三角形重心定理

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、三角形重心定理 二、三角形外心定理 三、三角形垂心定理 四、三角形内心定理 五、三角

形旁心定理 三角形五心定理

二、三角形的重心,外心,垂心,内心和旁心称之为三角形的五心。三角形五心定理是指三角形重

心定理,外心定理,垂心定理,内心定理,旁心定理的总称。 一、三角形重心定理 三角形的三条边的中线交于一点。该点叫做三角形的重心。重心的性质:1、重心到顶点的距离与重心到对边中点的距离之比为2︰1。2、重心和三角形任意两个顶点组成的3个三角形面积相等。即重心到三条边的距离与三条边的长成反比。3、重心到三角形3个顶点距离的平方和最小。4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均数,即其重心坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3。 二、三角形外心定理 三角形外接圆的圆心,叫做三角形的外心。外心的性质:1、三角形的三条边的垂直平分线交于一点,该点即为该三角形外心。2、若O是△ABC的外心,则∠BOC=2∠A(∠A为锐角或直角)或∠BOC=360°-2∠A(∠A为钝角)。3、当三角形为锐角三角形时,外心在三角形内部;当三角形为钝角三角形时,外心在三角形外部;当三角形为直角三角形时,外心在斜边上,与斜边的中点重合。4、计算外心的坐标应先计算下列临时变量:d1,d2,d3分别是三角形三个顶点连向另外两个顶点向量的点乘。c1=d2d3,c2=d1d3,c3=d1d2;c=c1+c2+c3。外心坐标:( (c2+c3)/2c,(c1+c3)/2c,(c1+c2)/2c )。5、外心到三顶点的距离相等 三、三角形垂心定理 三角形的三条高(所在直线)交于一点,该点叫做三角形的垂心。垂心的性质:1、三角形三个顶点,三个垂足,垂心这7个点可以得到6个四点圆。2、三角形外心O、重心G和垂心H三点共线,且OG︰GH=1︰2。3、垂心到三角形一顶点距离为此三角形外心到此顶点对边距离的2倍。4、垂心分每条高线的两部分乘积相等。

三、定理证明已知:ΔABC中,AD、BE是两条高,AD、BE交于点O,连接CO并延长

交AB于点F ,求证:CF⊥AB 证明:连接DE ∵∠ADB=∠AEB=90度∴A、B、D、E四点共圆∴∠ADE=∠ABE ∵∠EAO=∠DAC ∠AEO=∠ADC∴ΔAEO∽ΔA DC ∴AE/AO=AD/AC ∴ΔEAD∽ΔOAC ∴∠ACF=∠ADE=∠ABE 又∵∠ABE+∠BAC=90度∴∠ACF+∠BAC=90度∴CF⊥AB 因此,垂心定理成立!

四、三角形内心定理 三角形内切圆的圆心,叫做三角形的内心。内心的性质:1、

三角形的三条内角平分线交于一点。该点即为三角形的内心。2、直角三角形的内心到边的距离等于两直角边的和减去斜边的差的二分之一。3、P为ΔABC所在平面上任意一点,点0是ΔABC内心的充要条件是:向量P0=(a×向量PA+b×向量PB+c×向量PC)/(a+b+c). 4、O 为三角形的内心,A、B、C分别为三角形的三个顶点,延长AO交BC边于N,则有AO:ON=AB:BN=AC:CN=(AB+AC):BC 5、点O是平面ABC上任意一点,点I是△ABC内心的充要条件是:a(向量OA)+b(向量OB)+c(向量OC)=向量0.7、(内角平分线分三边长度关系)△ABC中,0为内心,∠A 、∠B、∠C的内角平分线分别交BC、AC、AB于Q、P、R,则BQ/QC=c/b, CP/PA=a/c, BR/RA=a/b. 五、三角形旁心定理 三角形的旁切圆(与三角形的一边和其他两边的延长线相切的圆)的圆心,叫做三角形的旁心。旁心的性质:1、三角形一内角平分线和另外两顶点处的外角平分线交于一点,该点即为三角形的旁心。2、每个三角形都有三个旁心。3、旁心到三边的距离相等。如图,点M就是△ABC的一个旁心。三角形任意两角的外角平分线和第三个角的内角平分线的交点。

一个三角形有三个旁心,而且一定在三角形外。附:三角形的中心:只有正三角形才有中心,这时重心,内心,外心,垂心,四心合一。

相关文档
最新文档