三角形的重心定理及其证明
三角形的重心、外心、垂心、内心和旁心(五心定理)

三角形五心定理(三角形的重心, 外心, 垂心, 内心和旁心称之为三角形的五心)三角形五心定理是指三角形重心定理, 外心定理, 垂心定理, 内心定理, 旁心定理的总称.之马矢奏春创作一、二、三角形重心定理三角形的三条边的中线交于一点.该点叫做三角形的重心.三中线交于一点可用燕尾定理证明, 十分简单.(重心原是一个物理概念, 对等厚度的质量均匀的三角形薄片, 其重心恰为此三角形三条中线的交点, 重心因而得名)重心的性质:1、重心到极点的距离与重心到对边中点的距离之比为2∶1.2、重心和三角形3个极点组成的3个三角形面积相等.即重心到三条边的距离与三条边的长成反比.3、重心到三角形3个极点距离的平方和最小.4、在平面直角坐标系中, 重心的坐标是极点坐标的算术平均, 即其重心坐标为((X1+X2+X3)/3, (Y1+Y2+Y3)/3.二、三角形外心定理三角形外接圆的圆心, 叫做三角形的外心.外心的性质:1、三角形的三条边的垂直平分线交于一点, 该点即为该三角形外心.2、若O是△ABC的外心, 则∠BOC=2∠A(∠A为锐角或直角)或∠BOC=360°-2∠A(∠A为钝角).3、当三角形为锐角三角形时, 外心在三角形内部;当三角形为钝角三角形时, 外心在三角形外部;当三角形为直角三角形时, 外心在斜边上, 与斜边的中点重合.4、计算外心的坐标应先计算下列临时变量:d1, d2, d3分别是三角形三个极点连向另外两个极点向量的点乘.c1=d2d3,c2=d1d3, c3=d1d2;c=c1+c2+c3.重心坐标:( (c2+c3)/2c,(c1+c3)/2c, (c1+c2)/2c ).5、外心到三极点的距离相等三、三角形垂心定理三角形的三条高(所在直线)交于一点, 该点叫做三角形的垂心.垂心的性质:1、三角形三个极点, 三个垂足, 垂心这7个点可以获得6个四点圆.2、三角形外心O、重心G和垂心H三点共线, 且OG∶GH=1∶2.(此直线称为三角形的欧拉线(Euler line))3、垂心到三角形一极点距离为此三角形外心到此极点对边距离的2倍.4、垂心分每条高线的两部份乘积相等.定理证明已知:ΔABC中, AD、BE是两条高, AD、BE交于点O, 连接CO 并延长交AB于点F , 求证:CF⊥AB证明:连接DE ∵∠ADB=∠AEB=90度∴A、B、D、E四点共圆∴∠ADE=∠ABE∵∠EAO=∠DAC ∠AEO=∠ADC ∴ΔAEO∽ΔADC∴AE/AO=AD/AC ∴ΔEAD∽ΔOAC ∴∠ACF=∠ADE=∠ABE 又∵∠ABE+∠BAC=90度∴∠ACF+∠BAC=90度∴CF⊥AB因此, 垂心定理成立!四、三角形内心定理三角形内切圆的圆心, 叫做三角形的内心.内心的性质:1、三角形的三条内角平分线交于一点.该点即为三角形的内心.2、直角三角形的内心到边的距离即是两直角边的和减去斜边的差的二分之一.3、P为ΔABC所在平面上任意一点, 点I是ΔABC内心的充要条件是:向量PI=(a×向量PA+b×向量PB+c×向量PC)/(a+b+c).4、O为三角形的内心, A、B、C分别为三角形的三个极点, 延长AO交BC边于N, 则有AO:ON=AB:BN=AC:CN=(AB+AC):BC五、三角形旁心定理三角形的旁切圆(与三角形的一边和其他两边的延长线相切的圆)的圆心, 叫做三角形的旁心.旁心的性质:1、三角形一内角平分线和另外两极点处的外角平分线交于一点, 该点即为三角形的旁心.2、每个三角形都有三个旁心.3、旁心到三边的距离相等.如图, 点M就是△ABC的一个旁心.三角形任意两角的外角平分线和第三个角的内角平分线的交点.一个三角形有三个旁心, 而且一定在三角形外.附:三角形的中心:只有正三角形才有中心, 这时重心, 内心, 外心, 垂心, 四心合一.有关三角形五心的诗歌三角形五心歌(重外垂内旁)三角形有五颗心, 重外垂内和旁心, 五心性质很重要, 认真掌握莫记混.重心三条中线定相交, 交点位置真奇巧, 交点命名为“重心”, 重心性质要明了,重心分割中线段, 数段之比听分晓;长短之比二比一, 灵活运用掌握好.外心三角形有六元素, 三个内角有三边.作三边的中垂线, 三线相交共一点.此点界说为外心, 用它可作外接圆.内心外心莫记混, 内切外接是关键.垂心三角形上作三高, 三高必于垂心交.高线分割三角形, 呈现直角三对整,直角三角形有十二, 构成六对相似形, 四点共圆图中有, 细心分析可找清.内心三角对应三极点, 角角都有平分线, 三线相交定共点, 叫做“内心”有根源;点至三边均等距, 可作三角形内切圆, 此圆圆心称“内心”, 如此界说理固然.。
三角形重心定理证明方法

三角形重心定理证明方法
嘿,朋友们!今天咱来聊聊三角形重心定理的证明方法呀。
你看那三角形,就像一个稳固的小天地。
而重心呢,就是这个小天地里特别重要的一个点。
怎么找到它呢?嘿嘿,这可有讲究啦!
咱可以把三角形想象成一块大蛋糕,然后把它切成三块大小形状都一样的小蛋糕。
这时候你想想,这三块小蛋糕的“重量”是不是差不多呀?那这个让它们能平衡的点不就是重心嘛!
或者再换个说法,就好像是三角形的三条边在玩跷跷板,而重心就是那个能让跷跷板稳稳当当的中间点。
那怎么证明这个神奇的重心呢?咱可以这样干。
先在三角形的三条边上分别找三个中点,然后把相对的边的中点连起来。
哇塞,这一下子就出现了三条中线啦!接着呢,你就会神奇地发现,这三条中线居然都交于一点,这个点就是重心啦!
这难道不神奇吗?就像变魔术一样,几条线一弄,重心就乖乖现身啦!
你说这三角形重心定理是不是很有意思呀?它就像是隐藏在三角形里的小秘密,等着我们去发现。
而且这个定理在好多地方都能用得上呢,比如在建筑设计里,要让建筑物稳稳当当的,就得考虑重心的位置呀。
咱再想想,生活中不也有很多类似的情况吗?就像我们做事情,得找到那个关键的“点”,才能把事情做好,就像三角形找到了重心一样。
所以呀,可别小瞧了这个三角形重心定理,它可是有着大用处呢!它让我们看到了数学的奇妙之处,也让我们明白了做事要抓住关键的道理。
怎么样,是不是对三角形重心定理有了更深的认识啦?。
三角形的重心的性质(一)

三角形的重心的性质(一)引言:三角形是几何学中非常重要的一个形状,而重心则是三角形的一个重要特征。
本文将深入探讨三角形重心的性质,包括定义、重心的位置与性质、与其他特殊点的关系以及相关的定理。
正文:一、三角形重心的定义1. 定义:三角形的重心是三条中线的交点,即三边中点连线的交点。
二、重心的位置与性质1. 重心的位置:重心位于三角形中线上的2:1处,离每条中线的起点的距离是中线长度的2/3。
2. 重心的坐标:根据三角形顶点的坐标可以求得重心的坐标,即三个顶点的坐标的均值。
3. 重心的性质:重心将三角形分成六个小三角形,其中三个小三角形的面积相等。
4. 重心与几何中心的关系:重心也是三角形的质心、内心和外心的连线的交点。
三、重心与其他特殊点的关系1. 重心与垂心的关系:重心是垂心到三顶点连线的中点。
2. 重心与重心连线:三角形的重心之间连成一线段,这条线段称为重心连线,且重心连线与垂心连线垂直。
四、重心相关的定理1. 重心定理:三角形的三个顶点与重心的距离之和等于三角形边长之和的三分之一。
2. 已知重心求顶点坐标:已知三角形重心的坐标,可以求得顶点的坐标,通过重心的定义和坐标计算可得。
五、总结通过以上的探讨,我们得出了以下关于三角形重心的性质:1. 重心是三角形中线的交点,位于中线上的2:1处。
2. 重心将三角形分为六个面积相等的小三角形。
3. 重心是三角形的质心、内心和外心连线的交点。
4. 重心与垂心连线垂直,是垂心到三顶点连线的中点。
5. 已知重心的坐标可以求得三角形顶点的坐标。
6. 重心定理给出了重心与三角形顶点之间距离的关系。
本文仅对三角形重心性质进行了初步介绍,未来的研究中还有更多的性质和定理值得深入探索。
三角形重心到三顶点距离的平方和最小证明

三角形重心到三顶点距离的平方和最小是一个常见的几何定理,它反映了三角形重心的重要性质。
下面我将尝试用几何方法证明这个定理。
首先,我们需要了解一些基本概念。
在三角形中,重心是指三条中线的交点。
对于给定的三角形,其重心到顶点的距离可以通过将三角形分成两部分,并考虑这两部分的重心到顶点的距离之差来得到。
为了证明这个定理,我们需要使用一些基本的几何性质和三角形的性质。
首先,我们知道对于任何三角形,其重心到顶点的距离是所有点到顶点的距离的平均值。
这意味着,如果我们将三角形的三个顶点视为三个独立的点,那么重心到这三个点的距离的平方和应该等于这三个点之间的所有可能点对之间的距离的平方和的最小值。
为了证明这个最小值存在,我们可以使用凸包的概念。
凸包是一个数学概念,它描述了在一个多边形上的所有点构成的集合。
对于给定的三角形,其重心到三个顶点的距离构成的线段可以构成一个凸包。
这意味着在三角形的内部或边上一定存在一个点,该点到重心的距离小于或等于所有点到重心的距离之和的一半。
因此,我们可以得出结论:三角形重心到三个顶点的距离的平方和的最小值存在于三角形的内部或边上,并且这个最小值等于三角形三边长度平方和的最小值。
换句话说,三角形重心到三顶点距离的平方和最小,当且仅当三角形的三边长度相等时达到最小值。
在实践中,这个定理可以用作证明三角形中线长度的一个重要工具。
在三角形的中线中,我们知道它们有两个重要性质:一是它们将三角形分成两个相等的部分;二是它们是三角形重心到三顶点的中线。
这些性质结合起来,我们就可以使用上述定理来证明三角形中线长度具有某种特殊性质,这在许多实际应用中都是非常重要的。
综上所述,三角形重心到三顶点距离的平方和最小是一个重要的几何定理,它反映了三角形重心的重要性质。
这个定理可以用几何方法和数学工具进行证明,并且在实际应用中具有重要的实用价值。
以上证明仅是一个基础性证明,具体的证明可能会根据具体的背景和应用有所不同。
重心定理

③×④×⑤得BD/DC*CE/EA*AF/FB=1
利用塞瓦定理证明三角形三条高线必交于一点:
设三边AB、BC、AC的垂足分别为D、E、F,
根据塞瓦定理逆定理,因为(AD:DB)*(BE:EC)*(CF:FA)=[(CD*ctgA)
另外,有很多人会觉得书写这个公式十分烦琐,不看书根本记不住,下面从别人转来一些方法帮助书写
为了说明问题,并给大家一个深刻印象,我们假定图中的A、B、C、D、E、F是六个旅游景点,各景点之间有公路相连。我们乘直升机飞到这些景点的上空,然后选择其中的任意一个景点降落。我们换乘汽车沿公路去每一个景点游玩,最后回到出发点,直升机就停在那里等待我们回去。
证明:
过点A作AG‖BC交DF的延长线于G,
则AF/FB=AG/BD , BD/DC=BD/DC , CE/EA=DC/AG。
三式相乘得:AF/FB×BD/DC×CE/EA=AG/BD×BD/DC×DC/AG=1
它的逆定理也成立:若有三点F、D、E分别在的边AB、BC、CA或其延长线上,且满足(AF/FB)×(BD/DC)×(CE/EA)=1,则F、D、E三点共线。利用这个逆定理,可以判断三点共线。
方案①——从A经过B(不停留)到F(停留),再返回B(停留),再到D(停留),之后经过B(不停留)到C(停留),再到E(停留),最后从E经过C(不停留)回到出发点A。
按照这个方案,可以写出关系式:
(AF:FB)*(BD:DC)*(CE:EA)=1。
现在,您知道应该怎样写“梅涅劳斯定理”的公式了吧。
从A点出发的旅游方案还有:
(AE:EC)*(CD:DB)*(BF:FA)=1。
三角形重心性质定理.

三角形重心性质定理1、配方法:所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。
通过配方解决数学问题的方法叫配方法。
其中,用的最多的是配成完全平方式。
配方法是数学中一种重要的恒等变形的方法,它的应用非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。
2、因式分解法:因式分解,就是把一个多项式化成几个整式乘积的形式。
因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角函数等的解题中起着重要的作用。
因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。
3、换元法:换元法是数学中一个非常重要而且应用十分广泛的解题方法。
我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。
4、判别式法与韦达定理:一元二次方程ax2+bx+c=0(a、b、c∈R,a≠0)根的判别式△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至解析几何、三角函数运算中都有非常广泛的应用。
韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。
5、待定系数法:在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。
它是中学数学中常用的重要方法之一。
6、构造法:在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。
三角形中的重心与外心定理

三角形中的重心与外心定理三角形是几何学中最基本的形状之一,研究三角形的性质和特点对于深入了解几何学具有重要意义。
在三角形中,重心和外心是两个重要的概念,通过重心与外心定理,我们可以揭示它们的关系和性质。
重心是指三角形三条中线的交点,记作G。
在一个三角形ABC中,连接顶点A与边BC的中点M,连接顶点B与边AC的中点N,连接顶点C与边AB的中点P,这三条线段分别称为三角形ABC的中线。
重心G是中线的交点,即G=MN∩NP∩PM。
外心是指三角形外接圆的圆心,记作O。
在一个三角形ABC中,若存在一个圆可以同时与三条边AB、BC、CA相切,称这个圆为三角形ABC的外接圆。
外心O则为外接圆的圆心。
重心与外心定理是指,三角形的重心、外心和三边中点构成一个等腰三角形。
换句话说,连接重心和外心的线段与连接三边中点的线段长度相等,且它们之间的夹角等于π/2。
证明这个定理的方法有很多,这里我们可以采用向量的方法。
考虑一个三角形ABC,其三个顶点的向量表示分别为a、b、c。
重心G可以表示为G=(a+b+c)/3,外心O可以表示为O=(a|b|c)/(|a|+|b|+|c|),其中|a|表示向量a的模。
首先,我们来证明 |G-M|=|O-G|。
注意到中点M的向量表示为M=(b+c)/2,连接线段GM的向量表示为G-M=(a+b+c)/3-(b+c)/2=(a-b/2-c/2)/3。
同理,O-G=(a|b|c)/(|a|+|b|+|c|)-(a+b+c)/3=(a|b|c-|a|(b+c)-|b|(a+c)-|c|(a+b))/(3∗(|a|+|b|+|c|))。
我们将等式两边进行化简,得到:6(G-M)=2(a-b/2-c/2)=(2a-b-c)=3(a-b/2-c/2)=|a|∗(a|b|c-|a|(b+c)-|b|(a+c)-|c|(a+b))/(3∗(|a|+|b|+|c|))=|O-G|说明 |G-M|=|O-G| 成立。
三角形重心定理(Centroid Theorem) 证明(1)

1 BC, F E = BC;
2
4. 同理,HK
1 BC, HK = BC;
2
5. 由此,F E
BC
1 HK, F E = BC = HK;
2
6. 由平行四邊形判別定理,F EKH 為一平行四邊形;
7. 由平行四邊形性質定理,平行四邊形的對角線互相平分,
EG
=
GH ,由此
BG
=
2 BE
3
8.
即
B E 、C F
3. 因 AG = GH, AF = F B, 由三角形中位線定理,CF BH;
4. 同理,BE CH;
5. 由此,BGCH 為一平行四邊形;
A
FG
E
B
C
K
H
6. 由平行四邊形性質定理,平行四邊形的對角線互相平分, 所以,BK = KC, GK = KH,由此,AK 實為由 A 到 BC 的中線。 ABC 的 三條中線相交於一點。
性質(1)
若 G 為 ABC 的重心,則,S AGB = S AGC = S BGC (以 S AGB 記 AGB 面積)。
1. 因 BD = DC,由等底等高的三角形面積相等, 有 S ABD = S ADC , S GBD = S GDC ,
2. S ABG = S ABD − S GBD = S ACD − S GCD = S ACG 3. 同理,S ABG = S BCG 4. 所以,S ABG = S BCG = S ACG
7. 亦因為 AG = GH = 2GK, G 到頂點 A 的距離是它到對邊中點 K 距離的 2 倍。
1
證明(2)
1. 設 E、F ,分別為 AC、AB 的中點,BE、CF 交於 G
中考必备:三角形的五个“心”及一些平面几何的著名定理

中考必备:三角形的五个“心”及一些平面几何的著名定理三角形的五个“心” 一、重心:(又叫中心) 1这点就是三角形的重心。
2. 重心定理:(1)一个三角形三条边上的中线必交一点; 证明:找AB 中点F ,AC 中点E ,连接这两条中线交于点O ,连接AO 并延长,交BC 于点D ,可得S三角形ABE =S 三角形ACF =1/2×S 三角形ABC (同底同高),得S 三角形BOF =S 三角形COE (两三角形同减S四边形AEOF ),得S 三角形AOB =S 三角形AOC (都为上面两三角形面积的两倍),得B 到AD 和C 到AD 的距离h 相等(面积相等,底相等),所以S 三角形BOD =S 三角形COD (同底OD ,等高h ),所以BD=CD (面积相等,高相等),即D 为BC 中点,所以三角形三条中线交于一点。
(2)三角形的三条中线交于一点,这点到顶点的距离是它到对边中点距离的2倍。
证明:方法一△ABC ,AB 、BC 、CA 中点分别为D 、E 、F ,交于一点G 。
∴DF//BC ,DF=BC/2 ①(中位线定理)。
∴△ADF ∽△ABC, E 为BC 中点,∴H 为DF 中点(可证AH /AE=DH /BE=HF /EC, BE=EC, ∴DH=HF) ∴HF=DF /2 , BE=BC /2, 又可由①知HF=BE /2 ∴HF//BE. 又∵∠BGE=∠FGH 。
∴△BGE ∽△FGH ∴BG/GF=BE/HF=2。
∴BG=(2/3)BF方法二:(简单)AA连结AO、BO、CO形成了三个三角形,S三角形ABC = S三角形ABO+ S三角形BCO + S三角形ACO= 1/2*(a+b+c)* r = s*r据海伦公式:S三角形ABC =√[s(s-a)(s-b)(s-c)] 所以r=S三角形ABC/s三、垂心:1.定义:三角形的三条高交于一点。
该点叫做三角形的垂心。
利用向量证明三角形重心定理

利用向量证明三角形重心定理1. 引言哎,大家好,今天咱们聊聊一个听起来高大上的数学话题——三角形的重心定理。
别一听就怂了,听起来复杂,其实就是个简单又有趣的事情。
重心是什么呢?说白了,就是你这个三角形的“中心”,就像一颗心脏,供给着力量和活力。
想象一下,三角形就像咱们的一个小团体,三个人的朋友关系,重心就是三个人的友谊交点!那么,今天咱们就用向量这位“好朋友”来证明一下这个定理,让它闪闪发光,成为咱们的明星。
2. 三角形重心的定义2.1 重心的概念首先,什么是三角形的重心呢?简单来说,就是从每个顶点到对边中点的那几条线交汇的地方。
你可以想象成,三个朋友各自牵着一根绳子,然后把绳子交在一起,那个交点就是重心。
是不是很形象?重心就像这个小团体的共同点,能把大家的力量汇聚到一起,真是太神奇了。
2.2 向量的玩法接下来,我们来聊聊向量。
向量其实就是一个带有方向的数量,听起来复杂,其实就是你每天走路的步伐。
比如你往前走一米,或者往左转一圈,这些都能用向量表示。
咱们把三角形的三个顶点分别记作A、B、C,坐标分别是(A(a_1, a_2))、(B(b_1, b_2))、(C(c_1, c_2))。
通过这些顶点,咱们就能搞定重心的位置啦。
3. 证明过程3.1 求出重心坐标好,话不多说,咱们开始计算重心。
重心G的坐标可以用公式来表示:。
G = frac{1{3(A + B + C) 。
这就像你把三个朋友的意见汇总,然后算出个平均数。
具体点说,G的坐标就是:。
Gleft(frac{a_1 + b_1 + c_1{3, frac{a_2 + b_2 + c_2{3right) 。
是不是觉得很简单?就像分蛋糕,大家各自分到一块,最终结果就是大家的重心!3.2 用向量证明现在,我们用向量来证明一下。
首先,我们从A点出发,向B和C两点分别画出向量。
向量AB和向量AC就像两条友谊线,把A、B、C三个人连在了一起。
咱们先计算这两个向量:。
初中数学八年级三角形重心向量2_1证明-三角形重心到三条边的距离

三角形的中心,重心,内心,外心区别,性质1、三角形的中心:仅当三角形是正三角形的时候,重心、垂心、内心、外心四心合一心,称做正三角形的中心。
2、三角形的重心:三条中线的交点,这点到顶点的距离是它到对边中点距离的2倍。
重心分中线比为1:2。
3、三角形的内心:三条角平分线的交点,是三角形的内切圆的圆心的简称。
到三边距离相等。
4、三角形的外心:三条中垂线的交点,是三角形的外接圆的圆心的简称。
到三顶点距离相等。
扩展资料:一、三角形的五心:三角形的重心,外心,垂心,内心和旁心称之为三角形的五心。
二、三角形五心歌(重外垂内旁)三角形有五颗心,重外垂内和旁心,五心性质很重要,认真掌握莫记混。
1、重心三条中线定相交,交点位置真奇巧,交点命名为“重心”,重心性质要明了,重心分割中线段,数段之比听分晓;长短之比二比一,灵活运用掌握好。
2、外心三角形有六元素,三个内角有三边.作三边的中垂线,三线相交共一点。
此点定义为外心,用它可作外接圆.内心外心莫记混,内切外接是关键。
3、垂心三角形上作三高,三高必于垂心交.高线分割三角形,出现直角三对整,直角三角形有十二,构成六对相似形,四点共圆图中有,细心分析可找清。
4、内心三角对应三顶点,角角都有平分线,三线相交定共点,叫做“内心”有根源;点至三边均等距,可作三角形内切圆,此圆圆心称“内心”,如此定义理当然。
五心性质别记混,做起题来真是好。
三角形重心性质定理1.三角形重心性质定理课本原题(人教八年级《数学》下册习题19.2第16题)在△ABC中,BD、CE是边AC、AB上的中线,BD与CE相交于O。
BO与OD的长度有什么关系?BC边上的中线是否一定过点O?为什么?(提示:作BO中点M,CO的中点N。
连接ED、EM、MN、ND)分析:三角形三条中线的交点是三角形的重心(第十九章课题学习《重心》)。
这道习题要证明的结论是三角形重心的一个重要数学性质:三角形的重心将三角形的每条中线都分成1∶2两部分,其中重心到三角形某一顶点的距离是到该顶点对边中点距离的2倍。
三角形的重心定理及其证明

三角形的重心定理及其证明三角形是几何学的基础形状之一,在解决各类几何问题中起到了重要的作用。
本文将介绍三角形的重心定理及其证明,通过分析三角形重心的性质和相关的几何定理,来解释三角形重心定理的本质含义。
一、三角形的重心定理三角形的重心定理是指:三角形的三条中线的交点恰好是三角形的重心。
在数学中,重心是指平面图形各个部分的质量均匀分布时的平衡点,也可以看作是三角形的平衡中心。
二、三角形重心的性质首先,我们需要了解三角形重心的性质,这有助于理解重心定理的证明。
1. 三角形重心所在的三条中线互相平分三角形的中线是指连接三角形顶点和中点的线段,根据性质可知,三角形重心所在的三条中线互相平分。
2. 三角形重心到各顶点的距离比例关系当三角形的三条中线相交于一个点时,这个点就是三角形的重心。
此时,重心到三个顶点的距离满足一个比例关系:GA:GB:GC = 1:1:1,其中GA表示重心到顶点A的距离。
三、三角形重心定理的证明三角形重心定理的证明主要通过构造和几何推理来完成。
假设三角形ABC的三条中线交于点G,我们需要证明点G恰好是三角形的重心。
证明思路如下:1. 先证明G在中线AB上由三角形中线的性质可知,G在中线AB上。
构造AG和BG两条线段。
2. 构造ME和AF,使得AF垂直于BC,ME垂直于AC根据垂直于边的性质,我们可以构造出ME垂直于AC以及AF垂直于BC。
连接EF和AM两条线段。
3. 证明AF=ME,证明AM与BC平行由三角形的等腰性质可知,AF=ME,通过几何推理可以证明AM 与BC平行。
4. 构造MF和AH,使得MF垂直于BC,AH垂直于AC根据垂直于边的性质,我们可以构造出MF垂直于BC以及AH垂直于AC。
连接FH和MG两条线段。
5. 证明MF=AH,证明HG与BC平行由三角形的等腰性质可知,MF=AH,通过几何推理可以证明HG 与BC平行。
6. 证明HG与AM重合由于HG与BC平行且与AM重合,所以可以得出HG与AM重合。
三角形的重心定理及其证明

三角形的重心定理及其证明证明三角形的重心定理,可以从几何角度和向量角度两个方面进行证明。
下面我将分别从这两个方面进行证明。
几何证明:假设在三角形ABC中,AD、BE、CF为三条中线,交于点G。
需要证明G为三角形ABC的重心。
首先,我们知道,三角形的中线是连接三角形两边中点并且平行于第三边的线段。
所以,AD是BC的中点E到A的中线,即AE=EC,同样,BE 是AC的中点D到B的中线,即BD=DA,CF是AB的中点F到C的中线,即CF=FB。
我们需要证明AG、BG、CG是三角形ABC的三条边AB、BC、CA的中垂线。
由于AE=EC,所以角EAC=角ECA,同样,由于BD=DA,所以角DBA=角DAB。
根据角的平分线定理,我们可以得知角GAB=角GAC=角BAG=角CAG。
同理,我们可以得知角GBA=角GBC=角ABG=角CBG,以及角GCB=角GCA=角CGB=角AGC。
由于三角形的内角和等于180度,所以有角CAB+角ABC+角BCA=180度。
根据角度和定理,我们可以得到以下等式:角GAC+角BAG+角GAB+角GCA+角GBA+角GCB=(角CAB+角ABC+角BCA)*2=360度因此,角GAB+角GBC+角GCA=180度。
由此可见,G是三角形ABC的内角的三边的共同交点,即G是三角形ABC的重心。
证毕。
向量证明:我们可以通过向量的运算来证明三角形的重心定理。
假设点A、B、C分别对应向量a、b、c。
点G对应向量g,即G=(x,y,z)。
根据中线的定义,可以得到以下等式:BG=(AB+BC)/2CG=(AC+BC)/2AG=(AC+AB)/2我们可以将这些等式转化为向量的形式:2BG=AB+BC2CG=AC+BC2AG=AC+AB因此,我们可以得到以下等式:2(b-g)=(a-b)+(c-b)2(c-g)=(a-c)+(b-c)2(a-g)=(b-a)+(c-a)将等式两边展开,我们可以得到:2b-2g=a-b+c-b2c-2g=a-c+b-c2a-2g=b-a+c-a整理等式,我们可以得到:3g=a+b+c因此,向量g的坐标为(x,y,z),满足等式3g=a+b+c,即g=(1/3)(a+b+c)。
高中数学平面几何--三角形的五心的重要结论及经典例题

三角形“五心”的重要结论及经典例题1.重心(中线交点)①G 是△ABC 的重心⇔0GA GB GC ++= 证明 作图如右,图中GB GC GE +=连结BE 和CE ,则CE=GB ,BE=GC ⇔BGCE 为平行四边形⇒D 是BC 的中点,AD 为BC 边上的中线.将GB GC GE +=代入GA GB GC ++=0,得GA EG +=0⇒2GA GE GD =-=-,故G 是△ABC 的重心.(反之亦然(证略))②1()3PG PA PB PC =++⇔G 为△ABC 的重心(P 是平面上的点).证明 PG PA AG PB BG PC CG =+=+=+⇒3()()PG AG BG CG PA PB PC =+++++ ∵G 是△ABC 的重心∴GA GB GC ++=0⇒AG BG CG ++=0,即3PG PA PB PC =++由此可得1()3PG PA PB PC =++.(反之亦然(证略)例、已知向量1OP ,2OP ,3OP 满足条件1OP +2OP +3OP =0,|1OP |=|2OP |=|3OP |=1,求证 △P 1P 2P 3是正三角形.(《数学》第一册(下),复习参考题五B 组第6题)证明 由已知1OP +2OP =-3OP ,两边平方得1OP ·2OP =12-, 同理2OP ·3OP =3OP ·1OP =12-, ∴|12P P |=|23P P |=|31P P△P 1P 2P 3是正三角形.反之,若点O 是正三角形△P 1P 2P 3的中心,则显然有1OP +2OP +3OP =0且|1OP |=|2OP |=|3OP |.即O 是△ABC 所在平面内一点,1OP +2OP +3OP =0且|1OP |=|2OP |=|3OP |⇔点O 是正 △P 1P 2P 3的中心.三角形三条中线的交点,叫做三角形的重心.掌握重心将每 条中线都分成定比2:1及中线长度公式,便于解题.例.AD ,BE ,CF 是△ABC 的三条中线,P 是任意一点.证明:在△PAD ,△PBE ,△PCF 中,其中一个面积等于另外两个面积的和. (第26届莫斯科数学奥林匹克)分析:设G 为△ABC 重心,直线PG 与AB,BC 相交.从A ,C ,D ,E ,F 分别 作该直线的垂线,垂足为A ′,C ′, D ′,E ′,F ′. 易证AA ′=2DD ′,CC ′=2FF ′,2EE ′=AA ′+CC ′,∴EE ′=DD ′+FF ′. 有S △PGE =S △PGD +S △PGF .两边各扩大3倍,有S △PBE =S △PAD +S △PCF . 例.如果三角形三边的平方成等差数列,那么该三角形和由它的三条中线围成的新三角形相似.其逆亦真.分析:将△ABC 简记为△,由三中线AD ,BE ,CF 围成的三角形简记为△′.G 为重心,连DE 到H ,使EH =DE ,连HC ,HF ,则△′就是△HCF . (1)a 2,b 2,c 2成等差数列⇒△∽△′. 若△ABC 为正三角形,易证△∽△′.AA 'F F 'GE E 'D 'C 'P C B D不妨设a ≥b ≥c ,有CF =2222221c b a -+, BE =2222221b ac -+,AD =2222221a cb -+.将a 2+c 2=2b 2,分别代入以上三式,得 CF =a 23,BE =b 23,AD =c 23. ∴CF :BE :AD =a 23:b 23:c 23=a :b :c .故有△∽△′.(2)△∽△′⇒a 2,b 2,c 2成等差数列. 当△中a ≥b ≥c 时, △′中CF ≥BE ≥AD . ∵△∽△′, ∴∆∆S S '=(aCF )2. 据“三角形的三条中线围成的新三角形面积等于原三角形面积的43”,有∆∆S S '=43.∴22aCF =43⇒3a 2=4CF 2=2a 2+b 2-c 2⇒a 2+c 2=2b 2.2.垂心(高线交点)三角形三条高的交战,称为三角形的垂心.由三角形的垂心造成的四个等(外接)圆三角形,给我们解题提供了极大的便利.H 是△ABC 的垂心⇔HA HB HB HC HC HA •=•=• 由()00HA HB HB HC HB HC HA HB AC HB AC ⋅=⋅⇔⋅-=⇔⋅=⇔⊥, 同理HC AB ⊥,HA BC ⊥.故H 是△ABC 的垂心.(反之亦然(证略))若H 是△ABC (非直角三角形)的垂心,则 S △BHC :S △AHC :S △AHB =tanA :tanB :tanC 故tanA ·HA +tanB ·HB +tanC ·HC =0 例、设A 1A 2A 3A 4为⊙O 内接四边形,H 1,H 2,H 3,H 4依次为△A 2A 3A 4,△A 3A 4A 1,△A 4A 1A 2,△A 1A 2A 3的垂心.求证:H 1,H 2,H 3,H 4四点共圆,并确定出该圆的圆心位置. (1992,全国高中联赛) ABC DH ABCDO A A 12分析:连接A 2H 1,A 1H 2,H 1H 2,记圆半径为R .由△A 2A 3A 4知13212sin H A A H A ∠=2R ⇒A 2H 1=2R cos ∠A 3A 2A 4;由△A 1A 3A 4得A 1H 2=2R cos ∠A 3A 1A 4.但∠A 3A 2A 4=∠A 3A 1A 4,故A 2H 1=A 1H 2. 易证A 2H 1∥A 1A 2,于是,A 2H 1 A 1H 2,故得H 1H 2 A 2A 1.设H 1A 1与H 2A 2的交点为M ,故H 1H 2与A 1A 2关于M 点成中心对称. 同理,H 2H 3与A 2A 3,H 3H 4与A 3A 4,H 4H 1与A 4A 1都关于M 点成中心对称.故四边形H 1H 2H 3H 4与四边形A 1A 2A 3A 4关于M 点成中心对称,两者是全等四边形,H 1,H 2,H 3,H 4在同一个圆上.后者的圆心设为Q ,Q 与O 也关于M 成中心对称.由O ,M 两点,Q 点就不难确定了.例、H 为△ABC 的垂心,D ,E ,F 分别是BC ,CA ,AB 的中心.一个以H 为圆心的⊙H 交直线EF ,FD ,DE 于A 1,A 2,B 1,B 2,C 1,C 2. 求证:AA 1=AA 2=BB 1=BB 2=CC 1=CC 2.(1989,加拿大数学奥林匹克训练题) 分析:只须证明AA 1=BB 1=CC 1即可.设 BC =a , CA =b ,AB =c ,△ABC 外接圆半径为R ,⊙H 的半径为r . 连HA 1,AH 交EF 于M . A 21A =AM 2+A 1M 2=AM 2+r 2-MH 2=r 2+(AM 2-MH 2), ①又AM 2-HM 2=(21AH 1)2-(AH -21AH 1)2 =AH ·AH 1-AH 2=AH 2·AB -AH 2=cos A ·bc -AH 2, ② 而ABH AH∠sin =2R ⇒AH 2=4R 2cos 2A ,Aasin =2R ⇒a 2=4R 2sin 2A . ∴AH 2+a 2=4R 2,AH 2=4R 2-a 2. ③ 由①、②、③有 A 21A=r 2+bca cb 2222-+·bc -(4R 2-a 2)=21(a 2+b 2+c 2)-4R 2+r 2. 同理,21BB =21(a 2+b 2+c 2)-4R 2+r 2,21CC =21(a 2+b 2+c 2)-4R 2+r 2.∥=∥=H H HM AB B A A BC CC F12111222D E故有AA 1=BB 1=CC 1.3.外心(边垂直平分线交点,外接圆圆心)三角形外接圆的圆心,简称外心.与外心关系密切的有圆心角定理和圆周角定理. O 是△ABC 的外心⇔|OA |=|OB |=|OC |(或OA 2=OB 2=OC 2)(点O 到三边距离相等) ⇔(OA +OB )·AB =(OB +OC )·BC =(OC +OA )·CA =0(O 为三边垂直平分线) 若O 是△ABC 的外心,则S △BOC :S △AOC :S △AOB =sinBOC :sinAOC :sinAOB =sin 2A :sin 2B :sin 2C故sin 2A ·OA 2sin 2B ·OB +sin 2C ·OC =0 例1.过等腰△ABC 底边BC 上一点P 引PM ∥CA 交AB 于M ;引PN ∥BA 交AC 于N .作点P 关于MN 的对称点P ′.试证:P ′点在△ABC 外接圆上. (杭州大学《中学数学竞赛习题》)分析:由已知可得MP ′=MP =MB ,NP ′=NP=NC ,故点M 是△P ′BP 的外心,点N 是△P ′PC 的外心.有∠BP ′P =21∠BMP =21∠BAC ,∠PP ′C =21∠PNC =21∠BAC .∴∠BP ′C =∠BP ′P +∠P ′PC =∠BAC .从而,P ′点与A ,B ,C 共圆、即P ′在△ABC 外接圆上. 由于P ′P 平分∠BP ′C ,显然还有 P ′B :P ′C =BP :PC .例2.在△ABC 的边AB ,BC ,CA 上分别取点P ,Q ,S .证明以△APS ,△BQP ,△CSQ 的外心为顶点的三角形与△ABC 相似. (B ·波拉索洛夫《中学数学奥林匹克》)分析:设O 1,O 2,O 3是△APS ,△BQP ,△CSQ 的外心,作出六边形O 1PO 2QO 3S 后再由外心性质可知 ∠PO 1S =2∠A , ∠QO 2P =2∠B , ∠SO 3Q =2∠C .∴∠PO 1S +∠QO 2P +∠SO 3Q =360°.从而又知∠O 1PO 2+∠O 2QO 3+∠O 3SO 1=360°将△O 2QO 3绕着O 3点旋转到△KSO 3,易判断△KSO 1≌△O 2PO 1,同时可得△O 1O 2O 3≌△O 1KO 3. ∴∠O 2O 1O 3=∠KO 1O 3=21∠O 2O 1K =21(∠O 2O 1S +∠SO 1K ) =21(∠O 2O 1S +∠PO 1O 2)=21∠PO 1S =∠A ;A B C PP MN 'A B C QK P O O O ....S 123同理有∠O 1O 2O 3=∠B .故△O 1O 2O 3∽△ABC .4.内心(角平分线交点,内切圆圆心)三角形内切圆的圆心,简称为内心. O 是△ABC 的内心充要条件是()()()0||||||||||||AB ACBA BCCA CBOA OB OC AB AC BA BC CA CB •-=•-=•-=引进单位向量,使条件变得更简洁。
证明三角形重心判定性质

证明三角形重心判定性质三角形重心是三角形内部所有中线的交点,是三角形的一个重要点。
在三角形的研究中,三角形重心有着重要的作用,包括判定三角形的形状、判断三角形的大小和计算三角形的面积等。
在本文中,我们将探讨证明三角形重心判定性质的方法。
三角形重心判定定理是三角形研究中一条非常重要的定理,也是几何学中的一道经典问题。
这个定理可以用来判断三角形的性质,以及计算三角形的重心坐标。
三角形重心的坐标可以用以下公式计算:$G = (\frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3})$其中,$G$表示三角形重心的坐标,$x_1$、$x_2$、$x_3$、$y_1$、$y_2$和$y_3$分别表示三角形三个顶点的坐标。
证明三角形重心判定定理需要以下两个步骤:第一步,证明三角形重心是三条中线的交点。
首先,我们需要知道中线是什么。
中线是连结三角形两个顶点及其对边中点的线段。
因此,三角形有三条中线。
中线可以通过以下公式计算出来:$AB: \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}$$BC: \frac{x_2 + x_3}{2}, \frac{y_2 + y_3}{2}$$AC: \frac{x_1 + x_3}{2}, \frac{y_1 + y_3}{2}$其中,$AB$、$BC$、$AC$表示三角形的三条边,$x_1$、$x_2$、$x_3$、$y_1$、$y_2$和$y_3$分别表示三角形三个顶点的坐标。
我们需要证明三条中线的交点是三角形的重心。
假设$G$为三角形的重心,且$G$在$AB$和$BC$上,那么$G$必定在$AC$上。
这是因为$AC$是由两点$(x_1, y_1)$和$(x_3, y_3)$组成,而重心$G$又满足以下条件:$\frac{AG}{AB} = \frac{BG}{BC} = \frac{CG}{AC}$由此可得:$\frac{AG}{AB} = \frac{2}{3}$$\frac{BG}{BC} = \frac{2}{3}$$\frac{CG}{AC} = \frac{2}{3}$因为$AG$和$BG$都是中线,所以它们分别等于$AB$和$BC$的一半。
【附2套中考卷】2020中考数学知识点:三角形的重心公式证明

2020中考数学知识点:三角形的重心公式证明重心是三角形三边中线的交点,三线交一点可用燕尾定理来证明。
三角形的重心已知:△ABC中,D为BC中点,E为AC中点,AD与BE交于O,CO延长线交AB于F。
求证:F为AB 中点。
证明:根据燕尾定理,S(△AOB)=S(△AOC),又S(△AOB)=S(△BOC),∴S(△AOC)=S(△BOC),再应用燕尾定理即得AF=BF,命题得证。
重心的几条性质:1.重心到顶点的距离与重心到对边中点的距离之比为2:1。
2.重心和三角形3个顶点组成的3个三角形面积相等。
3.重心到三角形3个顶点距离的平方和最小。
4.在平面直角坐标系中,重心的坐标是顶点坐标的算术平均,即其坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3);空间直角坐标系——横坐标:(X1+X2+X3)/3纵坐标:(Y1+Y2+Y3)/3竖坐标:(Z1+Z2+Z3)/35.重心是三角形内到三边距离之积最大的点。
如果用塞瓦定理证,则极易证三条中线交于一点。
如图,在△ABC中,AD、BE、CF是中线则AF=FB,BD=DC,CE=EA∵(AF/FB)*(BD/DC)*(CE/EA)=1∴AD、BE、CF交于一点即三角形的三条中线交于一点其实考试中不会单独的出现关于三角形的重心问题,而是综合图形知识要领,这就需要大家准确的分析了。
2019-2020学年数学中考模拟试卷一、选择题 1.如图,内有一点D ,且,若,则的大小是( )A .B .C .D .2.某公司2018年获利润1000万元,计划到2020年年利润达到1210万元设该公司的年利润平均增长率为x ,下列方程正确的是( ) A .1000(1+x )2=1210 B .1210(1+x )2=1000 C .1000(1+2x )=1210D .1000+10001+x )+1000(1+x )2=1210 3.下面给出五个命题(1)正多边形都有内切圆和外接圆,且这两个圆是同心圆 (2)各边相等的圆外切多边形是正多边形 (3)各角相等的圆内接多边形是正多边形 (4)正多边形既是轴对称图形又是中心对称图形 (5)正n 边形的中心角360n a n︒=,且与每一个外角相等 其中真命题有( ) A .2 个B .3 个C .4 个D .5 个4.将直线21y x =+向下平移n 个单位长度得到新直线21y x =-,则n 的值为( ) A .2-B .1-C .1D .25.如图,在△ABC 中,BF 平分∠ABC ,AF ⊥BF ,D 为AB 中点,连接DF 并延长交AC 与点E ,若AB =12,BC =20,则线段EF 的长为( )A .3B .4C .5D .66.已知反比例函数3(k y k x -=为常数),当0x <时,y 随x 的增大而减小,k 的取值范围是() A .k <0B .k 0C .k <3D .k >37.如图,等边三角形ABC ,B 点在坐标原点,C 点的坐标为(4,0),则点A 的坐标为( )A .(2,3)B .(2,23)C .(23,2)D .(2,22)8.有以下四个命题中,正确的命题是( ). A .反比例函数2y x=-,当x>-2时,y 随x 的增大而增大 B .抛物线222y x x =-+与两坐标轴无交点 C .垂直于弦的直径平分这条弦,且平分弦所对的弧 D .有一个角相等的两个等腰三角形相似9.如何求tan75°的值?按下列方法作图可解决问题,如图,在Rt △ABC 中,AC =k ,∠ACB =90°,∠ABC =30°,延长CB 至点M ,在射线BM 上截取线段BD ,使BD =AB ,连接AD ,依据此图可求得tan75°的值为( )A .23-B .23+C .13+D .31-10.如图.在直角坐标系中,矩形ABC0的边OA 在x 轴上,边0C 在y 轴上,点B 的坐标为(1,3),将矩形沿对角线AC 翻折,B 点落在D 点的位置,且AD 交y 轴于点E .那么点D 的坐标为( )A .412()55-,B .213()55-,C .113()25-,D .312()55-,11.A 、B 、C 、D 四名同学随机分为两组,两个人一组去參加辩论赛,问A 、B 两人恰好分到一组的概率( ) A .14B .13C .16D .1212.下列方程中,有两个不相等的实数根的方程是( )A.2x-8x+17=0B.2x-6x-10=0C.2x-42x+9=0D.2x-4x+4=0二、填空题13.如图,图形B是由图形A旋转得到的,则旋转中心的坐标为_____.14.如图,在中,,,以点为圆心,的长为半径画弧,与边交于点,将绕点旋转后点与点恰好重合,则图中阴影部分的面积为_____.15.(3分)在ABCD中,AB<BC,已知∠B=30°,AB=2,将△ABC沿AC翻折至△AB′C,使点B′落在ABCD 所在的平面内,连接B′D.若△AB′D是直角三角形,则BC的长为.16.若圆锥的侧面积等于其底面积的3倍,则该圆锥侧面展开图所对应扇形圆心角的度数为_____.17.若(x+2)(x﹣1)=x2+mx﹣2,则m=_____.18.如图,△ABC中,D、E分别是BC、AC的中点,BF平分∠ABC,交DE于点F,若AB=12,BC=9,则EF的长是_____.三、解答题19.已知:△ABC的两边AB、BC的长是关于x的一元二次方程x2﹣(2k+2)x+k2+2k=0的两个实数根,第三边长为10.问当k为何值时,△ABC是等腰三角形?20.如图,等边△ABC中,P是AB上一点,过点P作PD⊥AC于点D,作PE⊥BC于点E,M是AB的中点,连接ME,MD.(1)依题意补全图形;(2)用等式表示线段BE,AD与AB的数量关系,并加以证明;(3)求证:MD=ME.21.随着“互联网+购物”的快速发展,快递业务也越来越红火,某小区物业为了解本小区1200户家庭在过去的一年中收到快递的情况,随机调查了80户家庭去年一年共收到的快递件数,并绘制了如下的频数分布表和频数分布直方图(不完整).组号分组频数频率1 0~4 4 0.0502 5~9 12 0.1503 10~14 a 0.4504 15~19 18 0.2255 20~24 b m6 25~29 4 0.050合计80 1.000根据以上提供的信息,解答下列问题(1)表格中a=,b=,m=;补全频数分布直方图;(2)这80户家庭一年中收到的快递件数的中位数落在哪一个小组?(3)请估计该小区去年一年共收到快递件数大约是多少?22.为了丰富学生的校园文化生活,学校开设了书法、体育、美术音乐共四门选修课程.为了合理的分配教室,教务处问卷调查了部分学生,并将了解的情况绘制成如下不完整的统计图:(1)参与问卷调查的共有________人,其中选修美术的有________人,选修体育的学生人数对应扇形统计图中圆心角的度数为________. (2)补全条形统计图;(3)若每人必须选修一门课程,且只能选一门,已知小红没有选体育,小刚没有选修书法和美术,则他们选修同一门课程的概率是多少,列树状图或列表法求解.23.某学校要开展校园文化艺术节活动,为了合理编排节目,对学生最喜爱的歌曲、舞蹈、小品、相声四类节目进行了一次随机抽样调查(每名学生必须选择且只能选择一类),并将调查结果绘制成如下不完整统计图.请你根据图中信息,回答下列问题: (1)本次共调查了 名学生.(2)在扇形统计图中,“歌曲”所在扇形的圆心角等于 度. (3)补全条形统计图(标注频数).(4)根据以上统计分析,估计该校2000名学生中最喜爱小品的人数为 人. 24.1135323(5)(1)(3)(10)10464675+----++- 25.先化简,再求值:222211a a a a a a -⎛⎫÷- ⎪-+-⎝⎭,其中a =20190﹣(12)﹣1【参考答案】*** 一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12答案 A A A D B D B C B A C B二、填空题13.(0,1).14.2-.15.4或6.16.120°17.118.5三、解答题19.k=8或10【解析】【分析】因为方程有两个实根,所以△>0,从而用k的式子表示方程的解,根据△ABC是等腰三角形,分AB=AC,BC=AC,两种情况讨论,得出k的值.【详解】∵△=[﹣(2k+2)]2﹣4(k2+2k)=4k2+8k+4﹣4k2﹣8k=4>0,∴x=()2242k--+±⎡⎤⎣⎦,∴x1=k+2,x2=k,设AB=k+2,BC=k,显然AB≠BC,而△ABC的第三边长AC为10,(1)若AB=AC,则k+2=10,得k=8,即k=8时,△ABC为等腰三角形;(2)若BC=AC,则k=10,即k=10时.△ABC为等腰三角形.【点睛】本题考查了一元二次方程的根,公式法,解本题要充分利用条件,选择适当的方法求解k的值,从而证得△ABC为等腰三角形.20.(1)见解析;(2)AD+BE=12AB,理由见解析;(3)证明见解析.【解析】【分析】(1)根据题目要求,依据垂线和中点的概念作图即可得;(2)由△ABC是等边三角形知∠A=∠B=60°.结合PD⊥AC,PE⊥BC得∠APD=∠BPE=30°,据此知AD=12 AP,AD=12AP,再根据AD+BE=12(AP+BP)可得答案;(3)取BC中点F,连接MF.知MF=12AC,MF∥12AC.据此得∠MFB=∠ACB=∠A=∠MFE=60°.从而知AM=12AB,AB=AC,MF=MA.根据EF+BE=12BC得AD+BE=12AB.据此知EF=AD.即可证△MAD≌△MFE得出答案.【详解】(1)补全图形如图:(2)线段BE,AD 与AB 的数量关系是:AD+BE=12 AB,∵△ABC是等边三角形,∴∠A=∠B=60°.∵PD⊥AC,PE⊥BC,∴∠APD=∠BPE=30°,∴AD=12AP,AD=12AP.∴AD+BE=12(AP+BP)=12AB;(3)取BC中点F,连接MF.∴MF=12AC.MF∥12AC,∴∠MFB=∠ACB=60°,∴∠A=∠MFE=60°,∵AM=12AB,AB=AC,∴MF=MA,∵EF+BE=12 BC,∴AD+BE=12 AB,∴EF=AD,∴△MAD≌△MFE(SAS),∴MD=ME.【点睛】本题是三角形的综合问题,解题的关键是掌握等边三角形和直角三角形的性质、中位线定理及全等三角形的判定与性质等知识点.21.(1)见解析(2)3(4)16050【解析】【分析】(1)总数乘以第3组频率可得a,总数减去其它分组人数可得b,依据频率=频数÷总数可得m;(2)根据中位数的定义求解可得;(3)总户数乘以样本的平均值即可得.【详解】解:(1)a=80×0.45=36,b=80﹣(4+12+36+18+4)=6,m=6÷80=0.075,补全直方图如下:故答案为:36、6、0.075;(2)这组数据的中位数是第40、41个数据的平均数,而这两个数据均落在第3组,所以这80户家庭一年中收到的快递件数的中位数落在第3组;(3)24712123617182262741070 12001200160508080⨯+⨯+⨯+⨯+⨯+⨯⨯=⨯=(件),估计该小区去年一年共收到快递件数大约是16050件.【点睛】本题考查搜集信息的能力(读图、表),分析问题和解决问题的能力.正确解答本题的关键在于准确读图表.22.(1)60,12,108°;(2)详见解析;(3)1 6【解析】【分析】(1)用参与了解的音乐的学生数除以所占的百分比即可求得调查的总人数;用总人数减去书法的人数减去体育和音乐的人数就可得到美术的人数;用选修体育的人数除以总人数再乘以360°即可求出对应扇形的圆心角;.(2)根据选修课程的人数补全条形统计图即可;.(3)列表或树状图将所有等可能的结果列举出来后利用概率公式求解即可.【详解】(1) 由条形统计图可知音乐有24人,由扇形统计图可知音乐占40%,2440%=60∴÷(人);选修美术的人数:606182412---=(人);选修体育的圆心角:1860360=108÷⨯(2) 条形统计图如图,(3) 树状图如下:由树状图可知,共有6种等可能情况,其中小红和小刚选修同一门课程的情况有1种,所以概率为16【点睛】本题考查的是用列表法或画树状图法求概率的知识.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.23.(1)本次共调查了50名学生;(2)72°;(3)补全条形统计图见解析;(4)该校2000名学生中最喜爱小品的人数为640人; 【解析】 【分析】(1)用最喜爱相声类的人数除以它所占的百分比即可得到调查的总人数;(2)用360°乘以最喜爱歌曲类人数所占的百分比得到“歌曲”所在扇形的圆心角的度数; (3)先计算出最喜欢舞蹈类的人数,然后补全条形统计图; (4)用2000乘以样本中最喜爱小品类的人数所占的百分比即可; 【详解】(1)14÷28%=50,所以本次共调查了50名学生;(2)在扇形统计图中,“歌曲”所在扇形的圆心角的度数=360°×1050=72°; (3)最喜欢舞蹈类的人数为50﹣10﹣14﹣16=10(人), 补全条形统计图为:(4)2000×1650=640, 估计该校2000名学生中最喜爱小品的人数为640人; 【点睛】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.24.34335- 【解析】【分析】根据有理数的加减法法则计算即可.【详解】原式=11353235131010464675-+-+- 13153231531010446675⎛⎫⎛⎫⎛⎫=+-++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 15935=-+ 34335=- 【点睛】本题考查的是有理数的加减混合运算,掌握有理数的加减法的运算法则是关键.25.2a a -,13- 【解析】【分析】根据分式的减法和除法可以化简题目中的式子,然后将a 的值代入化简后的式子即可解答本题.【详解】 解:222211a a a a a a -⎛⎫÷- ⎪-+-⎝⎭ 2(1)2(1)(1)1a a a a a a ---=÷-- 112a a a a -=⋅--+ 2a a=-, 当a =20190﹣(12)﹣1=1﹣2=﹣1时, 原式=112(1)3-=---. 【点睛】本题考查了分式的计算和化简.解决这类题目关键是把握好通分与约分,分式加减的本质是通分,乘除的本质是约分.同时注意在进行运算前要尽量保证每个分式最简.2019-2020学年数学中考模拟试卷一、选择题1.加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p与加工时间t(单位:分钟)满足的函数关系p=at2+bt+c(a,b,c是常数),如图记录了三次实验的数据.根据上述函数模型和实验数据,可得到最佳加工时间为()A.4.25分钟B.4.00分钟C.3.75分钟D.3.50分钟2.下列判断正确的是()A.甲乙两组学生身高的平均数均为1.58,方差分别为S甲2=2.3,S乙2=1.8,则甲组学生的身高较整齐B.为了了解某县七年级4000名学生的期中数学成绩,从中抽取100名学生的数学成绩进行调查,这个问题中样本容量为4000C.在“童心向党,阳光下成长”合唱比赛中,30个参赛队的决赛成绩如下表:则这30个参赛队决赛成绩的中位数是9.7D.有13名同学出生于2003年,那么在这个问题中“至少有两名同学出生在同一个月”属于必然事件3.如图,△ABC的内切圆⊙O与AB,BC,CA分别相切于点D,E,F,且AD=2,△ABC的周长为14,则BC的长为( )A.3B.4C.5D.64.已知⊙O,AB是直径,AB=4,弦CD⊥AB且过OB的中点,P是劣弧BC上一动点,DF垂直AP于F,则P从C运动到B的过程中,F运动的路径长度()A .33πB .3C .23πD .25.已知点P (a+1,2a ﹣3)关于x 轴的对称点在第二象限,则a 的取值范围是( )A.﹣1<a <B.﹣<a <1C.a <﹣1D.a>6.如图,等边三角形ABC 的边长为4,点O 是△ABC 的内心,∠FOG =120”,绕点O 旋转∠FOG ,分别交线段AB 、BC 于D 、E 两点,连接DE ,给出下列四个结论:①OD =OE :②S △ODE =S △BDE :③四边形ODBE 的面积始终等于833;④△BDE 周长的最小值为6.上述结论中正确的个数是( )A.1B.2C.3D.47.若关于x 的不等式x <a 恰有2个正整数解,则a 的取值范围为( )A.2<a≤3B.2≤a<3C.0<a <3D.0<a≤28.如图,AB 是⊙O 的直径,△ACD 内接于⊙O ,延长AB ,CD 相交于点E,若∠CAD =35°,∠CDA =40°,则∠E 的度数是( )A.20°B.25°C.30°D.35°9.已知抛物线()()y x a x a 1=+--(a 为常数,a 0≠).有下列结论:①抛物线的对称轴为1x 2=;②方程()()x a x a 11+--=有两个不相等的实数根;③抛物线上有两点P(x 0,m),Q(1,n),若m n <,则00x 1<<;其中,正确结论的个数为( )A .0B .1C .2D .310.关于x 的一元一次不等式组213(1)x x x m--⎧⎨⎩<<有三个整数解,则m 的取值范围是( )A.5≤m<6 B.5<m<6 C.5≤m≤6D.5<m≤611.将抛物线y=﹣3x2先向右平移4个单位,再向下平移5个单位,所得图象的解析式为()A.y=﹣3(x﹣4)2﹣5 B.y=﹣3(x+4)2+5C.y=﹣3(x﹣4)2+5 D.y=﹣3(x﹣4)2﹣512.|-3|的值等于()A.3B.-3C.±3D.二、填空题13.不等式1﹣x≥2的解集是_____.14.计算:2cos60°﹣(3+1)0=_____.15.16的平方根等于_________.16.计算(-3x2y)•(13xy2)=_____________.17.已知一组数据:1,4,x,2,6,9,若这组数据的众数为2,则这组数据的平均数为_____,中位数为_____.18.如果分式有意义,那么x的取值范围是_____.三、解答题19.某运输公司现将一批152吨的货物运往A,B两地,若用大小货车15辆,则恰好能一次性运完这批货.已知这两种大小货车的载货能力分别为12吨/辆和8吨/辆,其运往A,B两地的运费如下表所示:目的地(车型) A地(元/辆) B地(元/辆)大货车800 900小货车400 600(1)求这15辆车中大小货车各多少辆.(用二元一次方程组解答)(2)现安排其中的10辆货车前往A地,其余货车前往B地,设前往A地的大货车为x辆,前往A,B两地总费用为w元,试求w与x的函数解析式.20.某体育健身中心为市民推出两种健身活动付费方式,第一种方式:办会员证,每张会员证300元,只限本人当年使用,凭证进入健身中心每次再付费20元;第二种方式:不办会员证,每次进入健身中心付费25元设小芳计划今年进入健身中心活动的次数为x(x为正整数).第一种方式的总费用为y1元,第二种方式的总费用为y2元(1)直接写出两种方式的总费用y1、y2分别与x的函数关系式;若小芳计划今年进入健身中心活动的总费用为1700元,选择哪种付费方式,她进入健身中心活动的次数比较多.(2)当x>50时,小芳选择哪种付费方式更合算?并说明理由21.如图,已知在平面直角坐标系内,点A(1,﹣4),点B(3,3),点C(5,1)(1)画出△ABC;(2)画出△ABC关于y轴对称的△A1B1C1;(3)求四边形ABB1A1的面积.22.问题提出(1)如图①,在等腰Rt△ABC中,斜边AC=4,点D为AC上一点,连接BD,则BD的最小值为;问题探究(2)如图②,在△ABC中,AB=AC=5,BC=6,点M是BC上一点,且BM=4,点P是边AB上一动点,连接PM,将△BPM沿PM翻折得到△DPM,点D与点B对应,连接AD,求AD的最小值;问题解决(3)如图③,四边形ABCD是规划中的休闲广场示意图,其中∠BAD=∠ADC=135°,∠DCB=30°,AD =22km,AB=3km,点M是BC上一点,MC=4km.现计划在四边形ABCD内选取一点P,把△DCP建成商业活动区,其余部分建成景观绿化区.为方便进入商业区,需修建小路BP、MP,从实用和美观的角度,要求满足∠PMB=∠ABP,且景观绿化区面积足够大,即△DCP区域面积尽可能小.则在四边形ABCD内是否存在这样的点P?若存在,请求出△DCP面积的最小值;若不存在,请说明理由.23.如图,在△ABC中,AD平分∠BAC,按如下步骤作图:第一步,分别以点A、D为圆心,以大于12AD的长为半径在AD两侧作弧,交于两点M、N;第二步,连接MN分别交AB、AC于点E、F;第三步,连接DE、DF.若BD=6,AF=4,CD=3,求线段BE的长.24.计算:021(2019)12()2π---+-25.已知:如图,∠ACB =90°,AC =BC ,AD ⊥CE ,BE ⊥CE ,垂足分别是点D ,E .(1)求证:△BEC ≌△CDA ;(2)当AD =3,BE =1时,求DE 的长.【参考答案】***一、选择题 题号 1 2 3 4 5 6 7 8 9 10 11 12答案 C D C A C B A B D DA A二、填空题13.x≥314.015.±4.16.33x y -17.318.x≠3三、解答题19.(1)中大货车用8辆,小货车用7辆;(2)w =100x+9400(3≤x≤8,且x 为整数).【解析】【分析】(1)根据表格列出二元一次方程,再根据二元一次方程的解法计算即可.(2)根据费用的计算,列出费用和大货车x 的关系即可.【详解】(1)设大货车用x 辆,小货车用y 辆,根据题意得: 15128152x y x y +=⎧⎨+=⎩ , 解得:87x y =⎧⎨=⎩.故这15辆车中大货车用8辆,小货车用7辆.(2)设前往A地的大货车为x辆,前往A,B两地总费用为w元,则w与x的函数解析式:w=800x+900(8﹣x)+400(10﹣x)+600[7﹣(10﹣x)]=100x+9400(3≤x≤8,且x为整数).【点睛】本题主要考查二元一次方程组的应用,关键在于设出合适的未知数,再根据条件列出方程.20.(1)y1=20x+300,y2=25x;选择第一种付费方式,她进入健身中心活动的次数比较多;(2)当50<x<60时,选择第二种付费方式更合算;当x>60,选择第一种付费方式更合算.【解析】【分析】(1)根据题意列出函数关系式即可;再把y=1700分别代入函数关系式即可求解;(2)根据(1)中的函数关系式列不等式即可得到结论.【详解】解:(1)根据题意得y1=20x+300,y2=25x;第一种方式:20x+300=1700,解得x=70,即她进入健身中心活动的次数为70次;第二种方式:25x=1700,解得x=68,即她进入健身中心活动的次数为68次;所以选择第一种付费方式,她进入健身中心活动的次数比较多;(2)当y1>y2,即20x+300>25x时,解得x<60,此时选择第二种付费方式更合算;当y1=y2,即20x+300=25x时,解得x=60,此时选择两种付费方式一样;当y1<y2,即20x+300<25x时,解得x>60,此时选择第一种付费方式更合算.所以当50<x<60时,选择第二种付费方式更合算;当x>60,选择第一种付费方式更合算.【点睛】本题考查一次函数的应用、一元一次不等式的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质解答.21.(1)见解析;(2)见解析;(3)28.【解析】【分析】(1)根据A,B,C三点坐标画出三角形即可.(2)分别作出A,B,C的对应点A1,B1,C1即可.(3)四边形是梯形,利用梯形的面积公式计算即可.【详解】解:(1)△ABC如图所示.(2)△A 1B 1C 1如图所示.(3)1112ABB A S =四边形×(2+6)×7=28. 【点睛】本题考查作图﹣轴对称变换,解题的关键是熟练掌握基本知识,属于中考常考题型.22.(1)2;(2)174-;(3) 存在点P ,使得△DCP 的面积最小,△DCP 面积的最小值是(2932﹣20)km 2. 【解析】【分析】(1)如图1,当BD ⊥AC 时,BD 的值最小,根据直角三角形斜边中线的性质可得结论;(2)如图2,根据BM =DM 可知:点D 在以M 为圆心,BM 为半径的⊙M 上,连接AM 交⊙M 于点D',此时AD 值最小,计算AM 和半径D'M 的长,可得AD 的最小值;(3)如图3,先确定点P 的位置,再求△DCP 的面积;假设在四边形ABCD 中存在点P ,以BM 为边向下作等边△BMF ,可知:A 、F 、M 、P 四点共圆,作△BMF 的外接圆⊙O ,圆外一点与圆心的连线的交点就是点P 的位置,并构建直角三角形,计算CD 和PQ 的长,由三角形的面积公式可求得面积.【详解】解:(1)当BD ⊥AC 时,如图1,∵AB =BC ,∴D 是AC 的中点,∴BD =12AC =12×4=2,即BD 的最小值是2; 故答案为:2;(2)如图2,由题意得:DM =MB ,∴点D 在以M 为圆心,BM 为半径的⊙M 上,连接AM 交⊙M 于点D',此时AD 值最小,过A作AE⊥BC于E,∵AB=AC=5,∴BE=EC=12BC=1632⨯=,由勾股定理得:AE=2253-=4,∵BM=4,∴EM=4﹣3=1,∴AM=2217AE EM+=,∵D'M=BM=4,∴AD'=AM﹣D'M=17﹣4,即线段AD长的最小值是17﹣4;(3)如图3,假设在四边形ABCD中存在点P,∵∠BAD=∠ADC=135°,∠DCB=30°,∴∠ABC=360°﹣∠BAD﹣∠ADC﹣∠DCB=60°,∵∠PMB=∠ABP,∴∠BPM=180°﹣∠PBM﹣∠PMB=180°﹣(∠PBM+∠ABP)=180°﹣∠ABC=120°,以BM为边向下作等边△BMF,作△BMF的外接圆⊙O,∵∠BFM+∠BPM =60°+120°=180°,则点P 在BM 上,过O 作OQ ⊥CD 于Q ,交⊙O 于点P ,设点P'是BM 上任意一点,连接OP',过P'作P'H ⊥CD 于H ,可得OP'+P'H≥OQ=OP+PQ ,即P'H≥PQ,∴P 即为所求的位置,延长CD ,BA 交于点E ,∵∠BAD =∠ADC =135°,∠DCB =30°,∠ABC =60°,∴∠E =90°,∠EAD =∠EDA =45°,∵AD =22 ,∴AE =DE =2,∴BE =AE+AB =5,BC =2BE =10,CE =53,∴BM =BC ﹣MC =6,CD =53﹣2,过O 作OG ⊥BM 于G ,∵∠BOM =2∠BFM =120°,OB =OM ,∴∠OBM =30°,∴∠ABO =∠ABM+∠MBO =90°,OB cos30BG ︒==23, ∴∠E =∠ABO =∠OQE =90°,∴四边形OBEQ 是矩形,∴OQ =BE =5,∴PQ =OQ ﹣OP =5﹣23, ∴S △DPC =11293(523)(532)222PQ CD ⋅=--= ﹣20, ∴存在点P ,使得△DCP 的面积最小,△DCP 面积的最小值是(2932﹣20)km 2. 【点睛】本题是四边形与圆的综合题,有难度,考查三角形的面积,等腰直角三角形的判定和性质,等边三角形,矩形的判定和性质,圆的有关性质等知识,解题的关键是学会添加常用辅助线,构造圆来解决问题,属于中考常考题型.23.8【解析】【分析】根据作法得到MN 是线段AD 的垂直平分线,则AE=DE ,AF=DF ,所以∠EAD=∠EDA ,加上∠BAD=∠CAD ,得到∠EDA=∠CAD ,则可判断DE ∥AC ,同理DF ∥AE ,于是可判断四边形AEDF 是平行四边形,加上EA=ED ,则可判断四边形AEDF 为菱形,所以AE=DE=DF=AF=4,然后利用平行线分线段成比例可计算BE 的长.【详解】解:根据作法可知:MN是线段AD的垂直平分线,∴AE=DE,AF=DF,∴∠EAD=∠EDA,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠EDA=∠CAD,∴DE∥AC,同理DF∥AE,∴四边形AEDF是平行四边形,而EA=ED,∴四边形AEDF为菱形,∴AE=DE=DF=AF=4,∵DE∥AC,∴BE:AE=BD:CD,即BE:4=6:3,∴BE=8.【点睛】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了菱形的判定与性质和平行线分线段成比例.24.5-23【解析】【分析】运用负指数幂、零次方以及二次根式的化简的知识进行化简,然后计算即可.【详解】解:原式=1-23+4=5-23.【点睛】本题考查了负指数幂、零次方以及二次根式的化简,其解题关键在于运用相关知识对原式进行化简. 25.(1)见解析;(2)2【解析】【分析】(1)根据垂直定义求出∠BEC=∠ACB=∠ADC,根据等式性质求出∠ACD=∠CBE,根据AAS证明△BCE≌△CAD;(2)根据全等三角形的对应边相等得到AD=CE,BE=CD,利用DE=CE-CD,即可解答.【详解】(1)证明:∵AD⊥CE,BE⊥CE,∴∠ADC=∠E=90°,∵∠ACB=90°,∴∠ACD+∠BCE=90°,∠∠CBE=90°,∴∠ACD=∠CBE,在△ADC和△CEB中,ADC E90 ACD CBE AC BC ︒⎧∠=∠=⎪∠=∠⎨⎪=⎩,∴△ADC≌△CEB(AAS),(2)解:∵△ADC≌△CEB,∴BE=CD=1,AD=EC=3,∴DE=CE﹣CD=3﹣1=2.【点睛】本题考查了全等三角形的性质和判定,垂线的定义等知识点的应用,解此题的关键是推出证明△ADC和△CEB全等的三个条件.。
三角形的重心定理及其证明

三角形的重心定理及其证明积石中学王有华同学们在学习几何时,常常用到三角形的重心定理.但很多同学不会证明这个定理?下面给出三种证明方法,你阅读后想一想,哪一种证明方法最好.已知:(如图)设ABC 中,L 、M 、N 分别是BC 、CA 、AB 的中点.求证:AL 、BM 、CN 相交于一点G ,且AG ﹕GL= BG ﹕GM= CG ﹕GN=2﹕1. 证明1(平面几何法):(如图1)假设中线AL 与BM 交于G ,而且假设C 与G 的连线与AB 边交于N ,首先来证明N 是AB 的中点.现在,延长GL ,并在延长线上取点D ,使GL=LD 。
因为四边形BDCG 的对角线互相平分,所以BDCG 是平行四边形.从而,B G ∥DC ,即GM ∥DC.但M 是AC 的中点,因此,G 是AD 的中点.另一方面,GC ∥BD ,即NG ∥BD.但G 是AD 的中点,因此N 是AB 的中点.另外,G 是AD 的中点,因此AG ﹕GL=2﹕1.同理可证: BG ﹕GM=2﹕1, CG ﹕GN=2﹕1.这个点G 被叫做ABC 的重心.证明2(向量法):(如图2)在ABC 中,设AB 边上的中B C线为CN ,AC 边上的中线为BM ,其交点为G ,边BC 的中点为L ,连接AG 和GL ,因为B 、G 、M 三点共线,且M 是AC 的中点,所以向量BG ∥BM ,所以,存在实数1λ ,使得 1BG BM λ=,即 1()AG AB AM AB λ-=-所以,11(1)AG AM AB λλ=+-=111(1)2AC AB λλ+- 同理,因为C 、G 、N 三点共线,且N 是AB 的中点. 所以存在实数2λ,使得 22(1)AG AN AC λλ=+-= 221(1)2AB AC λλ+- 所以 111(1)2AC AB λλ+- = 221(1)2AB AC λλ+- 又因为 AB 、 AC 不共线,所以1221112112λλλλ=-=-⎧⎨⎩ 所以 1223λλ== ,所以 1133AG AB AC =+ . 因为L 是BC 的中点,所以GL GA AC CL =++ =111()332AB AC AC CB -+++ =121()332AB AC AB AC -++- =1166AB AC +,即2AG GL =,所以A 、G 、L 三点共线.故AL 、BM 、CN 相交于一点G ,且AG ﹕GL= BG ﹕GM= CG ﹕GN=2﹕1C证明3(向量法)(如图3)在ABC 中,BC 的中点L 对应于1()2OL OB OC =+, 中线AL 上的任意一点G ,有(1)OG OA OL λλ=+- 1122OA OB OC λλλ--=++.同理,AB 的中线CN 上的任意点G ′,1122OG OC OA OB μμμ--'=++,求中线AL 和CN 的交点,就是要找一个λ和一个μ,使OG OG '=.因此,我们令12μλ-=,1122λμ--=,12λμ-=.解之得13λμ==.所以111333OG OG OA OB OC '==++.由对称性可知,第三条中线也经过点G . 故AL 、CN 、BM 相交于一点G ,且易证AG ﹕GL= BG ﹕GM= CG ﹕GN=2﹕1.。
三角形重心向量结论推导

三角形重心向量结论推导
三角形是初中数学中常见的一个几何图形,它具有丰富的性质和定理。
其中,三角形重心向量是一个重要的概念,在数学物理学中应用广泛。
本文将介绍三角形重心向量的定义及其推导过程。
首先,我们来定义三角形的重心向量:
定义:设三角形ABC的重心为G,向量AG、BG、CG分别为向量a、向量b、向量c,则三角形ABC的重心向量为:
G = 1/3(G + G + G)
接下来,我们来推导重心向量的公式。
假设三角形ABC的顶点坐标分别为A (x1,y1),B (x2,y2),C (x3,y3)。
那么,向量AG的坐标为(X1,Y1)-(Xg,Yg),向量BG的坐标为(X2,Y2)-(Xg,Yg),向量CG的坐标为(X3,Y3)-(Xg,Yg)。
其中,重心G的坐标为:
Xg = (x1 + x2 + x3) / 3,Yg = (y1 + y2 + y3) / 3
现在,我们来计算重心向量:
= [0, 0]
由推导可知,三角形的重心向量是一个位于原点的向量。
这表明重心向量的大小和方向不受三角形形状和大小的影响,只与三角形的顶点坐标有关。
因此,我们可以在使用三角形重心向量时利用这个特性来进行计算,从而简化问题。
最后,需要注意的是,在实际应用中,我们也可以利用向量之间的线性运算(加法、减法、数乘等)来计算三角形重心向量,并利用重心向量来推导出一些相关的结论和定理。
总的来说,三角形重心向量是一个非常重要的概念,在数学、物理、机械等领域有着广泛的应用。
通过本文的推导,希望能够让读者对三角形重心向量有更深入的认识和理解。
等边三角形的重心

等边三角形的重心重心的性质1.重心到顶点的距离与重心到对边中点的距离之比为2:1。
2.重心和三角形3个顶点组成的3个三角形面积相等。
3.重心到三角形3个顶点距离的平方和最小。
4.在平面直角坐标系中,重心的坐标是顶点坐标的算术平均。
5.重心是三角形内到三边距离之积最大的点。
6.三角形aBC的重心为G,点P为其内部任意一点,则3PG²=(aP²+BP²+CP ²)-1/3(aB²+BC²+Ca²)。
7.在三角形aBC中,过重心G的直线交aB、aC所在直线分别于P、Q,则aB/aP+aC/aQ=3。
8.从三角形aBC的三个顶点分别向以他们的对边为直径的圆作切线,所得的6个切点为Pi,则Pi均在以重心G为圆心,r=1/18(aB²+BC²+Ca²)为半径的圆周上。
9、G为三角形aBC的重心,P为三角形aBC所在平面上任意一点,则Pa²+PB²+PC²=Ga²+GB²+GC²+3PG²。
顺口溜三条中线必相交,交点命名为重心;重心分割中线段,线段之比二比一。
三角形的五心1、内心:三角形三条内角平分线的交点,即内切圆的圆心。
内心是三角形角平分线交点的原理:经圆外一点作圆的两条切线,这一点与圆心的连线平分两条切线的夹角(原理:角平分线上点到角两边距离相等)。
2、外心:是三角形三条边的垂直平分线的交点,即外接圆的圆心。
外心定理:三角形的三边的垂直平分线交于一点。
该点叫做三角形的外心。
3、中心:三角形只有五种心重心、垂心、内心、外心、旁心,当且仅当三角形是正三角形的时候,四心合一心,称做正三角形的中心。
4、重心:重心是三角形三边中线的交点。
5、旁心:三角形的一条内角平分线与其他两个角的外角平分线交于一点,该点即为三角形的旁心。
旁心到三角形三边的距离相等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角形的重心定理及其证明
积石中学王有华
同学们在学习几何时,常常用到三角形的重心定理.但很多同学不会证明这个定理?下面给出三种证明方法,你阅读后想一想,哪一种证明方法最好.
已知:(如图)设ABC 中,L 、M 、N 分
别是BC 、CA 、AB 的中点.
求证:AL 、BM 、CN 相交于一点G ,且
AG ﹕GL= BG ﹕GM= CG ﹕GN=2﹕1. 证明1(平面几何法):(如图1)假设中
线AL 与BM 交于G ,而且假设C 与G 的连线与AB 边交于N ,首先来证明N 是AB 的中点.
现在,延长GL ,并在延长线上取点D ,使GL=LD 。
因为四边形BDCG 的对角线互相平分,所以BDCG 是平行四边形.从而,B G ∥DC ,即GM ∥DC.但M 是AC 的中点,因此,G 是AD 的中点.
另一方面,GC ∥BD ,即NG ∥BD.但G 是AD 的中点,因此N 是AB 的中点.
另外,G 是AD 的中点,因此AG ﹕GL=2﹕1.同理可证: BG ﹕GM=2﹕1, CG ﹕GN=2﹕1.
这个点G 被叫做ABC 的重心.
证明2(向量法):(如图2)在ABC 中,设AB 边上的中B C
线为CN ,AC 边上的中线为BM ,其交点为
G ,边BC 的中点为L ,连接AG 和GL ,因
为B 、G 、M 三点共线,且M 是AC 的中点,
所以向量BG ∥BM ,所以,存在实数1λ ,使得 1BG BM λ=,即 1()AG AB AM AB λ-=-
所以,11(1)AG AM AB λλ=+-
=111(1)2
AC AB λλ+- 同理,因为C 、G 、N 三点共线,且N 是AB 的中点. 所以存在实数2λ,使得 22(1)AG AN AC λλ=+-
= 221(1)2
AB AC λλ+- 所以 111(1)2AC AB λλ+- = 221(1)2
AB AC λλ+- 又因为 AB 、 AC 不共线,所以
1221112112λλλλ=-=-⎧⎨⎩ 所以 1223λλ== ,所以 1133
AG AB AC =+ . 因为L 是BC 的中点,所以GL GA AC CL =++ =111()332
AB AC AC CB -+++ =121()332AB AC AB AC -++- =1166
AB AC +,即2AG GL =,所以A 、G 、L 三点共线.故AL 、BM 、CN 相交于一点G ,且AG ﹕GL= BG ﹕GM= CG ﹕GN=2﹕1
C
证明3(向量法)(如图3)在ABC 中,
BC 的中点L 对应于1()2OL OB OC =+, 中线AL 上的任意一点G ,有
(1)OG OA OL λλ=+- 1122OA OB OC λλλ--=++.同理,AB 的中线
CN 上的任意点G ′,1122OG OC OA OB μ
μ
μ--'=++,
求中线AL 和CN 的交点,就是要找一个λ和一个μ,使OG OG '=.因此,我们令12μλ-=,1122λ
μ--=,12λ
μ-=.解之得13λμ==.所以111
333OG OG OA OB OC '==++.由对称性可知,
第三条中线也经过点G . 故AL 、CN 、BM 相交于一点G ,且易证AG ﹕GL= BG ﹕GM= CG ﹕GN=2﹕1.。