设计开放型习题培养学生的思维能力的方法

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

设计开放型习题培养学生的思维能力的方法

设计开放型习题培养学生的思维能力的方法

开放型习题是相对有明确条件和明确结论的封闭式习题而言的,是指题目的条件不完备或结论不确定的习题。

练习是数学教学重要的组成部分,恰到好处的习题,不仅能巩固知识,形成技能,而且能启发思维,培养能力。在教学过程中,除

注意增加变式题、综合题外,适当设计一些开放型习题,可以培养

学生思维的深刻性和灵活性,克服学生思维的呆板性。

一、运用不定型开放题,培养学生思维的深刻性

不定型开放题,所给条件包含着答案不唯一的因素,在解题的过程中,必须利用已有的知识,结合有关条件,从不同的角度对问题

作全面分析,正确判断,得出结论,从而培养学生思维的深刻性。

这样的练习,加深了学生对“分率”和“用分数表示的具体数量”的区别的认识,巩固了分数应用题的解题方法,培养了学生思维的

深刻性,提高了全面分析、解决问题的能力。

二、运用多向型开放题,培养学生思维的广阔性

多向型开放题,对同一个问题可以有多种思考方向,使学生产生纵横联想,启发学生一题多解、一题多变、一题多思,训练学生的

发散思维,培养学生思维的广阔性和灵活性。

如:甲乙两队合修一条长1500米的公路,20天完成,完工时甲

队比乙队多修100米,乙队每天修35米,甲队每天修多少米?

这道题从不同的角度思考,得出了不同的解法:

1、先求出乙队20天修的,根据全长和乙队20天修的可以求出

甲队20天修的,然后求甲队每天修的。

算式是(1500-35×20)÷20

2、先求出乙队20天修的,根据乙队20天修的和甲队比乙队多

修100米可以求出甲队20天修的,然后求甲队每天修的。

算式是:(35×20+100)÷20

3、可以先求出两队平均每天共修多少米,再求甲队每天修多少米。

算式是:1500÷20-35

4、可以先求出甲队每天比乙队多修多少米,再求甲队每天修多

少米。

算式是:100÷20+35

5、假设乙队和甲队修的同样多,那么两队20天共修(1500+100)米,然后求两队每天修的,再求甲队每天修的。

算式是:(1500+100)÷20÷2

6、假设乙队和甲队修的同样多,那么两队20天共修(1500+100)米,然后求甲队20天修的,再求甲队每天修的。

算式是:(1500+100)÷2÷20

7、假设乙队和甲队修的同样多,那么两队20天共修(1500+100)米,也就是甲队(20×2)天修的,由此可以求出甲队每天修的。

算式是:(1500+100)÷(20×2)

然后引导学生比较哪种方法最简便,哪种思路最简捷。

这类题,可以给学生最大的思维空间,使学生从不同的角度分析问题,探究数量间的.相互关系,并能从不同的解法中找出最简捷的

方法,提高学生初步的逻辑思维能力,从而培养学生思维的广阔性

和灵活性。

三、运用多余型开放题,培养学生思维品质的批判性

多余型开放题,将题目中的有用条件和无用条件混在一起,产生干扰因素,这就需要在解题时,认真分析条件与问题的关系,充分利用有用条件,舍弃无用条件,学会排除干扰因素,提高学生的鉴别能力,从而培养学生思维的批判性。

如:一根绳子长25米,第一次用去8米,第二次用去12米,这根绳子比原来短了多少米?

由于受封闭式解题习惯的影响,学生往往会产生一种凡是题中出现的条件都要用上的思维定势,不对题目进行认真分析,错误地列式为:25-8-12或25-(8+12)。

做题时引导学生画图分析,使学生明白:要求这根绳子比原来短了多少米,实际上就是求两次一共用去多少米,这里25米是与解决问题无关的条件,正确的列式是:8+12.

通过引导分析这类题,可以防止学生滥用题中的条件,有利于培养学生思维的批判性,提高学生明辨是非、去伪存真的鉴别能力。

四、运用隐藏型开放题,培养学生思维的缜密性

隐藏型开放题,是解题所需的某些条件隐藏在题目的背后,如不注意容易遗漏。在解题时既要考虑问题及明确的条件,又要考虑与问题有关的隐藏着的条件。这样有利于培养学生认真细致的审题习惯和思维的缜密性.

如:做一个长8分米、宽5分米的面袋,至少需要白布多少平方米?

解答此题时,学生往往忽视了面袋有“两层”这个隐藏的条件,错误地列式为:8×5,正确列式应为:8×5×2.

解此类题时要引导学生认真分析题意,找出题中的隐藏条件,使学生养成认真审题的良好习惯,培养学生思维的缜密性。

五、运用缺少型开放题,培养学生思维的灵活性

缺少型开放题,按常规解法所给条件似乎不足,但如果换个角度去思考,便可得到解决。

如:在一个面积为12平方厘米的正方形内剪一个最大的圆,所剪圆的面积是多少平方厘米?

还可以这样想:把原正方形平均分成4个小正方形,每个小正方形的边长就是所剪圆的半径,设圆的半径为r,那么每个小正方形的面积为r,原正方形的面积为4r,r=12÷4,所剪圆的面积是3.14×(12÷4)=9.42(平方厘米)。

通过此类题的练习,有利于培养学生思维的灵活性,提高灵活解题的能力。

相关文档
最新文档