初中升高中保送卷——数学及答案201327
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中升高中保送卷——数学
(时间:120分钟 满分:120分)
一、选择题 (共12小题,每小题4分,共48分) 1.已知M ={x|y=x 2-1}, N={y|y=x 2-1},N M ⋂等于 A. N B. M C.R D.Φ
2.已知31
)53(-=a ,21
)35(=b ,21
)3
4(-
=c ,则a,b,c 三个数的大小关系是
A b a c <<
B a b c <<
C c b a <<
D c a b <<
3.若,m n 表示两条直线,α表示平面,则下列命题中,正确命题的个数为
①//m n n m αα⎫⇒⊥⎬⊥⎭;②//m m n n αα⊥⎫⇒⎬⊥⎭;③//m m n n αα⊥⎫⇒⊥⎬⎭;④//m n m n αα⎫⇒⊥⎬⊥⎭
A.1个
B.2个
C.3个
D.4个
4.若点A(-2,-3 ),B(-3,-2 ),直线ι过点P( 1,1 )且与线段AB 相交,则ι的斜率k 的取值范围是
A.34k ≤
或43k ≥ B.43k ≤-或34k ≥- C.3443k ≤≤ D. 43
34
k -≤≤- 5.函数)1(log )(2
1-=x x f 的定义域是
A .(),1+∞ B. (),2+∞ C.()2,∞- D.(1,2) 6.点P 在直线04=-+y x 上,O 为原点,则|OP|的最小值为 A.-2
B 22 C
6 D 10
7.已知一个几何体它的主视图和左视图上都是一个长为4,宽为2的矩形,俯视图是一个半径为2的圆,则此几何体的表面积为
A 8π
B 12π
C 16π
D 32π 8.已知函数f (n )=⎩
⎨
⎧≤+>-),10)](5([),
10(3n n f f n n 其中n ∈N ,则f (8)等于
A.2
B.4
C.9
D.7
9.若直线ax by a b R +-=∈240(),始终平分圆x y x y 2
2
4240+---=的周长,则ab 的取值范围是
A. (0,1)
B. (]-∞,1
C. (-∞,1)
D. (0,1]
10.已知函数()f x 是定义在R 上的偶函数,当0()(1)x f x x x ≥=-时,,则当
0()x f x <=时,
A ()(1)f x x x =-
B ()(1)f x x x =--
C ()(1)f x x x =+
D ()(1)f x x x =-+ 11.已知实数y x ,满足0126422=++-+y x y x ,则22--y x 的最小值是 A. 55- B. 54- C. 5 D. 4
12.定义在R 上的函数()f x 满足()()()2f x y f x f y xy +=++(x y ∈R ,),(
1)2f =,则(2)f -等于
A .2
B .-2
C .6
D .9
二、填空题 (共4小题,每小题4分,共16分) 13.幂函数k
x k k y ---=112
)22(在(0,+∞)上是减函数,则k =_________.
14函数()0,1x
y a
a a =>≠在[]1,2上的最大值与最小值的和为6,则a 的值= .
15.已知正方体的外接球的体积是
π3
32
,那么正方体的棱长等于 . 16.两圆相交于点A (1,3)、B (m ,-1),两圆的圆心均在直线x -y +c=0上,则m+c 的值为 __________.
三、解答题(共6个大题,共56分,写出必要的文字说明) 17.(本小题8分)不用计算器求下列各式的值
⑴ ()()
1
22
3
02
1329.63 1.548--⎛⎫
⎛⎫ ⎪ ⎪⎝⎭⎝⎭
---+ ⑵
7log 23
log lg25lg473
+++
18.(本小题8分)已知直线l过点P(1,1),并与直线l1:x-y+3=0和l2:2x+y-6=0分别交于点A、B,若线段AB被点P平分,求:
(1)直线l的方程;(2)以O为圆心且被l截得的弦长为
55
8
的圆的方程.
19.(本小题8分)某租赁公司拥有汽车100辆.当每辆车的月租金为3000元时,可全部租
出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆。每辆租出的车每月需要花费租赁公司维护费200元。
(1)当每辆车的月租金定为3600元时,能租出多少辆车?
(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少元?
20. (本小题10分)如图,ABCD 是正方形,O
PO ⊥底面ABCD ,E 是PC 的中点.
求证:(1)PA∥平面BDE ;(2)平面PAC ⊥平面BDE .
21.(本小题10分)对于函数()()()0,212≠-+++=a b x b ax x f ,若存在实数0x ,使
()0x f =0x 成立,则称0x 为()x f 的不动点.
⑴当2,2-==b a 时,求()x f 的不动点;
⑵若对于任意实数b ,函数()x f 恒有两个不相同的不动点,求a 的取值范围.