅供参考。
从雨生红球藻藻泥中高效萃取虾青素的方法与相关技术
![从雨生红球藻藻泥中高效萃取虾青素的方法与相关技术](https://img.taocdn.com/s3/m/7c29bd7a19e8b8f67d1cb945.png)
本技术公开了一种从雨生红球藻藻泥中高效萃取虾青素的方法,包括以下步骤:步骤一、将雨生红球藻藻泥置于低温机械粉碎设备中进行机械破壁,得到藻浆;步骤二、向藻浆中加入乙醇混合并离心,得到沉淀物;步骤三、向沉淀物中加入有机溶剂并加热搅拌进行浸提提取,反复浸提提取多次至浸提液为无色,合并浸提液并浓缩,得到虾青素。
步骤一中,雨生红球藻藻泥的制备方法为:收集结束培养的雨生红球藻依次进行水洗、离心,即得到雨生红球藻藻泥。
本技术采用低温机械破壁、有机溶剂提取相结合的方式提取虾青素可避免高温对雨生红球藻有效成份的破坏,提高虾青素的提取率。
权利要求书1.从雨生红球藻藻泥中高效萃取虾青素的方法,其特征在于,包括以下步骤:步骤一、将雨生红球藻藻泥置于低温机械粉碎设备中进行机械破壁,得到藻浆;步骤二、向藻浆中加入乙醇混合并离心,得到沉淀物;步骤三、向沉淀物中加入有机溶剂并加热搅拌进行浸提提取,反复浸提提取多次至浸提液为无色,合并浸提液并浓缩,得到虾青素。
2.如权利要求1所述的从雨生红球藻藻泥中高效萃取虾青素的方法,其特征在于,步骤一中,雨生红球藻藻泥的制备方法为:收集培养结束的雨生红球藻依次进行水洗、离心,即得到雨生红球藻藻泥。
3.如权利要求1所述的从雨生红球藻藻泥中高效萃取虾青素的方法,其特征在于,步骤一中,机械破壁的条件为:频率为50~70HZ,温度-20~-10℃,时间5~20min。
4.如权利要求1所述的从雨生红球藻藻泥中高效萃取虾青素的方法,其特征在于,步骤二中,藻浆与乙醇的质量比为1:1~10。
5.如权利要求1所述的从雨生红球藻藻泥中高效萃取虾青素的方法,其特征在于,步骤三中,有机溶剂为乙醇、乙酸乙酯、丙酮中的一种或多种。
6.如权利要求1所述的从雨生红球藻藻泥中高效萃取虾青素的方法,其特征在于,步骤三中,浸提提取的条件为:沉淀物与有机溶剂的质量比为1:1~10,加热温度20~60℃,搅拌时间为10~60min。
《培养条件对雨生红球藻积累虾青素的调控研究》
![《培养条件对雨生红球藻积累虾青素的调控研究》](https://img.taocdn.com/s3/m/6da6c2b2185f312b3169a45177232f60dccce74f.png)
《培养条件对雨生红球藻积累虾青素的调控研究》一、引言雨生红球藻(Haematococcus pluvialis)是一种单细胞绿藻,因其能够在特定条件下积累高浓度的虾青素(astaxanthin)而备受关注。
虾青素是一种强效的抗氧化剂,具有广泛的应用价值,包括在食品、化妆品和医药等领域。
因此,研究培养条件对雨生红球藻积累虾青素的调控具有重要的理论和实践意义。
本文旨在探讨不同培养条件对雨生红球藻生长及虾青素积累的影响,为优化其培养过程提供理论依据。
二、材料与方法1. 材料本研究所用雨生红球藻购自某生物试剂公司,其他试剂均为分析纯。
2. 方法(1)培养条件设置本实验设置了不同光照强度、温度、pH值、营养盐浓度等条件,以探究各因素对雨生红球藻生长及虾青素积累的影响。
(2)样品处理与测定在各个实验条件下,定期收集藻样,通过显微镜观察其生长情况,并采用分光光度法测定虾青素的含量。
同时,记录各实验组的生长曲线和虾青素含量变化。
(3)数据分析采用SPSS软件对实验数据进行统计分析,包括单因素方差分析(ANOVA)和t检验等。
三、结果与分析1. 光照强度对雨生红球藻生长及虾青素积累的影响实验结果表明,在适宜的光照强度下,雨生红球藻的生长速度和虾青素积累量达到最佳。
过强或过弱的光照均会抑制其生长和虾青素的积累。
在光照强度为XX lx的条件下,雨生红球藻的生长速度最快,虾青素积累量最高。
2. 温度对雨生红球藻生长及虾青素积累的影响温度是影响雨生红球藻生长及虾青素积累的重要因素。
实验结果显示,在XX℃至XX℃的温度范围内,雨生红球藻的生长速度和虾青素积累量随着温度的升高而增加,但当温度超过XX℃时,其生长受到抑制。
这表明存在一个最适温度范围,使得雨生红球藻能够最大限度地生长和积累虾青素。
3. pH值对雨生红球藻生长及虾青素积累的影响pH值对雨生红球藻的生长和虾青素积累也有显著影响。
在pH值为XX至XX的范围内,雨生红球藻的生长速度和虾青素积累量达到最佳。
利用雨生红球藻生产虾青素的研究进展及其产业化现状
![利用雨生红球藻生产虾青素的研究进展及其产业化现状](https://img.taocdn.com/s3/m/fd7acb14650e52ea55189840.png)
[ 王秀奇 , 淑媛 , 8] 秦 高天慧 , .基础 生物化 学实验 [ .北 京 : 等 M] 高 等教育 出版社 ,99:2 19 2 7—2 2 3. [ 季维智 , 9] 宿 [O 赵 1] 兵.遗 传多样性研究 的原理与方法 [ .杭州 : M] 浙
藻 类生 产 。雨 生 红 球 藻 ( am t ocs lv l ) H e ao cu pui i 细 c as
剂和 人类食 品添 加剂 , 药 品 、 在 化妆 品和 营养保 健 品
等 领域 也具 有很 大 的应用 潜力 。
收稿 日期 :0 7— 5—1 20 0 4
胞 内天 然虾 青素 的含 量相 对较 高 。
维普资讯
一
16 一 9
江苏农业科学
20 0 7年 第 3期
利用雨生红球藻生产虾青素的研究进展及其产业化现状
沈 建新 ,韦金 河
( 苏 省 农业 科 学 院 , 苏南 京 20 1 ) 江 江 10 4
摘要 : 本文综述 了国内外雨 生红球 藻培养及虾青素积 累的研究进 展 , 介绍 了利用雨 生红球 藻生产 虾青素 的 产业化现状 , 并对 国内虾青 素的产业 化前 景进 行了展望 , 以期推 动国内雨生红球藻生产虾青素 的产业化进程 。 关键词 : 虾青素 ;雨生红球藻 ; 产业 化
要 有三 种 J 一是从 甲壳 类 动 物 中提 取 。 由于 甲壳 :
卜 的 1 、 生 素 E的 50倍 , 素 0倍 维 5 被誉 为 “ 级 氧 超
化 剂 ” J 。虾青 素 能够增 加水 生 动物 的着 色 ; 进 _ 促
鱼 卵受 精 , 降低胚 胎 的死亡 率 , 进 个体 生长并 加 快 促 成 熟速 度 ; 高 母 鸡 产 卵 率 , 加 鸡 蛋 黄 色 素 含 提 增 量 ; 高人 体免疫 力 , 缓 皮 肤 衰 老 , 护 眼 睛 及 提 延 维 中枢神 经 系统健 康等 多种 生理 功能 。虾 青素具 有 广
《培养条件对雨生红球藻积累虾青素的调控研究》
![《培养条件对雨生红球藻积累虾青素的调控研究》](https://img.taocdn.com/s3/m/30b8b08f162ded630b1c59eef8c75fbfc77d94b5.png)
《培养条件对雨生红球藻积累虾青素的调控研究》一、引言雨生红球藻是一种广泛存在于淡水环境中的微藻,因其能够积累丰富的虾青素而备受关注。
虾青素作为一种天然的抗氧化剂和色素,具有极高的经济价值和广泛应用前景。
因此,研究如何通过调控培养条件来促进雨生红球藻积累虾青素,对于提高虾青素的产量和开发微藻生物技术具有重要意义。
本文将就培养条件对雨生红球藻积累虾青素的调控进行深入研究。
二、材料与方法1. 材料本研究所用雨生红球藻购自某生物试剂公司,培养基为改良的BG-11培养基。
2. 方法(1)培养条件设置实验设置不同光照强度、温度、pH值、氮源种类及浓度等条件,以探究各因素对雨生红球藻生长及虾青素积累的影响。
(2)样品处理与测定在各实验组中取样,测定雨生红球藻的生长情况及虾青素含量。
虾青素含量采用分光光度法进行测定。
三、结果与分析1. 光照强度对虾青素积累的影响实验结果显示,在一定范围内,随着光照强度的增加,雨生红球藻的虾青素含量也呈增加趋势。
但当光照强度超过某一阈值时,虾青素含量反而会下降。
这可能是因为过强的光照会导致光合作用过程中产生过多的活性氧,对细胞造成氧化损伤,从而抑制虾青素的合成。
2. 温度对虾青素积累的影响温度是影响微藻生长及代谢产物积累的重要因素。
实验表明,在一定温度范围内,随着温度的升高,雨生红球藻的虾青素含量也会增加。
然而,过高或过低的温度都会抑制虾青素的合成。
因此,存在一个最适温度范围,使得雨生红球藻能够最大限度地积累虾青素。
3. pH值对虾青素积累的影响pH值对雨生红球藻的生长及虾青素积累具有显著影响。
在酸性条件下,虾青素的积累量较低;而在中性或微碱性条件下,虾青素的积累量较高。
这可能是因为不同的pH值会影响细胞的代谢过程及虾青素的合成途径。
4. 氮源种类及浓度对虾青素积累的影响氮是微藻生长及代谢产物合成的重要元素。
实验表明,不同种类的氮源对雨生红球藻的虾青素积累具有不同的影响。
在特定氮源及适宜的氮浓度下,雨生红球藻能够更好地积累虾青素。
虾青素生物合成代谢工程研究进展
![虾青素生物合成代谢工程研究进展](https://img.taocdn.com/s3/m/9b9b76137c1cfad6185fa75c.png)
虾青素生物合成代谢工程研究进展虾青素是一种具有极强生物抗氧化性的酮式类胡萝卜素,在医药、食品、化妆品等方面有着极广阔的应用前景。
目前生物技术法为虾青素的主要生产方法。
本文以虾青素生产所涉及的关键酶、代谢途径及其改造为对象,系统综述了虾青素生产所涉及的代谢工程技术及其最新研究进展,并探讨了将来的发展前景。
标签:虾青素;代谢工程;进展虾青素是一种非维生素A源的酮式类胡萝卜素。
近年来的药理学和生理学研究发现虾青素具有极强的生物抗氧化性,此外,还具有促进抗体产生、增强免疫力以及抗紫外线辐射等作用,因而在医药、食品、水产业、化妆品等方面有着广阔的应用前景。
目前,虾青素的生产方法主要有化学合成法、虾壳类提取、生物技术法。
由于化学合成工艺复杂,而且虾壳类废弃物中虾青素的含量低,因此生产成本均较高。
生物技术法研究最广泛的是利用红发夫酵母和雨生红球藻生产虾青素,其研究大量集中在高产菌株的选育、廉价培养基的利用、培养条件的优化和产物提取等方面,近几年来,如何通过代谢工程提高生物合成虾青素逐渐成为研究热点。
由于虾青素在生物体内合成的主要化学途径及代谢过程已基本上被详细描述,且编码虾青素合成路线中不同酶的基因已经从细菌、植物、藻类和真菌的细胞中克隆出来[1],这为采用代谢工程技术构建工程菌种和优化虾青素合成代谢网络提供了基础。
目前国内外已有研究者开始采用代谢工程手段进行虾青素菌种的构建和代谢途径的调控,并取得了较大的进展,本文对此进行了综述,并探讨了其发展前景。
1虾青素的代谢途径由于虾青素是一种次生类胡萝卜素,因此其在微生物细胞内的合成步骤较多且较复杂。
最初对类胡萝卜素合成途径的研究是从细菌和海洋细菌开始的。
从已报道的虾青素生物合成途径来看,基本上可将其分为两个阶段,第一阶段是合成β-胡萝卜素,第二阶段是β-胡萝卜素经氧化(酮基化)和羟基化形成虾青素[2]。
第一阶段即β-胡萝卜素的合成过程中,红发夫酵母与雨生红球藻的主要差别就是β-胡萝卜素合成的关键物质异戊烯焦磷酸(IPP)的合成途径不同。
雨生红球藻中虾青素的研究与应用
![雨生红球藻中虾青素的研究与应用](https://img.taocdn.com/s3/m/e774ed48b8f67c1cfbd6b845.png)
㊀㊀第38卷第2期2019年4月中国野生植物资源ChineseWildPlantResourcesVol.38No.2Apr.2019㊀㊀doi:10.3969/j.issn.1006-9690.2019.02.016收稿日期:2018-04-21基金项目: 十二五 国家科技支撑计划(2012BAD36B01)ꎮ雨生红球藻中虾青素的研究与应用张广伦ꎬ肖正春ꎬ张锋伦ꎬ张卫明(南京野生植物综合利用研究院ꎬ江苏南京211111)摘㊀要㊀雨生红球藻是单细胞微藻ꎬ其中的虾青素具有抗氧化㊁抗肿瘤㊁预防心脑血管疾病等多种生物活性ꎬ在食品㊁医药㊁保健品㊁化妆品及养殖业有诸多用途ꎮ概述了雨生红球藻虾青素含量影响因素ꎬ雨生红球藻培养方法㊁虾青素的提取方法及其应用领域等最新研究成果ꎬ为虾青素的开发利用提供帮助ꎮ关键词㊀雨生红球藻ꎻ虾青素ꎻ抗氧化ꎻ抗肿瘤ꎻ应用中图分类号:Q949㊀㊀㊀㊀㊀㊀文献标识码:A㊀㊀㊀文章编号:1006-9690(2019)02-0072-06StudyandApplicationofAstaxanthininHaematococcuspluvialisZhangGuanglunꎬXiaoZhengchunꎬZhangFenglunꎬZhangWeiming(NanjingInstituteforComprehensiveUtilizationofWildPlantsꎬNanjing211111ꎬChina)Abstract㊀Haematococcuspluvialisisakindofmicroalgawithsinglecellꎬcapabletoaccumulatelargequantitiesofastaxanthinꎬwhichpossessesavarietyofbiologicalactivitiesꎬsuchasantioxidantꎬanti-tumorandpreventingcardiovascularandcerebrovasculardiseasesꎬetcꎬandfindsmanyusesinfoodsꎬmedicineꎬhealthproductsꎬcosmeticsandaquaculture.Thispapersummarizedtheresearchfindingsa ̄boutinfluencingfactorsofastaxanthincontentinH.pluvialisꎬculturemethodsofH.pluvialisꎬextractingmethodsofastaxanthinanditsapplicationꎬtoofferareferencefordevelopmentofastaxanthininH.plu ̄vialis.Keywords㊀HaematococcuspluvialisFlotowꎻastaxanthinꎻantioxidantꎻanti-tumorꎻapplication㊀㊀雨生红球藻(HaematococcuspluvialisFlotow)是一种单细胞淡水微藻ꎬ属绿藻门(Chlorophyta)㊁团藻目(Volvocales)㊁红球藻科(Haematococcaceae)㊁红球藻属(Haematococcus)ꎮ生活史中细胞具有多样性ꎬ主要有营养细胞和厚壁孢子两种形态ꎮ在弱光㊁氮磷丰富的环境中以游动的绿色营养细胞存在ꎬ在此状态下雨生红球藻生长旺盛ꎬ细胞内虾青素含量很低ꎮ在不利生存条件下(高光照㊁高温㊁高盐或营养盐饥饿)下失去鞭毛ꎬ以不动的厚壁孢子形态存在ꎬ并积累大量虾青素[1]ꎮ天然虾青素的生物来源主要有虾㊁蟹等水产品的废弃物㊁红发夫酵母和雨生红球藻ꎮ其中ꎬ虾㊁蟹等水产品的废弃物中虾青素不仅含量低ꎬ而且提取费用高ꎬ天然红发夫酵母中虾青素的平均含量仅0.4%ꎮ雨生红球藻是天然虾青素的理想生物来源[2]ꎮ本文主要概述了雨生红球藻中虾青素的积累规律㊁虾青素含量变化的影响因素ꎬ提取方法㊁雨生红球藻的培养方法以及虾青素的生物活性及其应用等内容ꎬ希望有助于雨生红球藻的开发利用ꎮ1㊀虾青素积累过程中雨生红球藻的形态和生理变化雨生红球藻为单细胞微藻ꎬ生活史主要分为两个阶段:绿色营养细胞(GV)阶段和不动细胞阶段ꎮ绿色营养细胞有两条鞭毛ꎬ能运动ꎬ在光下进行光合作用ꎬ在黑暗中营异养生活ꎮ不动细胞根据颜色和形态特征ꎬ又分为绿色不动细胞(GR)㊁桔黄色不动细胞(OR)和红色孢囊(RC)ꎮOR细胞处于营养饥饿状态ꎬ是快速积累虾青素的时期ꎮ环境胁迫诱导形成孢囊ꎬ随着孢囊细胞成熟ꎬ类胡萝卜素大量积累ꎮ虾青素可达到细胞干重的4%~6%ꎮ通过显微观察ꎬOR细胞叶绿体中类囊体的膜解27第2期张广伦ꎬ等:雨生红球藻中虾青素的研究与应用体成碎片状ꎬ积累大量的虾青素酯㊁淀粉和脂质体ꎬ这和GV细胞有很大不同ꎮ但OR细胞保留了大部分光合色素ꎬ如紫黄素(violaxanthin)ꎬ玉米黄素(an ̄theraxanthin)和新黄素(neoxanthin)ꎬ仍能进行一定程度的光合作用ꎬ但光合效率明显下降ꎮ光合系统I和光合系统II中ꎬ能量分配类型更倾向于光合系统I(PSI)ꎮ通过OR细胞和GV细胞类囊体的蛋白质组比较分析ꎬ两者的调节蛋白均参与光合作用ꎬ但OR细胞类囊体蛋白与胁迫响应有关ꎬ而GV细胞的类囊体蛋白参与生物量积累ꎮ这些研究结果为OR细胞中虾青素的合成提供了生理依据[3]ꎮ虾青素在雨生红球藻中是通过类异戊二烯途径合成的ꎬ合成在叶绿体外进行ꎮ起始物质为乙酰-CoAꎬ经茄红素㊁番茄红素㊁ζ-胡萝卜素㊁角黄素等中间物ꎬ最后合成为虾青素ꎮ虾青素合成后ꎬ在3 -羟基酯化ꎬ增加其在细胞环境中的溶解性和稳定性ꎮ2㊀虾青素及其生物活性虾青素(astaxanthin)又名虾红素ꎬ在体内可与蛋白质结合而呈青色㊁蓝色ꎮ化学名称为3ꎬ3 -二羟基-βꎬβ -胡萝卜素-4ꎬ4 二酮ꎬ分子式:C40H52O4ꎬ相对分子质量:596.82ꎮ除了雨生红球藻和红发夫酵母(XanthophyllomycesdendrorhousꎬPhaffiarhodozyma)外ꎬ近年来ꎬ发现一些绿藻也含有虾青素:如Coelastrellastriolata㊁单针藻Monoraphidiumsp.㊁斜生珊藻Scenedesmusobliquus㊁小球藻Chlorellazof ̄ingiensis等ꎮ此外ꎬ虾青素也存在于虾㊁蟹以及一些贝类动物体内ꎮ雨生红球藻虾青素含量较高ꎬ是提取虾青素的好原料ꎮ虾青素具有多种生物活性[4-5]: (1)抗氧化虾青素具有长的共轭双键ꎬ末端酮基和羟基的活泼电子易提供电子给自由基或吸引自由基的未配对电子ꎬ从而清除自由基ꎬ起到抗氧化作用ꎮ虾青素的抗氧化作用比其它类型的类胡萝卜素更强ꎬ清除自由基的能力和淬灭单线态氧的活性比维生素E强500多倍ꎬ比玉米黄质㊁番茄红素㊁叶黄素㊁角黄素以及β-胡萝卜素高10倍ꎬ是花青素的17倍ꎬ被称为 超级维生素E ꎮ虾青素强抗氧化性和清除自由基的能力ꎬ对人体健康起着极其重要的作用ꎮ(2)增强机体免疫力虾青素可增强T细胞ꎬ刺激人体内血细胞产生免疫球蛋白ꎬ显著增强机体的免疫功能ꎬ增加对病毒㊁细菌等的抵抗力ꎮ此外ꎬ其在抗原入侵初期增强特异性体液免疫反应的效果优于ζ-胡萝卜素等物质ꎮ(3)抗衰老㊁抗老化虾青素可强化机体需氧代谢ꎬ增强肌肉力量和耐受力ꎬ起到抗衰老作用ꎮ虾青素的抗氧化活性使其成为光的高效保护剂ꎬ可阻止皮肤老化ꎬ作用效果优于维生素A㊁β-胡萝卜素和叶黄素ꎮ虾青素脂溶性好ꎬ对细胞膜有亲和力ꎬ用虾青素开发防晒霜ꎬ不仅可防止光辐射ꎬ还有抗细胞老化的效果ꎮ此外ꎬ虾青素有抗癌活性ꎮ3㊀雨生红球藻中虾青素含量影响因素培养雨生红球藻时ꎬ影响虾青素含量的因素是多方面的ꎬ如温度㊁光照强度㊁pH值㊁培养基种类以及藻种品系等ꎬ这些因素往往是协同起作用的ꎮ(1)培养基种类㊁品系的影响采用BBM㊁HGZ两种培养基培养雨生红球藻结果表明:BBM培养基比HGZ培养基更适合营养生长ꎮ3个品系(H17㊁HPM㊁HPB)的平均生长速率分别提高57.2%㊁28.97%㊁18.1%ꎮ培养10dꎬ叶绿素含量增加201.9%~288.2%ꎬ干重增加38.8%~114.3%ꎻ而HGZ培养基更适合虾青素积累ꎮ在强光和缺氮条件培养15d后ꎬ用HGZ培养基培养的3个红球藻品系细胞的虾青素累积为BBM培养基的2.0~2.5倍[6]ꎮ邱保胜等对传统培养基作了改良ꎬ保持了绿色游动细胞培养期pH值的相对稳定ꎬ可培养出高密度绿色营养细胞[7]ꎮ(2)接种密度㊁pH值将pH值控制在偏碱性条件下(7.75ʃ0.10)ꎬ有利于藻细胞生长ꎻ较高的接种密度(2.3ˑ104个/mL)能缩短营养培养周期(7d)ꎬ接种密度变化对胁迫周期长短无明显影响(均为4d)ꎬ所以选用较高的接种密度可望降低花青素工业生产的成本ꎮ(3)氮磷等营养因素在BBM培养基中NaNO3浓度减半时(0.13g/L)ꎬ细胞增殖及色素累积都相对有利ꎮ在高光强下实施氮㊁磷饥饿ꎬ红球藻细胞分裂明显受抑ꎬ但色素的累积作用增强ꎬ培养9dꎬ细胞内次生类胡萝卜素的含量分别比对照组提高141.0%和60.5%ꎬ色素的累积高峰也比对照组提前2~4dꎮ因此ꎬ在培养适当时机控制氮磷的量ꎬ特别是氮素ꎬ对提高虾青素含量有利[8]ꎮ氮素种类对雨生红球藻生长和虾青素积累的影37中国野生植物资源第38卷响也有不同ꎮ雨生红球藻797株以NH4+-N培养的生长速率明显高于NO3--N培养ꎬ平均生长速率分别为0.279m/d和0.190m/dꎬ且NH4+-N培养所消耗的N㊁P营养盐比NO3--N培养消耗的少ꎮ两种氮源下强光照处理1d和7d均导致雨生红球藻细胞数减少而静细胞比例增加ꎮ在虾青素合成阶段ꎬ藻液N含量急剧下降而P含量基本保持稳定ꎬ说明虾青素合成对N的需要量大而对P的需要小ꎮ在NH4+-N培养下SOD活性下降而虾青素含量升高ꎬ而在NO3--N培养下SOD活性与虾青素含量同时升高ꎮ(4)光照和碳源不同光照强度及添加不同葡萄糖量进行混合培养对雨生血球藻虾青素产量的影响研究表明ꎬ单位体积培养液虾青素产量随光照强度和葡萄糖添加量变化ꎬ在光照强度为2500lx以及葡萄糖添加量为3g/L时ꎬ虾青素产量最高ꎮ光照强度和葡萄糖添加浓度对虾青素产量有交互影响ꎮ通过中心组合试验ꎬ混合培养条件下最高虾青素产量所需要的葡萄糖添加量及光照强度分别为3.1616g/L和2605.66lxꎮ此时的虾青素产量为41.06mg/Lꎬ是自养培养时的2.02倍[9]ꎮ(5)温度在环形培养池模拟系统培养雨生红球藻ꎬ观察温度对雨生红球藻生物量及虾青素产量的影响ꎮ结果表明ꎬ在15ħ~25ħ的范围内ꎬ不同温度下雨生红球藻生物量和虾青素含量及产量都经历了一个上升-最高-下降的过程ꎮ25ħ与22ħ时红球藻的虾青素产量㊁虾青素含量(干重)均显著高于其他温度(P<0.01)ꎮ15ħ时ꎬ红球藻生物量㊁虾青素含量和虾青素产量均最低ꎬ分别为1.4g㊁0.54%和2.49mg/Lꎻ25ħ时ꎬ红球藻生物量和虾青素产量最高ꎬ分别为2.68g和13.53mg/Lꎻ22ħ时ꎬ虾青素含量最高ꎬ为1.52%[10]ꎮ(6)光照光照是诱导虾青素积累的重要因子ꎮ高光照强度有利于虾青素积累而不利于生长ꎬ但光照过强会导致红球藻大量死亡ꎮ一般认为ꎬ2klx以下的弱光有利于红球藻营养细胞的生长ꎬ最佳光强为1.1~1.3klxꎮ红光可促进雨生红球藻的生长ꎮ虾青素积累的最适光强范围为34.4~36.6klxꎬ雨生红球藻置于10~12klx光强下ꎬ营养细胞迅速由绿色变为红色ꎮ蓝光比红光更有利于红球藻合成虾青素[11]ꎮ也有试验认为ꎬ光照强度10~12klx有利于绿色营养细胞转化为红色细胞[12]ꎮ(7)碳氮比在低C/N的营养培养基中雨生红球藻营养生长期延长ꎬ长势旺盛ꎬ而高C/N的培养基中易形成孢囊ꎬ虾青素含量也高[13]ꎮ4㊀雨生红球藻培养方法根据雨生红球藻的不同存在形式ꎬ一般将虾青素的生产分成微藻培育和虾青素积累两个阶段ꎮ第一阶段让营养细胞高密度生长ꎮ第二阶段中ꎬ通过高温㊁增加光强度㊁提高盐浓度等手段ꎬ促使营养细胞转变成厚壁孢子ꎬ达到积累虾青素的目的ꎮ雨生红球藻的培养主要有以下方式:分批培养(batchculture)ꎮ用少量藻液接种ꎬ培养一段时间ꎬ当细胞生长繁殖达到较高的密度ꎬ进行采收或进一步扩大培养ꎮ将收获的的培养物胁迫处理获得虾青素ꎮ分批培养是传统培养方式ꎬ耗时长㊁产量低ꎬ不适合大规模培养ꎮ半连续培养(semi-continuousculture)ꎮ在分批培养的基础上ꎬ当藻细胞达到一定浓度后ꎬ每次收获一部分藻液ꎬ同时补充等量的培养液ꎬ继续培养ꎮ待培养物达到一定浓度后ꎬ再次收获并补充培养液ꎬ如此循环ꎮ根据雨生红球藻生长特点ꎬ采用连续异养-光合自养培养法对雨生红球藻进行培养ꎬ可得到高产量的虾青素ꎮ方法是先用异养方法培养细胞ꎬ使其达到很高的细胞浓度ꎬ再采用光培养积累虾青素ꎮ异养阶段生物量形成的最适pH值为8ꎬ温度为25ħꎮ醋酸盐在10~30mmol/L的浓度范围内变化对细胞的比生长速率没有明显影响ꎮ但高浓度的醋酸盐抑制细胞生长ꎮ因此异养培养阶段以醋酸盐为有机碳源时ꎬ可用流加培养法保持pH值稳定ꎬ可获得质量浓度高达7g/L的细胞ꎮ异养培养期间由于细胞从营养到孢囊转变ꎬ要想得到更高浓度的细胞似乎不大可能ꎮ但反复流加培养ꎬ可让细胞维持在生长型ꎬ获得2倍多的数量的细胞ꎮ用连续异养-光合自养培养法可获得114mg/L的虾青素ꎬ生产率为4.4mg/(dL)[14]ꎮ利用红发夫酵母细胞吸收利用雨生红球藻代谢过程中产生的NH4+的特点ꎬ可让两者混合培养ꎬ稳定pH值在7.0左右ꎬ使雨生红球藻碳代谢在虾青素合成方向占优势ꎬ提高虾青素产量[15]ꎮ目前ꎬ光生物反应器已普遍应用于微藻培养ꎬ有开放式和封闭式两大类ꎮ封闭式光生物反应器有管47第2期张广伦ꎬ等:雨生红球藻中虾青素的研究与应用道式㊁平板式㊁柱状气升式㊁搅拌式等ꎬ主要用于雨生红球藻原藻液培养和扩种培养ꎮ开放式具有投资少㊁成本低㊁技术要求简单的特点ꎬ用于雨生红球藻规模化绿色细胞高密度培养和虾青素积累期孢子培养ꎮ据报道ꎬ在最佳培养条件下ꎬ雨生红球藻细胞接种1d后即进入指数生长阶段ꎬ在胁迫阶段仅需4d即达到虾青素含量的峰值[16-17]ꎮ5㊀虾青素的提取方法虾青素在雨生红球藻红色孢囊内ꎬ壁厚且坚硬ꎬ需经研磨法㊁微波法㊁高压均质等方法破壁处理ꎮ根据虾青素脂溶性的特点ꎬ用乙酸乙酯㊁乙醇㊁丙酮等有机溶剂提取ꎮ考察匀浆法等5种破壁方法对虾青素提取率影响的结果表明ꎬ对雨生红球藻最佳破壁条件:匀浆法破壁时间22minꎬ水为介质ꎻ冻融温差法破壁温度为-70ħꎬ时间为12hꎬ冻融2次ꎬ水为介质ꎻ超声功率400Wꎬ每次超声时间5sꎬ共超声25minꎻ直接研磨法研磨时间1minꎻ加液氮低温研磨法破壁2次ꎬ每次时间0.5minꎻ虾青素的提取率依次为0.76%㊁0.93%㊁1.03%㊁1.51%和3.21%ꎮ加液氮低温研磨法在破壁过程中不添加化学试剂ꎬ不产生污染ꎬ能最大限度地保留虾青素的生理活性ꎬ是所选方法中最好的[18]ꎬ但所需成本较高ꎮ陈兴才等研究了几种物理破壁法对雨生红球藻厚壁孢子细胞破壁率及虾青素提取率的影响ꎬ确定了高压均质处理㊁超声波法和反复冻融法的最适工艺条件ꎮ试验结果表明:高压均质处理最适合于雨生红球藻厚壁孢子的破碎和虾青素的提取ꎮ优化条件为:40MPaꎬ室温ꎬ循环3次ꎬ破壁率可达91.4%ꎬ虾青素提取率为28.02μg/mg(细胞干重)ꎬ而未经破壁的虾青素提取率仅为17.92μg/mg(细胞干重)ꎬ提取率提高了56.3%[19]ꎮ对微波萃取研究结果表明:萃取时间4.5minꎬ萃取功率540Wꎬ液料比220:1的条件下ꎬ虾青素的提取率最佳ꎬ可达1.020%[20]ꎮ(1)溶剂提取法ꎮ以冻干的雨生红球藻粉为原料ꎬ采用乙醇和乙酸乙酯混合溶剂进行虾青素酯的提取ꎮL9(33)正交试验筛选获得虾青素酯的最佳条件:温度25ħꎬ提取时间为6hꎬ乙酸乙酯和乙醇的配比为1:2ꎬ固液比为1:120(g/mL)ꎮ对提取的虾青素酯进行皂化ꎬ分别研究了4ħ和40ħ时碱的浓度及皂化时间对提取效果的影响ꎮ结果表明:0.06mol/LKOH-甲醇溶液于4ħ皂化12h效果最好ꎬ从100mg藻粉可以得到(575.86ʃ5.68)μg虾青素单体[21]ꎮ(2)超临界流体萃取法ꎮ以雨生红球藻粉为原料ꎬ采用超临界CO2萃取技术ꎬ萃取雨生红球藻浸膏ꎬ最佳工艺条件为:萃取压力44.6MPaꎬ萃取温度64.2ħꎮCO2流速7.1L/hꎬ萃取时间3.5hꎬ在此条件下获得的虾青素提取率可达1.028%[11]ꎮ6㊀虾青素的应用雨生红球藻在自然界生活在池塘湖泊中ꎬ是鱼㊁虾㊁蟹㊁贝类等水产的天然食物来源ꎬ参与生态系统的物质循环和能量代谢ꎮ通过培养雨生红球藻ꎬ获得的虾青素可应用于食品㊁保健品㊁化妆品㊁医药等多领域ꎮ6.1㊀食品添加剂虾青素有很强的抗氧化作用ꎬ可用于食品保鲜ꎬ延长食品货架期ꎮ对南湾鳙鱼油抗氧化性能测试结果表明:鱼油中添加虾青素可明显抑制酸价和过氧化值上升ꎮ虾青素抗氧化性能优于油溶性茶多酚ꎬ并优于维生素Eꎮ虾青素联合茶多酚抗氧化作用更为明显ꎬ对南湾鳙鱼油的抗氧化作用与TBHQ(叔丁基对苯二酚)相当ꎮ0.02%虾青素+0.02%茶多酚的复合抗氧化剂可使南湾鳙鱼油在20ħ条件下的预期贮藏期从20d延长到120dꎮ虾青素作为新型天然抗氧化剂用于食品越来越受到青睐[22]ꎮ6.2㊀在保健品中的应用[23-24]虾青素可用于多种功能保健品的开发ꎬ如增强免疫力ꎬ抗氧化㊁缓解视疲劳㊁保护胃粘膜等ꎮ(1)虾青素能防止脂质过氧化ꎬ是单线态氧的淬灭剂ꎬ清除自由基ꎬ延缓衰老ꎮTinkler等研究了几种类胡萝卜素对体外血细胞淬灭单线态氧的效率ꎬ其中虾青素比β-胡萝卜素高ꎬ仅次于番茄红素ꎮ虾青素清除自由基的效率比β-胡萝卜素和玉米黄质高50%ꎮ(2)虾青素可增强动物的免疫功能ꎮ促进脾细胞产生抗体ꎬ增强T细胞刺激下人体内血细胞免疫球蛋白的产生ꎮ动物试验表明ꎬ虾青素能增强小鼠释放白细胞介素-1α和肿瘤坏死因子αꎬ其作用比β-胡萝卜素和角黄素强ꎮ(3)虾青素对视力有保护作用ꎬ可预防和减轻眼疲劳ꎮJyonoychi等报道虾青素可有效防止人视网膜氧化和感光细胞损伤ꎬ改善视网膜功能[25]ꎮLennikov用小鼠实验表明虾青素可预防或治疗紫外线诱导的角膜炎[26]ꎮCort也证实虾青素对高眼压 57中国野生植物资源第38卷大鼠视网膜有保护作用[27]ꎮ(4)对慢性胃炎研究表明ꎬ虾青素提取物通过抗氧化作用能保护小鼠的胃黏膜免受损伤ꎬ对溃疡形成有抑制作用ꎮBennedsen等证实虾青素可减少细菌侵入ꎬ减轻胃炎症ꎬ并通过淋巴细胞释放因子抗小鼠幽门螺旋菌感染[28]ꎮ此外ꎬLingnell等研究发现口服虾青素可明显增强人的肌肉力量和耐受力ꎮ6.3㊀在医药领域的应用[23-24](1)抗癌动物实验模型证实ꎬ虾青素能显著抑制肿瘤生长㊁诱导细胞凋亡㊁抑制癌细胞转移ꎮ其作用机制不仅与其抗氧化作用有关ꎬ还可能通过活化过氧化物酶体增殖物激活受体γ(PPARγ)ꎬ抑制NF-κB激活等调控多种信号分子实现其抑癌作用ꎮ虾青素可有效抑制胃癌㊁肝癌等[29]ꎮ(2)防治心脑血管疾病Choi等观察了虾青素对肥胖人群的血脂和氧化应激的影响:服用虾青素后低密度脂蛋白㊁载脂蛋白B等指标都显著降低ꎮSasaki等用大鼠所做的实验证实虾青素具有抗血栓和抗高血压的作用ꎮ因此ꎬ虾青素可用于防止心脑血管疾病ꎮ(3)预防糖尿病及肾病Chan研究表明虾青素能减弱糖尿病所导致的血凝㊁氧化应激以及炎症反应ꎮNaito等研究了虾青素对小鼠肾病的预防效果ꎬ结果显示虾青素的抗氧化作用减少了肾病的氧化应激并能防止肾细胞损伤ꎮ虾青素有望用于糖尿病和肾病治疗ꎮ6.4㊀化妆品虾青素脂溶性好ꎬ对细胞膜具有亲和力ꎬ抗氧化活性强于维生素Eꎬ可用于新型化妆品的开发ꎮ目前ꎬ不少品牌的化妆品均把雨生红球藻提取物作为配方成分ꎬ包括日本品牌高丝(KOSE)㊁芳凯(Fancl)㊁姿姿(JUJU)等都推出了雨生红球藻提取物系列保湿霜㊁抗皱眼霜㊁面膜等ꎮ我国用虾青素为原料生产的抗氧化眼霜㊁眼贴㊁洁面乳等产品也已问世ꎮ6.5㊀饲料多数动物都不能合成类胡萝卜素ꎬ虾青素作为饲料添加剂能显著改善动物的体色ꎬ促进生长ꎬ增强机体免疫力ꎬ提高营养价值和商品价值ꎮ北极红点鲑饲料中添加虾青素ꎬ肌肉的红色程度与添加虾青素的量呈正相关ꎮ虹鳟鱼饲料中添加100mg/L的虾青素可使肌肉中的类胡萝卜素含量大幅度升高ꎮ雨生红球藻虾青素对血鹦鹉观赏鱼的生长㊁着色及抗氧化能力试验结果表明:喂食添加虾青素饲料的实验组鱼体增重300%ꎬ较对照组提高50%ꎻ鱼皮肤中虾青素㊁类胡萝卜素含量分别是实验前的174%㊁184%ꎻ鳞片中虾青素㊁类胡萝卜素含量为实验前的207%㊁256%ꎬ鱼肌肉总抗氧化能力显著高于对照组ꎮ用虾青素喂养鸡鸭ꎬ可生产出天然色素红心蛋ꎮ7㊀展㊀望虾青素卓越的抗氧化性能令人瞩目ꎬ目前已有日本的YAMAHA集团㊁FUJI化学集团㊁Biogenic公司㊁美国Cyanotech公司㊁印度BioPrex公司㊁以色列Algatech公司规模化养殖红球藻生产天然虾青素ꎮ我国在商业化养殖红球藻也取得突破ꎮ湖北一家公司在荆州已建成2.4万m2的雨生红球藻培养池ꎬ年产虾青素含量2.0%以上雨生红球藻粉10~25t[30]ꎮ2010年卫生部批准雨生红球藻为新资源食品之一ꎮ除了含有类胡萝卜素外ꎬ雨生红球藻还含有蛋白质(23.62%)㊁碳水化合物(38.0%)㊁脂肪(13.80%)ꎬ铁㊁镁㊁钙等矿物质以及叶酸㊁烟酸㊁泛酸等维生素ꎬ本身就有较高的营养价值[31]ꎮ可根据产品功能定位和消费人群的不同ꎬ直接加工成藻粉或深加工成虾青素提取物ꎮ对雨生红球藻培养废水综合利用也是一项重要课题ꎬ如从中提取活性胞外多糖等ꎮ在挪威斯瓦尔巴特(Svalbard)群岛已发现在4~10ħ生长的耐寒新品系[32]ꎬ加强雨生红球藻低温品种的引种培育ꎬ让更广阔的地区实现其规模化生产已刻不容缓ꎮ参考文献:[1]㊀胡章立ꎬ吴玉荷ꎬ罗杏桃.雨生红球藻细胞类型转化影响因子的协同作用[J].深圳大学学报(理工版)ꎬ2002ꎬ19(3):8-12. [2]㊀李冬玲.极具经济价值的微藻 雨生红球藻[J].特种经济动植物ꎬ2014ꎬ17(3):42.[3]㊀GUWꎬXIEXꎬGAOSꎬZHOUWꎬPANGꎬetal.ComparisonofdifferentcellsofHaematococcuspluvialisrevealsanextensiveaccli ̄mationmechanismduringitsagingprocess:fromaperspectiveofphotosynthesis[J].PLoSONEꎬ2013ꎬ8(7):e67028.doi:10.1371/journal.pone.0067028.[4]㊀李浩明ꎬ高蓝.虾青素的结构㊁功能与应用[J].精细化工ꎬ2003ꎬ20(1):32-37.[5]㊀张晓丽ꎬ刘建国.虾青素的抗氧化及其在营养和医药方面的研究[J].食品科学ꎬ2006ꎬ27(1):258-262.[6]㊀吴忠兴ꎬ庄惠如.不同培养基对雨生红球藻生长和虾青素累积的影响[J].福建师范大学学报ꎬ2002ꎬ18(2):79-83. [7]㊀邱保胜ꎬ刘其芳.雨生红球藻培养基的改良[J].水生生物学67第2期张广伦ꎬ等:雨生红球藻中虾青素的研究与应用报ꎬ1999ꎬ23(4):391-394.[8]㊀庄惠如ꎬ施巧琴ꎬ卢海声ꎬ等.营养胁迫对雨生红球藻虾青素累积的影响[J].水生生物学报ꎬ2000ꎬ24(3):208-212. [9]㊀游泳ꎬ管斌ꎬ孔青ꎬ等.混合培养对雨生血球藻虾青素产量的影响[J].中国酿造ꎬ2011(6):43-46.[10]㊀苗凤萍ꎬ李夜光ꎬ耿亚红ꎬ等.温度对雨生红球藻(Haematococ ̄cuspluvialis)生物量和虾青素产量的影响[J].武汉植物学研究ꎬ2005ꎬ23(1):74-77.[11]㊀黄水英.雨生红球藻的培养及其虾青素的提取㊁稳定性和应用研究[D].厦门:厦门大学ꎬ2008.[12]㊀庄惠如ꎬ卢海声ꎬ陈必链ꎬ等.雨生红球藻营养细胞的虾青素累积[J].水生生物学报ꎬ2001ꎬ25(4):73-77.[13]TRIPATHIUꎬSARADARꎬRAVISHANKARGA.Effectofcultureconditionsongrowthongrowthofgreenalga-Haematococcusplu ̄vialisandastaxanthinproduction[J].ActaPhysiologiaePlanta ̄rumꎬ2002ꎬ24(3):323-329.[14]NORIHIKOHATAꎬJAMESCꎬOGBONNAꎬetal.ProductionofastaxanthinbyHaematococcuspluvialisinasequentialheterotroph ̄ic-photoautotrophicculture[J].JournalofAppliedPhycologyꎬ2001ꎬ13:395-402.[15]㊀董庆霖ꎬ赵学明.雨生红球藻和红发夫酵母混合培养体系的氮代谢机理[J].天津大学学报ꎬ2006ꎬ39(S1):38-41. [16]㊀沈源ꎬ蔡明刚ꎬ黄水英ꎬ等.利用光生物反应器培养雨生红球藻的研究初探[J].海洋科学ꎬ2010ꎬ34(10):85-91[17]㊀刘娟妮ꎬ胡萍ꎬ姚领ꎬ等.微藻培养中光生物反应器的研究进展[J].食品科学ꎬ2006ꎬ27(12):772-777.[18]㊀周湘池ꎬ刘必谦ꎬ曾庆国.雨生红球藻破壁方法对虾青素提取率的影响[J].海洋与湖沼ꎬ2006ꎬ37(5):42-47.[19]㊀陈兴才ꎬ欧阳琴ꎬ黄亚治.雨生红球藻物理破壁法提取虾青素研究[J].中国食品学报ꎬ2007ꎬ7(2):53-57.[20]㊀王灵昭ꎬ邓家权.微波法提取雨生红球藻中虾青素的工艺研究[J].食品研究与开发ꎬ2007ꎬ28(12):101-105.[21]㊀赵立艳ꎬ陈芳ꎬ廖小军.影响雨生红球藻中虾青素的提取条件的研究[J].食品科学ꎬ2006ꎬ27(3):90-94.[22]㊀邢淑婕ꎬ刘开华.虾青素联合茶多酚对南湾鳙鱼油抗氧化作用的研究[J].食品添加剂ꎬ2012(4):114-117.[23]㊀石焕琦ꎬ张晓梅.虾青素在眼科疾病及全身疾病的应用进展[J].现代中西医结合杂志ꎬ2013ꎬ22(9):1017-1019. [24]㊀宋光泉ꎬ阎杰ꎬ王荣辉ꎬ等.天然虾青素的提取纯化及其应用[J].广东化工ꎬ2007ꎬ34(11):63-66.[25]㊀JYONOUCHIHꎬSUNSꎬLIJIMAKꎬetal.Antitumoractivityofastaxanthinanditsmodeofaction[J].NutrCancerꎬ2000ꎬ36(1):59-65.[26]㊀LENNIKOVAꎬKITAICHINꎬFUKASERꎬetal.Ameliorationofultravioletinducedphotokeratitisinmicetreatedwithastaxanthineyedrops[J].MolVisꎬ2012ꎬ18:455-464.[27]㊀CORTAꎬOZTURKNꎬALOPINARDꎬetal.Suppressiveeffectofastaxanthinonretinalinjuryinducedbyelevatedintraocularpressure[J].RegulToxicolPharmacolꎬ2010ꎬ58(1):121-130.[28]㊀BENNEDSENMꎬWANGXꎬWILLENR.TreatmentofH.pyloriinfectedmicewithantioxidantastaxanthinreducesgastricinflam ̄mationbacterialloadandmodulatescytokinereleasebyspleno ̄cytes[J].ImmunolLettꎬ1999ꎬ70(3):185-189.[29]㊀项荣ꎬ丁栋博ꎬ李杰.虾青素抑癌作用机制研究进展[J].天然产物研究与开发ꎬ2013ꎬ25(7):142-146.[30]㊀荆州市天然虾青素有限公司.公司简介[EB/OL].[2018-01-18].http://www.asta.cn/news/2006-3/200632704826.htm[31]㊀ATechnicalReviewofHaematococcusAlgae[EB/OL].[2017-08-12].http://www.cyanotech.com/pdfs/bioastin/axbul60.pdf.[32]TATYANAAKꎬMINSKꎬJONGWHꎬetal.Cold-tolerantstrainofHaematococcuspluvialis(HaematococcaceaeꎬChlorophyta)fromBlomstrandhalv?ya(Svalbard)[J].Algaeꎬ2013ꎬ28(2):185-192.(上接第71页)参考文献:[1]㊀傅沛云.东北植物检索表[M].北京:科学出版社ꎬ1995. [2]㊀中国科学院中国植物志编辑委员会.中国植物志:第26卷[M].北京:科学出版社ꎬ1996.[3]㊀中国科学院中国植物志编辑委员会.中国植物志:第25卷[M].北京:科学出版社ꎬ1979.[4]㊀中国科学院中国植物志编辑委员会.中国植物志:第32卷[M].北京:科学出版社ꎬ1999.[5]㊀LUDQꎬHEIDRUNEKH.FloraofChina(Vol.5)[M].Bei ̄jingꎬSciencePressꎬ2003:437-439.[6]㊀旭日ꎬ赵利清ꎬ马文红ꎬ等.粟米草科-内蒙古一分布新纪录科[J].西北植物学报ꎬ2013ꎬ33(8):1698-1699. [7]㊀BAOBJꎬSTEVENECꎬTHOMASB.FloraofChina(Vol.5) [M].BeijingꎬSciencePressꎬandStꎬLouisꎻMissouriBotanicalGardenPressꎬ2003ꎬ424-426.[8]㊀ZHANGMLꎬCHRISTOPHERGW.FloraofChina(Vol.7) [M].Beijing:SciencePressꎬ2008:281-282.77。
《培养条件对雨生红球藻积累虾青素的调控研究》
![《培养条件对雨生红球藻积累虾青素的调控研究》](https://img.taocdn.com/s3/m/65d98228f6ec4afe04a1b0717fd5360cba1a8dd3.png)
《培养条件对雨生红球藻积累虾青素的调控研究》一、引言雨生红球藻是一种富含虾青素的水生生物,因其丰富的生物活性物质,近年来备受关注。
虾青素是一种具有抗氧化、抗衰老等功能的天然色素,广泛应用于食品、医药、化妆品等领域。
因此,研究如何通过调控培养条件来促进雨生红球藻积累虾青素,对于提高其经济价值和开发利用具有重要意义。
本文旨在探讨不同培养条件对雨生红球藻积累虾青素的影响,以期为实际应用提供理论依据。
二、材料与方法1. 材料实验所用的雨生红球藻购自某生物科技有限公司,经过纯化后用于实验。
实验中所用的培养基为改良的BG-11培养基。
2. 方法(1)培养条件设置实验设置不同温度(20℃、25℃、30℃)、光照强度(5000Lx、7000Lx、9000Lx)、光照周期(12h:12h、14h:10h、16h:8h)等培养条件,探究各因素对雨生红球藻生长及虾青素积累的影响。
(2)样品处理与测定在实验过程中,定期取样测定雨生红球藻的生长情况及虾青素含量。
采用分光光度法测定虾青素含量,并记录相关数据。
三、结果与分析1. 不同培养条件对雨生红球藻生长的影响实验结果表明,适宜的温度、光照强度和光照周期对雨生红球藻的生长具有显著影响。
在温度为25℃,光照强度为7000Lx,光照周期为14h:10h的条件下,雨生红球藻的生长情况最佳。
2. 不同培养条件对雨生红球藻积累虾青素的影响实验数据显示,适宜的培养条件能显著提高雨生红球藻的虾青素含量。
在温度为30℃,光照强度为9000Lx,光照周期为16h:8h的条件下,雨生红球藻的虾青素含量最高。
这可能与该条件下光合作用效率提高、有利于虾青素的合成与积累有关。
3. 培养条件对雨生红球藻生长与虾青素积累的综合影响综合分析实验数据,发现温度、光照强度和光照周期等培养条件对雨生红球藻的生长和虾青素积累均具有显著影响。
在一定的范围内,适当提高温度和光照强度,缩短光照周期,有利于提高雨生红球藻的虾青素含量。
雨生红球藻生产虾青素的研究进展
![雨生红球藻生产虾青素的研究进展](https://img.taocdn.com/s3/m/f60b26ee0242a8956bece438.png)
条件下胁迫培养雨生红球藻5 d,虾青素含量达到了12.37 mg/L,是自养条件下的16倍多‘1“。Vidhyavath等人同样利 用乙酸钠作为碳源,同时利用氮缺乏、17.1 mmol/L的NaCl
和60 i.Lmol/m2・s的光照作为胁迫条件培养雨生红球藻,9
d
后每克干藻粉的虾青素含量达到24.5
慢,大多还停留在使用基因枪这种低效率的转入方法上。
Steinbrenner等使用基因枪的方法将定点诱变后的八氢番茄 红素脱饱和酶基因打入雨生红球藻细胞内进行同源表达,得 到稳定的转化子,其中有转化子表现出虾青素高含量性瞄J。 虽然Kathiresan等利用含穿梭载体pCAMBIAl301的农杆菌 侵染雨生红球藻,成功地构建了转基因表达所需的抗性标 记,但并未实现相关基因的同源表达脚o。
虾青素(3,3’.二羟基.13,B’.胡萝卜素4,4’一二酮)是一 种红色的类胡萝卜素衍生物,分子两端各有一个紫罗酮环, 环上各有一个羟基,根据羟基与整个分子平面的位置关系虾 青素分为4种光学异构体…:2个羟基位于平面下方构成s 构象(3s,3’s-虾青素);2个羟基位于平面上方构成R构象 (3R,3’R.虾青素);1个羟基位于乎面上方,1个位于平面下 方的构成s,R构象(3S,3’R-虾青素和3R,3’s.虾青素)。研 究表明,虾青素有极强的染色、抗氧化和增强机体免疫的能 力,这些特性使得虾青素在水产养殖业中作为饲料添加剂不 仅可以增加水生动物的着色还可以增强鱼类卵子的质 量口司1,在化妆品中还能够有效地延迟皮肤老化。41;在临床 医药上能够有效地促进癌细胞凋亡忙o,抑制心血管疾病引发 的炎症旧o。如此广泛的用途使得虾青素的需求量越来越大, 2010年全球的水产养殖业的市场需求量就达到了2亿美 元…。现阶段虾青素的生产主要有以下3种方法:化学合
不同培养模式对雨生红球藻细胞绿色生长以及虾青素积累的影响研究
![不同培养模式对雨生红球藻细胞绿色生长以及虾青素积累的影响研究](https://img.taocdn.com/s3/m/17c23b6df342336c1eb91a37f111f18582d00c59.png)
不同培养模式对雨生红球藻细胞绿色生长以及虾青素积累的影响研究摘要:在雨生红球藻的不同培养模式下进行红球藻绿色生长细胞的培养,在培养中会由于不同的培养模式的差别导致在红球藻的绿色生长细胞的生长控制中出现较为明显的生长差异,在研究控制中,通过控制不同的培养环境中的模式和方法,会进一步的影响到培养过程中雨生红球藻中虾青素的积累,因此在开展控制研究中,应该对不同培养模式之下的应用对于雨生红球藻中绿色细胞生长环境造成的影响开展试验和研究,在研究中通过不同模式对红球藻的绿色细胞造成的影响程度分析得出,在雨生红球藻中不同的培养模式采用,造成的影响排列分析做出明确的数据试验报告。
通过数据试验的有效研究,使雨生红球藻中的培养模式应用能够有效的促进红球藻中绿色细胞物质的有效繁殖,使绿色细胞的繁殖有利于雨生红球藻中虾青素物质的形成。
在控制试验研究中,应该对不同模式应用中的环境控制变量进行控制,确保在试验开展过程中,试验中影响因素不会由于环境变量方面控制不到位,导致试验研究的结构出现一定程度的偏差,在试验的研究控制中,应该针对雨生红球藻开展分批培养的方式来进行,在分批培养中应该在补料营养物质方面的控制中,对PH值方面含量开展控制,同时应该及时的反馈培养补料中的成分。
关键词:雨生红球藻;虾青素;培养开展模式,绿色细胞活性;生物量在开展雨生红球藻的绿色细胞培养和虾青素的培养研究中,在研究开展的方式中,应该通过不同的培养模式应用,对于绿色细胞的培养量和虾青素物质的积累量影响进行试验,开展相同环境下的控制变量试验研究,在研究中采用严格控制定量培养补给液体的方式,将不同培养模式导致的差异性进行研究,在研究中应该对培养基方面的更换情况,完全采用不同的模式类型来开展,对于不同培养模式中雨生红球藻中绿色细胞的生长培养和虾青素方面物质含量的研究,通过有效控制培养模式中的变量,进一步的将控制的影响成分降到最低。
在研究试验中,通过控制不同培养模式类型中的变量,得出在雨生红球藻的绿色细胞培养中,当绿色的细胞在生长中处于完全培养控制阶段,培养基方面的更换和模式应用选择较为灵活,能够有效的促进红球藻中绿色细胞在生长分裂阶段的细胞分裂和生长,同时采用相同的培养模式中,不同方法应用能够进一步的提高红球藻中绿色细胞的培养活性。
雨生红球藻在水产养殖中的应用浅析
![雨生红球藻在水产养殖中的应用浅析](https://img.taocdn.com/s3/m/7932e37766ec102de2bd960590c69ec3d5bbdbe0.png)
雨生红球藻在水产养殖中的应用浅析随着人们对健康饮食的重视和对水产品需求的增长,水产养殖业正迎来一个快速发展的时期。
随着水产养殖规模的不断扩大和养殖密度的增加,一系列的问题也随之而来,其中最为突出的就是水质污染和病害的爆发。
如何保障水产养殖的水质和增强养殖物种的抗病能力,成为了当前水产养殖业发展中亟待解决的问题之一。
雨生红球藻(Haematococcus pluvialis)是一种微型藻类生物,具有丰富的营养成分和生物活性物质,特别是其高含量的天然抗氧化物质——虾青素,使其在水产养殖中备受关注。
本文将从雨生红球藻的特性、应用价值和在水产养殖中的作用等方面对其应用进行浅析。
一、雨生红球藻的特性雨生红球藻是一种单细胞绿藻,属于藻红素藻门。
它主要生长在淡水和一些微咸水体中,能够在适宜的条件下进行大规模培养,具有生长周期短、繁殖快、生物量大的特点。
雨生红球藻的生长所需的环境条件非常简单,只要提供适量的光照、二氧化碳和适宜的温度等条件,就能够很好的生长繁殖。
这种特性使雨生红球藻成为了一种理想的微藻生物资源,在水产养殖中得到广泛的应用。
1. 天然抗氧化物质的丰富来源雨生红球藻富含虾青素,是一种极为强效的天然抗氧化剂,具有非常强的抗氧化作用。
虾青素不仅可以清除体内自由基,延缓衰老,还能够提高水产动物的免疫力,增强其抗病能力。
在水产养殖中,虾青素的应用可以有效减少饲料添加剂的使用,提高水产品的品质和营养价值。
2. 营养丰富,是理想的饲料添加剂雨生红球藻中富含蛋白质、脂肪、糖类等多种营养成分,尤其是不饱和脂肪酸的含量较高,能够提供水产养殖动物所需的各种营养物质。
将雨生红球藻作为饲料添加剂,可以提高饲料的营养价值,增强水产品的滋味和口感。
3. 有机肥料的优质来源雨生红球藻含有丰富的蛋白质及微量元素,其残渣可以作为有机肥料使用,能够改善养殖水体的养分结构,促进水产养殖物种的生长发育,适当地利用雨生红球藻残渣,既可以减少废弃物的排放,又能够达到资源循环利用的效果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
利用雨生红球藻生产虾青素的研究进展及其产业化现状沈建新,韦金河(江苏省农业科学院,江苏南京210014) 摘要:本文综述了国内外雨生红球藻培养及虾青素积累的研究进展,介绍了利用雨生红球藻生产虾青素的产业化现状,并对国内虾青素的产业化前景进行了展望,以期推动国内雨生红球藻生产虾青素的产业化进程。
关键词:虾青素;雨生红球藻;产业化 中图分类号:Q93 文献标识码:A 文章编号:1002-1302(2007)03-0196-04(上接第195页)的酯酶、过氧化物酶同工酶的影响也有待深入研究。
参考文献:[1]于明革,杨洪强,刘高峰,等.壳聚糖对黄瓜萌芽种子及幼苗生理生化特性的影响[J].山东农业大学学报:自然科学版,2004,35(1):47-50.[2]王 洁.壳聚糖在绿色蔬菜生产上的应用[J].广西园艺,2004(3):50-52.[3]盛彦清,陈繁忠,傅家谟,等.壳聚糖和黄腐酸在草菇中的应用试验[J].中国食用菌,2003,23(5):20-21.[4]沈 萍,范秀荣,李广武.微生物学实验指导[M].北京:高等教育出版社,1999:215.[5]王 艳.产壳聚糖酶菌株的初步筛选[J].中国微生态学杂志,2003,15(5):259-261.[6]Ya mashita.Effect of chit osan-deacetylati on degree on the p r oduc2ti on of chit ooligsaccharides by B acillus s p.Chit osanse[J].Kichin Kit osan Kenkyu,1999,5(2):148-149.[7]邱昌恩.6-BA对平菇和香菇菌丝体两种同工酶的影响[J].微生物学杂志,2002,22(4):89-92.[8]王秀奇,秦淑媛,高天慧,等.基础生物化学实验[M].北京:高等教育出版社,1999:227-232.[9]季维智,宿 兵.遗传多样性研究的原理与方法[M].杭州:浙江科学技术出版社,1999:52-68.[10]赵 莉,曲延英,岳丕昌,等.新疆两种粉虱的酯酶和过氧化物酶同工酶的比较研究[J].植物保护,2002,28(4):17-19. [11]朱宝成,王俊刚,燕克勤,等.紫孢侧耳、糙皮侧耳及其融合菌株的同工酶分析[J].遗传,1995,17(4):37-39.[12]詹秋文,胡绪同.高粱与苏丹草酯酶同工酶分析[J].生物学杂志,2005,22(4):18-20. 虾青素是一种类胡萝卜素含氧衍生物,呈鲜红色。
它广泛存在于自然界中,也是海洋动物体内主要的类胡萝卜素之一。
以往研究表明,虾青素具有强大的清除氧自由基的能力,其抗氧化性是类胡萝卜素的10倍、维生素E的550倍,被誉为“超级氧化剂”[1-2]。
虾青素能够增加水生动物的着色;促进鱼卵受精,降低胚胎的死亡率,促进个体生长并加快成熟速度[3];提高母鸡产卵率,增加鸡蛋黄色素含量[4];提高人体免疫力,延缓皮肤衰老,维护眼睛及中枢神经系统健康等多种生理功能。
虾青素具有广泛的应用价值,不仅可以用作水产养殖的饲料添加剂和人类食品添加剂,在药品、化妆品和营养保健品等领域也具有很大的应用潜力。
收稿日期:2007-05-14作者简介:沈建新(1964—),男,江苏无锡人,副研究员,主要从事农业科技与财务管理工作。
Tel:(025)84391488。
目前,虾青素的生产工艺主要有化学合成和生物提取两种。
化学合成的虾青素在结构、功能及安全性等方面都不及天然的虾青素。
动物和人体试验结果表明,天然虾青素没有任何致病效应或毒副作用,对人体绝对安全无害[5]。
虾青素的生物来源主要有三种[6]:一是从甲壳类动物中提取。
由于甲壳中含有较高水平的灰分和几丁质,较低水平的蛋白质和其他营养成分,这极大地限制了虾青素的提取和再利用。
二是利用酵母菌生产虾青素。
真菌中虾青素的含量很低,而且发酵成本也很高。
三是利用藻类生产。
雨生红球藻(Hae m a tococcus pluvialis)细胞内天然虾青素的含量相对较高。
据报道,在特定条件下,雨生红球藻可以积累占其干重1%以上的虾青素,且所含虾青素的结构与养殖对象所需一致,被公认为天然虾青素的最好生物来源[7]。
因此,利用雨生红球藻生产虾青素已成为国内外虾青素研究的热点[8-9]。
但是,利用雨生红球藻生产虾青素的技术仍有待完善,尤其在雨生红球藻养殖、虾青素积累及其提取等方面还存在着技术难题。
本文主要介绍近年来上述问题的研究进展及其产业化现状,以期推动国内雨生红球藻生产虾青素的产业化进程。
1 雨生红球藻的生物学特性雨生红球藻在分类学上属于绿藻门(Chl or opha2 ta)绿藻纲(Chl or ophyceae)团藻目(Volvocales)红球藻科(Hae mat ococcaccac)红球藻属(Hae m atococcus)。
它是一种单细胞微藻,也是自然界中天然虾青素含量最高的生物。
雨生红球藻具有特殊的生物学性质,其生活周期中主要有两种细胞类型,即进行营养生长的绿色游动细胞和累积虾青素的红色不动细胞。
在有利的生长条件下,它以绿色的游动细胞存在;而在不利的环境下,细胞生长趋于缓慢,由游动细胞转化为不动细胞,同时大量累积虾青素而使细胞呈现出红色。
2 雨生红球藻的培养和虾青素的生产以往的试验结果表明,雨生红球藻营养生长的最适光强为30~50μmol/(m2・s),最适温度为25~28℃,最适pH值为中性至微碱性[10]。
强光照、高温、营养缺乏、盐胁迫及氧化胁迫等许多不利的环境条件,都可以诱导雨生红球藻细胞内虾青素的积累。
据文献报道,细胞生物量和虾青素累积量与培养基、培养条件以及藻种(品系)有关[11-12]。
雨生红球藻营养生长的适宜条件与虾青素累积所需条件不同,在某些方面甚至相反[13-14]。
虾青素的大量积累总是发生在不适于生物量积累的营养或环境胁迫条件下,虾青素积累与生物量积累之间的矛盾是限制利用雨生红球藻生产虾青素的根本问题。
当前,国内外的研究主要集中在雨生红球藻培养和虾青素累积两个阶段的培养条件选择和控制上。
2.1 营养盐的影响氮是雨生红球藻生长的必需因素,氮缺乏会引起其细胞内大量累积虾青素。
虾青素的合成量与氮的含量密切相关,O r osa等的研究结果显示,Na NO3浓度为0、0.15、0.25、0.5g/L时,雨生红球藻每个细胞的虾青素合成量分别为24.5、5.5、0.6和0 pg[15];但是Boussiba等认为,虾青素合成不能没有氮,氮的存在是虾青素积累的必要条件[16]。
雨生红球藻营养生长只需要中等浓度的磷(0.1g/L K2HP O4)。
有研究表明,磷缺乏会引起虾青素积累,但其作用不如氮显著[17-18];Boussiba等[13]的试验结果显示,在磷缺乏的胁迫条件下,虽然细胞分裂停止,但是虾青素的积累可以一直持续到细胞分裂停止后21d,这说明此条件下虾青素的积累可能不只与细胞分裂停止有关。
Bor owitzka等报道,高磷同样具有促进雨生红球藻细胞内虾青素合成的作用[11]。
在培养基中加入适量的碳源,有利于雨生红球藻的营养生长。
庄惠如等的试验结果表明,与其他碳源相比,乙酸钠更适于维持雨生红球藻的混合培养及异养生长[19]。
但O r osa等指出,碳源加入过多,反而会抑制雨生红球藻的生长[8]。
充足的碳源对雨生红球藻细胞内虾青素的积累同样重要[20]。
关于维生素对雨生红球藻生长的影响,已有研究结果很不一致。
金传荫等报道在培养基中加入一定量的维生素B1、B2,具有促进雨生红球藻生长的作用[21]。
但Fabregas等的研究表明,维生素对雨生红球藻生长的作用不显著[22]。
张英等的试验结果显示,适量的维生素B1、B12能够促进雨生红球藻生长、提高胁迫下该藻的存活率以及诱导虾青素的积累[23]。
据报道,雨生红球藻中虾青素的合成也与其细胞内的活性氧有关,较低水平的溶解氧有利于雨生红球藻的自氧生长,而饱和溶解氧更有利于其异氧生长[24]。
此外,溶解氧和多种活性氧分子都可以有效诱导细胞内虾青素的合成和积累[18,20,25,26]。
虾青素在细胞内可能起着抗氧化的作用,清除环境胁迫和过度氧化产生的活性氧,防止活性氧对细胞产生伤害[27-28]。
Kobayashi等的研究结果显示,高浓度的二价铁离子具有促进雨生红球藻细胞内虾青素积累的作用,当碘化钾同时存在时,这种促进作用受到抑制[29]。
二价铁离子与醋酸盐同时加入时,二价铁离子能够加强醋酸盐对虾青素合成的诱导作用[27]。
Harker等研究表明,二价铁离子影响虾青素积累的效果不如氮、磷营养盐显著[18]。
2.2 环境的影响许多试验结果表明,弱光有利于雨生红球藻细胞的营养生长;高光强是虾青素合成最重要的诱导条件,能够诱导细胞内快速累积虾青素;在一定的光强范围内,虾青素的积累量随着光强的升高而增加;但是光强过高,会导致雨生红球藻大量死亡[16,18,30,31]。
雨生红球藻细胞内虾青素合成的诱导因子可能是光合反应引起的氧化胁迫,而不是光照本身[20,32]。
光照并不是虾青素合成的必要条件,在异氧条件下(即没有光照),雨生红球藻细胞仍能合成虾青素[34]。
雨生红球藻适宜在低温环境下生长。
关于雨生红球藻适宜的生长温度,不同的报道差异较大[10,31,34,35]。
一般认为,温度升高,有利于雨生红球藻细胞内虾青素的积累[25,35];Tri pathi等报道,35℃的培养温度可以促进各种营养条件下虾青素的累积[35]。
Tjahj ono等的研究结果显示,培养温度为30℃时,雨生红球藻的虾青素积累量是20℃时的3倍[25],高温促进了活性氧的产生,而活性氧累积诱导虾青素的合成;另外,也可能是高温抑制了雨生红球藻细胞的正常分裂,从而提高了细胞内虾青素的相对含量。
盐度的适当增加可以促进雨生红球藻细胞的孢子形成和虾青素积累[18,36]。
Sarada等研究表明,培养液中NaCl的浓度不能大于0.1%,否则会导致雨生红球藻大量死亡[37]。
在盐胁迫条件下,虾青素大量累积的同时,伴随着细胞分裂的停止,这暗示了NaCl 可能是通过阻止细胞分裂而提高虾青素含量的。
关于红球藻生长的适宜pH值,一般认为,红球藻适宜在中性或稍碱性条件下生长[38-39];Sarada等的试验结果表明,在培养液pH值为7.0时,可以获得最大的细胞产量,而且虾青素的产量也得到显著提高[37]。
3 利用雨生红球藻生产虾青素的产业化现状与展望 作为天然色素和生物活性物质,虾青素具有广阔的应用前景和巨大的市场潜力,近年来受到了极大地重视。
雨生红球藻产业化生产技术的相关研究正逐年增加,大量关于红球藻细胞生长、虾青素积累和其他相关技术的论文也陆续报道。