七年级上学期数学期末考试试卷及答案

合集下载

2023-2024学年北京市通州区七年级(上)期末数学试卷及答案解析

2023-2024学年北京市通州区七年级(上)期末数学试卷及答案解析

2023-2024学年北京市通州区七年级(上)期末数学试卷一、选择题(本题共8个小题,每小题2分,共16分)每题均有四个选项,符合题意的选项只有一个.1.(2分)《九章算术》中注“今两算得失相反,要令正负以名之”,意思是:有两数若其意义相反,则分别叫做正数和负数.若气温为零上10℃记作+10℃,则﹣8℃表示气温为()A.零上8℃B.零下8℃C.零上2℃D.零下2℃2.(2分)下列各数中,﹣3的倒数是()A.3B.C.D.﹣33.(2分)下列算式中:①2﹣(﹣2)=0;②(﹣3)﹣(+3)=0;③(﹣3)﹣|﹣3|=0;④0﹣(﹣1)=1.其中正确的有()A.1个B.2个C.3个D.4个4.(2分)2021年《中共中央国务院关于完整准确全面贯彻新发展理念做好碳达峰碳中和工作的总见》发布,明确了我国实现碳达峰碳中和的时间表、路线图,文件提出到2030年森林蓄积量达到190亿立方米.将19000000000用科学记数法表示应为()A.19×1010B.1.9×1010C.0.19×1011D.1.9×109 5.(2分)下列方程中变形正确的有()①3x+6=0变形为x+2=0;②﹣2x+4=5﹣x变形为﹣3x=1;③变形为4x=15;④4x=2变形为x=2.A.①④B.①③C.①②③D.①②④6.(2分)如图,是一个无盖正方体盒子,盒底标有一个字母m,现沿箭头所指方向将盒子剪开,则展开后的图形是()A.B.C.D.7.(2分)下列说法:①当a是有理数时,3+a>3﹣a;②当a是有理数时,总有|a|>0;③当a是有理数时,a2≥0;④当a是正有理数时,其中正确的序号是()A.①B.②C.③D.④8.(2分)远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”.如图,一位母亲在从右到左依次排列的绳子上打结,满七进一,用来记录孩子自出生后的天数,由图可知,孩子自出生后的天数是()A.41天B.11天C.167天D.461天二、填空题(本题共8个小题,每小题2分,共16分)9.(2分)方程1﹣3x=0的解是.10.(2分)将多项式5x2﹣4﹣3x3按x的降幂排列为:.11.(2分)如图,小军从村庄(点O所在位置)到公路(直线l)有四条小道,分别是OA,OB,OC,OD,其中路程最短的是OC,小军判断的依据是.12.(2分)请用代数式表示“x与y差的平方”:.13.(2分)如果3ab2m﹣1与ab m+1是同类项,则m的值是.14.(2分)计算:180°﹣60°30'45″=.15.(2分)如图,是一副三角板拼成的一个四边形,拼成的图形中最大角的度数是.16.(2分)如图,a、b、c是数轴上点表示的有理数.计算:|a+b|﹣|a﹣c|﹣|b﹣1|=.三、解答题(17题5分,18-20每题6分,21-23每题5分,24-28每题6分,共68分)17.(5分)把下列各数:﹣4,|﹣3|,,﹣(﹣2),在数轴上表示出来,并用“<”把它们连接起来.18.(6分)计算:(1)﹣58﹣(﹣18)+45;(2).19.(6分)解方程.(1)7y+(3y﹣5)=y﹣2(7﹣3y)(2)=1.20.(6分)先化简,再求代数式的值:(1)x2+3xy﹣(2x2+4xy),其中x=﹣3,y=2.(2)6y3+4(x3﹣2xy)﹣2(3y3﹣xy),其中x=﹣2,y=3.21.(5分)已知代数式8x﹣7的值与代数式6﹣2x的值互为相反数,求x的值.22.(5分)如图,已知锐角∠AOC,按照下面给出的画法补全图形,并回答问题.(1)画法:①画∠AOC的角平分线OP,在射线OP上任意取一点E;②过点E画EM∥OA,交射线OC于点G.(2)问题:请通过观察、度量,判断你画出的图形中与∠AOP相等的角.直接写出两个即可.(∠AOP除外)23.(5分)七巧板是中国传统智力玩具,我们用下面方法制作一副七巧板:如图(1)所示,取一张正方形的硬纸板,联结对角线BD;分别取边BC、CD的中点E、F,连接EF;过点A作EF的垂线,分别交BD、EF于点G、点H;分别取BG、DG的中点M、N,联结MH、NF,沿图中实线剪开即可得到一副七巧板.小明将七巧板编上序号,如图(2).问题:(1)七巧板中的三角形、四边形板块中,与⑤号板块面积相等的有(填写序号).(2)小杰用七巧板拼成如图(3)所示的小房子,请你在小房子的图形上标注相应板块的序号.(3)小杰用七巧板拼成如图(4)所示的小鸽子图案,请你在小鸽子图案中通过连线画出七巧板中的每个图形板块.24.(6分)为了确保能够按时完成农田小麦收割任务,某小麦收割机配件车间需要在一周内完成2000件配件的生产任务.该车间接到任务后,计划平均每天加工400件,由于各种原因,每天实际加工的件数与每天计划加工的件数相比有出入,把超额或不足的部分分别用正、负数来表示,下表是这周加工这种配件的记录情况:星期一二三四五与每天的计划量相比的差值(单位:件)+55﹣20﹣25+60﹣50(1)这周共加工了件小麦收割机配件.(2)这周内加工最多的一天比加工最少的一天多加工了件.(3)已知该厂对这个车间实行计件工资制,每加工1件得10元,若超额完成任务,则超额部分每件再奖5元;若没有完成任务,则每少一件倒扣5元,求该车间这周的总收入.25.(6分)已知:线段AB上一点C,点D,E分别是线段AC,线段CB的中点,如果CD =3cm,AB=8cm,请求线段EB的长.26.(6分)某学校准备购买若干台电脑装备计算机教室,如果每个计算机教室安装40台,购买的电脑还缺15台;如果每个计算机教室安装35台,购买的电脑多出20台.学校购买了多少台电脑?装备多少个计算机教室?27.(6分)如图,点A,点B均在数轴上,且点A在点B的左侧,点A对应的有理数是﹣2,点B对应的有理数是m.(1)如果线段AB=2,则m=.(2)点C是线段AB上一点,点C对应的有理数是n,如果n=1,且2AC=CB,求m 的值.(3)点C是直线AB上一点,点C对应的有理数是n,且2AC=CB,求m的值(用含有n的代数式表示).28.(6分)已知有理数x、y满足方程3x﹣y=5①,2x+3y=7②,求x﹣4y和7x+5y的值.通过读题小凯发现题目中给出的方程是有两个未知数的方程,我们没有学习过,求值的代数式也有两个未知数.小凯观察发现如果方程①,方程②的左侧对应着相减,即:(3x ﹣y)﹣(2x+3y)化简后恰好出现代数式x﹣4y,方程①的左侧与方程②的左侧的2倍相加,即:(3x﹣y)+2(2x+3y)化简后恰好出现代数式7x+5y,依据所学知识可得:(3x ﹣y)﹣(2x+3y)=5﹣7=﹣2;(3x﹣y)+2(2x+3y)=5+2×7=19.因此,小凯求出:x﹣4y=﹣2,7x+5y=19.请你按照小凯思路解决下列问题:(1)如果4x+3y=15,x+2y=10,那么x+y=,2x﹣y=;(2)小凯为班集体购买活动奖品,第一次他购买了15支铅笔、5块橡皮、4本日记本共花了75元,第二次他购买了29支铅笔、9块橡皮、7本日记本共花了140元,第三次老师让小凯购买6支铅笔、6块橡皮、6本日记本共需要多少元?(3)对于有理数x、y,我们定义一个新运算:x*y=ax+by+c,等式右边是我们学习过的加法和乘法运算,其中a、b、c是常数,x,y是未知数.如果3*5=15,4*7=28,计算1*1的值.2023-2024学年北京市通州区七年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共8个小题,每小题2分,共16分)每题均有四个选项,符合题意的选项只有一个.1.(2分)《九章算术》中注“今两算得失相反,要令正负以名之”,意思是:有两数若其意义相反,则分别叫做正数和负数.若气温为零上10℃记作+10℃,则﹣8℃表示气温为()A.零上8℃B.零下8℃C.零上2℃D.零下2℃【分析】此题主要用正负数来表示具有意义相反的两种量:若零上记为正,则零下就记为负,直接得出结论即可.【解答】解:若气温为零上10℃记作+10℃,则﹣8℃表示气温为零下8℃.故选:B.【点评】此题主要考查正负数的意义,关键是理解正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负.2.(2分)下列各数中,﹣3的倒数是()A.3B.C.D.﹣3【分析】根据倒数定义,相乘得1的两个数互为倒数,即可得出答案.【解答】解:∵相乘得1的两个数互为倒数,且﹣3×﹣=1,∴﹣3的倒数是﹣.故选:B.【点评】题目考查了倒数的定义,题目整体较为简单,只要学生熟记倒数定义,即可轻松选对答案.3.(2分)下列算式中:①2﹣(﹣2)=0;②(﹣3)﹣(+3)=0;③(﹣3)﹣|﹣3|=0;④0﹣(﹣1)=1.其中正确的有()A.1个B.2个C.3个D.4个【分析】根据有理数的减法运算法则对各小题分别进行计算即可继续进行判断.【解答】解:①2﹣(﹣2)=2+2=4,故本小题错误;②(﹣3)﹣(+3)=﹣3﹣3=﹣6,故本小题错误;③(﹣3)﹣|﹣3|=﹣3﹣3=﹣6,故本小题错误;④0﹣(﹣1)=0+1=1,故本小题正确;综上所述,正确的有④共1个.故选:A.【点评】本题考查了有理数的减法,熟记减去一个数等于加上这个数的相反数是解题的关键.4.(2分)2021年《中共中央国务院关于完整准确全面贯彻新发展理念做好碳达峰碳中和工作的总见》发布,明确了我国实现碳达峰碳中和的时间表、路线图,文件提出到2030年森林蓄积量达到190亿立方米.将19000000000用科学记数法表示应为()A.19×1010B.1.9×1010C.0.19×1011D.1.9×109【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,且n比原来的整数位数少1,据此判断即可.【解答】解:19000000000=1.9×1010.故选:B.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.5.(2分)下列方程中变形正确的有()①3x+6=0变形为x+2=0;②﹣2x+4=5﹣x变形为﹣3x=1;③变形为4x=15;④4x=2变形为x=2.A.①④B.①③C.①②③D.①②④【分析】根据等式的性质,逐一判断即可解答.【解答】解:①3x+6=0变形为x+2=0,故①正确;②﹣2x+4=5﹣x变形为﹣x=1,故②不正确;③变形为4x=15,故③正确;④4x=2变形为x=,故④不正确;所以,上列方程中变形正确的有①③,故选:B.【点评】本题考查了解一元一次方程,等式的性质,熟练掌握等式的性质是解题的关键.6.(2分)如图,是一个无盖正方体盒子,盒底标有一个字母m,现沿箭头所指方向将盒子剪开,则展开后的图形是()A.B.C.D.【分析】由平面图形的折叠及正方体的展开图解题.【解答】解:∵正方体纸盒无盖,∴底面m没有对面,故选项C、D不符合题意,∵现沿箭头所指方向将盒子剪开,∴底面与侧面的从左边数第1个正方形相连,只有A选项图形符合.故选:A.【点评】本题考查了正方体相对两个面上的文字,熟练掌握根据正方体的表面展开图找相对面的方法是解题的关键.7.(2分)下列说法:①当a是有理数时,3+a>3﹣a;②当a是有理数时,总有|a|>0;③当a是有理数时,a2≥0;④当a是正有理数时,其中正确的序号是()A.①B.②C.③D.④【分析】根据有理数的大小比较,非负数的性质及有理数的相关概念逐项判断即可.【解答】解:当a<0时,3+a<3﹣a,则①错误;当a=0时,|a|=0,则②错误;当a是有理数时,a2≥0,则③正确;当a=1时,a=,则④错误;综上,正确的是③,故选:C.【点评】本题考查有理数的大小比较,非负数的性质及有理数的相关概念,举出反例是解题的关键.8.(2分)远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”.如图,一位母亲在从右到左依次排列的绳子上打结,满七进一,用来记录孩子自出生后的天数,由图可知,孩子自出生后的天数是()A.41天B.11天C.167天D.461天【分析】由于从右到左依次排列的绳子上打结,满七进一,所以从右到左的数分别为6,2×7,2×7×7和1×7×7×7,然后把它们相加即可.【解答】解:孩子自出生后的天数是:1×7×7×7+2×7×7+2×7+6=343+98+14+6=461,答:孩子自出生后的天数是461天.故选:D.【点评】本题考查了用数字表示事件.本题是以古代“结绳计数”为背景,按满七进一计算自孩子出生后的天数,运用了类比的方法,根据图中的数学列式计算;本题题型新颖,一方面让学生了解了古代的数学知识,另一方面也考查了学生的思维能力.二、填空题(本题共8个小题,每小题2分,共16分)9.(2分)方程1﹣3x=0的解是x=.【分析】方程移项,把x系数化为1,即可求出解.【解答】解:方程移项得:3x=1,解得:x=.故答案为:x=.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.10.(2分)将多项式5x2﹣4﹣3x3按x的降幂排列为:﹣3x3+5x2﹣4.【分析】运用多项式的降幂排列知识进行求解.【解答】解:由题意得,将多项式5x2﹣4﹣3x3按x的降幂排列为﹣3x3+5x2﹣4,故答案为:﹣3x3+5x2﹣4.【点评】此题考查了将多项式进行降幂排列的能力,关键是能准确理解并运用该知识进行求解.11.(2分)如图,小军从村庄(点O所在位置)到公路(直线l)有四条小道,分别是OA,OB,OC,OD,其中路程最短的是OC,小军判断的依据是垂线段最短.【分析】由垂线段最短,即可得到答案.【解答】解:小军判断的依据是垂线段最短.故答案为:垂线段最短.【点评】本题考查垂线段最短,关键是掌握垂线段最短.12.(2分)请用代数式表示“x与y差的平方”:(x﹣y)2.【分析】先表示出x与y的差,最后表示出平方即可.【解答】解:x与y差的平方表示为(x﹣y)2.故答案为:(x﹣y)2.【点评】此题主要考查了列代数式,列代数式的关键是正确理解文字语言中的关键词,比如该题中的“倍”、“差”、“平方”等,从而明确其中的运算关系,正确地列出代数式.13.(2分)如果3ab2m﹣1与ab m+1是同类项,则m的值是2.【分析】根据同类项的定义,含有相同的字母,并且相同字母的指数也相同,列出等式,直接计算即可.【解答】解:根据题意,得:2m﹣1=m+1,解得:m=2.故答案为:2.【点评】本题主要考查同类项的定义,熟记同类项的定义是解决此题的关键.14.(2分)计算:180°﹣60°30'45″=119°29′15″.【分析】根据度分秒的进制,进行计算即可解答.【解答】解:∵180°﹣60°30'45″=179°59′60″﹣60°30'45″=119°29′15″,故答案为:119°29′15″.【点评】本题考查了度分秒的换算,准确熟练地进行计算是解题的关键.15.(2分)如图,是一副三角板拼成的一个四边形,拼成的图形中最大角的度数是105°.【分析】根据三角板的度数解答即可.【解答】解:由题意可知,拼成的图形中最大角的度数是45°+60°=105°.故答案为:105°.【点评】本题考查三角形内角和定理,熟记三角板的度数是解题的关键.16.(2分)如图,a、b、c是数轴上点表示的有理数.计算:|a+b|﹣|a﹣c|﹣|b﹣1|=﹣c ﹣1.【分析】根据数轴判断出a、b、c的正负情况以及绝对值的大小,然后求出a+b,a﹣c,b﹣1的正负情况,再根据绝对值的性质去掉绝对值号,然后合并同类项即可得解.【解答】解:由图可知:b<a<0<c<1,所以可得a+b<0,a﹣c<0,b﹣1<0,|a+b|﹣|a﹣c|﹣|b﹣1|=﹣a﹣b+a﹣c+b﹣1=﹣c﹣1,故答案为:﹣c﹣1.【点评】本题考查了数轴,绝对值的性质,以及合并同类项,根据数轴判断出a、b、c 的正负情况以及绝对值的大小是解题的关键.三、解答题(17题5分,18-20每题6分,21-23每题5分,24-28每题6分,共68分)17.(5分)把下列各数:﹣4,|﹣3|,,﹣(﹣2),在数轴上表示出来,并用“<”把它们连接起来.【分析】先化简各数,然后根据正负数的定义把各数表示在数轴上,最后根据数轴上左边的数总比右边的数小得出比较结果.【解答】解:|﹣3|=3,,﹣(﹣2)=2,把各数表示在数轴上如下:∴.【点评】本题考查了数轴,绝对值,相反数,有理数的大小比较,熟练掌握有理数的大小比较方法是解题的关键.18.(6分)计算:(1)﹣58﹣(﹣18)+45;(2).【分析】(1)利用有理数的加减法则计算即可;(2)先算乘方,再算乘除,最后算减法即可.【解答】解:(1)原式=﹣58+18+45=﹣40+45=5;(2)原式=﹣1﹣(﹣)×÷9=﹣1﹣(﹣)××=﹣1+=﹣.【点评】本题考查有理数的运算,熟练掌握相关运算法则是解题的关键.19.(6分)解方程.(1)7y+(3y﹣5)=y﹣2(7﹣3y);(2)=1.【分析】(1)方程去括号,移项合并,把y系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:7y+3y﹣5=y﹣14+6y,移项合并得:3y=﹣9,解得:y=﹣3;(2)去分母得:2x﹣5﹣9x﹣3=6,移项合并得:﹣7x=14,解得:x=﹣2.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.20.(6分)先化简,再求代数式的值:(1)x2+3xy﹣(2x2+4xy),其中x=﹣3,y=2.(2)6y3+4(x3﹣2xy)﹣2(3y3﹣xy),其中x=﹣2,y=3.【分析】将原式去括号,合并同类项后代入数值计算即可.【解答】解:(1)原式=x2+3xy﹣2x2﹣4xy=﹣x2﹣xy;当x=﹣3,y=2时,原式=﹣(﹣3)2﹣(﹣3)×2=﹣9+6=﹣3;(2)原式=6y3+4x3﹣8xy﹣6y3+2xy=4x3﹣6xy;当x=﹣2,y=3时,原式=4×(﹣2)3﹣6×(﹣2)×3=﹣32+36=4.【点评】本题考查整式的化简求值,熟练掌握相关运算法则是解题的关键.21.(5分)已知代数式8x﹣7的值与代数式6﹣2x的值互为相反数,求x的值.【分析】根据题意,先列出方程,再求方程的解.【解答】解:∵8x﹣7的值与代数式6﹣2x的值互为相反数,∴8x﹣7+6﹣2x=0.∴6x﹣1=0.∴x=.【点评】本题考查了解一元一次方程,掌握解一元一次方程的一般步骤是解决本题的关键.22.(5分)如图,已知锐角∠AOC,按照下面给出的画法补全图形,并回答问题.(1)画法:①画∠AOC的角平分线OP,在射线OP上任意取一点E;②过点E画EM∥OA,交射线OC于点G.(2)问题:请通过观察、度量,判断你画出的图形中与∠AOP相等的角.直接写出两个即可.(∠AOP除外)【分析】(1)根据角平分线的作图方法作出OP,再在射线OP上任取一点E,结合平行线的判定与性质作∠MEP=∠AOP,直线ME与射线OC交于点G.(2)根据角平分线的定义以及平行线的性质可得答案.【解答】解:(1)如图所示.(2)图中与∠AOP相等的角有:∠COP,∠MEP,∠OEG(任意写出两个即可).【点评】本题考查作图—复杂作图、角平分线的定义、平行线的判定与性质,熟练掌握角平分线的定义、平行线的判定与性质是解答本题的关键.23.(5分)七巧板是中国传统智力玩具,我们用下面方法制作一副七巧板:如图(1)所示,取一张正方形的硬纸板,联结对角线BD;分别取边BC、CD的中点E、F,连接EF;过点A作EF的垂线,分别交BD、EF于点G、点H;分别取BG、DG的中点M、N,联结MH、NF,沿图中实线剪开即可得到一副七巧板.小明将七巧板编上序号,如图(2).问题:(1)七巧板中的三角形、四边形板块中,与⑤号板块面积相等的有③⑦(填写序号).(2)小杰用七巧板拼成如图(3)所示的小房子,请你在小房子的图形上标注相应板块的序号.(3)小杰用七巧板拼成如图(4)所示的小鸽子图案,请你在小鸽子图案中通过连线画出七巧板中的每个图形板块.【分析】(1)根据题意找出与⑤号板块面积相等的有图形即可;(2)根据图(2)中图形的序号标注图(3)即可;(3)根据图(2)中的图形画出七巧板中的每个图形板块.【解答】解:(1)七巧板中的三角形、四边形板块中,与⑤号板块面积相等的有③⑦,故答案为:③⑦;(2)如图所示;(3)如图所示.【点评】本题考查了七巧板,正确地识别图形是解题的关键.24.(6分)为了确保能够按时完成农田小麦收割任务,某小麦收割机配件车间需要在一周内完成2000件配件的生产任务.该车间接到任务后,计划平均每天加工400件,由于各种原因,每天实际加工的件数与每天计划加工的件数相比有出入,把超额或不足的部分分别用正、负数来表示,下表是这周加工这种配件的记录情况:星期一二三四五与每天的计划量相比的差值(单位:件)+55﹣20﹣25+60﹣50(1)这周共加工了2020件小麦收割机配件.(2)这周内加工最多的一天比加工最少的一天多加工了110件.(3)已知该厂对这个车间实行计件工资制,每加工1件得10元,若超额完成任务,则超额部分每件再奖5元;若没有完成任务,则每少一件倒扣5元,求该车间这周的总收入.【分析】(1)根据正数和负数的实际意义列式计算即可;(2)根据正数和负数的实际意义列式计算即可;(3)结合(1)中所求列式计算即可.【解答】解:(1)2000+(55﹣20﹣25+60﹣50)=2000+20=2020(件),即这周共加工了2020件小麦收割机配件,故答案为:2020;(2)60﹣(﹣50)=60+50=110(件),即这周内加工最多的一天比加工最少的一天多加工了110件,故答案为:110;(3)2020×10+20×5=20200+100=20300(元),即该车间这周的总收入为20300元.【点评】本题考查正数和负数及有理数运算的实际应用,结合已知条件列得正确的算式是解题的关键.25.(6分)已知:线段AB上一点C,点D,E分别是线段AC,线段CB的中点,如果CD =3cm,AB=8cm,请求线段EB的长.【分析】根据线段中点的定义即可得到结论.【解答】解:∵点D是线段AC的中点,∴AC=2CD=6(cm),∵AB=8cm,∴BC=AB﹣AC=8﹣6=2(cm),∵E是线段CB的中点,∴BE=BC=1(cm),故线段EB的长为1cm.【点评】本题考查了两点间的距离,利用线段中点的性质得除DC,CE的长是解题关键.26.(6分)某学校准备购买若干台电脑装备计算机教室,如果每个计算机教室安装40台,购买的电脑还缺15台;如果每个计算机教室安装35台,购买的电脑多出20台.学校购买了多少台电脑?装备多少个计算机教室?【分析】设装备x个计算机教室,根据“每个计算机教室安装40台,购买的电脑还缺15台;每个计算机教室安装35台,购买的电脑多出20台”,可列出关于x的一元一次方程,解之可求出装备计算机教室的个数,再将其代入(40x﹣15)中,即可求出学校购买电脑的台数.【解答】解:设装备x个计算机教室,根据题意得:40x﹣15=35x+20,解得:x=7,∴40x﹣15=40×7﹣15=265(台).答:学校购买了265台电脑,装备7个计算机教室.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.27.(6分)如图,点A,点B均在数轴上,且点A在点B的左侧,点A对应的有理数是﹣2,点B对应的有理数是m.(1)如果线段AB=2,则m=0.(2)点C是线段AB上一点,点C对应的有理数是n,如果n=1,且2AC=CB,求m 的值.(3)点C是直线AB上一点,点C对应的有理数是n,且2AC=CB,求m的值(用含有n的代数式表示).【分析】(1)由数轴上任意两点间的距离=这两点表示的数的差的绝对值就可以求出结论;(2)由数轴上任意两点间的距离=这两点表示的数的差的绝对值就可以表示出AC和CB 的长度,再根据2AC=CB得出含有m的方程式即可得到答案;(3)进行分类讨论,同(2)建立含有m的方程式即可得到答案.【解答】解:(1)m=﹣2+2=0;故答案为:0;(2)AC=1﹣(﹣2)=3,BC=m﹣1,∵2AC=CB,∴2×3=m﹣1,解得:m=7;(3)①若点C在点A的左侧,则AC=﹣2﹣n,BC=m﹣n,∵2AC=CB,∴2×(﹣2﹣n)=m﹣n,整理,得m=﹣n﹣4;②若点C在AB之间,则AC=n﹣(﹣2)=n+2,BC=m﹣n,∵2AC=CB,∴2(2+n)=m﹣n,整理,得m=3n+4;③若点C在点B的右侧,则AC>CB,不合题意,舍去;综上所述:m=﹣n﹣4或m=3n+4.【点评】本题主要考查数轴上两点之间的长度,解决本题的关键是当点C在直线AB上时要进行分类讨论.28.(6分)已知有理数x、y满足方程3x﹣y=5①,2x+3y=7②,求x﹣4y和7x+5y的值.通过读题小凯发现题目中给出的方程是有两个未知数的方程,我们没有学习过,求值的代数式也有两个未知数.小凯观察发现如果方程①,方程②的左侧对应着相减,即:(3x ﹣y)﹣(2x+3y)化简后恰好出现代数式x﹣4y,方程①的左侧与方程②的左侧的2倍相加,即:(3x﹣y)+2(2x+3y)化简后恰好出现代数式7x+5y,依据所学知识可得:(3x ﹣y)﹣(2x+3y)=5﹣7=﹣2;(3x﹣y)+2(2x+3y)=5+2×7=19.因此,小凯求出:x﹣4y=﹣2,7x+5y=19.请你按照小凯思路解决下列问题:(1)如果4x+3y=15,x+2y=10,那么x+y=5,2x﹣y=﹣5;(2)小凯为班集体购买活动奖品,第一次他购买了15支铅笔、5块橡皮、4本日记本共花了75元,第二次他购买了29支铅笔、9块橡皮、7本日记本共花了140元,第三次老师让小凯购买6支铅笔、6块橡皮、6本日记本共需要多少元?(3)对于有理数x、y,我们定义一个新运算:x*y=ax+by+c,等式右边是我们学习过的加法和乘法运算,其中a、b、c是常数,x,y是未知数.如果3*5=15,4*7=28,计算1*1的值.【分析】(1)由①﹣③可求得2x﹣y,由①+②可求得x+y;(2)设1支铅笔x元,1块橡皮y元,1本日记本z元,由题意:买15支铅笔、5块橡皮、4本日记本共需75元,买29支铅笔、9块橡皮、7本日记本共需140元,列出方程组,再由整体思想”求出x+y+z=10,即可得出结论;(3)由定义新运算:x※y=ax+by+c得3※5=3a+5b+c=15①,4※7=4a+7b+c=28②,求出a+b+c=﹣11,即可得出结论.【解答】解:(1)联立4x+3y=15,x+2y=10,得①+②,得5x+5y=25,∴x+y=5.②×2,得2x+4y=20,③①﹣③得:2x﹣y=﹣5.故答案为:5,﹣5;(2)设1支铅笔x元,1块橡皮y元,1本日记本z元,由题意得:,①×2﹣②得:x+y+z=10,即购买1支铅笔、1块橡皮、1本日记本共需10元;∴购买6支铅笔、6块橡皮、6本日记本共需要6(x+y+z)=6×10=60(元);(3)∵x※y=ax+by+c,∴3※5=3a+5b+c=15①,4※7=4a+7b+c=28②,②﹣①得:a+2b=13,∴a=13﹣2b,②×3﹣①×4得:b﹣c=24,∴c=b﹣24,∴a+b+c=13﹣2b+b+b﹣24=﹣11,∴1※1=a+b+c=﹣11.【点评】本题考查了二元一次方程组的应用、整体思想以及新运算等知识;熟练掌握整体思想和新运算,找准等量关系,列出方程组是解题的关键。

人教版七年级上册数学期末考试试卷及答案

人教版七年级上册数学期末考试试卷及答案

人教版七年级上册数学期末考试试题一、单选题1.﹣2021的绝对值是()A .2021B .12021C .12021-D .﹣20212.数据380000用科学记数法表示为()A .338010⨯B .53.8010⨯C .438.010⨯D .60.38010⨯3.下列说法正确的是()A .23x -的系数是3B .25xy π的系数是5C .23x y 的次数是5D .12xy π的次数是34.若23n x y -与35m x y 是同类项,则m-n 的值是()A .0B .1C .1-D .55.下图是正方体展开图的一种,那么原正方体中,与“建”字所在面对面上的汉字是()A .礼B .年C .百D .赞6.下列方程的变形,正确的是()A .由35x +=,得53x =+B .由74x =-,得74x =-C .由102y =,得2y =D .由32x +=-,得23x =--7.下列叙述正确的是()A .画直线10AB =厘米B .若两数的和为负数,则这两个数一定负数C .河道改直可以缩短航程是因为“经过两点有一条直线并且只有一条直线”D .由四舍五入得到的近似数36.810⨯,精确到百位8.如图,甲从A 点出发向北偏东60°方向走到点B ,乙从点A 出发向南偏西20°方向走到点C ,则∠BAC 的度数是()A.60°B.100°C.120°D.140°9.已知有理数a,b,c在数轴上的位置如图所示,则下列结论不正确的是()A.c<a<b B.abc>0C.a+b>0D.|c﹣b|>|a﹣b|10.某书中有一方程213x+=-■,其中一个数字被污渍盖住了,书后该方程的答案为1x=-,那么■处的数字应是()A.5B.-5C.12D.12-二、填空题11.冰箱冷藏室的温度是+5℃,冷冻室的温度是-7℃,则冷藏室比冷冻室的温度高_________℃.12.比较大小:-3_________-π.13.若α∠的余角是23°20',则α∠=_________.14.已知3x-8与2互为相反数,则x=________.15.长方形的长是3a,宽是2a-b,则长方形的周长是___________.16.点A,B,C在同一条直线上,AB=1cm,BC=3AB,则AC的长为_________.17.新定义一种运算“☆”,规定a☆b=ab+a﹣b.若2☆x=x☆2,则x的值为___.18.按照如图所示的操作步骤,若输入的值为4,则输出的值为______.三、解答题19.计算:(1)5﹣4×(﹣14)﹣|﹣3|(2)﹣12018+0.5÷(﹣12)3×[3﹣(﹣2)]20.解方程:(1)10x ﹣12=5x+15(2)1121(1)]()3232x x x --=-21.先化简,再求值:()22(69)63m mn n mn ---,其中1m =,3n =-.22.如图,已知C ,D 是线段AB 上的两点,C 是AD 的中点,3CD BD =.(1)图中以点A ,B ,C ,D 中任意两点为端点的线段共有多少条;(2)设2cm BD =,求AB 的长.23.某车间32名工人生产桌子和椅子,每人每天平均生产桌子15张或椅子50把,一张桌子要配两把椅子,已知车间每天安排x 名工人生产桌子.(1)求车间每天生产桌子和椅子各多少张?(用含x 的式子表示)(2)如果每天生产的桌子和椅子刚好配套,求x 的值.24.如图,将直角三角尺OCD 的直角顶点O 放在直线AB 上,并且∠AOC 的度数是∠BOD 的度数的2倍.(1)∠BOD 的余角是_________,∠BOD 的补角是____________;(2)求∠BOD 的度数;(3)若OE ,OF 分别平分∠BOD ,∠BOC ,求∠EOF 的度数.25.玲玲用3天时间看完一本课外读物,第一天看了a 页,第二天看的页数比第一天多50页,第三天看的页数比第一天少20页.(1)用含a 的代数式表示这本书的页数;(2)当a =50时,这本书的页数是多少?(3)如果这本书有270页,玲玲第一天看了多少页?26.如图,在数轴上点A 表示数a ,点B 表示数b ,a 、b 满足()2530a b -++=,点O 是数轴原点.(1)计算点A 表示的数、点B 表示的数;(2)若将数轴折叠,使得点A 与点B 重合,则点O 与数_________表示的点重合;(3)点A 与点C 之间的距离表示为AC ,点B 与点C 之间的距离表示为BC ,请在线段AB 上找一点C ,使2AC BC =,写出点C 在数轴上表示的数;(4)若点A 以0.5cm/s 的速度向左移动,2秒后,点B 以1cm/s 的速度向右移动,则B 出发几秒后,A 、B 两点相距1个单位长度?参考答案1.A 【分析】根据绝对值的意义即可作答.【详解】﹣2021的绝对值即为:20212021-=.故选:A .【点睛】本题考查了求解一个数的绝对值的知识,负数的绝对值是它的相反数,非负数的绝对值是其本身.2.B 【分析】根据科学记数法的定义,即可得到答案.【详解】380000=53.8010⨯,故选B .【点睛】本题主要考查科学记数法,熟练掌握科学记数法的形式:a×10n (1≤|a|<10,n 为整数),是解题的关键.3.C 【分析】根据单项式中的数字因数叫做这个单项式的系数,一个单项式中,所有字母的指数的和叫做这个单项式的次数,逐项判断,选择即可.【详解】23x -的系数是-3,故A 选项错误,不符合题意;25xy π的系数是5π,故B 选项错误,不符合题意;23x y 的次数是5,故C 选项正确,符合题意;12xy π的次数是2,故D 选项错误,不符合题意;故选C .【点睛】本题考查单项式的系数和次数.掌握单项式的系数和次数的定义是解答本题的关键.4.C 【分析】根据同类项的定义求解即可,所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【详解】由题意得:m=2,n=3,∴231m n -=-=-.故选:C .【点睛】本题考查了同类项.解题的关键是熟练掌握同类项的定义.5.C 【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“礼”与“赞”是相对面,“建”与“百”是相对面,“党”与“年”是相对面;故选:C .【点睛】本题主要考查了正方体相对两个面上的文字,解题的关键是注意正方体的空间图形,从相对面入手.6.D 【分析】直接根据等式的性质求解.【详解】3+x=5,两边同时减去3,得x=5-3,A 错误;74x =-,两边同时除以7,得47x =-,B 错误;102y =,两边同时乘以2,得0y =,C 错误;32x +=-,两边同时减去3,得23x =--,D 正确;故答案为:D .【点睛】本题主要考查了等式的性质应用,准确计算是解题的关键.7.D 【分析】根据两点间的距离的含义和求法,近似数,以及直线的性质和应用,逐一判断即可.【详解】∵直线向两边无限延伸,∴直线没有具体的长度,∴选项A 不正确;∵若两数的和为负数,则这两个数可因为一正一负,∴选项B 不正确;∵河道改直可以缩短航程,是因为两点间线段的长度最短,∴选项C 不正确;∵由四舍五入得到的近似数36.810⨯,精确到百位,∴选项D 正确.故选D .【点睛】此题考查近似数,两点间的距离的含义和求法,以及直线的性质和应用,解题关键在于熟练掌握其定义.8.D 【分析】∠BAC 等于三个角的和,求出各角的度数,相加即可.【详解】解:如图,∵∠BAE=60°,∴∠BAD=30°,∴∠BAC=30°+90°+20°=140°,故选:D .【点睛】本题主要考查方向角,解决此题时,能准确找到方向角是解题的关键.9.C 【分析】由a 、b 、c 在数轴上的位置可判断选项A ;由a 、b 、c 的符号可判断选项B ;由有理数的加法法则可判断选项C ;由两点之间的距离可判断选项D .【详解】解:∵a 、b 、c 在数轴上的位置从左到右排列为:c 、a 、b ,∴c <a <b ,故选项A 正确;由a 、b 、c 在数轴上的位置可知:a <0,b >0,c <0,∴abc >0,故选项B 正确;由a 、b 、c 在数轴上的位置可知:a <0,b >0,且|a|>|b|,∴a+b <0,故选项C 错误;由a 、b 、c 在数轴上的位置可知:表示数a 的点到表示数b 的点的距离小于表示数c 的点到表示数b 的点的距离,∴|c ﹣b|>|a ﹣b|,故选项D 正确;故选C .【点睛】本题主要考查了有理数与数轴,解题的关键在于能够通过数轴准确判断a 、b 、c 的符号和绝对值的大小.10.A 【分析】将x=-1代入方程23x +■=−1即可求解.【详解】解:∵x=-1是方程23x +■=−1的解,∴2(1)3+⨯-■=−1,∴■=5,故选:A .【点睛】本题考查了一元一次方程的解,熟练掌握一元一次方程的解与一元一次方程的关系是解题的关键.11.12【分析】结合题意,根据正负数和有理数加减运算的性质分析,即可得到答案.【详解】∵冰箱冷藏室的温度是+5℃,冷冻室的温度是-7℃,∴冷藏室比冷冻室的温度高:()5712--=℃故答案为:12.【点睛】本题考查了正负数、有理数加减运算的知识;解题的关键是熟练掌握有理数加减运算的性质,从而完成求解.12.>【分析】先比较3和π的大小,再根据负数绝对值大的反而小即可比较-3和-π的大小.【详解】解:因为3-<π-,所以-3>-π.故答案为:>.【点睛】本题主要考查了实数的大小的比较,两个负数比较大小,绝对值大的反而小.本题中要注意的是π是无理数即无限不循环小数.13.6640'︒【分析】根据余角的定义“如果两个角的和是直角,那么称这两个角互为余角”,计算即可.【详解】902320896023206640α''''∠=︒-︒=︒-︒=︒,故答案为:6640'︒.14.2【详解】根据互为相反数的两个数的和为0可得,3x-8+2=0,解得x=2.点睛:根据互为相反数的和为零,可得关于x 的一元一次方程,解方程即可得答案.15.10a -2b 【分析】根据长方形的周长公式,结合整式加减运算法则进行计算即可.【详解】由题意得:2(3a+2a-b )=2(5a-b )=10a-2b ,故答案为10a-2b.【点睛】此题考查了整式加减的应用及长方形周长的计算,熟练掌握整式加减法则是解题的关键.16.2cm 或4cm 【分析】由点在线段的位置关系,线段的和差计算AC 的长为2cm 或4ccm .【详解】AC 的长度有两种情况:①点C 在线段AB 的延长线时,如图1所示:∵AC=AB+BC ,AB=1cm ,BC=3cm ,∴AC=1+3=4cm ;②点C 在线段AB 的反向延长线时,如图2所示:∵AC=BC-AB,AB=1cm,BC=3cm,∴AC=3-1=2cm;综合所述:AC的长为2cm或4ccm,故答案为2cm或4ccm.【点睛】本题综合考查了线段的延长线,线段的反向延长线,线段的和差计算等知识点,重点掌握两点间距离计算方法,易错点点在线段的反向延长线上时,计算线段的大小.17.2【分析】根据题意,可得:2x+2﹣x=2x+x﹣2,据此求出x的值为多少即可.【详解】解:∵a☆b=ab+a﹣b,2☆x=x☆2,∴2x+2﹣x=2x+x﹣2,整理,可得:2x=4,解得x=2.故答案为:2.【点评】此题主要考查了新定义下的运算,以及解一元一次方程的方法,要熟练掌握,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.18.28【分析】根据图中的操作步骤一步步计算即可.【详解】根据题意:输入4,得到2416,∵10<16,∴(16-9)×4=28.故答案为28.【点睛】本题是程序类题目,主要考察有理数运算和理解能力,判断大小选择正确的路径计算是关键.19.(1)3(2)-21【分析】(1)根据有理数的混合运算的法则,先计算乘法及绝对值运算,再计算加减运算即可求出值;(2)根据有理数的混合运算的法则,先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【详解】(1)5﹣4×(﹣14)﹣|﹣3|=5+1﹣3=3;(2)﹣12018+0.5÷(﹣12)3×[3﹣(﹣2)]=﹣1﹣4×5=﹣21.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.20.(1)x=5.4;(2)x=1.【分析】(1)先移项,再合并同类项,最后化系数为1,从而得到方程的解;(2)先去括号,再移项、合并同类项,最后化系数为1,从而得到方程的解.【详解】(1)移项,得10x ﹣5x=12+15,合并同类项,得5x=27,方程的两边同时除以5,得x=5.4;(2)去括号,得16x +=213x -,方程的两边同时乘以6,得x+1=4x ﹣2,移项、合并同类项,得3x=3,方程的两边同时除以3,得x=1.【点睛】本题考查解一元一次方程,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.21.24m n -,5-.【分析】先去括号,再合并同类项,最后代入1m =,3n =-计算解题,注意添括号的作用【详解】()22(69)63m mn n mn ---2=466m mn n mn--+24m n =-当1m =,3n =-时原式24m n =-241(3)=⨯--49=-5=-【点睛】本题考查整式的化简求值,是重要考点,难度较易,掌握相关知识是解题关键.22.(1)共6条;(2)14cm 【分析】(1)结合题意,根据线段的性质分析,即可得到答案;(2)结合题意,根据线段性质,得6cm CD =;再结合线段中点的性质,推导得2AD CD =,通过线段和差计算,即可得到答案.【详解】(1)根据题意,图中以点A ,B ,C ,D 中任意两点为端点的线段有:AB 、AC 、AD 、CD 、CB 、DB ,共6条;(2)∵2cm BD =,3CD BD=∴6cmCD =∵C 是AD 的中点∴212cmAD CD ==∴14cm AB AD BD =+=.【点睛】本题考查了线段的知识;解题的关键是熟练掌握线段中点、线段和差运算的性质,从而完成求解.23.(1)车间每天生产桌子:15x 张;车间每天生产椅子:501600x -+张;(2)20x =【分析】(1)根据题意,得车间每天安排()32x -名工人生产椅子;结合代数式的性质分析,即可得到答案;(2)结合题意,根据一元一次方程的性质列方程并求解,即可得到答案.【详解】(1)∵车间每天安排x 名工人生产桌子,车间32名工人生产桌子和椅子∴车间每天安排()32x -名工人生产椅子∵一张桌子要配两把椅子∴车间每天生产桌子:15x 张;车间每天生产椅子:()5032501600x x ⨯-=-+张;(2)∵每天生产的桌子和椅子刚好配套∴152501600x x ⨯=-+∴30501600x x +=∴20x =.【点睛】本题考查了代数式、一元一次方程的知识;解题的关键是熟练掌握代数式、一元一次方程的性质,从而完成求解.24.(1)∠AOC ;∠AOD(2)∠BOD=30°;(3)∠EOF=45°.【分析】(1)根据余角和补角的定义可直接得出结论;(2)根据补角的定义得到∠AOC+∠BOD=90°,根据题意列式计算求出∠BOD ;(3)根据角平分线的定义分别求出∠BOF、∠BOE,结合图形计算,得到答案.(1)解:由题意可得∠COD=90°,∴∠AOC+∠BOD=90°,∠AOD+∠BOD=180°,∴∠BOD的余角是∠AOC,补角是∠AOD,故答案为:∠AOC;∠AOD;(2)解:∵∠COD=90°,∠AOC+∠COD+∠BOD=180°,∴∠AOC+∠BOD=90°,∵∠AOC的度数是∠BOD的度数的2倍,∴∠AOC=2∠BOD,∴2∠BOD+∠BOD=90°,∴∠BOD=30°;(3)解:由题意得,∠BOC=∠BOD+∠COD=30°+90°=120°,∵OE,OF分别平分∠BOD,∠BOC,∴∠BOF=12∠BOC=60°,∠BOE=12∠BOD=15°,∴∠EOF=∠BOF-∠BOE=45°.【点睛】本题考查的是角平分线的定义、余角和补角的概念,掌握相关的概念和定义是解题的关键.25.(1)3a+30(2)180(3)80【分析】(1)先用含a的代数式表示出第二天、第三天的读书页码,再表示出这本书的页码;(2)把a=50代入,求出书的页数;(3)利用(1)中关系式把270代入求出答案.【详解】(1)这本书的页数为:a+(a+50)+(a-20)=a+a+50+a﹣20,=3a+30;(2)当a =50时,3a+30,=3×50+30,=180,答:当a =50时,这本书的页数是180页;(3)由题意可得:3a+30=270,解得:a =80,答:玲玲第一天看了80页.【点睛】本题考查了列代数式、求代数式的值.解决本题的关键是弄清关键词,理清题意.26.(1)点A 表示的数为5、点B 表示的数3-;(2)2;(3)13-;(4)B 出发4或163t =秒后,A 、B 两点相距1个单位长度【分析】(1)根据绝对值、乘方的性质,得50a -=,()230b +=,从而得50a -=,30b +=,通过求解一元一次方程,即可得到答案;(2)点G 为线段AB 的中点,根据数轴和线段中点的性质,得点G 表示的数;结合题意,再根据数轴的性质计算,即可得到答案;(3)根据题意,计算得8AB =,结合线段的和差性质,列一元一次方程并求解,得83BC =,再根据坐标的性质计算,即可得到答案;(4)设B 出发t 秒后,A 、B 两点相距1个单位长度,根据题意列一元一次方程并求解,即可得到答案.【详解】(1)∵()2530a b -++=∴50a -=,()230b +=∴50a -=,30b +=∴5a =,3b =-∴点A 表示的数为5、点B 表示的数3-;(2)如图,点G 为线段AB 的中点∵点A 表示的数为5、点B 表示的数3-;∴点G 表示的数为:()5312+-=∴101OG =-=∵将数轴折叠,使得点A 与点B 重合∴将数轴沿点G 折叠∴与点O 重合的点为:112+=,即点O 与数2表示的点重合故答案为:2;(3)∵点A 表示的数为5、点B 表示的数3-;∴()538AB =--=∵点C 在线段AB 上,且2AC BC =,又∵AC BC AB+=∴38BC BC AB +==∴83BC =∵点B 表示的数为3-∴点C 表示的数为:81333-+=-;(4)设B 出发t 秒后,A 、B 两点相距1个单位长度根据题意,得:()0.5281t t ++=-,或()0.528+1t t ++=去括号,得:0.5181t t ++=-,或0.518+1t t ++=移项并合并同类项,得:4t =,或163t =∴B 出发4或163t =秒后,A 、B 两点相距1个单位长度.。

黑龙江省齐齐哈尔市2023-2024学年七年级上学期期末数学试题(含答案)

黑龙江省齐齐哈尔市2023-2024学年七年级上学期期末数学试题(含答案)

七年级上学期学业水平调研测试数学试卷考生注意:1.考试时间120分钟;2.全卷共三道大题,总分120分;3.请将答案写在答题卡的指定位置.一、单项选择题(本大题共9小题,每小题3分,共27分)1.的相反数是()A .3B.C .D .2.史料证明:中国是最早采用正数、负数表示相反意义的量的国家.追溯到两千多年前,中国人已经开始使用负数,并应用到生产和生活中.如果向南走3米,记作米,那么向北走6米,记作()A .米B .米C .米D .米3.计算的结果是()A .8B .C .6D .4.在下列单项式中,与是同类项的是()A .B .C .D .5.已知是有理数,它们在数轴上对应点的位置如图所示,把按照从小到大的顺序排列,正确的是()A .B .C .D .6.下列图形中,不能作为一个正方体的展开图的是()A .B .C .D .7.某件商品现在的售价是68元,比原价降低了15%,则这件商品的原价是()A .102元B .57.8元C .78.2元D .80元8.如图,,则的度数是()3-133-13-3+9+6+6-3-()()24-⨯+8-6-2xy xy 2x 2xy 2x y,a b ,,a b a -a a b <-<a a b -<<b a a <<-b a a<-<90,48AOC BOD AOB ∠=∠=︒∠=︒COD ∠A .B .C .D .9.下列说法正确的是()A .单项式的次数是2B.如果,那么C .连接两点之间的线段,叫做这两点之间的距离D .若点在点的北偏东向上,点在点的西北方向上,则二、填空题(本大题共9小题,每小题3分,共27分)10.黑龙江省地域辽阔,四季分明,夏季凉爽怡人,文化厚重,物产丰富,全省土地总面积约为473000平方千米.将数473000用科学记数法表示为________.11.如果,且,那么________.12.已知一个角的度数是,则它的余角的度数是________.13.已知,则________.14.定义一种新的运算“▲”:.若,则的值是________.15.如图,射线在的内部,是的平分线.若,则的度数是________.16.在一节数学活动课上,小敏同学用火柴棍拼成一排由三角形组成的图形,如图所示.按照这种方式继续拼下去,若图形中用了41根火柴棍,则图形中含有*个三角形.17.中国瓷器以其精湛的工艺和精美的图案享誉世界.某瓷器厂一车间有14名工人,每名工人每天可以加工10只茶壶或30只茶杯.1只茶壶需要配4只茶杯,为使每天加工的茶壶和茶杯刚好配套,该车间应安排________名工人加工茶壶.18.点在同一条直线上,,点分别是的中点.若,则的长是________.42︒45︒48︒69︒22a b a b c c=a b =A O 30︒B O 15AOB ∠=︒3m =0m <m =6243'︒1b a -=221b a --=321a b ab a =-+▲29x =▲x OC AOB ∠1,3AOC AOB OD ∠=∠BOC ∠60AOB ∠=︒AOD ∠,,A B P 3AB BP =,C D ,AB BP 12AB =CD三、解答题(本大题共9小题,共66分)19.(本题8分)计算:(1);(2).20.(本题8分)解方程:(1);(2).21.(本题6分)先化简,再求值:,其中.22.(本题6分)小亮和小刚两位同学准备将一批图书分给班级的写作兴趣小组的同学阅读.请根据两人的对话信息,求这批图书有多少本?如果每个同学分4本,这批图书还剩余12本.如果每个同学分6本,这批图书恰好分完.23.(本题7分)某仓库管理员连续7次对进库、出库的冰箱台数进行统计,将进库的冰箱台数记作正数,出库的冰箱台数记作负数.记录如下表(单位:台):第1次第2次第3次第4次第5次第6次第7次(1)经过这7次进库、出库后,仓库管理员结算时发现仓库还存有219台冰箱.那么在这7次进库、出库前,仓库存有冰箱多少台?(2)若每台冰箱进库或出库的搬运费均为10元,则这7次进库、出库的冰箱搬运费共多少元?24.(本题7分)如图,平面内有四个点.(1)画直线和射线;()()324-++-21(1)522⎛⎫-⨯-÷- ⎪⎝⎭322x x +=-11123x x +--=()()2232x xy xy x --+110,02x y +=-=17+23-16-25+28-20-26+,,,A B C D AB CD(2)画线段相交于点;(3)在线段上的所有点中,到点的距离之和最小的点是________,理由是________.25.(本题8分)某文教商店有A ,B 两种型号的钢笔共10支,其中B 型钢笔比A 型钢笔多2支,请回答下列问题:(1)A 型钢笔有________支,B 型钢笔有________支;(2)该文教商店每支A 型钢笔的售价比每支B 型钢笔的售价多4元,A ,B 两种型号的钢笔全部售出后,销售的总金额为96元.求每支B 型钢笔的售价是多少元?26.(本题8分)在一节综合实践课上,老师与同学们以“同一平面内,点在直线上,用三角尺画,使;用直尺画射线,使平分.”为问题背景,展开研究.(1)提出问题:如图(1),若,求的度数;(2)探索发现:如图(2),的值是(3)拓展探究:若点在直线的同侧,利用图(3)探索与之间的数量关系.请直接写出它们之间的数量关系.27.(本题8分)点在同一条直线上,点在线段的延长线上,如果,那么我们把点叫做点关于点的伴随点.(1)如图(1),在数轴上,点表示的数是,点关于原点的伴随点表示的数是________;(2)在(1)的条件下,点表示的数是,若点关于点的伴随点是点,求的值;(3)如图(2),数轴上的三个点分别表示的数是.有一动点从点出发,以每秒1个单位长度的速度沿数轴的负方向运动;同时,另一动点从点出发,以每秒2个单位长度的速度沿数轴的负方向运动.当动点运动至点处时,两动点同时停止运动.设动点的运动时间为秒,在运动过程中,若三个点中,恰有一个点是另一个点关于第三个点的伴随点,请直接写出的值.,AC BD M BD ,A C O AB COD ∠90COD ∠=︒OE OE BOC ∠130AOD ∠=︒DOE ∠:DOE AOC ∠∠,C D AB AOE ∠DOE ∠,A B C AB 12BC AB =C A B E 4-E O F G m F G E m ,,P Q R 1,1,4-M Q N R N P ,M N ,M N ,,P M N七年级上学期学业水平调研测试数学试题答案及评分参考一、单项选择题(本大题共9小题,每小题3分,共27分)1.A 2.C 3.B 4.A 5.D 6.B 7.D 8.C 9.B二、填空题(本大题共9小题,每小题3分,共27分)10. 11. 12. 13.1 14.2 15. 16.20 17.6 18.8或4三、解答题(本大题共9小题,共66分)19.解:(1)原式(2)原式20.解:(1)(2)21.解:因为,所以当时,原式22.解:设写作兴趣小组有个同学答:这批图书有36本.23.解:(1)54.7310⨯3-2717'︒40︒3245=-+-=-1549=⨯+=322x x -=--24x =-2x =-()()31216x x +--=33226x x +-+=55x =1x =()()2232x xy xy x --+22332x xy xy x =---24x xy=-110,02x y +=-=11,2x y =-=11,2x y =-=()21(1)4132=--⨯-⨯=x 4126x x+=6x =6636⨯=1723162528202619+--+--+=-219(19)238--=答:在这7次进库、出库前,仓库存有冰箱238台.(2)答:这7次进库、出库的冰箱搬运费共1550元.24.(1)画出直线,射线(2)画出线段,标出交点(3);两点之间,线段最短25.解:(1)4,6(2)设每支B 型钢笔的售价是元答:每支型钢笔的售价是8元.26.解:(1)因为,所以因为,所以因为平分,所以(2)(3)或27.解:(1)2(2).根据题意,所以.|17||23||16||25||28||20||26|++-+-+++-+-++17231625282026=++++++155=155101550⨯=AB CD,AC BD MM x ()44696x x ++=8x =B 130AOD ∠=︒180********BOD AOD ∠=︒-∠=︒-︒=︒90COD ∠=︒905040BOC COD BOD ∠=∠-∠=︒-︒=︒OE BOC ∠11402022COE BOC ∠=∠=⨯︒=︒902070DOE COD COE ∠=∠-∠=︒-︒=︒1290AOE DOE ∠-∠=︒270AOE DOE ∠+∠=︒()2,44FG m EG m m =-=--=+2EG FG =()242m m +=-2m =-9 412 5(3)1或或.。

西安西工大附中2023-2024学年第一学期七年级数学期末考试试卷附详细答案

西安西工大附中2023-2024学年第一学期七年级数学期末考试试卷附详细答案

西安西工大附中2023-2024学年第一学期期末考试七年级数学试题一、选择题(共10小题,每小题3分,计30分) 1.计算2-1的结果是( ) A.-2B.2C.-12D.122.如图所示的几何体的左视图是( )3.如图,已知点B 在点A 的北偏东65°方向,点C 在点A 的南偏西20°方向,则∠BAC 的度数为( ) A.135°B.130°C.125°D.120°4.下列计算,正确的是( ) A.a 2·a 3=a 6B.a 2+a 3=a 5C.(-a 2)3=-a 6D.a 6÷(-a)3=-a 25.点O 、A 、B 、C 在数轴上的位置如图所示,其中点A 、B 到原点O 的距离相等,点A 、C 之间的距离为2.若点C 表示的数为x ,则点B 所表示的数为( ) A.x +2B.x -2C.-x +2D.-x -26.已知a 是两位数,b 是三位数,把b 直接写在a 的右面,就成为一个五位数,这个五位数用代数式可表示成( )第3题图第5题图D.C.B.A. 第2题图A.abB.100a+bC.a+100bD.1000a+b7.若M(5x -y 2)=y 4-25x 2,那么代数式M 应为( ) A.5x 2-y 2B.5x +y 2C.-y 2+5xD.-5x -y 28.《孙子算经》中有一道题,原文是:今有三人共车,二车空;二人共车,九人步,问人与车各几何?译文为:今有若干人乘车,每3人共乘一车,最终剩余2辆车;若每2人共乘一车,则最终剩余9个人无车可乘,问共有多少人,多少辆车?设共有x 人,则可列方程为( ) A.x+23=x 2-9B.x 3+2=x−92C.x 3-2=x+92D.x−23=x 2+99.计算24046×(-0.25)2024的结果为() A.-22022B.22022C.14D.-1410.有理数a 、b 、c 所对应的点在数轴上的位置如图所示,化简|a -b|-|2c -a|+|c -b|的结果是( ) A.cB.3c -2bC.2a -3cD.-3c二、填空题(共6小题,每小题3分,计18分)11.西安市冬季里某一天的气温为-7℃~-1℃,这一天西安市的温差是____℃. 12.科学家可以使用冷冻显微术以高分辨率测定溶液中的生物分子结构,使用此技术测定细菌蛋白结构的分辨率达到0.22纳米,即0.00000000022米.将0.00000000022用科学记数法表示为________.13.小明用若干根等长的小木棒设计出如图所示的图形,则第n 个图形中有小木棒____根.第13题图第3个图形第1个图形第2个图形第4个图形…第10题图14.已知m 、n 为有理数,且4x 2+m x +9=(2x +n)2,则m+n 的值为____.15.如图,∠AOB=126°,射线OC 在∠AOB 外,且∠BOC=2∠AOC ,若OM 平分∠BOC ,ON 平分∠AOC ,则∠MON=____°.16.在如图所示的三阶幻方中,填写了一些数、代数式和汉字(其中每个代数式或汉字都表示一个数),若每一横行,每一竖列,以及每条对角线上的3个数之和都相等,则“诚实守信”这四个字表示的数之和为____. 三、解答题(共7小题,计52分) 17.计算题(每小题4分,共12分) (1)-14÷(-5)2×(-53)-|0.8-1|(2)(-2x 2)3+ x 2·x 4-(-3x 3)2(3)解方程:3+x−12=x -x+1418.(5分)先化简,再求值:[(x -2y)2-(x +3y)(x -3y)+3y 2]÷(-4y),其中x =2023,y=-14.19.(6分)列方程解决下面问题.甲、乙两人分别从A ,B 两地同时出发、沿同一条路线相向匀速行驶,已知出发后3h 两人相遇.乙的速度比甲快20km/h ,相遇后乙再经1h 到达A 地.求甲、乙两人的速度. 20.(6分)如图,B 、C 两点把线段AD 分成2︰5︰3三部分,M 为AD 的中点,BM=6,求CM 的长度.第20题图ABM C D第15题图AN BC MO0 信实守诚-8-11 x +1 -x -3第16题图21.(6分)为了解某校七年级学生数学期中考试情况,小亮随机抽取了部分学生的数学成绩(成绩都为整数)为样本,分为A(100~90分)、B(89~80分)、C(79~60分)、D(59~0分)四个等级进行统计,并将统计结果制成如下统计图,请根据图中信息解答以下问题.(1)这次抽样调查的样本容量为_____. (2)请补全条形统计图.(3)这个学校七年级共有学生1200人,若分数为80分(含80分)以上为优秀,估计这次七年级学生期中数学考试成绩为优秀的学生人数大约有多少?22.(7分)如图①,点O 为直线AB 上一点,过点O 作射线0C ,使∠AOC=60°,将一把直角三角尺的直角顶点放在点O 处,一边OM 在射线OB 上,另一边ON 在直线AB 的下方.(1)将图①中的三角尺绕点O 逆时针旋转至图②,使得点N 在OC 的反向延长线上,求∠MOB 的度数.(2)将图①中的三角尺绕点O 顺时针旋转至图③,使ON 在∠AOC 的内部,请探究∠AOM 与∠NOC 之间的数量关系,并说明理由.第21题图A B C D 25%50%10%CD 等级23.(10分)探究与实践 问题发现(1)用四个长为a ,宽为b 的长方形拼成如图所示的正方形ABCD ,由此可以得到(a+b)2、(a -b)2、ab 的等量关系是_____. 问题探究(2)如图②,将边长为a 的正方形APCD 和边长为b 正方形BPEF 拼在一起,使得A 、P 、B 共线,点E 落在PC 上,连接AB.若AB=8,△APE 的面积为7.5,求CE 的长度. 问题解决(3)如图③,某小区物业准备在小区内规划设计一块休闲娱乐区,其中BE 、CF 为两条互相垂直的道路,且BG=CG ,EG=FG ,四边形ABGF 与四边形CDEG 为长方形,现计划在两个三角形区域种植花草,两个长方形区域铺设塑胶地面,按规划要求,道路BE 的长度为80米.若种值花草每平方米需要100元,铺设塑胶地面每平方米需要30元,若物业为本次修建休闲娱乐区筹集了25万元,请你通过计算说明该物业筹集的资金是否够用?(道路的宽度均不计)第22题图图①B 图②BN 图③BM西安西工大附中2023-2024学年第一学期期末考试七年级数学试题参考答案一、选择题(共10小题,每小题3分,计30分) 1.计算2-1的结果是( ) A.-2B.2C.-12D.121.解:2-1=121=12,故选D 。

人教版七年级上册数学期末考试试卷附答案

人教版七年级上册数学期末考试试卷附答案

人教版七年级上册数学期末考试试题一、单选题1.2-的值等于()A.2B.12-C.12D.﹣22.在墙壁上固定一根横放的木条,则至少需要钉子的枚数是()A.1枚B.2枚C.3枚D.任意枚3.已知x=y,则下列变形不一定成立的是()A.x+a=y+a B.x ya a=C.x﹣a=y﹣a D.ax=ay4.下列各组数中,互为相反数的是()A.-(-1)与1B.(-1)2与1C.|1|-与1D.-12与15.下列图形中,不是正方体的展开图的是()A.B.C.D.6.下列说法中正确的是()A.两点之间的所有连线中,线段最短B.射线就是直线C.两条射线组成的图形叫做角D.小于平角的角可分为锐角和钝角两类7.某品牌手机的进价为1200元,按原价的八折出售可获利14%,则该手机的原售价为()A.1800元B.1700元C.1710元D.1750元8.中国古代问题:有甲、乙两个牧童,甲对乙说:“把你的羊给我一只,我的羊数就是你的羊数的2倍”.乙回答说:“最好还是把你的羊给我一只,我们羊数就一样了”.若设甲有x 只羊,则下列方程正确的是()A.x+1=2(x﹣2)B.x+3=2(x﹣1)C.x+1=2(x﹣3)D.1 112xx+-=+9.某中学生军训,沿着与笔直的铁路并列的公路匀速前进,每小时走4500米,一列火车以每小时120千米的速度迎面开来,测得火车与队首学生相遇,到车尾与队末学生相遇共经过60秒,如果队伍长500米,那么火车长()A .1500米B .1575米C .2000米D .2075米10.如图,小明将一个正方形纸片剪去一个宽为4cm 的长条后,再从剩下的长方形纸片上剪去一个宽为5cm 的长条,如果两次剪下的长条面积正好相等,那么每一个长条的面积为()A .162cm B .202cm C .802cm D .1602cm 二、填空题11.数轴上距离原点2个单位长度的点表示的数是_____12.如果把6.48712保留三位有效数字可近似为_________.13.青藏高原是世界上海拔最高的高原,它的面积约为2500000平方千米,数据2500000用科学记数法表示为_______________.14.单项式2323x y -的系数是__________,次数是___________.15.若代数式53m a b 与22n a b -是同类项,那么m +n =______.16.小明每晚19:00都要看新闻联播,这时钟面上时针和分针的夹角的度数为_________度.17.已知|3m ﹣12|+212n ⎛⎫+ ⎪⎝⎭=0,则2m ﹣n=_____.18.关于x 的方程352x k -+=的解是1x =,则k =________.19.当x=1时,代数式31px qx ++的值为2012,则当x=-1时,代数式31px qx ++的值为_____.20.如图,∠AOC 和∠BOD 都是直角,如果∠DOC=36°,则∠AOB 是__________度三、解答题21.计算(1)(-3)-13+(-12)-|-43|.(2)2108(2)(4)(3)-+÷---⨯-(3)233136402924''''''+︒︒22.解方程(1)()()()228131x x x ---=-(2)225353x x x ---=-23.先化简,再求值222212[32()6]2x y x y ----+,其中1,2x y =-=-.24.一个角的余角比这个角的12少30°,请你计算出这个角的大小.25.如图M 是线段AC 中点,B 在线段AC 上,且AB=2cm ,BC=2AB ,求MC 和BM 长度.26.一艘船从甲码头到乙码头顺流而行,用了2h ;从乙码头返回甲码头逆流而行,用了2.5h .已知水流的速度是3km/h ,求船在静水中的平均速度.(要求列方程解答)27.某班将买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍.乒乓球拍每副定价30元,乒乓球每盒定价5元.经洽谈后,甲店每买一副球拍赠送一盒乒乓球,乙店全部按定价的九折优惠.该班需球拍5副,乒乓球若干盒(不小于5盒).问:(1)当购买乒乓球多少盒时,两种优惠办法付款一样?(2)当购买15盒乒乓球时,请你去办这件事,你打算去哪家商店购买?为什么?28.如图,已知90AOB ∠=︒,OE 平分∠AOB ,60EOF ∠=︒,OF 平分∠BOC .求∠BOC 和∠AOC 的度数.参考答案1.A【详解】根据数轴上某个点与原点的距离叫做这个点表示的数的绝对值的定义,在数轴上,点﹣2到原点的距离是2,所以22-=,故选A .2.B【分析】结合题意,根据两点确定一条直线的性质分析,即可得到答案.【详解】在墙壁上固定一根横放的木条,则至少需要钉子的枚数是2,故选:B .【点睛】本题考查了直线的知识;解题的关键是熟练掌握两点确定一条直线的性质,从而完成求解.3.B【分析】答题时首先记住等式的基本性质,然后对每个选项进行分析判断.【详解】A.C.D的变形均符合等式的基本性质,B项a不能为0,不一定成立.故答案选B.【点睛】本题考查了等式的性质,解题的关键是熟练的掌握等式的性质.4.D【分析】利用相反数的定义,两个数之和为零来判断.【详解】解:A,-(-1)与1不是相反数,选项错误,不符合题意;B,(-1)2与1不是互为相反数,选项错误,不符合题意;C,|-1|与1不是相反数,选项错误,不符合题意;D,-12与1是相反数,选项正确,符合题意;故选D.【点睛】本题考查了相反数,解题的关键是掌握相应的定义即两个数之和为零,这两个数互为相反数.5.D【详解】A、B、C是正方体的展开图,D不是正方体的展开图.故选D.6.A【详解】试题分析:根据线段、射线和角的概念,对选项一一分析,选择正确答案.解:A、两点之间的所有连线中,线段最短,选项正确;B、射线是直线的一部分,选项错误;C、有公共端点的两条射线组成的图形叫做角,选项错误;D、小于平角的角可分为锐角、钝角,还应包含直角,选项错误.故选:A.考点:直线、射线、线段;角的概念.7.C【详解】设手机的原售价为x元,由题意得,0.8x-1200=1200×14%,解得:x=1710.即该手机的售价为1710元.故选:C .8.C【详解】试题解析:∵甲对乙说:“把你的羊给我1只,我的羊数就是你的羊数的两倍”.甲有x 只羊,∴乙有13122x x +++=只,∵乙回答说:“最好还是把你的羊给我1只,我们的羊数就一样了”,∴311,2x x ++=-即x+1=2(x−3).故选:C .9.B【详解】试题解析:设火车长x 千米.60秒160=小时,根据题意得:()1 4.51200.5.60x ⨯+=+解得:x=1.575.1.575千米=1575米.火车的长为1575米.故选B.10.C【分析】首先根据题意,设原来正方形纸的边长是xcm ,则第一次剪下的长条的长是xcm ,宽是4cm ,第二次剪下的长条的长是(x ﹣4)cm ,宽是5cm ;然后根据第一次剪下的长条的面积=第二次剪下的长条的面积,列出方程,求出x 的值是多少,即可求出每一个长条面积为多少.【详解】解:设原来正方形纸的边长是xcm ,则第一次剪下的长条的长是xcm ,宽是4cm ,第二次剪下的长条的长是(x ﹣4)cm ,宽是5cm ,则4x =5(x ﹣4),去括号,可得:4x =5x ﹣20,移项,可得:5x ﹣4x =20,解得x =204x =4×20=80(cm 2)所以每一个长条面积为80cm2.故选:C.【点睛】此题主要考查了一元一次方程的应用,要熟练掌握,首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答是解题的关键.11.-2或2【详解】试题分析:设数轴上与原点的距离等于2的点所表示的数是x,则|x|=2,进而可得出结论.解:数轴上与原点的距离等于2的点所表示的数是x,则|x|=2,解得x=±2.故答案为-2或2.考点:1.数轴;2.绝对值.12.6.49【分析】一个近似数的有效数字是从左边第一个不是0的数字起,后面所有的数字都是这个数的有效数字.近似数6.48712保留三位有效数字,精确到百分位.【详解】解:6.48712保留三位有效数字可近似为:6.49.故答案是:6.49.【点睛】本题考查了近似数和有效数字,从左边第一个不是0的数开始数起,到精确到的数位为止,所有的数字都叫做这个数的有效数字.最后一位所在的位置就是精确度.13.62.510⨯【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【详解】解:2500000=2.5×106.故答案为:2.5×106.【点睛】本题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.14.23-5【分析】根据单项式系数和次数的定义:单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数解答即可.【详解】解:单项式2323x y-的系数是23-,次数是5,故答案为:23-,5.【点睛】本题考查单项式的知识,熟知单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数是解题的关键.15.7【分析】根据同类项的概念求解.【详解】解:∵代数式53m a b 与22n a b -是同类项,∴n=5,m=2,∴m+n=2+5=7.故答案为:7.【点睛】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.16.150【分析】利用钟表表盘的特征:钟表上12个数字,每相邻两个数字之间的夹角为30°解答即可.【详解】解:19:00,时针和分针中间相差5大格.∵钟表12个数字,每相邻两个数字之间的夹角为30°,∴19:00分针与时针的夹角是5×30°=150°.故答案为:150【点睛】本题考查的是钟面角的含义及计算,掌握“钟表上12个数字,每相邻两个数字之间的夹角为30°”是解本题的关键.17.10【详解】解:∵|3m ﹣12|+2(1)2n +=0,∴|3m ﹣12|=0,2(1)2n +=0,∴m=4,n=﹣2,∴2m ﹣n=8﹣(﹣2)=10.故答案为:10【点睛】本题考查了非负数的性质,几个非负数的和等于0,则每个数都等于0,初中范围内的非负数有:绝对值,算术平方根和偶次方.18.6【分析】把x=1代入已知方程,列出关于k 的新方程,通过解新方程来求k 的值.【详解】解:把x=1代入,得3×1-k+5=2,解得k=6.故答案是:6.【点睛】本题考查了一元一次方程的解的定义.把方程的解代入原方程,等式左右两边相等.19.-2010【分析】由当x=1时,代数式31px qx ++的值为2012,可得2011p q +=,把x=-1代入代数式31px qx ++整理后,再把2011p q +=代入计算即可.【详解】因为当1x =时,3112012px qx p q ++=++=,所以2011p q +=,所以当1x =-时,311()1201112010px qx p q p q ++=--+=-++=-+=-.【点睛】本题考查了求代数式的值,把所给字母代入代数式时,要补上必要的括号和运算符号,然后按照有理数的运算顺序计算即可,熟练掌握有理数的运算法则是解答本题的关键.在求代数式的值时,一般先化简,再把各字母的取值代入求值.有时题目并未给出各个字母的取值,而是给出一个或几个式子的值,这时可以把这一个或几个式子看作一个整体,将待求式化为含有这一个或几个式子的形式,再代入求值.运用整体代换,往往能使问题得到简化.20.144【分析】根据∠AOC 和∠BOD 都是直角,∠DOC=36°,可得∠AOD 的度数,从而求得结果.【详解】∵∠AOC=∠BOD=90º,∠DOC=36°∴∠AOD=∠AOC-∠DOC=54°∴∠AOB =∠AOD+∠BOD =144°.故答案为36°.点睛:本题是基础应用题,只需学生熟练掌握角的大小关系,即可完成.21.(1)-71;(2)-20;(3)641'︒.【分析】(1)根据有理数的加减法可以解答本题;(2)根据有理数的乘方、有理数的乘除法和加减法可以解答本题;(3)根据度分秒的换算进行计算即可.(1)解:(-3)-13+(-12)-|-43|=-3-13-12-43=-71;(2)解:2108(2)(4)(3)-+÷---⨯-108412=-+÷-10212=-+-=-20;(3)解:233136402924''''''+︒︒636060'''=︒641'=︒.【点睛】本题考查了有理数的混合运算以及度分秒的换算,注意:1°60'=,160'''=.22.(1)13x =(2)38x =-【分析】(1)去括号,移项,合并同类项,系数化为1;(2)去分母,移项,合并同裂项,系数化为1.(1)()()()228131x x x ---=-,去括号得248833x x x --+=-,整理得13x =(2)225353x x x ---=-,去分母得122535533x x x -+=--,整理得38x =-【点睛】本题考查方程的化简求解,需熟练掌握其运算方法.23.22532x y ---,14-【分析】先去小括号,再去中括号得到化简后的结果,再将未知数的值代入计算.【详解】解:原式=222232()32x y x y --+--=22532x y ---,当1,2x y =-=-时,原式=()()2251232---⨯--=14-.【点睛】此题考查了整式的化简求值,正确掌握整式去括号的计算法则,是解题的关键.24.这个角的度数是80°.【分析】设这个角的度数为x ,根据互余的两角的和等于90°表示出它的余角,然后列出方程求.【详解】设这个角的度数为x ,则它的余角为(90°-x ),由题意得:12x-(90°-x )=30°,解得:x=80°.答:这个角的度数是80°.25.MC 的长度是3cm ;BM 的长度是1cm .【分析】先根据AB=2cm ,BC=2AB 求出BC 的长,进而得出AC 的长,由M 是线段AC 中点求出AM ,再由BM=AM-AB 即可得出结论.【详解】解:∵AB=2cm ,BC=2AB ,∴BC=4cm ,∴AC=AB+BC=2+4=6(cm),∵M 是线段AC 中点,∴MC=AM=12AC=3(cm),∴BM=AM-AB=3-2=1(cm).故MC 的长度是3cm ;BM 的长度是1cm .【点睛】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.26.在静水中的速度为27km/h【分析】等量关系为:顺水速度⨯顺水时间=逆水速度⨯逆水时间.即2⨯(静水速度+水流速度) 2.5=⨯(静水速度-水流速度).【详解】解:设船在静水中的平均速度为x km/h ,根据往返路程相等,列得2(3) 2.5(3)x x +=-,解得27x =.答:在静水中的速度为27km/h .【点睛】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度,列出方程求解.27.(1)购买20盒乒乓球时,两种优惠办法付款一样(2)购买15盒乒乓球时,去甲店较合算,见解析【分析】(1)根据总价=单价×数量结合两家店给出的优惠政策,即可用含x 的代数式表示出在两家店购买所需费用;(2)根据在两家店购买所需费用相同,即可得出关于x 的一元一次方程,解之即可得出结论.(1)解:设购买x 盒乒乓球时,两种优惠办法付款一样.依题意得,()()3055530550.9x x ⨯+-⨯=⨯+⨯,解得:x =20,所以,购买20盒乒乓球时,两种优惠办法付款一样.(2)当购买15盒时:甲店需付款:()3051555200⨯+-⨯=(元),乙店需付款:()3051550.9202.5⨯+⨯⨯=(元),因为200202.5<,所以购买15盒乒乓球时,去甲店较合算.【点睛】本题考查了一元一次方程的应用以及列代数式,解题的关键是:(1)根据各数量之间的关系,用含x 的代数式表示出在两家店购买所需费用;(2)找准等量关系,正确列出一元一次方程.28.∠BOC 和∠AOC 的度数分别为30°,120︒【分析】根据角平分线的定义得到1452BOE AOB ∠=∠=︒,∠BOC=2∠BOF ,再计算出15BOF EOF BOE ∠=∠-∠=︒,然后根据∠BOC=2∠BOF ,∠AOC=∠BOC+∠AOB 进行计算.【详解】解:∵OE 平分∠AOB ,OF 平分∠BOC ,∴1452BOE AOB ∠=∠=︒,∠BOC=2∠BOF ,∵604515BOF EOF BOE ∠=∠-∠=︒-︒=︒,∴230BOC BOF ∠=∠=︒,3090120AOC BOC AOB ∠=∠+∠=︒+︒=︒.即∠BOC 和∠AOC 的度数分别为30°,120︒.【点睛】本题主要考查了角的计算以及角平分线的定义,正确应用角平分线的定义是解题关键.。

湖北省武汉市江汉区2023-2024学年七年级上学期期末数学试题及参考答案

湖北省武汉市江汉区2023-2024学年七年级上学期期末数学试题及参考答案

2023~2024学年度第一学期期末质量检测七年级数学试题考试时间:120分钟 试卷总分:150分第I 卷(本卷满分100分)一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答题卡.上将正确答案的代号涂黑.1.2024−的倒数是( ) A .2024−B .2024C .12024−D .120242.下列各组中的两个单项式不是同类项的是( ) A .xy 与2xyB .23a b 与23abC .35与12−D .mn −与nm3.下列方程中,属于一元一次方程的是(A .3x y −=B .210x −=C .123x −=D .23x= 4.如图是由4个相同的正方体组成的几何体,从上面看这个几何体,所看到的平面图形是( )A .B .C .D .5.下列运算正确的是( )A .a b ab +=B .222a a a −=C .()2525a a +=+D .()a a b b −−=6.若1x =是方程260x m +−=的解,则m 的值是( ) A .4−B .4C .8−D .87.如图,射线OA 表示的方向是北偏西60°,若90AOB ∠=°,则射线OB 表示的方向是( )第7题 A .南偏西30°B .南偏西60°C .北偏东30°D .北偏东60°8.下列说法正确的是( ) A .射线AB 和射线BA 表示同一条射线B .已知A ,B ,C 三个点,若过其中任意两点作直线,则直线共有3条 C .若线段AP BP =,则P 是线段AB 的中点D .延长线段AB 和反向延长线段BA 的含义相同9.《孙子算经》中有一道题,原文是:今有三人共车,二车空;二人共车,九人步,问人与车各几何?译文为:今有若干人乘车,若每3人共乘一辆车,则剩余2辆车;若每2人共乘一辆车,则剩余9个人无车可乘,问共有多少人,多少辆车?设共有x 人,则可列方程是( ) A .2932x x+=− B .9232x x −+= C .9232x x +−= D .2932x x−=+ 10.如图,两个直角AOB ∠,COD ∠有公共顶点O ,下列结论:第10题①AOC BOD ∠=∠; ②AOD ∠是BOC ∠的补角;③若OC 平分AOB ∠,则OB 平分COD ∠;④AOD ∠的平分线与COB ∠的平分线是同一条射线. 其中正确的个数是( ) A .4B .3C .2D .1二、填空题(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填在答卷指定的位置.11.用四舍五入法取近似值:1.804≈_________(精确到0.01). 12.计算16508432°°′′+=_________(结果用度、分表示).13.若单项式62m x y 与224n x y −的和仍是单项式,则m n +的值是_________.14.把方程534x y −=改写成用含x 的式子表示y 的形式是_________. 15.若α∠的余角比它的补角的14大15°,则α∠=_________. 16.如图,长方形纸片ABCD ,E 为边AD 上一点,将纸片沿EB ,EC 折叠,点A 落在A ′位置,点D 落在D ′位置,若10A ED ′′∠=°,则BEC ∠=_________.第16题三、解答题(共5小题,共52分)下列各题需要在答题卷指定位異写出文字说明、证明过程、计算步骤或作出图形.17.(本小题10分) 计算下列各题:(1)12(18)(7)(15)−−+−+−; (2)321832(2)(4)5+÷−−−×.18.(本小题10分) 解方程:(1)3212(1)x x −=−+; (2)3157146x x −−−=. 19.(本小题10分) 先化简再求值:()()22237427a ab a ab −+−−++,其中a ,b 满足方程组4316,215a b a b +=−=20.(本小题10分) 用方程(组)解决问题:(1)某车间有22名工人,每人每天可以生产1200个螺柱或2000个螺母.1个螺柱需要配2个螺母,为使每天生产的螺柱和螺母刚好配套,应安排生产螺柱和螺母的工人各多少名?(2)2台大收割机和5台小收割机同时工作2小时共收割小麦3.6公顷,3台大收割机和2台小收割机同时工作5小时共收割小麦8公顷.1台大收割机和1台小收割机每小时各收割小麦多少公顷? 21.(本小题12分) 如图,已知点A ,B ,C ,D .第21题(1)按要求画图: ①连接AD ; ②画射线BC ; ③画线段AB 的中点E ;④画一点F ,使点F 既在直线CD 上又在直线AB 上.(2)在(1)的基础上,若:2:3BF AB =,14EF =,求线段AB 的长,第II 卷(本卷满分50分)四、填空题(共4小题,每小题4分,共16分)下列各题不需要写出解答过程,请将结果直接填在答卷指定的位置.22.关于x ,y 的二元一次方程组432,3461x y k x y k +=++=− 的解满足5x y +=,则k =_________.23.已知110AOB ∠=°,过点O 作射线OC ,使20AOC ∠=°,OD 平分BOC ∠,则AOD ∠=_________.第23题24.现对某商品降价10%促销,为了使销售总金额增加17%,则促销后销售量比按原价销售时增加的百分比是_________. 25.下列说法: ①若a b =,则2211a bc c =++; ②若23(2)2m m x m −++=是关于x 的一元一次方程,则2m =±;③若有理数a ,b ,c 满足||a b c a b c −+=++,则0ab bc +=;④若我们用min(,)a b 表示a ,b 两数中较小的一个数,则min(,)22a b a ba b +−−=. 其中正确的是_________(填序号).五、解答题(共3小题,共34分)下列各题需要在答题卷指定位置写出文字说明、证明过程、计算步骤或作出图形.26.(本小题10分)下表是某次篮球联赛部分球队的积分表:队名 比赛场次 胜场 负场 积分 前进 16 10 6 36 光明 16 9 7 34 远大 16 12 4 40 卫星1661028备注:积分=胜场积分+负场积分(1)直接写出胜一场的积分和负一场的积分;(2)某队说他们的总积分为45分,你认为可能吗?为什么?(3)若某队的负场总积分是胜场总积分的正整数倍,胜一场奖励每个球员5000元,负一场奖励.每个球员1000元,请问这支球队的每个球员所获奖金可能是多少元? 27.(本小题12分)如图(1)所示,已知直线l 上有E ,F 两点,15cm EF =,有一根木棒AB 放在直线l 上,将木棒沿直线l 左右水平移动.当点B 与F 重合时,点A 刚好落在点B 移动前的位置,当点A 与E 重合时,点B 刚好落在点A 移动前的位置.第27题(1)直接写出木棒AB 的长;(2)木棒AB 在射线EF 上移动的过程中,当4AE BF =时,求AE 的长;(3)另一根木棒CD 长为3cm ,AB 和CD 在直线l 上的位置如图(2)所示,其中点D 与E 重合,点B 与F 重合.木棒AB 以3个单位长度/秒的速度向左移动,木棒CD 以2个单位长度/秒的速度向右移动,它们同时出发,设运动时间为t 秒,若式子AD BC +的值为定值,请直接写出此时t 的取值范围,并写出这个定值.28.(本小题12分)定义:一个正整数100010010xa b c d =+++(其中a ,b ,c ,d 均为小于10的非负整数). 若ma b mc d −=−,m 为整数,我们称x 为“m 倍数”.例如,5923:259223×−=×−,则称5923为“2倍数”;1940:319340−×−=−×−,则称1940为“3−倍数”;332548:254822×−=×−,因为32不是整数,所以2548不是“m 倍数”.(1)直接判断3274和2961是否为“m 倍数”,若是,直接写出m 的值; (2)若一个三位数x 为“2−倍数”,且个位数字为7,判断这个三位数是否能被7整除,并说明理由;(3)若一个四位数x 为“1倍数”,且各数位的数字互不相等,将它的千位数字和百位数字组成的两位数记为y (即10a b +),十位数字和个位数字组成的两位数记为z (即10c d +).若8y z−为整数,求这个四位数.(4)若一个四位数x 为“4倍数”,将它的百位数字和十位数字互换,得到的新的四位数仍为“4倍数”,6x +为“4−倍数”,直接写出满足条件的x 的最大值. 2023~2024学年度第一学期期末考试 七年级数学参考答案及评分标准卷I : 一、选择题CBCBDBADBA二、填空题11.1.80 12.10122′° 13.514.543x y −=15.40°16.85°三、解答题17.(1)解:原式1218715=+−−8=.(2)解:原式1832(8)165=+÷−−×18480=−−66=−18.(1)解:32122x x −=−−32212x x +=+−51x = 15x =(2)解:3(31)122(57)x x −−=− 93121014x x −−=−1x −= 1x =−19.解:化简整式得226214427a ab a ab −++−−21047a ab =−+.解方程组得74a b ==−.代入化简后的整式得,原式609=20.(1)解:设应安排x 名工人生产螺柱,()22x −名工人生产螺母.2000(22)21200x x −=×,解得10x =,2212 x −=,答:应安排10名工人生产螺柱,12名工人生产螺母.(2)解:设1台大收割机和1台小收割机每小时分别收割小麦x 公顷,y 公顷, 由题意得,2(25) 3.65(32)8x y x y +=+=,解得0.40.2x y = = .答:1台大收割机和1台小收割机每小时分别收割小麦0.4公顷,0.2公顷.21.(每个作图2分,共8分.) (2)(此问共4分) 解::2:3BF AB = ,∴设2BF x =,3AB x =, 点E AB 的中点,1322BE AB x ∴==, 14EF = ,14BF BE EF ∴+==,32142x x ∴+=, 解得4x =.312AB x ∴==.卷II : 四、填空题22.34723.45°或65°(对一个得2分) 24.30%25.①③④(只写一个得1分,写两个得2分,三个全对得4分,写错一个不得分) 26.(1)3,1.(2)解:设胜x 场,则负()16x −场,31645x x +−=,解得292x =.x 为非负整数,(此处若没有说明原因扣1分) 292x ∴=,不符合题意.∴得分不可能为45分.(3)解:设胜y 场,负16y −场,负场总积分是胜场总积分的m 倍,则316myy =−,1631y m =+,,y m 均为正整数,(此处若没有强调取整扣1分)∴当1m =时,4y =,此时球员的奖金为32000元; 当5m =时,1y =, 此时球员的奖金为20000元.答:每个球员奖励的金额可能有32000元或20000元. 27.(1)5.(2)解:(1)如图1,当A 、B 两点在线段EF 上时4AE BF = ,5515EF AE BF AB BF ∴=++=+=,2BF ∴=,8AE ∴=. ②如图2,当点A 在线段EF 上,点B 在F 右边时,4AE BF = ,3515EF AE AB BF BF ∴=+−=+=.103BF ∴=,403AE ∴=.③如图3,当点A 、B 都在F 右边时,同②3515EF AE AB BF BF =+−=+= 则103BF =,403AE =. 与图形不符,故舍去. 综上:AE 的长为8或403. (另解:如图,以E 为原点构造数轴)设点A 对应的数为x ,点B 对应的数为5x +,则AE x =,|10|BF x =−.4AE BF = ,4|10|x x ∴=−.解得8x =或403,8AE ∴=或403. (3)1825t ≤≤;8. 28.(1)3274不是“m 倍数”;2961是“m 倍数”,2m =−.(2)x 为三位数,0a ∴=,x 为“2−倍数”,且个位数字为7. 2027b c ∴−×−=−−,即27b c =+.10010100(27)1072107077(30101)x b c d c c c c ∴+++++++,730101x c ∴÷=+,c 为非负整数,30101c ∴+为正整数,∴这个三位数一定能被7整除.(也可以直接把三位数算出来,此三位数为917或707,少一个答案扣1分) (4) 四位数x 为“1倍数”,a b c d ∴−=−,且0a ≠,a c b d ∴−=−, 10y a b =+ ,10z c d =+,101010()()11()8888y z a b c d a c b d a c −+−−−+−−∴===, 8y z−为整数,且a ,c 均为小于10的非负整数,8a c ∴−=±或0, ,,,a b c d 互不相等,8a c ∴−=± 当8a c b d −=−=时,9810a b c d = = = = 或8901a b c d = == = .由题意知:0c ≠,9810x ∴=, 当8a c b d −=−=−时,1098a b c d = == = ,1098x ∴= 综上:这个四位数是9810或1098.(此问共4分,每个答案各2分,只要有合理的推导过程即可) (4)8888。

2023-2024学年北京二中教育集团七年级(上)期末数学试卷及答案解析

2023-2024学年北京二中教育集团七年级(上)期末数学试卷及答案解析

2023-2024学年北京二中教育集团七年级(上)期末数学试卷一、选择题(以下每题只有一个正确的选项,每小题2分,共16分)1.(2分)如图是某几何体的三视图,该几何体是()A.长方体B.三棱柱C.圆锥D.圆柱2.(2分)2023年8月,新一代人造太阳“中国环流三号”首次实现100万安培等离子体电流下的高约束模式运行,标志着我国磁约束核聚变装置运行水平迈入国际前列.将1000000用科学记数法表示应为()A.1×106B.10×105C.0.1×107D.1×1073.(2分)如图,甲从点O出发向北偏东50°方向走到点A,乙从点O出发向南偏西20°方向走到点B,则∠AOB的度数是()A.70°B.120°C.150°D.160°4.(2分)已知a2=9,|b|=5,且a﹣b<0,那么a+b等于()A.2或8B.﹣2或8C.﹣2或﹣8D.2或﹣8 5.(2分)如图,∠AOB:∠AOC:∠BOC=3:5:7,则∠AOB的度数为()A.36°B.72°C.90°D.120°6.(2分)若x=2是关于x的方程ax2+bx﹣4=0的解,则多项式2024﹣4a﹣2b的值是()A.1010B.1014C.2020D.20287.(2分)如图,将一刻度尺放在数轴上.①若刻度尺上0cm和3cm对应数轴上的点表示的数分别为1和4,则1cm对应数轴上的点表示的数是2;②若刻度尺上0cm和3cm对应数轴上的点表示的数分别为1和10,则1cm对应数轴上的点表示的数是4;③若刻度尺上0cm和3cm对应数轴上的点表示的数分别为﹣1和2,则1cm对应数轴上的点表示的数是0;④若刻度尺上0cm和3cm对应数轴上的点表示的数分别为﹣1和0.5,则1cm对应数轴上的点表示的数是﹣0.5.上述结论中,所有正确结论的序号是()A.①③B.②④C.①②③D.①②③④8.(2分)将正方体骰子放置于水平桌面上,在图②中,将骰子向右翻滚90°;然后在桌面上按逆时针方向旋转90°,则视作完成一次变换,若骰子的初始位置为图①所示的状态,那么按上述规则连续完成2024次变换后,骰子朝上一面的点数是()A.1B.3C.5D.6二、填空题(共16分,每题2分)9.(2分)亮亮准备从学校出发,开车去南山滑雪场滑雪,他打开导航,显示两地直线距离为59km,但导航提供的三条可选路线长却分别为70km,73km,75km.能解释这一现象的数学知识是.10.(2分)多项式2a3﹣a2+3a﹣1是次项式.11.(2分)若一个角的补角比它的余角的3倍少4°,则这个角的度数是.12.(2分)古代名著《算学启蒙》中有一题:良马日行二百四十里.驽马日行一百五十里.驽马先行一十二日,问良马几何追及之.意思是:跑得快的马每天走240里,跑得慢的马每天走150里.慢马先走12天,快马几天可追上慢马?若设快马x天可追上慢马,则由题意,可列方程为.13.(2分)线段AB=10cm,在直线AB上截取线段BC=2cm,D为线段AB的中点,E为线段BC的中点,那么线段DE=cm.14.(2分)若关于x的一元一次方程kx=x+2的解为正整数,则整数k的值为.15.(2分)如图,将一副三角板(三角板AMB和三角板CND)叠在一起,使两个直角顶点M、N重合,若∠AMD=118°48′,则∠BMC=.16.(2分)如图,一个大正方形的四个角落分别放置了四张大小不同的正方形纸片,其中1号,2号两张正方形纸片既不重叠也无空隙.已知1号正方形边长为a,2号正方形边长为b,则阴影部分的周长是.(用含a,b的式子表示)三、解答题(共68分,第17-20题,每题5分,第21题6分,第22-23题,每题5分,第24-26题,每题6分,第27-28题,每题7分)17.(5分)计算:.18.(5分)计算:.19.(5分)先化简再求值:3mn+(m2n+mn)﹣2(2mn﹣m2n),其中m=﹣1,n=2.20.(5分)解方程:.21.(6分)如图,已知四点A、B、C、D,请按要求完成下列问题:(1)画直线AB;(2)连接BC并延长BC到E,使CE=BC;(3)画射线CA、CD并度量∠ACD=°(结果精确到度);(4)画∠ACD的角平分线CF.22.(5分)如图,点O是AB的中点,点C在线段OB上,且BC=3OC,若AB=16,求线段OC的长.23.(5分)如图,∠AOB=90°,∠COD=90°,OE平分∠BOD,若∠AOC=30°,求∠COE的度数.解:∵∠AOB=90°,∴∠BOC+∠AOC=90°,∵∠COD=90°,∴∠BOC+∠BOD=90°,∴∠AOC=∠BOD()(填写推理依据),∵∠AOC=30°,∴∠BOD=30°,∵OE平分∠BOD,∴∠DOE==°()(填写推理依据),∴∠COE=∠COD﹣∠DOE=°.24.(6分)已知有理数a,b,c在数轴上的对应点如图所示:(1)﹣c0,abc0;(填>或<或=)(2)化简:|b|+|a+c|﹣|b﹣a|.25.(6分)北京居民生活用水实行阶梯价格制度,按年度用水量计算,将居民家庭全年用水量划分为三档,水价分档递增.2023年最新收费标准如下:阶梯户年用水量(单位:立方米)水价(单位:元/立方米)第一阶梯0﹣180(含)5第二阶梯181﹣260(含)7第三阶梯260以上9(1)若A家庭2023年用水量为200立方米,则该家庭应交水费元;(2)若B家庭2023年水费为1838元,则该家庭年用水量为多少立方米?(列方程解答)26.(6分)小天同学看到如下的阅读材料:对于一个正数x,以下给出了判断正数x是否为7的倍数的一种方法:每次划掉该数的最后一位数字,将剩下的数与划掉这个数字的两倍相减得到它们的差,称为一次操作,依此类推,直到数变为100以内的数为止.若该数是7的倍数,则最初的数x就是7的倍数,否则,数x就不是7的倍数.以x=266为例,经过第一次操作得到14,因为14是7的倍数,所以266是7的倍数.当数x的位数更多时,这种方法仍然适用.小天尝试说明该方法的道理,他发现解决问题的关键是每次判断过程的第一次操作,后续的操作道理都与第一次相同,于是他列出了如下表格进行分析.(1)请你补全小天列出的表格:x x的表达式第一次操作得到的差,记为M(x)266266=10×26+6M(266)=26﹣2×6875875=M(875)=………(2)表示100a+10b+c,其中1≤a≤9,0≤b≤9,0≤c≤9,a,b,c均为整数.利用以上信息说明:当是7的倍数时,也是7的倍数.27.(7分)已知:∠AOB=120°,射线OC是平面内一条动射线,射线OC绕点O顺时针旋转90°得到射线OD,OE平分∠AOD.(1)如图1,当射线OC在∠AOB外部时,若∠COE=70°,求∠BOD的度数;(2)如图2,当射线OC、OD都在∠AOB内部时,若∠COE=α,则∠BOD=(用含α的式子表示);(3)若OF平分∠BOC,直接写出∠EOF的度数(0°<∠BOC<180°,0°<∠EOF <180°).28.(7分)定义:数轴上有一点M,若点M到线段AB两个端点的距离成二倍关系时,则称点M是线段AB的二倍关联点.已知:点O为数轴原点,点A表示的数为1.(1)若点C在线段AB上,线段AB的二倍关联点C表示的数为3,则点B表示的数为;(2)点B从表示5的点出发,以每秒1个单位的速度沿数轴正方向运动,同时点D从表示1的点出发,以每秒3个单位长度的速度沿数轴正方向运动,设运动时间为t秒,当点D是线段AB的二倍关联点时,求出t的值;(3)设点B表示的数是2n,点P表示的数为n,点Q表示的数为n+2,若线段PQ上存在线段AB的二倍关联点,直接写出n的最大值及最小值.2023-2024学年北京二中教育集团七年级(上)期末数学试卷参考答案与试题解析一、选择题(以下每题只有一个正确的选项,每小题2分,共16分)1.(2分)如图是某几何体的三视图,该几何体是()A.长方体B.三棱柱C.圆锥D.圆柱【分析】该几何体的主视图与左视图、俯视图均为矩形,易得出该几何体的形状.【解答】解:该几何体的主视图为矩形,左视图为矩形,俯视图是一个矩形,且三个矩形大小不一,故该几何体是长方体.故选:A.【点评】本题主要考查的是由三视图判断几何体,涉及三视图的相关知识,解题时要有丰富的空间想象力.2.(2分)2023年8月,新一代人造太阳“中国环流三号”首次实现100万安培等离子体电流下的高约束模式运行,标志着我国磁约束核聚变装置运行水平迈入国际前列.将1000000用科学记数法表示应为()A.1×106B.10×105C.0.1×107D.1×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解答】解:1000000=1×106.故选:A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,正确确定a的值以及n的值是解决问题的关键.3.(2分)如图,甲从点O出发向北偏东50°方向走到点A,乙从点O出发向南偏西20°方向走到点B,则∠AOB的度数是()A.70°B.120°C.150°D.160°【分析】由方向角的定义得到∠AOC=50°,∠BOD=20°,求出∠AOD=130°,即可得到∠AOB=∠AOD+∠BOD=∠150°.【解答】解:由题意得:∠AOC=50°,∠BOD=20°,∴∠AOD=180°﹣∠AOC=130°,∴∠AOB=∠AOD+∠BOD=∠150°,故选:C.【点评】本题考查方向角,关键是由方向角的定义得到∠AOC=50°,BOD=20°.4.(2分)已知a2=9,|b|=5,且a﹣b<0,那么a+b等于()A.2或8B.﹣2或8C.﹣2或﹣8D.2或﹣8【分析】首先根据平方和绝对值求出a、b的值,再由a﹣b<0,得出具体的a、b的值,求出a+b即可.【解答】解:∵a2=9,|b|=5,∴a=±3,b=±5,∵a﹣b<0,∴a<b,∴当a=3,b=5时,a+b=8,当a=﹣3,b=5时,a+b=2.故选:A.【点评】本题考查了绝对值的性质,有理数的乘方,有理数的加法,解题关键是根据题意列出a、b的值.5.(2分)如图,∠AOB:∠AOC:∠BOC=3:5:7,则∠AOB的度数为()A.36°B.72°C.90°D.120°【分析】根据∠AOB、∠AOC、∠BOC的和及这三个角的比进行按比例分配即可求出∠AOB的度数.【解答】解:∵∠AOB:∠AOC:∠BOC=3:5:7,∠AOB+∠AOC+∠BOC=360°,∴∠AOB=×360°=72°.故选:B.【点评】本题主要考查角的计算,熟练掌握按比例分配是解决问题的关键.6.(2分)若x=2是关于x的方程ax2+bx﹣4=0的解,则多项式2024﹣4a﹣2b的值是()A.1010B.1014C.2020D.2028【分析】先把x=2代入一元二次方程可得4a+2b=4,再把2024﹣4a﹣2b变形为2024﹣(4a+2b),然后利用整体代入的方法计算.【解答】解:把x=2代入方程ax2+bx﹣4=0得4a+2b﹣4=0,∴4a+2b=4,∴2024﹣4a﹣2b=2024﹣(4a+2b)=2024﹣4=2020.故选:C.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.7.(2分)如图,将一刻度尺放在数轴上.①若刻度尺上0cm和3cm对应数轴上的点表示的数分别为1和4,则1cm对应数轴上的点表示的数是2;②若刻度尺上0cm和3cm对应数轴上的点表示的数分别为1和10,则1cm对应数轴上的点表示的数是4;③若刻度尺上0cm和3cm对应数轴上的点表示的数分别为﹣1和2,则1cm对应数轴上的点表示的数是0;④若刻度尺上0cm和3cm对应数轴上的点表示的数分别为﹣1和0.5,则1cm对应数轴上的点表示的数是﹣0.5.上述结论中,所有正确结论的序号是()A.①③B.②④C.①②③D.①②③④【分析】先计算出两点间的距离为几个单位长度,再除以刻度尺的长度,即可知每1cm 表示的单位长度.【解答】解:(1)∵0cm和3cm对应数轴上的点表示的数分别为1和4,∴单位长度为=1cm,∴1cm对应数轴上的点表示的数是1+=2,故①正确;(2)∵0cm和3cm对应数轴上的点表示的数分别为1和10,∴单位长度为=cm,∴1cm对应数轴上的点表示的数是1+(1﹣0)×3=4,故②正确;(3)∵0cm和3cm对应数轴上的点表示的数分别为﹣1和2,∴单位长度为=1cm,∴1cm对应数轴上的点表示的数是﹣1+=0,故③正确;(4)∵0cm和3cm对应数轴上的点表示的数分别为﹣1和0.5,∴单位长度为=2cm,∴1cm对应数轴上的点表示的数﹣1+=﹣0.5,故④正确,故选:D.【点评】本题考查的是数轴的相关知识,解题的关键是正确算出每一厘米表示的单位长度.8.(2分)将正方体骰子放置于水平桌面上,在图②中,将骰子向右翻滚90°;然后在桌面上按逆时针方向旋转90°,则视作完成一次变换,若骰子的初始位置为图①所示的状态,那么按上述规则连续完成2024次变换后,骰子朝上一面的点数是()A.1B.3C.5D.6【分析】从图形找规律,即可解答.【解答】解:由题意得:完成1次变换后,骰子朝上一面的点数是5;完成2次变换后,骰子朝上一面的点数是6;完成3次变换后,骰子朝上一面的点数是3;完成4次变换后,骰子朝上一面的点数是5;…∴连续完成3次变换为一个循环,∵2024÷3=674…2,∴按上述规则连续完成2024次变换后,骰子朝上一面的点数是6,故选:D.【点评】本题考查了规律型:图形的变化类,正方体相对两个面上的文字,从图形找规律是解题的关键.二、填空题(共16分,每题2分)9.(2分)亮亮准备从学校出发,开车去南山滑雪场滑雪,他打开导航,显示两地直线距离为59km,但导航提供的三条可选路线长却分别为70km,73km,75km.能解释这一现象的数学知识是两点之间线段最短.【分析】由线段的性质:两点之间线段最短,即可得到答案.【解答】解:能解释这一现象的数学知识是两点之间线段最短.故答案为:两点之间线段最短.【点评】本题考查线段的性质:两点之间线段最短,关键是掌握两点之间线段最短.10.(2分)多项式2a3﹣a2+3a﹣1是三次四项式.【分析】根据多项式的意义,即可解答.【解答】解:多项式2a3﹣a2+3a﹣1是三次四项式,故答案为:三;四.【点评】本题考查了多项式,熟练掌握多项式的意义是解题的关键.11.(2分)若一个角的补角比它的余角的3倍少4°,则这个角的度数是43°.【分析】设这个角为x度.根据一个角的补角比它的余角的3倍少20°,构建方程即可解决问题.【解答】解:设这个角为x度.则180°﹣x=3(90°﹣x)﹣4°,解得:x=43°.答:这个角的度数是43.故答案为:43°.【点评】本题考查余角、补角的定义,一元一次方程等知识,解题的关键是学会与方程分思想思考问题,属于中考常考题型.12.(2分)古代名著《算学启蒙》中有一题:良马日行二百四十里.驽马日行一百五十里.驽马先行一十二日,问良马几何追及之.意思是:跑得快的马每天走240里,跑得慢的马每天走150里.慢马先走12天,快马几天可追上慢马?若设快马x天可追上慢马,则由题意,可列方程为240x=150x+12×150.【分析】设快马x天可以追上慢马,根据快马和慢马所走的路程相等建立方程即可.【解答】解:设快马x天可以追上慢马,据题题意:240x=150x+12×150,故答案为:240x=150x+12×150【点评】本题考查了一元一次方程的应用,解答本题的关键是设出未知数,挖掘出隐含条件.13.(2分)线段AB=10cm,在直线AB上截取线段BC=2cm,D为线段AB的中点,E为线段BC的中点,那么线段DE=4或6cm.【分析】根据题意,可分为两种情况进行分析:①点C在线段AB上;②点C在线段AB的延长线上;分别作出图形,求出答案,即可得到DE的长度.【解答】解:根据题意,①当点C在线段AB上时;如图:∵AB=10cm,BC=2cm,又∵D为线段AB的中点,E为线段BC的中点,∴BD=AB=5cm,BE=BC=1cm,∴DE=BD﹣BE=5﹣1=4cm;②当点C在线段AB的延长线上时;如图:与①同理,可求BD=5cm,BE=1cm,∴DE=BD+BE=5+1=6cm;∴线段DE的长度为:4cm或6cm;故答案为:4或6.【点评】本题考查了线段的中点,两点之间的距离,以及线段的和差关系,解题的关键是熟练掌握线段的中点,线段的和差关系进行解题.14.(2分)若关于x的一元一次方程kx=x+2的解为正整数,则整数k的值为2或3.【分析】先解含有字母参数的方程,求出x,再根据关于x的一元一次方程kx=x+2的解为正整数,列出关于k的方程,解方程即可.【解答】解:kx=x+2,kx﹣x=2,(k﹣1)x=2,,∵关于x的一元一次方程kx=x+2的解为正整数,∴k﹣1=1或2,∴k=2或3,故答案为:2或3.【点评】本题主要考查了一元一次方程的解,解题关键是熟练掌握解含有字母参数的方程.15.(2分)如图,将一副三角板(三角板AMB和三角板CND)叠在一起,使两个直角顶点M、N重合,若∠AMD=118°48′,则∠BMC=61°12′.【分析】利用角的和差关系进行计算,即可解答.【解答】解:∵∠AMB=∠CND=90°,∴∠BMC=∠AMB+∠CND﹣∠AMD=90°+90°﹣118°48′=179°60′﹣118°48′=61°12′,故答案为:61°12′.【点评】本题考查了余角和补角,度分秒的换算,根据题目的已知条件并结合图形进行分析是解题的关键.16.(2分)如图,一个大正方形的四个角落分别放置了四张大小不同的正方形纸片,其中1号,2号两张正方形纸片既不重叠也无空隙.已知1号正方形边长为a,2号正方形边长为b,则阴影部分的周长是2a+4b.(用含a,b的式子表示)【分析】先表示出阴影部分所有竖直的边长之和和所有水平的边长之和,再表示出阴影部分的周长,然后进行整理即可得出答案.【解答】解:由图可得,最大的正方形的边长为a+b,阴影部分的水平长度之和为2(a+b),竖直长度之和为2(a+b﹣a)=2b,∴阴影部分的周长为:2(a+b)+2b=2a+2b+2b=2a+4b,故答案为:2a+4b.【点评】此题考查了列代数式,整式的加减和正方形的周长公式,解题的关键是明确题意,利用数形结合的思想解答.三、解答题(共68分,第17-20题,每题5分,第21题6分,第22-23题,每题5分,第24-26题,每题6分,第27-28题,每题7分)17.(5分)计算:.【分析】先将除法变为乘法,再根据乘法分配律进行计算即可求解.【解答】解:原式=()×(﹣24)==﹣10+(﹣16)﹣(﹣4)=﹣10﹣16+4=﹣22.【点评】本题考查了有理数的混合运算,掌握有理数的运算法则是解题的关键.18.(5分)计算:.【分析】先算括号里面的,再算乘法,最后算加减即可.【解答】解:原式=4﹣×(2﹣27)=4﹣×(﹣25)=4+5=9.【点评】本题考查的是有理数的混合运算,熟知有理数混合运算的法则是解题的关键.19.(5分)先化简再求值:3mn+(m2n+mn)﹣2(2mn﹣m2n),其中m=﹣1,n=2.【分析】将原式去括号,合并同类项后代入数值计算即可.【解答】解:原式=3mn+m2n+mn﹣4mn+2m2n=3m2n;当m=﹣1,n=2时,原式=3×(﹣1)2×2=6.【点评】本题考查整式的化简求值,熟练掌握相关运算法则是解题的关键.20.(5分)解方程:.【分析】按照解一元一次方程的步骤:去分母,去括号,移项,合并同类项,系数化为1,进行计算即可解答.【解答】解:,2(5x+2)﹣(1﹣x)=6,10x+4﹣1+x=6,10x+x=6﹣4+1,11x=3,x=.【点评】本题考查了解一元一次方程,熟练掌握解一元一次方程的步骤是解题的关键.21.(6分)如图,已知四点A、B、C、D,请按要求完成下列问题:(1)画直线AB;(2)连接BC并延长BC到E,使CE=BC;(3)画射线CA、CD并度量∠ACD=70°(结果精确到度);(4)画∠ACD的角平分线CF.【分析】(1)根据直线的定义画图即可.(2)连接BC并延长,以点C为圆心,CB的长为半径画弧,交BC的延长线于点E,则线段CE即为所求.(3)根据射线的定义画图,再测量角度即可.(4)根据角平分线的作图方法作图即可.【解答】解:(1)如图,直线AB即为所求.(2)如图,线段CE即为所求.(3)如图,射线CA、CD即为所求.度量∠ACD=70°.故答案为:70.(4)如图,射线CF即为所求.【点评】本题考查作图—复杂作图、直线、射线、线段、角平分线,熟练掌握直线、射线、线段、角平分线的定义是解答本题的关键.22.(5分)如图,点O是AB的中点,点C在线段OB上,且BC=3OC,若AB=16,求线段OC的长.【分析】先根据线段中点的定义求出OB的长,再根据BC=3OC即可求出OC的长.【解答】解:∵点O是AB的中点,AB=16,∴OB=,∵BC=3OC,∴OC=OB=2,故线段OC的长为:2.【点评】本题主要考查了与线段中点有关的计算,正确理清线段之间的关系是解题的关键.23.(5分)如图,∠AOB=90°,∠COD=90°,OE平分∠BOD,若∠AOC=30°,求∠COE的度数.解:∵∠AOB=90°,∴∠BOC+∠AOC=90°,∵∠COD=90°,∴∠BOC+∠BOD=90°,∴∠AOC=∠BOD(同角的余角相等)(填写推理依据),∵∠AOC=30°,∴∠BOD=30°,∵OE平分∠BOD,∴∠DOE=∠BOE=15°(角平分线的定义)(填写推理依据),∴∠COE=∠COD﹣∠DOE=75°.【分析】根据同角的余角相等得出∠AOC=∠BOD,即可求出∠BOD的度数,再根据角平分线的定义求出∠DOE的度数,即可求出∠COE的度数.【解答】解:∵∠AOB=90°,∴∠BOC+∠AOC=90°,∵∠COD=90°,∴∠BOC+∠BOD=90°,∴∠AOC=∠BOD(同角的余角相等)(填写推理依据),∵∠AOC=30°,∴∠BOD=30°,∵OE平分∠BOD,∴∠DOE=∠BOE=15°(角平分线的定义)(填写推理依据),∴∠COE=∠COD﹣∠DOE=75°.故答案为:同角的余角相等,∠BOE,15,角平分线的定义,75.【点评】本题考查了余角和补角,角平分线的定义,熟练掌握同角的余角相等是解题的关键.24.(6分)已知有理数a,b,c在数轴上的对应点如图所示:(1)﹣c<0,abc>0;(填>或<或=)(2)化简:|b|+|a+c|﹣|b﹣a|.【分析】(1)根据数轴比较a、b、c的大小后即可求出答案;(2)由题意可得b<0,a+c>0,b﹣a<0,再去绝对值符号,然后合并同类项即可.【解答】解:(1)由题意得,﹣4<b<﹣3,﹣1<a<0,1<c<2,∴﹣c<0,abc>0,故答案为:<,>;(2)∵b<0,a+c>0,b﹣a<0,∴|b|+|a+c|﹣|b﹣a|=﹣b+a+c﹣(a﹣b)=﹣b+a+c﹣a+b=c.【点评】本题考查数轴,涉及绝对值的性质,整式加减等知识,知道数轴上的数右边的比左边的大是解本题的关键.25.(6分)北京居民生活用水实行阶梯价格制度,按年度用水量计算,将居民家庭全年用水量划分为三档,水价分档递增.2023年最新收费标准如下:阶梯户年用水量(单位:立方米)水价(单位:元/立方米)第一阶梯0﹣180(含)5第二阶梯181﹣260(含)7第三阶梯260以上9(1)若A家庭2023年用水量为200立方米,则该家庭应交水费1040元;(2)若B家庭2023年水费为1838元,则该家庭年用水量为多少立方米?(列方程解答)【分析】(1)根据题中的收费标准计算;(2)根据“B家庭2023年水费为1838元”列方程求解.【解答】解:(1)180×5+7×(200﹣180)=1040(元),故答案为:1040;(2)设该家庭年用水量为x立方米,∵180×5+7×(260﹣180)=1460<1838,∴x>260,则:180×5+7×(260﹣180)+9(x﹣260)=1838,解得:x=302,答:该家庭年用水量为302立方米.【点评】本题考查了一元一次方程的应用,找到相等关系是解题的关键.26.(6分)小天同学看到如下的阅读材料:对于一个正数x,以下给出了判断正数x是否为7的倍数的一种方法:每次划掉该数的最后一位数字,将剩下的数与划掉这个数字的两倍相减得到它们的差,称为一次操作,依此类推,直到数变为100以内的数为止.若该数是7的倍数,则最初的数x就是7的倍数,否则,数x就不是7的倍数.以x=266为例,经过第一次操作得到14,因为14是7的倍数,所以266是7的倍数.当数x的位数更多时,这种方法仍然适用.小天尝试说明该方法的道理,他发现解决问题的关键是每次判断过程的第一次操作,后续的操作道理都与第一次相同,于是他列出了如下表格进行分析.(1)请你补全小天列出的表格:x x的表达式第一次操作得到的差,记为M(x)266266=10×26+6M(266)=26﹣2×6875875=10×87+5M(875)=87﹣2×5………(2)表示100a+10b+c,其中1≤a≤9,0≤b≤9,0≤c≤9,a,b,c均为整数.利用以上信息说明:当是7的倍数时,也是7的倍数.【分析】(1)参照已有的表达式,写出875与M(875)的公式;(2)先写出与M()的表达式,再找出两者存在的规律关系,即当2与M()都是7的倍数时,可说明也是7的倍数.【解答】解:(1)875=10×87+5,M(875)=87﹣2×5;(2)∵=100a+10b+c=10(10a+b)+c=10+c,又∵M()=﹣2c,∴2=20+2c=21﹣(﹣2c)=21﹣M(),因此,当M()是7的倍数时,21﹣M()也是7的倍数,即2是7的倍数,此时也是7的倍数.【点评】本题考查的是整式的加减运算,解题的关键在于找出各个整式的关系和熟练运用公因数以及公倍数的概念.27.(7分)已知:∠AOB=120°,射线OC是平面内一条动射线,射线OC绕点O顺时针旋转90°得到射线OD,OE平分∠AOD.(1)如图1,当射线OC在∠AOB外部时,若∠COE=70°,求∠BOD的度数;(2)如图2,当射线OC、OD都在∠AOB内部时,若∠COE=α,则∠BOD=2α﹣60°(用含α的式子表示);(3)若OF平分∠BOC,直接写出∠EOF的度数(0°<∠BOC<180°,0°<∠EOF <180°).【分析】(1)先根据角之间的关系,求出∠DOE的度数,再根据角平分线的定义求出∠AOD的度数,最后根据角之间的关系求出∠BOD即可;(2)根据角之间的关系求出∠DOE,然后根据角平分线的性质表示出∠AOD的度数,最后根据角之间的关系求出∠BOD即可;(3)根据OC,OD,是否在∠AOB内分类讨论即可.【解答】解:(1)∵∠COE=70°,∠COD=90°,∴∠DOE=∠COD﹣∠COE=20°,∵OE平分∠AOD,∴∠AOD=2∠DOE=2×20°=40°,∴∠BOD=∠AOB﹣∠AOD=120°﹣40°=80°;(2)∵∠COE=α,∠COD=90°,∴∠DOE=∠COD﹣∠COE=90°﹣α,∵OE平分∠AOD,∴∠AOD=2∠DOE=2(90°﹣α)=180°﹣2α,∴∠BOD=∠AOB﹣∠AOD=120°﹣(180°﹣2α)=2α﹣60°.故答案为:2α﹣60°;(3)设∠AOC=x,①当OC在∠AOB外,OD在∠AOB内时,如图1:∴∠AOD=90°﹣x,∴∠AOE=45°﹣0.5x,∵∠BOC=∠AOC+AOB=120°+x,∴∠COF=60°+0.5x,∴∠AOF=∠COF﹣∠AOC=60°﹣0.5x,∴∠EOF=∠AOF﹣∠AOE=15°;②当OC和OD都在∠AOB内时,如图2:∠BOC=∠AOB﹣∠AOC=120°﹣x,∴∠COF=∠BOC=60°﹣0.5x,∵∠COE=∠AOE﹣x,∠AOE=∠DOE,∠DOE+∠COE=90°,∴∠COE=45°﹣0.5x,∴∠EOF=∠COF﹣∠COE=15°;③当OC和OD都在∠AOB外时,如图3:∴∠BOC=360°﹣∠AOB﹣∠AOC=240°﹣x,∴∠COF=120°﹣0.5x,∵∠AOD=∠AOC﹣∠COD=x﹣90°,∴∠DOE=0.5x﹣45°,∴∠COE=90°+0.5x﹣45°=0.5x+45°,∴∠EOF=∠COE+∠COF=165°;④当OC在∠AOB内,OD不在∠AOB内,情况与②相同,综上所述,∠EOF=15°或165°.【点评】本题主要考查了角的计算,情况较多,注意分类讨论.28.(7分)定义:数轴上有一点M,若点M到线段AB两个端点的距离成二倍关系时,则称点M是线段AB的二倍关联点.已知:点O为数轴原点,点A表示的数为1.(1)若点C在线段AB上,线段AB的二倍关联点C表示的数为3,则点B表示的数为7或4;(2)点B从表示5的点出发,以每秒1个单位的速度沿数轴正方向运动,同时点D从表示1的点出发,以每秒3个单位长度的速度沿数轴正方向运动,设运动时间为t秒,当点D是线段AB的二倍关联点时,求出t的值;(3)设点B表示的数是2n,点P表示的数为n,点Q表示的数为n+2,若线段PQ上存在线段AB的二倍关联点,直接写出n的最大值及最小值.【分析】(1)根据题意分CB=2AC和CB=AC求解即可;(2)根据题意,点D表示的数就是1+3t,点B表示的数就是5+t,分点D到A的距离是点D到B的距离的两倍和点D到B的距离是点D到A的距离的两倍分别求解即可;(3)分点P到A的距离是点P到B的距离的两倍和点Q到A的距离是点Q到B的距离的两倍求解可得结论.【解答】解:(1)A表示的数为1,C表示的数为3,则AC=3﹣1=2,∵C为线段AB的二倍关联点,∴CB=2AC=4,∴B表示的数为3+4=7,或CB=AC=1,∴B表示的数为3+1=4,∴点B表示的数为7或4,故答案为:7或4;(2)根据题意,点D表示的数就是1+3t,点B表示的数就是5+t,当点D是线段AB的二倍关联点时,有两种情况:①点D到A的距离是点D到B的距离的两倍,即:1+3t﹣1=2×[5+t﹣(1+3t)],解得t=,②点D到B的距离是点D到A的距离的两倍,即:5+t﹣(1+3t)=2×(1+3t﹣1),解得t=,综上所述:t的值为或;(3)∵线段PQ上存在线段AB的二倍关联点,∴①当点P到A的距离是点P到B的距离的两倍时,有n﹣1=2(2n﹣n),解得n=﹣1,②当点Q到A的距离是点Q到B的距离的两倍时,有n+2﹣1=2×[2n﹣(n+2)],解得n=5,∴n的最大值为5,最小值为﹣1.【点评】本题考查了一元一次方程的应用,根据题意找到相等关系是解题的关键。

河北省保定市唐县2023-2024学年七年级上学期期末数学试题(含答案)

河北省保定市唐县2023-2024学年七年级上学期期末数学试题(含答案)

2023-2024学年第一学期学业质量检测七年级数学试卷注意事项:1.本试卷共8页,总分120分,考试时间120分钟。

2.答题前,考生务必将姓名、准考证号填写在答题卡的相应位置。

3.所有答案均在答题卡上作答,在本试卷或草稿纸上作答无效。

答题前,请仔细阅读答题卡上的“注意事项”,按照“注意事项”的规定答题。

4.答选择题时,用2B 铅笔将答题卡上对应题目的标准答案标号涂黑;答非选择题时,请在答题卡上对应题目的答题区域内答题一、选择题(本大题有16小题,共42分。

1~10小题各3分;11~16小题各2分.在每小题给出的四个选项中,只有一项是符合要求的)1.把写成省略括号的代数和的形式,正确的是( )A .B .C .D .2.“力箭一号”()运载火箭在酒泉卫星发射中心采用“一箭六星”的方式,成功将六颗卫星送入预定轨道,首次飞行任务取得圆满成功.把卫星看成点,则卫星在预定轨道飞行留下的痕迹体现了( )A .点动成线B .线动成面C .面动成体D .面面相交成线3.武老师在实验室里检测了A 、B 、C 、D 四个湿敏电阻器的质量(单位:克),超过标准质量的记为正数,不足标准质量的记为负数,结果如图所示,其中最接近标准质量的是()A .B .C .D .4.算式的值最小时,中填入的运算符号是()A .B .C .D .5.对于下列各数:,0,,,,8,其中说法错误的是( )A .,0,8都是整数B .分数有,,C .正数有,,8D .是负有理数,但不是分数6.“多少事,从来急;天地转,光阴迫.一万年太久,只争朝夕.”伟人毛泽东通过这首《满江红·和郭沫若同志》告诉我们青年学生:要珍惜每分每秒,努力工作,努力学习.一天时间为86400秒,用科学记数法表示这一数字是( )A .B .C .D .7.下列四个图中,能用、、三种方法表示同一个角的是()()()345---+-345--345---345-+345--+ZK 1A -21-□□+-⨯÷5-920.2-10%5-920.2-10%9210%0.2-286410⨯58.6410⨯48.6410⨯50.86410⨯1∠AOB ∠O ∠A .B .C .D .8.下列说法正确的是()A .与是同类项B .单项式的系数是5C .一个两位数,十位上的数字是,个位上的数字是,则这个两位数是D .用四舍五入法把25.395精确到0.01的近似数是25.49.为加快唐县城市更新改造,全面推进全县基础设施建设,提升城市档次和品位,2023年10月起,唐尧路开始封闭施工工程.其中某条地下管线如果由甲工程队单独铺设需要20天,由乙工程队单独铺设需要30天,现计划由乙工程队先从一端铺设5天,然后增加甲工程队从另一端和乙工程队同时铺设.设甲乙工程队共同铺设x 天后,恰好完成这条地下管线的铺设,则下列方程正确的是( )A.B .C .D .10.一个正方体的每个面都有一个汉字,其平面展开图如图所示,那么在该正方体中与“学”字相对的字是()A .考B .试C .加D .油11.下列各式中不能表示图中阴影部分面积的是()A .B .C .D .12.随着科技的发展,在公共区域内安装“智能全景摄像头”成为保护人民生命财产安全的有效手段.如图1所示,这是某仓库的平面图,点Q 是图形内任意一点,点是图形内的点,连接,若线段总是在图形内或图形上,则称是“完美观测点”,此处便可安装摄像头,而不是“完美观测点”.233x y 32x y -5ab -a b 10a b +512030x+=513020x +=51202030x x ++=51302030x x ++=()232x x++25x x+()()322x x x ++-()36x x ++360︒1P 1PQ 1PQ 1P 2P图1 图2如图2,以下各点是完美观测点的是( )A .B .C .D .13.在数轴上,点在原点O 的同侧,分别表示数a ,1,将点向左平移3个单位长度,得到点C .若点C 与点B 互为相反数,则a 的值为( )A .3B .2C .D .014.幻方是古老的数学问题,我国古代的《洛书》中记载了最早的幻方-九宫格,把1-9这9个数填入方格中,使每一横行,每一竖列以及两条斜对角线上的数之和都相等.如图是一个未完成的“幻方”,则其中x 的值是()14题图A .3B .4C .5D .615.为全力推进农村公路快速发展,解决农村出行难问题,现将三村连通的公路进行硬化改造,如图,铺设成水泥路面.已知B 村在A 村的北偏东方向上,.则村在村的( )方向上.15题图A .北偏东B .北偏西C .西偏东D .南偏西16.已知三条射线,若其中一条射线平分另两条射线所组成的角时,我们称组成的图形为“角分图形”.如图(1),当平分时,图(1)为角分图形.1M 2M 3M 4M ,A B A 1-33⨯A B C 、、65︒100ABC ∠=︒C B 15︒15︒45︒15︒OA OB OC 、、OA OB OC 、、OB AOC ∠如图(2),点O 是直线MN 上一点,,射线OM 绕点O 以每秒的速度顺时针旋转至,设时间为,当为何值时,图中存在角分图形.小明认为,小亮认为.你认为正确的答案为()图(1) 图(2)A .小明B .小亮C .两人合在一起才正确D .两人合在一起也不正确二、填空题(本大题共3小题,17~18题每空2分,第19题3分,共11分.)17.(1)如图,O 是直线上一点,,则的度数等于______.(2)一件工艺品按成本价提高后,以108元售出,则这件工艺品的成本是______元.18.“这么近,那么美,周末到河北。

湖北省武汉市江岸区2023-2024学年七年级上学期期末数学试题(含解析)

湖北省武汉市江岸区2023-2024学年七年级上学期期末数学试题(含解析)

七年级数学考试注意事项:1、考生须诚信考试,遵守考场规则和考试纪律,并自觉服从监考教师和其他考试工作人员管理;2、监考教师发卷后,在试卷指定的地方填写本人准考证号、姓名等信息;考试中途考生不准以任何理由离开考场;3、考生答卷用笔必须使用同一规格同一颜色的笔作答(作图可使用铅笔),不准用规定以外的笔答卷,不准在答卷上作任何标记。

考生书写在答题卡规定区域外的答案无效。

4、考试开始信号发出后,考生方可开始作答。

A .优B .衡5.有理数a 、b 在数轴上的对应点的位置如图所示,下列结论不正确A .0a b +<B .0a b -<A.218︒7.我国古代著作《增删算法统宗》中记载了一首古算诗:A.2B.315.下列四个结论中:①若25-n m b a 与428a b 是同类项,则②若关于x 的多项式(23ax -三、解答题(共817.计算(1)()()34232÷-+⨯-111(1)用含有a、b的代数式表示主卧的面积为厅的面积为______平方米.(直接填写答案)(2)团团圆圆的爸爸想把主卧、次卧铺上木地板,其余部分铺瓷砖,已知每平方米木地板费用为200元,每平方米瓷砖的费用为AM=,则CD=______:(直接填写答案)①若8②线段AB运动时,试判断线段CD的长度是否发生变化?如果不变,果变化,请说明理由.(2)知识迁移:我们发现角的很多规律和线段一样,如图(1)求图1中所有线段的条数为______条:(2)若线段AB从点B开始以2个单位/秒的速度向右运动,同时线段CD从点(1)如图1,已知60AOB ∠=︒,在AOB ∠内存在一条射线OC ,使得AOC ∠是BOC ∠的“绝配角”,此时AOC ∠=______:(直接填写答案)(2)如图2,已知60AOB ∠=︒,若平面内存在射线OC 、OD (OD 在直线OB 的上方),使得AOC ∠是BOC ∠的“绝配角”,BOC ∠与BOD ∠互补,求AOD ∠大小:(3)如图3,若10AOB ∠=︒,射线OC 从OA 出发绕点O 以每秒20︒的速度逆时针旋转,射线OD【分析】本题主要考查了几何图形中角度的计算,根据平角的定义得到48COD ∠=︒,则180228AOD BOC COD ∠+∠=︒+=︒∠.【详解】解:∵58AOC ∠=︒,74BOD ∠=︒,∴18048COD APC BOD =︒--=︒∠∠∠,∴180228AOD BOC COD ∠+∠=︒+=︒∠,故选:B .7.A【分析】设孩童有x 名,根据“每人分4梨,多12梨;每人6梨,恰好分完”,列方程即可得到答案.【详解】解:设孩童有x 名,根据题意可得:4126x x +=,故选:A .【点睛】本题考查了由实际问题抽象出一元一次方程,根据题意列出一元一次方程是解决问题的关键.8.D【分析】本题主要考查了整式加减中的无关型问题,先去括号,然后合并同类项,再根据多项式的值与x 无关,则含x 的项的系数为0,求出a 、b 的值即可得到答案.【详解】解:()()22453243-+----+-x ax y bx x y 224532826x ax y bx x y =-+-++-+()()224833b x a x y =++-++,∵关于x 、y 的多项式()()22453243-+----+-x ax y bx x y 的值与字母x 的取值无关,∴24080b a +=-=,,∴82a b ==-,,∴286b a +=-+=,故选:D .9.C【分析】设“H”型框中的正中间的数为x ,则其他6个数分别为x-8,x-6,x-1,x+1,x+6,x+8,表示出这7个数之和,然后分别列出方程解答即可.-17.(1)56(2)解:当OC 在OB 下方时,∵AOC ∠是BOC ∠的“绝配角”,∴290BOC AOC ∠+=︒∠,∵60AOC AOB BOC BOC ∠=∠+∠=︒+∠,∴212090BOC BOC ++︒=︒∠∠,解得10BOC =-︒∠(舍去);当OC 在AOB ∠内部时,同(1)可得30BOC ∠=︒,∵BOC ∠与BOD ∠互补,∴150BOD ∠=︒,∴90AOD BOD AOB ∠=-=︒∠∠;当OC 在AOB ∠外部时,∵AOC ∠是BOC ∠的“绝配角”,∴290BOC AOC ∠+=︒∠,∴290AOB AOC AOC ++=︒∠∠∠,∴10AOC ∠=︒,∴70AOB A BOC OC ∠+∠=︒∠=∵BOC ∠与BOD ∠互补,∴110BOD ∠=︒,∴50AOD BOD AOB ∠=-=︒∠∠;(3)解:①当09t <≤时,由题意得,20AOC t =︒∠,∠∵OM 平分AOC ∠,ON 平分∴1102AOM AOC t ==︒∠∠,∠当917t <<时,由题意得,360AOC =∠∵OM 平分AOC ∠,ON ∴12AOM AOC ==∠∠∴MON BON ∠=∠-∠(BON AOM =∠-∠-∠②当1718t <<时,由题意得,36020AOC t =︒-∠∵OM 平分AOC ∠,ON 平分∠115当1820t <≤时,由题意得,20360AOC t =︒-︒∠,∠15。

2024-2025学年人教版七年级数学上册期末质量检测复习试题(二)(含答案)

2024-2025学年人教版七年级数学上册期末质量检测复习试题(二)(含答案)

2024—2025年度第一学期人教版七年级数学期末质量检测复习试题(二)(考试时间:120分钟 试卷满分:150分)1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

一、选择题(本大题共12小题,每小题3分,满分36分.在每个小题给出的四个选项中,只有一项符合题目要求的)1.(本题3分)的相反数是( )A .2024B .C.D .2.(本题3分)点A 在数轴上的位置如图所示,若将点A 向左移动4个单位长度得到点B ,则点B 表示的数是( )A .5B .4C .D .3.(本题3分)2024年6月6日,嫦娥六号在距离地球约384000000米外上演“太空牵手”,完成月球轨道的交会对接,数据384000000用科学记数法表示为( ).A .B .C .D .4.(本题3分)当时,代数式的值为( )A .1B .C .D .5.(本题3分)已知单项式与的和是单项式,那么的值是( )A .B .C .D .6.(本题3分)已知关于x 的方程的解是,则a 的值为( )A .6B .7C .8D .97.(本题3分)如图,,,若平分,则( )A .B .C .30°D .8.(本题3分)把,,,0用“”号连接,正确的是( )A .B .C .D .9.(本题3分)我国古代流传这样一个问题:今有四人共车,一车空;二人共车,八人步,问人与车各几何,意思是:今有若干人乘车,每4人共乘一车,恰好剩余1辆车无人坐;若每2人共乘一车,最终剩余8个人无车乘,问有多少人、多少辆车.如果设有辆车,那么总人数可表示为( )A .B .C .D .10.(本题3分)如图,点C 是线段上的点,点M 、N 分别是的中点,若,则线段的长度是( )A .B .C .D .11.(本题3分)已知,,若的值与a 的取值无关,则b 的值为20242024-1202412024-3-4-73.8410⨯83.8410⨯93.8410⨯838.410⨯5m =6m -1-1111-22m x y -335n x y ()n m -99-66-250x a -+=2x =75AOD ∠=︒30COD ∠=︒OB AOC ∠AOB ∠=22.5︒25︒ 3.5︒()1--23-45-->()420531--->>->-()240351->>-->--()240351->>---->()420531>>-->---x ()41x -()41x +28x -()28x +AB AC BC 、5cm MN =AB 6cm 7cm 8cm 10cm2231A a ab a =+--235B a ab =--+2A B +( )A .B .C .D .12.(本题3分)如图:第1个图案中,内部“△”的个数为1个,外侧边上“●”的个数为3个;第2个图案中,内部“△”的个数为3个,外侧边上“●”的个数为6个;第3个图案中,内部“△”的个数为6个,外侧边上“●”的个数为9个;依此类推,当内部“△”的个数是外侧边上“●”的个数的3倍时,的值为( )A .16B .17C .18D .19二、填空题(本大题共4小题,每小题4分,满分16分)13.(本题4分)若,且,则 .14.(本题4分)计算: .15.(本题4分)若多项式是关于的五次三项式,则的值为 .16.(本题4分)如图是一个正方体的表面展开图,在正方形、、内分别填入适当的数,,,使其折叠成正方体后,相对面上的两个数互为倒数,则 .三、解答题(本大题共9小题,满分98分.解答应写出文字说明,证明过程或演算步骤)17.(本题10分)把下列各数分别填在相应的集合内.2024,,,,3.1415926,0,,,,(1)正有理数集合:{ …};(2)负分数集合:{ …};(3)整数集合:{ …}.18.(本题10分)计算:(1); (2)19.(本题10分)计算(1)(2)20.(本题10分)先化简,再求值;(1),其中; (2),其中34-14-35-15-n 0a <2=a a =20239920242024⨯=||328(2)m x x m x +-+-x m A B C a b c 23a b c -+=1- 2.3-1634-5%90-0.3- ()()3233524-+⨯--÷525203333⎛⎫⎛⎫⎛⎫⎛⎫-⨯-+-⨯+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()3126x --=123123x x ---=22225432a a a a a -++--12a =()()22222432314x y xy xy x y x y ----112,x y ==-21.(本题10分)如图,已知轮船在灯塔的北偏西的方向上,轮船在灯塔的南偏东的方向上.(1)求从灯塔看两轮船的视角(即)的度数;(2)轮船在的平分线上,则轮船在灯塔的什么方向上?22.(本题12分)王老师购买了一套经济适用房,他准备将地面铺上地砖,地面结构如图所示,根据图中的数据(单位:),解答下列问题:(1)写出用含、的整式表示的地面总面积;(2)若,,铺地砖的平均费用为元,求铺地砖的总费用为多少元?23.(本题12分)甲班分两次共购买苹果80千克(第二次多于第一次),共付185元,乙班则一次性购买苹果80千克.购买苹果数不超过30千克30千克以上但不超过50千克50千克以上每千克价格3元2.5元2元(1)乙班比甲班少付多少元?(2)甲班第一次、第二次分别购买苹果多少千克?A P 20︒B P 80︒P APB ∠C APB ∠C P m x y 4m x = 1.5m y =21m 8024.(本题12分)某学校有一块长方形花园,长12米、宽10米.花园中间欲铺设横纵各一条道路(图①空白部分),且它们互相垂直.若横向道路的宽是纵向道路的宽的2倍,设纵向道路的宽是米.(提示:)(1)如图①,横向道路的宽是_____米,花园道路的面积为_____平方米;(用含的代数式表示)(2)若把纵向道路的宽改为原来的2倍,横向道路的宽改为原来的(如图②所示).设图①与图②中花园的面积(阴影部分)分别为,,试比较与的大小.25.(本题12分)综合与实践问题情境在一次数学实践活动课上,同学们利用一张边长为的正方形纸板开展了“长方体纸盒的制作”实践活动.如图1,勤学小组的同学先在纸板四角剪去四个同样大小边长为的小正方形,再沿虚线折合起来,制成了一个无盖的长方体纸盒.如图2,善思小组的同学先在纸板四角剪去两个同样大小边长为的小正方形和两个同样大小的小长方形,再沿虚线折合起来,制成了一个有盖的长方体纸盒.问题解决(1)图1中的长方体纸盒的底面积为 ;(2)图2中的长方体纸盒的长为 :拓展延伸(3)现有两张边长均为的正方形纸板,分别按勤学小组和善思小组的方法制作成无盖和有盖的两个长方体纸盒,若剪去部分的小正方形边长为,求无盖纸盒的体积是有盖纸盒体积的多少倍.x 2x x x ⋅=x 121S 2S 1S 2S 20cm 5cm 3cm 2cm cm 30cm 5cm2024—2025年度第一学期人教版七年级数学期末质量检测复习题(二)参考答案一、选择题(本大题共12小题,每小题3分,满分36分.在每个小题给出的四个选项中,只有一项符合题目要求的)题号12345678910答案B C B B A D A C A D 题号1112 答案CB二、填空题(本大题共4小题,每小题4分,满分16分)13.―214.15.16.三、解答题(本大题共9小题,满分98分.解答应写出文字说明,证明过程或演算步骤)17.(1)解:正有理数:2024,,3.1415926,,故答案为:2024,,3.1415926,;(2)解:负分数:,故答案为:;(3)解:整数:.故答案为:.18.(1)解:;(2).19.(1)解:,去括号得:,移项,合并同类项得:,系数化为1得:;(2)解:,去分母得:,去括号得:,移项,合并同类项得:,系数化为1得:.20.解:(1)2023992-16165%165%332.3,,40.--- 332.3,,40.--- 2024,1,0,90--2024,1,0,90--()()3233524-+⨯--÷()()393524=-+⨯--÷()6584=-⨯--÷()302=---302=-+=28-525203333⎛⎫⎛⎫⎛⎫⎛⎫-⨯-+-⨯+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭5220333⎛⎫=-⨯-+ ⎪⎝⎭563=-⨯10=-()3126x --=3126x -+=2631x =-+2x =123123x x ---=()()312236x x ---=33466x x --+=3x -=3x =-22225432a a a a a -++--,当时,原式.(2),当时,原式.21.(1)解:如图所示,因为轮船在灯塔的北偏西的方向上,轮船在灯塔的南偏东的方向上,所以 .(2)解:因为平分,所以,所以,所以轮船在灯塔的北偏东方向上.22.(1)解:如图,由题意知,长方形的长为,宽为,长方形的长为,宽为,∴地面总面积,∴用含、的整式表示地面总面积为;(2)解:当,时,,∵(元),()()22223542a a a a a =+-+-+-2a =--12a =15222=--=-()()22222432314x y xy xy x y x y----222221246214x y xy xy x y x y=--+-210xy =-112,x y ==-21510122⎛⎫=-⨯⨯-=- ⎪⎝⎭A P 20︒B P 80︒APB APM MPN BPN ∠=∠+∠+∠()20909080=︒+︒+︒-︒120=︒PC APB ∠111206022APC APB ∠=∠=⨯︒=︒CPM APC APM ∠=∠-∠602040=︒-︒=︒C P 40︒ABCD ()224m x x ++=+6m CEFG 2m ()633m y y --=-=()()()264231862m ABCD CEFG S S x y x y -=+--=++长方形长方形x y ()21862m x y ++4m x = 1.5m y =2186218642 1.545m x y ++=+⨯+⨯=4580360⨯=∴铺地砖的总费用为元.23.(1)解: (元).答:乙班比甲班少付25元.(2)解:设甲班第一次购买了千克苹果,则第二次购买了千克苹果.①若两次购买量都在30千克与50千克之间,则,无解;②若第一次购买量在0千克与30千克之间,第二次购买量在30千克与50千克之间,则,解得,不合题意,舍去;③若第一次购买量在0千克与30千克之间,第二次购买量在50千克以上,则,解得,符合题意,此时.答:甲班第一次购买了25千克苹果,第二次购买了55千克苹果.24.(1)解:横向道路的宽是x 米,且纵向道路的宽是横向道路的宽的2倍,纵向道路的宽是米,由题意,图①中花园道路的面积为:平方米;(2)解:由题意得,题图①中花园的面积平方米,题图②中花园的面积.平方米,则.因为,所以,所以.25.解:(1)图1中的长方体纸盒的底面积为;故答案为:(2)图2中的长方体纸盒的长为,故答案为:14(3)无盖纸盒的体积为:,有盖纸盒体积为:∵,∴无盖纸盒的体积是有盖纸盒体积的2倍36018528025-⨯=x ()80x -2.5 2.5(80)185x x +-=3 2.5(80)185x x +-=30x =-32(80)185x x +-=25x =8055x -=∴2x ()2101222342x x x x x +⨯-⋅=-)()2211210(342120342S x xx x =⨯--=-+21210(12102S x x x =⨯-+⨯-()22)120322x x x =-+()()22121203421203222S S x x x x x -=-+--+=-0x >20x -<12S S <()()()22052205c 0m 210-⨯⨯-⨯=100()203214cm -⨯=()()()3305230525202052000cm -⨯⨯-⨯⨯=⨯⨯=()()3305230525201051000cm 2-⨯⎛⎫-⨯⨯⨯=⨯⨯= ⎪⎝⎭200010002÷=。

七年级数学上册期末试卷(附含答案)

七年级数学上册期末试卷(附含答案)

七年级数学上册期末试卷(附含答案)(满分: 120分考试时间: 120分)一选择题(本题共计10 小题每题3 分共计30分)1. 下列各数: 0 −5 −(−7) −|−8| (−4)2中负数有()A.1个B.2个C.3个D.4个2. 若a+a<0 aa<0 则()A.a>0B.a<0C.a b两数一正一负且正数的绝对值大于负数的绝对值D.a b两数一正一负且负数的绝对值大于正数的绝对值3. 2018年上半年长沙市实现农林牧渔业总产值1958000万元数据1958000用科学记数法表示()A.19.58×104B.0.1958×107C.1.958×106D.1.958×10104. 如果水位升高6a时水位变化记为+6a 那么水位下降6a时水位变化记为()A.−3 mB.3 mC.6 mD.−6 m5. 下列说法错误的是()A.−2的相反数是2B.3的倒数是13C.(−3)−(−5)=2D.−1104这三个数中最小的数是06. 有理数−1 −2 0 3中最小的数是()A.−1B.−2C.0D.37. 若a和a都是4次多项式则a+a一定是()A.8次多项式B.4次多项式C.次数不高于4次的整式D.次数不低于4次的整式8. 数轴上表示整数的点称为整点某数轴的单位长度是1厘米若在这个数轴上随意画一条长15厘米的线段aa 则aa盖住的整数点的个数共有()个.A.13或14个B.14或15个C.15或16个D.16或17个9. 如图下列式子成立的是()/A.a−b>0B.a+b<0C.a−b<0D.b−1<010. 已知表示实数a a的点在数轴上的位置如图所示下列结论错误的是()/A.|a|<1<|b|B.1<−a<bC.1<|a|<bD.−b<a<−1二填空题(本题共计4 小题每题3 分共计12分)11. 8的相反数是________ −112的倒数是________ ________的绝对值是1 ________的立方是8.12. 在月球表面白天阳光垂直照射的地方温度高达+127∘a 夜晚温度可降至−183∘a.则月球表面昼夜的温差为________∘a.13. 若|a|=5 a=−2 且aa>0 则a+a=________.14. 某公交车原坐有22人经过4个站点时上下车情况如下(上车为正下车为负): (+4, −8) (−5, +6) (−3, +2) (+1, −7) 则车上还有________人.三解答题(本题共计8 小题共计78分)15.(8分) 某班抽查了10名同学的期末成绩以80分为基准超出的记作为正数不足的记为负数记录的结果如下: +8 −3 +12 −7 −10 −3 −8 +1 0 +10.1这10名同学中最高分数是多少?最低分数是多少?2这10名同学的平均成绩是多少.(1)根据记录的数据可知该店前三天共销售该品牌儿童滑板车________辆(2)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售________辆3本周实际销售总量达到了计划数量没有?4该店实行每日计件工资制每销售一辆车可得40元若超额完成任务则超过部分每辆另奖15元少销售一辆扣20元那么该店铺的销售人员这一周的工资总额是多少元?17.(10分) 中国渔政船在小岛附近东西航向上巡航从小岛出发如果规定向东航行为正巡航记录为: (单位: 海里)+80 −40 +60 +75 −65 −80 此时(1)渔政船在出发点哪个方向?你知道它离出发点有多远?(2)如果轮船巡航每海里耗油0.2吨请你替船长算一算一共耗多少吨油?18.(10分)请画一条数轴然后在数轴上把下列各数表示出来: 312−4 −2120 −1 1 并把这些数用“<”号连接.19.(10分) 计算:(1)|−0.75|−(−0.25)+|−18|+78(2)−23−2×(−3)+2÷5−(−1)2019.20.(10分)某人用460元购买8套不同的儿童服装再以一定的价格出售如果每套儿童服装以65元的价格为标准超出的记作正数不足的记为负数那么售价(单位: 元)分别为+2 −3 +2 +1 −2 −1 0 −2. 当卖完这8套服装后此人是盈利还是亏损?盈利或亏损多少元?21.(10分) 如图在平面直角坐标中直线aa分别交a轴a轴于点aa,0和点a0,a且a a满足a2+4a+4+|2a+a|=0./(1)a=________ a=________.(2)点a在直线aa的右侧且∠aaa=45∘:①若点a在a轴上则点a的坐标为_________②若△aaa为直角三角形求点a的坐标.22.(10分)问: 该服装店在售完这30件a恤后赚了多少钱?参考答案一选择题(本题共计10 小题每题 3 分共计30分)1.【答案】B【考点】正数和负数的识别【解析】先化简各数再根据小于0的数是负数求解.【解答】解: ∵0既不是正数也不是负数−5<0−(−7)=7>0−|−8|=−8<0(−4)2=16>0∴负数共有2个.故选a.2.【答案】D【考点】有理数的乘法有理数的加法【解析】先根据aa<0 结合乘法法则易知a a异号而a+a<0 根据加法法则可知负数的绝对值大于正数的绝对值解可确定答案.【解答】解: ∵aa<0a a b异号又a a+b<0∴负数的绝对值大于正数的绝对值.故选a.【答案】C【考点】科学记数法--表示较大的数【解析】此题暂无解析【解答】解: 1958000用科学记数法可表示为1.958×106.故选a.4.【答案】D【考点】正数和负数的识别【解析】首先审清题意明确“正”和“负”所表示的意义再根据题意作答.【解答】因为上升记为+ 所以下降记为-所以水位下降6a时水位变化记作−6a.5.【答案】D【考点】倒数有理数的减法有理数大小比较相反数【解析】根据相反数的概念倒数的概念有理数的减法法则和有理数的大小比较进行判断即可.【解答】解:−2的相反数是2 a正确3的倒数是3a正确(−3)−(−5)=−3+5=2 a正确−11 0 4这三个数中最小的数是−11 a错误.故选a.6.【答案】B【考点】有理数大小比较有理数的概念及分类【解析】先求出|−1|=1 |−2|=2 根据负数的绝对值越大这个数就越小得到−2<−1 而0大于任何负数小于任何正数则有理数−1 −2 0 3的大小关系为−2<−1<0<3.【解答】解: ∵|−1|=1 |−2|=2a −2<−1∴有理数−1 −2 0 3的大小关系为−2<−1<0<3.故选a.7.【答案】C【考点】多项式的项与次数【解析】若a和a都是4次多项式通过合并同类项求和时结果的次数定小于或等于原多项式的最高次数.【解答】解: 若a和a都是4次多项式则a+a的结果的次数一定是次数不高于4次的整式.故选a.8.【答案】C【考点】数轴【解析】某数轴的单位长度是1厘米若在这个数轴上随意画出一条长为15厘米的线段aa 则线段aa盖住的整点的个数可能正好是16个也可能不是整数而是有两个半数那就是15个.【解答】解:依题意得:①当线段aa起点在整点时覆盖16个数②当线段aa起点不在整点即在两个整点之间时覆盖15个数.故选a.9.【答案】C【考点】有理数大小比较数轴【解析】根据a a两点在数轴上的位置判断出其取值范围再对各选项进行逐一分析即可.【解答】解: ∵a a两点在数轴上的位置可知: −1<a<0 a>1 |a|<|a|a a−b<0a+b>0b−1>0故a a a错误故a正确.故选a.10.【答案】A【考点】数轴【解析】首先根据数轴的特征判断出a −1 0 1 a的大小关系然后根据正实数都大于0 负实数都小于0 正实数大于一切负实数两个负实数绝对值大的反而小逐一判断每个选项的正确性即可.【解答】解: 根据实数a a在数轴上的位置可得a<−1<0<1<aa 1<|a|<|b|a 选项A错误a 1<−a<ba 选项B正确a 1<|a|<ba 选项C正确a −b<a<−1∴选项D正确.故选D.二填空题(本题共计4 小题每题3 分共计12分)11.【答案】−8,−2,±1,23【考点】立方根的实际应用相反数绝对值倒数【解析】分别根据相反数绝对值倒数立方的概念即可求解. 【解答】解:8的相反数是−8−112的倒数是−23±1的绝对值是12的立方是8.12.【答案】310【考点】正数和负数的识别【解析】首先审清题意明确“正”和“负”所表示的意义再根据题意作答.【解答】解: 白天阳光垂直照射的地方温度高达+127∘a 夜晚温度可降至−183∘a所以月球表面昼夜的温差为:127∘a−(−183∘a)=310∘a.故答案为:310.13.【答案】−7【考点】绝对值【解析】考查绝对值的意义及有理数的运算根据|a|=5 a=−2 且aa>0 可知a=−5 代入原式计算即可.【解答】解: ∵|a|=5 a=−2 且aa>0∴a+a=−5−2=−7.故答案为: −7.14.【答案】12【考点】有理数的加法正数和负数的识别【解析】根据有理数的加法可得答案.【解答】解: 由题意得22+4+(−8)+6+(−5)+2+(−3)+1+(−7)=12(人)故答案为: 12.三解答题(本题共计8 小题共计78分)15.【答案】解:1最高分为: 80+12=92(分)最低分为: 80−10=70(分)(2)8−3+12−7−10−3−8+1+0+10=8+12+1+10+0−3−7−10−3−8=31−31=0所以10名同学的平均成绩80+0=80(分).【考点】算术平均数正数和负数的识别【解析】(1)根据正负数的意义解答即可(2)求出所有记录的和的平均数再加上基准分即可.1最高分为: 80+12=92(分)最低分为: 80−10=70(分)(2)8−3+12−7−10−3−8+1+0+10=8+12+1+10+0−3−7−10−3−8=31−31=0所以10名同学的平均成绩80+0=80(分).16.【答案】29629(3)+4−3−5+14−8+21−6=17>0∴本周实际销量达到了计划数量.(4)(17+100×7)×40+(4+14+21)×15+(−3−5−8−6)×20=28825(元).答:该店铺的销售人员这一周的工资总额是28825元.【考点】整式的混合运算正数和负数的识别【解析】(1)根据前三天销售量相加计算即可(2)将销售量最多的一天与销售量最少的一天相减计算即可(3)将总数量乘以价格解答即可.【解答】解:14−3−5+300=296.故答案为: 296.221+8=29.故答案为:29.(3)+4−3−5+14−8+21−6=17>0∴本周实际销量达到了计划数量.(4)(17+100×7)×40+(4+14+21)×15+(−3−5−8−6)×20=28825(元).答:该店铺的销售人员这一周的工资总额是28825元.17.【答案】解: (1)80+(−40)+60+75+(−65)+(−80)=30(海里).答: 渔政船在出发点东方向它离出发点有30海里.(2)(80+|−40|+60+75+|−65|+|−80|)×0.2=80(吨).答:一共耗80吨油.【考点】有理数的混合运算绝对值正数和负数的识别【解析】(1)根据有理数的加法可得答案(2)根据行车就耗油可得耗油量.【解答】解: (1)80+(−40)+60+75+(−65)+(−80)=30(海里).答: 渔政船在出发点东方向它离出发点有30海里.(2)(80+|−40|+60+75+|−65|+|−80|)×0.2=80(吨).答:一共耗80吨油.18.【答案】解: 如图:/用“<”号连接为−4<−212<−1<0<12<1<3.【考点】有理数大小比较数轴【解析】再在数轴上表示出来数轴左边的数比右边的数小.【解答】解:如图:/用“<”号连接为−4<−212<−1<0<12<1<3.19.【答案】解: (1)原式=0.75+0.25+18+78=1+1=2. (2)原式=−8+6+2+15=−1+2 5=−35.【考点】有理数的混合运算有理数的加减混合运算绝对值【解析】此题暂无解析【解答】解: (1)原式=0.75+0.25+18+78=1+1=2.(2)原式=−8+6+25+1=−1+2 5=−35.20.【答案】解: (+2−3+2+1−2−1+0−2)+65×8−460=517−460=57(元)∵57>0∴当卖完这8套服装后此人是盈利盈利57元.【解析】有理数的加法: 同号取相同符号并把绝对值相加异号两数相加取绝对值较大的数的符号用较大绝对值减去较小绝对值. 相反数相加和为零.【解答】解:(+2−3+2+1−2−1+0−2)+65×8−460=517−460=57(元)∵57>0∴当卖完这8套服装后此人是盈利盈利57元.21.【答案】−2,4(2)①(4,0)a 点P在x轴上则OP=OB=4a 点P的坐标为(4,0).②∠BAP=90∘时过点P作PH⊥x轴于点H则∠HAP+∠BAH=90∘,∠OBA+∠BAH=90∘∴∠aaa=∠aaa.又∵∠aaa=45∘, ∠aaa=90∘a ∠APB=∠ABP=45∘a AP=AB又a ∠BOA=∠AHP=90∘a △AOB≅△PHA(AAS)a PH=AO=2,AH=OB=4∴aa=aa−aa=2.故点a的坐标为(2,−2)当∠ABP=90∘时作BM//x轴PM⊥BM于点M可证△AOB≅△PMB(AAS)∴aa=aa=2, aa=aa=4a 点P的坐标为(4,2)故点a的坐标为(2,−2)或(4,2).【考点】全等三角形的性质与判定非负数的性质: 偶次方非负数的性质: 绝对值【解析】解: (1)由题意得得a2+4a+4+|2a+a|=a+22+|2a+a|=0所以a+2=02a+a=0解得a=−2 a=4. 故答案为:−2 4.【解答】解:(1)由题意得a2+4a+4+|2a+a|=a+22+|2a+a|=0所以a+2=02a+b=0解得a=−2 a=4.故答案为: −2 4.(2)①(4,0)a 点P在x轴上则OP=OB=4a 点P的坐标为(4,0).②∠BAP=90∘时过点P作PH⊥x轴于点H则∠HAP+∠BAH=90∘,∠OBA+∠BAH=90∘∴∠aaa=∠aaa.又∵∠aaa=45∘, ∠aaa=90∘a ∠APB=∠ABP=45∘a AP=AB又a ∠BOA=∠AHP=90∘a △AOB≅△PHA(AAS)a PH=AO=2,AH=OB=4∴aa=aa−aa=2.故点a的坐标为(2,−2)当∠ABP=90∘时作BM//x轴PM⊥BM于点M可证△AOB≅△PMB(AAS)∴aa=aa=2, aa=aa=4a 点P的坐标为(4,2)故点a的坐标为(2,−2)或(4,2).22.【答案】解: 该服装店卖出货物所得钱数为:47×30+[(+3)×7+(+2)×6+(+1)×3+0×5+(−1)×4+(−2)×5] =1410+22=1432(元)1432−32×30=1432−960=472(元).答: 该服装店赚472元.【考点】有理数的混合运算正数和负数的识别【解答】解: 该服装店卖出货物所得钱数为:47×30+[(+3)×7+(+2)×6+(+1)×3+0×5+(−1)×4+(−2)×5] =1410+22=1432(元)1432−32×30=1432−960=472(元).答:该服装店赚472元.。

湖北省恩施土家族苗族自治州 2023-2024学年七年级上学期期末数学试题(含答案)

湖北省恩施土家族苗族自治州 2023-2024学年七年级上学期期末数学试题(含答案)

恩施市2023年秋季学期义务教育阶段期末考试七年级数学试题卷本试卷共6页,24个小题,满分120分,考试用时120分钟祝考试顺利注意事项:1.考生答题全部在答题卷上,答在试题卷上无效.2.请认真核对监考教师在答题卷上所粘贴条形码的姓名、准考证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米的黑色墨水签字笔填写在答题卷及试题卷上.3.选择题作答必须用2B 铅笔将答题卷上对应的答案标号涂黑,如需要改动,请用橡皮擦干净后,再选涂其他答案.非选择题作答必须用0.5毫米黑色墨水签字笔写在答题卷上指定位置,在其他位置答题一律无效.4.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.5.考生不得折叠答题卷,保持答题卷的整洁.考试结束后,请将试题卷和答题卷一并上交.一、选择题(共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是满足题目要求的,请将正确选项填涂在答题卷的相应位置)1.某地2024年元旦这天的最高气温7℃,最低气温,那么这天的温差(最高气温减最低气温)为( )A.4℃B. C. D.10℃2.据统计,三峡大坝旅游区2023年接待游客量突破330万人,较历史最高水平增加10万人,再创新高。

将330万用科学计数法表示为( )A. B. C. D.3.下列说法正确的是()A.的常数项是1B.0不是单项式C.的系数是,次数是3D.是三次多项式4.根据等式的性质,下列变形不成立的是( )A.若,则B.若,则C.若,则D.若,则5.下面图形中,不是正方体表面展开图的是()A. B. C. D.6.a ,b 是有理数,它们在数轴上的对应点的位置如图所示,把a ,,b ,按照从小到大的顺序排列,正确的是()3-℃4-℃10-℃23.310⨯53.310⨯63.310⨯73.310⨯2231x xy --22ab π-2π-232x y x y --a b =22a b =a b =33a b=a b =2233a b -=-a b =11a b +=-a -b -A. B.C. D.7.某车间有30名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺栓22个或螺母16个,若分配x 名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是()A. B.C. D.8.图1是由3个相同小长方形拼成的图形,其周长为,图2中的长方形内放置10个相同的小长方形,则长方形的周长为( )A. B. C. D.9.求的值,可令,则,因此.仿照以上推理,计算出的值为( )A.B.C.D.10.如图,已知A ,O ,B 三点在同一直线上,且平分,平分,下列结论:①与互余;②与互补;③;④.其中正确的有()A.1个B.2个C.3个D.4个二、填空题(共5小题,每小题3分,共15分.请将答案填写在答题卷对应题号的位置上)b a a b -<-<<b a a b -<<-<a b a b-<-<<b b a a-<<-<()2221630x x ⨯=-()2162230x x ⨯=-()221630x x =-()162230x x =-24cm ABCD ABCD 32cm 36cm 48cm 60cm23202312222+++++ 23202312222S =+++++ 2342024222222S =+++++ 2024221S S S =-=-23202312023202320232023+++++ 2023202312022-2024202312022-2023202312023-2024202312023-OC BOD ∠OE AOD ∠BOC ∠AOE ∠BOE ∠EOD ∠180AOD BOE EOD ∠+∠=∠+︒2AOC BOC EOD ∠-∠=∠11.的相反数是_______.12.已知,则的补角的度数为_______.13.若与是同类项,则_______.14.已知,,则_______.15.“转化”是一种解决问题的常用思想,有时画图可以帮助我们找到转化的方法。

2024—2025学年人教版七年级上册期末模拟考试数学试卷[含答案]

2024—2025学年人教版七年级上册期末模拟考试数学试卷[含答案]

七年级上学期数学期末模拟考试试卷人教版2024—2025学年七年级上册考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分30分)1.2022年2月13日,我国自营勘探开发的首个1500米超深水大气田“深海一号”在海南岛东南陵水海域正式投产,每年将向粤港琼等地稳定供气30亿立方米,可满足粤港澳大湾区四分之一的民生用气需求.将数据30亿用科学记数法表示应为310n ´,则n 的值为( )A .7B .8C .9D .102.我国南北朝时的祖冲之是世界上最早把圆周率的精确值计算到小数点后第7位的科学巨匠,该成果领先世界一千多年.圆周率 3.1415926p »按照四舍五入法对p 精确到百分位是( )A .3.15B .3.141C .3.14D .3.1423.下列计算正确的是( )A .330y y --=B .54mn nm mn -=C .243a a a -=D .22223a b ab a b+=4.如果式子53x +与2x 的值互为相反数,则x 的值为( )A .73B .73-C .37D .37-5.小刚做了一道数学题:“已知两个多项式为A ,B ,求A B +的值,”他误将“A B +”看成了“A B -”,结果求出的答案是x y -,若已知B 3x 2y =-,那么原来A B +的值应该是( )A .4x+3y B .2x-y C .-2x+y D .7x-5y 6.一项工程,甲单独做5天完成,乙单独做8天完成.若甲先做1天,然后甲、乙合作完成此项工作的34.若设甲一共做了x 天,则所列方程为( )A .13584x x ++=B .-13584x x +=C .13-584x x +=D .-13-584x x =7.若122m x y +-与13n xy -是同类项,则m n -的值为( )A .4-B .3-C .3D .48.根据等式的性质,下列变形正确的是( )A .如果23x =,那么23x a a =B .如果x y =,那么55x y-=-C .如果x y =,那么22x y -=-D .如果162x =,那么3x =9.如图,点C 是线段AB 的中点,点D 是线段CB 上任意一点,则下列表示线段关系的式子不正确的是( )A .AB =2ACB .AC +CD +DB =ABC .CD =AD -12AB D .AD =12(CD +AB )10.解方程21132x x a -+=-时,小刚在去分母的过程中,右边的“1-”漏乘了公分母6,因而求得方程的解为4x =,则方程正确的解是( )A .0x =B .1x =C .4x =-D .=1x -二、填空题(每小题3分,满分18分)11.比较大小(用“<”“=”或“>”填空):59- 35-.12.若数轴上A 点表示数3-,则与A 点相距5个单位长度的点表示的数为 .13.若73x y ==,,且x y >,则y x -等于 .14.如果3x =-,式子31px qx --的值为2023,则当3x =时,式子31px qx --的值是 .15.有理数a ,b ,c 在数轴上的位置如图所示,化简|a+b ﹣c|﹣|c ﹣b|+2|a+c|= .16.观察图形和所给表中的数据后回答问题.梯形个数12345……图形周长58111417……当图形的周长为167时,梯形的个数为 .三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17.计算:()()241110.5232éù---´´--ëû.18.先化简,再求值:已知210a -=,求()()225212a a a a +--+的值.19.一个角的补角加上20°后等于这个角的余角的3倍,求这个角.20.已知代数式2342A x x =-+.(1)若221B x x =--,求2A B -;(2)若21B ax x =--(a 为常数),且A 与B 的和不含2x 页,求整式2452a a +-的值.21.在抗洪抢险中,解放军战士的冲锋舟加满油沿东西方向的河流抢救灾民,早晨从A 地出发,晚上到达B 地,约定向东为正方向,当天的航行路程记录如下(单位:千米).14+,9-,8+,7-,13+,6-,12+,5-,2+.(1)请你帮忙确定B 地位于A 地的什么方向,距离A 地有多少千米?(2)救灾过程中,冲锋舟离出发点A 最远处有_____千米.(3)若冲锋舟每千米耗油0.5升,油箱容量为30升,求冲锋舟当天救灾过程中至少还需补充多少升油?22.某商场开展优惠促销活动,将甲种商品六折出存,乙种商品八折出售,已知甲、乙两种商品的原销售单价之和为1400元,某顾客参加活动购买甲、乙各一件,共付1000元.(1)甲、乙两种商品原销售单价各是多少元?(2)若商场在这次促销活动中甲种商品亏损25%,乙种商品盈利25%,问:商场销售甲、乙两种商品各一件时是盈利还是亏损了?具体金额是多少?23.如图,已知点C 为线段AB 上一点,12cm AC =,8cm CB =,D 、E 分别是AC AB 、的中点.求:(1)求AD 的长度;(2)求DE 的长度;(3)若M 在直线AB 上,且6cm MB =,求AM 的长度.24.已知 AOB Ð与COD Ð互补,将COD Ð绕点O 逆时针旋转.(1)若110,70AOB COD °°Ð=Ð=①如图1,当30COB Ð=°时,AOD Ð= °;②将COD Ð绕点O 逆时针旋转至3AOC BOD Ð=Ð,求COB Ð与AOD Ð的度数;(2)将COD Ð绕点O 逆时针旋转(0180)a a °<<,在旋转过程中,AOD COB Ð+Ð的度数是否随之的改变而改变?若不改变,请求出这个度数;若改变,请说明理由.25.已知b 是最小的正整数,且,,a b c 满足()250c a b -++=.(1)填空:a =_________,b =_________,c =_________;(2)数,,a b c 在数轴上对应的点分别是,,A B C ,点P 为数轴上一动点,其对应的数为x ,点P 在1到2之间运动时(即12x ££),请化简式子:1125x x x +--+-;(3)在(2)的条件下,点,,A B C 在数轴上运动,若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒(5)m m <个单位长度和5个单位长度的速度向右运动.点B 与点C 之间的距离表示为BC ,点A 与点B 之间的距离表示为AB .若在运动过程中BC AB -的值保持不变,求m 的值.【分析】此题主要考查了用科学记数法表示较大的数,一般形式为10n a ´,其中£<110a ,确定a 与n 的值是解题的关键.用科学记数法表示较大的数时,一般形式为10n a ´,其中£<110a ,n 为整数,且n 比原来的整数位数少1,据此判断即可.【详解】解:30亿93000000000310==´.即9n =.故选:C .2.C【分析】本题考查取近似数,涉及四舍五入法,找准小数的百分位,根据千分位的数四舍五入是解决问题的关键.【详解】解: 3.1415926p »,将π按照四舍五入法精确到百分位是3.14,故选:C .3.B【分析】根据同类项的定义以及合并同类项得方法逐项分析即可.【详解】A.336y y y --=-,故不正确;B.54mn nm mn -= ,正确;C.24a 与3a 不是同类项,不能合并,故不正确;D.2a b 与22ab 不是同类项,不能合并,故不正确;故选B .【点睛】本题考查了同类项的定义及合并同类项,熟练掌握合并同类项的方法是解答本题的关键.所含字母相同,并且相同字母的指数也相同的项,叫做同类项;合并同类项时,把同类项的系数相加,所得和作为合并后的系数,字母和字母的指数不变.4.D【分析】本题考查了相反数的性质,解一元一次方程,根据题意列出方程,解方程即可求解.【详解】解:∵53x +与2x 的值互为相反数,∴5320x x ++=解得:37x =-故选:D .【分析】先根据A -B =x y -,32B x y =-,求出A 的值,然后再计算A +B 即可.【详解】由题意得,A =()x y -+(32x y -)=x -y +3x -2y=4x -3y .∴A +B =(4x -3y )+(32x y -)=4x -3y +32x y-= 7x -5y .故选D.【点睛】本题考查了整式的加减,仔细审题,根据题目中的数量关系求出A 的值是解题的关键.6.B【分析】题目默认总工程为1,设甲一共做x 天,由于甲先做了1天,所以和乙合作做了(x-1)天,根据甲的工作量+乙的工作量=总工作量的四分之三,代入即可.【详解】由题意得:甲的工作效率为15,乙的工作效率为18设甲一共做了x 天,乙做了(x-1)天∴列出方程:x x 13584-+=故选B【点睛】本题考查一元一次方程的应用,工程问题的关键在于利用公式:工程量=工作时间×工作效率.7.B【分析】根据同类项的定义解答即可.【详解】解:由题意得:1112m n +=-=,,解得:03m n ==,.∴033m n -=-=-.故选:B .【点睛】本题主要考查同类项,熟练掌握同类项的定义是解决本题的关键.同类项的定义:所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【分析】根据等式的基本性质解决此题.【详解】解:A 、如果23x =,且a 0¹,那么23x a a=,故该选项不符合题意;B 、如果x y =,那么55x y -=-,故该选项不符合题意;C 、如果x y =,那么22x y -=-,故该选项符合题意;D 、如果162x =,那么12x =,故该选项不符合题意;故选:C .【点睛】本题主要考查等式的基本性质,熟练掌握等式的基本性质是解决本题的关键.性质1、等式两边加同一个数(或式子)结果仍得等式;性质2、等式两边乘同一个数或除以一个不为零的数,结果仍得等式.9.D【详解】A 、由点C 是线段AB 的中点,则AB =2AC ,正确,不符合题意;B 、AC +CD +DB =AB ,正确,不符合题意;C 、由点C 是线段AB 的中点,则AC =12AB ,CD =AD -AC =AD -12AB ,正确,不符合题意;D 、AD =AC +CD =12AB +CD ,不正确,符合题意.故选:D .10.D【分析】根据题意按照小刚的解方程步骤解方程,再根据解为4x =求出a 的值,再按照正确的步骤解方程即可.【详解】解:由题意得,小刚的解题过程如下:21132x x a -+=-去分母得:()()22131x x a -=+-,去括号得:42331x x a -=+-,移项得:43312x x a -=-+,合并同类项得:31x a =+,∵小刚的求解结果为4x =,∴314a +=,∴1a =,正确过程如下:21132x x a -+=-去分母得:()()221316x x -=+-,去括号得:42336x x -=+-,移项得:43362x x -=-+,合并同类项得:1x =-,故选D .【点睛】本题主要考查了解一元一次方程,正确理解题意还原小刚的解题过程从而求出a 的值是解题的关键.11.>【分析】两个负数比较大小,绝对值大的反而小,据此即可求解.【详解】解:∵5599-=,3355-=,又∵5395<,∴5395->-,故答案为:>.【点睛】此题主要考查了有理数大小比较的方法,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.12.2或8-【分析】本题主要考查了数轴上两点距离计算,有理数的加减计算,分该点在点A 右边和左边两种情况,根据数轴上两点距离计算公式求解即可.【详解】解:当该点在点A 右边时,则该点表示的数为352-+=,当该点在点A 左边时,则该点表示的数为358--=-,∴该点表示的数为2或8-,故答案为:2或8-.13.10-或4-【分析】本题主要考查了有理数的减法计算,求一个数的绝对值,有理数比较大小,先由绝对值的意义得到73x y =±=±,,再由x y >得到73x y ==±,,据此根据有理数减法计算法则求解即可.【详解】解:∵73x y ==,,∴73x y =±=±,,∵x y >,∴73x y ==±,,∴374-=-=-y x 或3710-=--=-y x ,故答案为:10-或4-.14.2025-【分析】本题考查了代数式的求值,解题的关键是运用整体思想代入求值.把3x =-代入求出2732024p q -=-,再把3x =代入,变形后即可求出答案.【详解】解:∵3x =-时,式子31px qx --的值为2023,∴27312023p q -+-=,即2732024p q -=-,当3x =时,313127202412025px qx p q ----==--=-,故答案为:2025-.15.﹣3a ﹣2c【分析】根据数轴,可得a <b <0<c ,且|a|>|c|,据此关系可得|a+b ﹣c|及|a+c|的化简结果,进而可得答案.【详解】根据题意得,a <b <0<c ,且|a|>|c|,∴a+b-c <0,a+c <0,∴|a+b ﹣c|﹣|c ﹣b|+2|a+c|=-(a+b-c )-(c-b)-2(a+c),=-a-b+c-c+b-2a-2c ,=﹣3a ﹣2c.故答案为﹣3a ﹣2c.【点睛】本题考查数轴的运用,要求学生掌握用数轴表示实数及实数间的大小关系.16.55【分析】根据表格得:当梯形的个数为n 时,图形的周长为32n +,根据题意列出方程,解方程即可求解.【详解】根据表格得:当梯形的个数为n 时,图形的周长为32n +,∴32167n +=,解得:55n =,故答案为:55.【点睛】本题考查了图形类规律题,找到规律列出一元一次方程是解题的关键.17.34【分析】本题主要考查了含乘方的有理数混合计算,按照先计算乘方,再计算乘除法,最后计算加减法,有括号先计算括号的运算顺序求解即可.【详解】解:()()241110.5232éù---´´--ëû()1112922=--´´-()1174=--´-714=-+34=.18.231a -;2【分析】先根据去括号法则去括号,再合并同类项,最后将21a =整体代入即可求解.【详解】解:()()225212a a a a +--+2252122a a a a =+---231a =-210a -=Q 21a \=\原式3112=´-=【点睛】本题考查了整式加减中的化简求值,掌握去括号法则是解题的关键.19.35°【分析】利用一个角的补角加上20°,等于这个角的余角的3倍作为相等关系列方程求解即可.【详解】解:设这个角为x °,则(180-x )+20=3(90-x ),解得x =35.所以,这个角为35°.【点睛】本题主要考查了一元一次方程的应用.解此题的关键是能准确的从题中找出各个量之间的数量关系,找出等量关系列方程,从而计算出结果.20.(1)24x +(2)19【分析】此题主要考查了整式的加减,正确合并同类项是解题关键.(1)直接利用整式的加减运算法则计算得出答案;(2)根据整式的加减运算法则化简,进而得出答案.【详解】(1)解:()()222342221-=-+---A B x x x x 22342242x x x x =-+-++24x =+;(2)解:2342A x x =-+Q ,21B ax x =--,()()223421\+=-++--A B x x ax x 223421x x ax x =-++--()2351a x x =+-+,A Q 与B 的和不含2x 项,30a \+=即3a =-,2452\+-a a ()24(3)532=´-+´--49152=´--36152=--19=.21.(1)B 地位于A 地东方,距离A 地有22千米(2)25(3)8升【分析】(1)根据有理数的加法,可得和,再根据向东为正,结合和的符号可判定方向及距离;(2)首先计算每次行程后与出发点的距离,再比较有理数的大小,可得答案;(3)首先计算当天航行的总里程,进而可得当天耗油量,再根据耗油量与已有的油量,可得答案.++-+++-+++-+++-++=+,【详解】(1)解:∵(14)(9)(8)(7)(13)(6)(12)(5)(2)22∴B地位于A地东方,距离A地有22千米;(2)路程记录中各点离出发点的距离分别为:(14)14+=千米,++-=+=千米,(14)(9)55++-++=+=千米,(14)(9)(8)1313(14)(9)(8)(7)66++-+++-=+=千米,++-+++-++=+=千米,(14)(9)(8)(7)(13)1919++-+++-+++-=+=千米,(14)(9)(8)(7)(13)(6)1313(14)(9)(8)(7)(13)(6)(12)2525++-+++-+++-++=+=千米,++-+++-+++-+++-=+=千米,(14)(9)(8)(7)(13)(6)(12)(5)2020++-+++-+++-+++-++=+=千米,(14)(9)(8)(7)(13)(6)(12)(5)(2)2222>>>>>>>,∵25222019141365∴救灾过程中,冲锋舟离出发点A最远处有25千米.故答案为:25;++-+++-+++-+++-++(3)149871361252=++++++++149871361252=千米,76´-=升,760.5308∴冲锋舟当天救灾过程中至少还需补充8升油.【点睛】本题主要考查了正负数的意义、化简绝对值、有理数比较大小、有理数混合运算的应用等知识,熟练掌握相关运算法则是解题关键.22.(1)甲商品原销售单价为600元,乙商品的原销售单价为800元.(2)盈利,盈利了8元.【分析】(1)设甲商品原销售单价为x 元,则乙商品的原销售单价为(1400﹣x )元,根据优惠后购买甲、乙各一件共需1000元,即可得出关于x 的一元一次方程,解之即可得出结论;(2)设甲商品的进价为a 元/件,乙商品的进价为b 元/件,根据甲、乙商品的盈亏情况,即可分别得出关于a 、b 的一元一次方程,解之即可求出a 、b 的值,再代入1000﹣a ﹣b 中即可找出结论.【详解】(1)解:设甲商品原销售单价为x 元,则乙商品的原销售单价为(1400﹣x )元,根据题意得:0.6x +0.8(1400﹣x )=1000,解得:x =600,∴1400﹣x =800.答:甲商品原销售单价为600元,乙商品的原销售单价为800元.(2)解:设甲商品的进价为a 元/件,乙商品的进价为b 元/件,根据题意得:(1﹣25%)a =60%×600,(1+25%)b =80%×800,解得:a =480,b =512,∴1000﹣a ﹣b =1000﹣480﹣512=8.答:商场在这次促销活动中盈利,盈利了8元.【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.23.(1)6cm(2)4cm(3)26cm 或14cm【分析】本题考查了关于线段的中点的计算,线段的和与差的计算.(1)直接根据D 是AC 的中点可得答案;(2)先求出AB 的长,然后根据E 是AB 的中点求出AE ,AE ﹣AD 即为DE 的长;(3)分M 在点B 的右侧、M 在点B 的左侧两种情况进行计算即可.【详解】(1)解:由线段中点的性质,()11126cm 22AD AC ==´=;(2)解:由线段的和差,得()12820cm AB AC BC =+=+=,由线段中点的性质,得()112010cm 22AE AB ==´=,由线段的和差,得()1064cm DE AE AD =-=-=;(3)解:当M 在点B 的右侧时,()20626cm AM AB MB =+=+=,当M 在点B 的左侧时,()20614cm AM AB MB =-=-=,∴AM 的长度为26cm 或14cm .24.(1)①150;②20COB Ð=°,130AOD Ð=°或80COB Ð=°,100AOD Ð=°(2)不改变,其度数为180°【分析】(1)①先根据110,70AOB COD °°Ð=Ð=求出180AOB COD Ð+Ð=°,再根据O AOB C BO OD A D C ÐÐ+Ð+Ð=计算即可;②设AOC x Ð=°,分两种情况:(Ⅰ) OB 在COD Ð内部,(Ⅱ) COD Ð在AOB Ð内部,分别讨论即可;(2)设,,AOB COD AOC b q g °°°Ð=Ð=Ð=,求出所有情况后判断即可.【详解】(1)①∵110,70AOB COD °°Ð=Ð=,∴11108070AOB COD °+°=°Ð+Ð=,∵O AOB C BO OD A D C ÐÐ+Ð+Ð=,30COB Ð=°,∴18030150AOD Ð=°-°=°,故答案为150;②(Ⅰ)当OB 在COD Ð内部时(如图1),设AOC x Ð=°,则110COB x °°Ð=-,70(110)40BOD COD COB x x °°°°°Ð=Ð-Ð=--=-,由3AOC BOD Ð=Ð得,3(40)x x °=°-°,解得60x =,∴1101106050,40604020COB x BOD x °°°°°°°°°°Ð=-=-=Ð=-=-=,∴11020130AOD AOB BOD а=Ð+Ð=+°°=;(Ⅱ) 当COD Ð在AOB Ð内部时(如图2),设AOC x Ð=°,则1107040BOD AOB AOC COD x x Ð=Ð-Ð-Ð=-°-°=°-°°,由3AOC BOD Ð=Ð得,3(40)x x °=°-°,解得x =30,40403010BOD x Ð=-=°-°=°°°,701080COB COD BOD °°°Ð=Ð+Ð=+=,∴3070100AOD AOC COD °°°Ð=Ð+Ð=+=;(2)不改变,其度数为180°.设,,AOB COD AOC b q g °°°Ð=Ð=Ð=,由条件知180b q +=,分四种情况:ⅰ)当OB 在COD Ð内部时(如图3),COB AOB AOC b g аÐ-=°=Ð-,()BOD COD BOC q b g Ð=Ð-Ð=°-°-°,()AOD AOB BOD b q b g q g Ð=Ð+Ð=°+°-°-°=°+°,∴180AOD COB q g b g q b °°°°°°°Ð+Ð=++-=+=;ⅱ) 当COD Ð在AOB Ð内部时(如图4),COB AOB AOC b g аÐ-=°=Ð-,AOD AOC COD g q аÐ+=°=Ð+,∴180AOD COB q g b g q b °°°°°°°Ð+Ð=++-=+=;ⅲ)当OA 在COD Ð内部时(如图5),COB AOB AOC b g аÐ+=°=Ð+,AOD DOC COA q g Ð=Ð-Ð=°-°,∴180AOD COB b g q g q b °°°°°°°Ð+Ð=++-=+=;ⅳ)当COD Ð在AOB Ð外部时(如图6),360()AOD COB AOB COD Ð+Ð=°-Ð+Ð360180180=°-°=°;综上所述,在旋转过程中,AOD COB Ð+Ð的度数不改变,其度数为180°.【点睛】本题考查了角的和差,关键是运用角的和差正确表示所需要的角.25.(1)1-,1,5(2)212x -+(3)2【分析】本题考查了非负数的性质,数轴上的动点,化简绝对值,(1)根据最小的正整数、绝对值和平方的非负性质即可得到结论;(2)根据x 的取值范围,去绝对值进行计算即可得;(3)首先求出A ,B ,C 所在位置,然后计算出BC 和AB ,即可得到结论.【详解】(1)解:∵b 是最小的正整数,∴1b =,∵()250c a b -++=,∴0a b +=,50c -=,解得1,5a c =-=.(2)∵12x ££,∴10,10,50x x x +>->-<,∴原式()()()1125x x x =+--+--éùëû,()()()1125x x x =+----,11210x x x =+-+-+,21110x x x =--+++,212x =-+.(3)由题意知:t 秒后,,A B C 对应的数分别为1,1,55t mt t --++.所以,()()1112AB mt t m t =+---=++.()()55154BC t mt m t =+-+=-+,()()5412BC AB m t m t -=-+-++éùëû,()422m t =-+.∵BC AB -的值不变,∴420m -=.解得2m =.。

人教版七年级上册数学期末考试试题及答案

人教版七年级上册数学期末考试试题及答案

人教版七年级上册数学期末考试试卷一、单选题1.12-的相反数是()A .2-B .2C .12-D .122.下列方程为一元一次方程的是()A .y +3=0B .x +2y =3C .x 2=2xD .12y y+=3.将3922亿用科学记数法表示为()A .8392210⨯B .93.92210⨯C .113.92210⨯D .123.92210⨯4.单项式xmy 3与4x 2yn 的和是单项式,则nm 的值是()A .3B .6C .8D .95.木匠师傅锯木料时,一般先在木板上画出两个点,然后过这两点弹出一条墨线,这是因为()A .两点之间,线段最短B .两点确定一条直线C .过一点,有无数条直线D .连接两点之间线段的长度叫做两点间的距离6.下列运算中,正确的是()A .-2-1=-1B .-2(x-3y )=-2x+3yC .3÷6×12=3÷3=1D .5x 2-2x 2=3x 27.某商品的标价为200元,8折销售仍赚60%,则商品进价为()元.A .140B .120C .160D .1008.一个角的补角是它的余角的三倍,则这个角为()A .45︒B .30°C .15︒D .60︒9.将如图所示的直角三角形绕直线l 旋转一周,得到的立体图形是()A .B .C .D .10.已知方程216x y -+=,则整式3610x y --的值为A .5B .10C .12D .15二、填空题11.多项式3x 2y-7x 4y 2-xy 4的次数是______.12.计算77°53′26″+43°22′16″=_____.13.已知关于x 的方程(m+1)x |m |+2=0是一元一次方程,则m=______14.已知3a -4与-5互为相反数,则a 的值为______.15.|x-y|=y-x ,则x ___y .16.若2214x x -+=,则2247x x -+的值是______.17.如图,已知点C 为AB 上一点,AC =12cm ,CB =23AC ,D 、E 分别为AC 、AB 的中点;则DE 的长为_____cm .三、解答题18.计算:(1)(+15)+(-30)-(+14)-(-25)(2)-42+3×(-2)2×(13-1)÷(-113)19.解方程:2(x+8)=3(x-1)20.如图,平面上有A 、B 、C 、D 四个点,根据下列语句画图.(1)画直线AB ,作射线AD ,画线段BC ;(2)连接DC ,并将线段DC 延长至E ,使DE =2DC .21.先化简,再求值:(3a2b﹣ab2)﹣2(ab2﹣3a2b),其中a=13,b=﹣3.22.某车间20个工人生产螺钉和螺母,每人每天平均生产螺母800个或螺钉600个,一个螺钉要配2个螺母,为了使每天的产品刚好配套,应该分配多少名工人生产螺钉呢?x x<的正方形拼成的图形.23.如图是由边长分别为4和3的长方形与边长为()3(1)用含有x的代数式表示图中阴影部分的面积并化简;(2)当2x=时,求这个阴影部分的面积.24.为了美化环境,建设生态桂林,某社区需要进行绿化改造,现有甲、乙两个绿化工程队可供选择,已知甲队每天能完成的绿化改造面积比乙队多200平方米,甲队与乙队合作一天能完成800平方米的绿化改造面积.(1)甲、乙两工程队每天各能完成多少平方米的绿化改造面积?(2)该社区需要进行绿化改造的区域共有12000平方米,甲队每天的施工费用为600元,乙队每天的施工费用为400元,比较以下三种方案:①甲队单独完成;②乙队单独完成;③甲、乙两队全程合作完成.哪一种方案的施工费用最少?25.如图,直线AB与CD相交于点O,OE是∠COB的平分线,OE⊥OF.(1)图中∠BOE的补角是;(2)若∠COF=2∠COE,求△BOE的度数;(3)试判断OF是否平分∠AOC,请说明理由.26.如图,点A,B,C在数轴上对应数为a,b,c.(1)化简|a﹣b|+|c﹣b|;(2)若B,C间距离BC=10,AC=3AB,且b+c=0,试确定a,b,c的值,并在数轴上画出原点O;(3)在(2)的条件下,动点P,Q分别同时都从A点C点出发,相向在数轴上运动,点P 以每秒1个单位长度的速度向终点C移动,点Q以每秒0.5个单位长度的速度向终点A移动;设点P,Q移动的时间为t秒,试求t为多少秒时P,Q两点间的距离为6.参考答案1.D【分析】根据相反数的性质,互为相反数的两个数的和为0即可求解.【详解】解:因为-12+12=0,所以-12的相反数是12.故选:D.【点睛】本题考查求一个数的相反数,掌握相反数的性质是解题关键.2.A 【分析】根据一元一次方程的定义,形如0ax b +=(0a ≠),含有一个未知数,且未知数的最高次数是一次的方程即为一元一次方程,逐项判断作答即可.【详解】A.y +3=0含有一个未知数,且未知数的最高次数是一次,是一元一次方程,故选项A 符合题意;B.x +2y =3含有两个未知数,不是一元一次方程,故选项B 与题意不符;C.x 2=2x 最高次数是二次,不是一元一次方程,故选项C 与题意不符;D.12y y+=不是整式方程,不是一元一次方程,故选项D 与题意不符.故选A .【点睛】本题主要考查了一元一次方程的定义,0ax b +=(0a ≠)的方程即为一元一次方程;含有一个未知数,且未知数的最高次数是一次,是判断是否是一元一次方程的依据.3.C 【分析】用科学记数法表示较大的数时,一般形式为a×10n ,其中1≤|a|<10,n 为整数,且n 比原来的整数位数少1,据此判断即可.【详解】解:3922亿=392200000000=3.922×1011.故选:C .【点睛】本题主要考查了用科学记数法表示较大的数,一般形式为a×10n ,其中1≤|a|<10,确定a 与n 的值是解题的关键.4.D 【分析】同类项的定义:字母相同,并且相同字母的指数也相同的两个单项式叫同类项,据此求出m 、n ,代入求解即可.【详解】解:由两个单项式的和还是单项式可得xmy³与4x²yn 同类项∴m=2,n=3,∴nm=3²=9,故选:D .【点睛】本题考查代数式求值、同类项的定义、合并同类项,能得出两个单项式是同类项是解答的关键.5.B 【分析】依据直线基本事实两点确定一条直线来解答即可.【详解】在木板上画出两个点,然后过这两点弹出一条墨线,此操作的依据直线基本事实是两点确定一条直线.故选择:B .【点睛】本题考查了直线的性质,掌握直线的性质是解题的关键.6.D 【分析】计算出各选项中式子的值,即可判断哪个选项是正确的.【详解】A 、213--=-,故选项错误;B 、()2326x y x y --=-+,故选项错误;C 、11113632624÷⨯=⨯⨯=,故选项错误;D 、222523x x x -=,故选项正确.故选D .【点睛】本题考查有理数混合运算、合并同类项、去括号与添括号,解题的关键是明确它们各自的计算方法.7.D 【分析】设进价为x 元,根据售价=标价×打折数=进价×(1+利润率)列方程求解即可.【详解】解:设进价为x 元,则依题可得:200×0.8=(1+0.6)x ,解得:x=100,故选:D .【点睛】本题考查一元一次方程的应用,理解题意,熟知打折销售中的等量关系是解答的关键.8.A 【分析】根据互为余角的两个角的和等于90°,互为补角的两个角的和等于180°,列方程求出这个角的度数即可.【详解】设这个角是α,则它的补角为180°-α,余角为90°-α,根据题意得,180°-α=3(90°-α),解得α=45°.故选:A .【点睛】本题考查了余角与补角,是基础题,熟记概念并列出方程是解题的关键.9.B 【分析】根据题意作出图形,即可进行判断.【详解】将如图所示的直角三角形绕直线l 旋转一周,可得到圆锥,故选:B .【点睛】此题考查了点、线、面、体,重在体现面动成体:考查学生立体图形的空间想象能力及分析问题,解决问题的能力.10.A 【分析】根据题意求出x-2y ,利用添括号法则把原式变形,代入计算即可.【详解】解:∵x-2y+1=6,∴x-2y=5,∴3x-6y-10=3(x-2y)-10=3×5-10=5,故选A.【点睛】本题考查的是代数式求值,灵活运用整体思想是解题的关键.11.6次【分析】直接利用多项式中次数最高的项的次数叫做多项式的次数,进而得出答案.【详解】解:多项式3x2y-7x4y2-xy4次数最高的项为-7x4y2,次数是:6次.故答案为:6次.【点睛】此题主要考查了多项式,正确掌握多项式的相关次数确定方法是解题关键.12.121°15′42″【分析】把秒和秒相加,分和分相加,度和度相加,满60向上一位近1.【详解】解:77°53′26″+43°22′16″=(77°+43°)+(53′+22′)+(26″+16″)=120°+75′+42″=121°15′42″.故答案为121°15′42″.【点睛】本题考查了度分秒的加法,将度与度相加,分与分相加,秒与秒相加,满60向上一位近1.13.1【分析】直接利用一元一次方程的定义分析得出答案.【详解】∵关于x的方程(m+1)x|m|+2=0是一元一次方程,∴|m|=1,m+1≠0,解得:m=1.故答案为1.【点睛】此题主要考查了一元一次方程的定义,正确把握定义是解题关键.14.3【分析】根据相反数的性质互为相反数的和为0列方程求解即可.【详解】解:由题意,得3a–4+(-5)=0,解得a=3,故答案为:3.【点睛】本题考查了一元一次方程,相反数的性质,一个数的相反数就是在这个数前面添上“-”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆,互为相反数的两个数的和为0是解题关键.15.≤【分析】利用绝对值的性质:|a|≥0,可以先去掉绝对值再进行判断大小.【详解】解:∵|x-y|=y-x ,∴y-x≥0,∴y≥x ,故答案为:≤.16.13【分析】根据已知等式得到223x x -=,再利用整体思想代入求值即可.【详解】∵2214x x -+=,∴223x x -=,∴2246x x -=,∴22476713x x -+=+=.故答案为:13.【点睛】本题考查了代数式求值,熟练掌握整体思想是解题的关键.17.4【分析】根据AC =12cm ,CB =23AC ,求出CB 的长度,从而得到AB 的长度,根据D 、E 分别为AC 、AB 的中点,分别求出AD ,AE ,最后根据DE =AE−AD 即可求出DE 的长.【详解】解:∵AC =12cm ,CB =23AC ,∴CB =12×23=8(cm ),∴AB =AC +CB =12+8=20(cm ),∵D 、E 分别为AC 、AB 的中点,∴AD =12AC =12×12=6(cm ),AE =12AB =12×20=10(cm ),∴DE =AE−AD =10−6=4(cm ),故答案为:4.【点睛】本题考查了两点间的距离,线段中点的定义,解题的关键是:根据D 、E 分别为AC 、AB 的中点,求出AD ,AE 的长.18.(1)-4;(2)-10.【分析】(1)根据有理数的加减运算法则即可求解;(2)根据有理数的混合运算法则即可求解.【详解】(1)解:原式=-15-14+25=-4(2)解:原式=-16+3×4×(-23)×(-34)=-16+12×12=-10.【点睛】此题主要考查有理数的混合运算,解题的关键是熟知其运算法则.19.(1)x=19;(2)x=38【分析】(1)根据去括号、移项、合并同类项、化系数为1的计算过程解答即可;(2)根据去分母、去括号、合并同类项、化系数为1的计算过程解答即可.【详解】(1)解:去括号,得:2x+16=3x-3,移项、合并同类项,得:-x=-19,化系数为1,得:x=19;(2)解:去分母,得:2(5x+1)-(2x-1)=6,去括号,得:10x+2-2x+1=6,移项、合并同类项,得:8x=3,化系数为1:x=3 8.【点睛】本题考查解一元一次方程,熟练掌握一元一次方程的解法步骤是解答的关键.20.(1)见解析;(2)见解析【分析】(1)根据直线,射线,线段的定义画出图形.(2)在DC的延长线上截取CE=CD即可.【详解】解:(1)如图,直线AB,射线AD,线段BC即为所求作.(2)如图,线段DE即为所求作.【点睛】本题考查作图-复杂作图,直线,射线,线段的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.21.9a2b-3ab2,-12【分析】先去括号,再合并同类项,最后将a=13,b=﹣3代入化简后的结果,即可求解.【详解】解:()()2222323a b ab ab a b ---2222326a b ab ab a b =--+2293a b ab =-当a =13,b =﹣3时,原式()()22119333391233⎛⎫=⨯⨯--⨯⨯-=--=- ⎪⎝⎭.【点睛】本题主要考查了整式的加减混合运算,熟练掌握整式的加减混合运算法则是解题的关键.22.应该分配8人生产螺钉.【详解】分析:根据每人每天平均生产600个螺钉或800个螺母,以及一个螺钉与两个螺母配套,进而得出等式求出即可.本题解析:设生产螺钉x 人,螺母(20-x )人,()800206002x x -=,x=8,答:应该分配8人生产螺钉.点睛:本题考查了一元一次方程的应用,属于基础题,解答本题关键是得出生产的螺母数是螺钉的2倍这一等量关系.23.(1)21122x x +;(2)3【分析】(1)根据阴影部分的面积等于长方形和正方形的面积和减去三个三角形的面积可列代数式;(2)将2x =代入计算可求解阴影部分的面积.【详解】解:阴影部分的面积为:()()22111123443222x x x x +--⨯+-⨯-2221311126622222x x x x x x =+----+=+;(2)当2x =时,阴影部分的面积为1142322⨯+⨯=,答:阴影部分的面积为3.【点睛】本题主要考查列代数式,代数式求值,列代数式求解阴影部分的面积是解题的关键.24.(1)甲队每天能完成绿化的面积是500平方米,乙队每天能完成绿化的面积是300平方米;(2)选择方案①完成施工费用最少【分析】(1)设乙工程队每天能完成绿化的面积是x 平方米,根据甲队与乙队合作一天能完成800平方米的绿化改造面积,列出方程,求解即可;(2)利用施工费用=每天的施工费用×施工时间,即可求出选择各方案所需施工费用,再比较后即可得出结论.【详解】解:(1)设乙队每天能完成绿化的面积是x平方米,则甲队每天能完成绿化的面积是(x+200)米,依题意得:x+x+200=800解得:x=300,x+200=500∴甲队每天能完成绿化的面积是500平方米,乙队每天能完成绿化的面积是300平方米.(2)选择方案①甲队单独完成所需费用=1200060014400500⨯=(元);选择方案②乙队单独完成所需费用=1200040016000300⨯=(元);选择方案③甲、乙两队全程合作完成所需费用=()1200040060015000800+⨯=(元);∴选择方案①完成施工费用最少.【点睛】本题考查了一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出方程;(2)利用总费用=每天支出的费用×工作时间,分别求出选择各方案所需费用.25.(1)∠AOE和∠DOE;(2)∠BOE=30°;(3)OF平分AOC.理由见解析.【分析】(1)根据补角的定义,依据图形可直接得出答案;(2)根据互余和∠COF=2∠COE,可求出∠COF、∠COE,再根据角平分线的意义可求答案;(3)根据互余,互补、角平分线的意义,证明∠FOA=∠COF即可.【详解】解:(1)∵∠AOE+∠BOE=∠AOB=180°,∠COE+∠DOE=∠COD=180°,∠COE=∠BOE∴∠BOE的补角是∠AOE,∠DOE故答案为:∠AOE或∠DOE;(2)∵OE⊥OF.∠COF=2∠COE,∴∠COF=23×90°=60°,∠COE=13×90°=30°,∵OE是∠COB的平分线,∴∠BOE=∠COE=30°;(3)OF平分∠AOC,∵OE是∠COB的平分线,OE⊥OF.∴∠BOE=∠COE,∠COE+∠COF=90°,∵∠BOE+∠EOC+∠COF+∠FOA=180°,∴∠COE+∠FOA=90°,∴∠FOA=∠COF,即,OF平分∠AOC.【点睛】考查互为余角、互为补角、角平分线的意义,解题的关键是熟知:如果两角之和等于180°,那么这两个角互为补角.其中一个角叫做另一个角的补角;如果两个角的和是直角,那么称这两个角“互为余角”,简称“互余”,也可以说其中一个角是另一个角的余角.26.(1)c﹣a;(2)a=﹣10,c=5,b=﹣5;(3)点P,Q移动6秒或14秒时,P,Q两点间的距离为6.【分析】(1)根据数轴可得c>b>a,再去绝对值合并即可求解;(2)根据相反数的定义和等量关系即可求解;(3)由题意得运动t秒后,点P,Q对应的点在数轴上所对的数为P:﹣10+t,Q:5﹣0.5t,然后根据P,Q两点间的距离为6,列出方程计算即可求解.【详解】解:(1)由数轴及题意得:∵c>b>a,∴原式=b﹣a+c﹣b=c﹣a;(2)原点位置如图:∵BC=10,∴c﹣b=10,又∵b+c=0,∴c=5,b=﹣5,又∵BC=10,AC=3AB,∴BC=2AB=10,∴AB=5,∴b﹣a=5,∴a=﹣10;(3)∵AC=15,最短运动时间15÷1=15秒,运动t秒后,点P,Q对应的点在数轴上所对的数为P:﹣10+t,Q:5﹣0.5t,若P,Q两点间的距离为6,则有()-+--=,t t1050.56解得t=6或t=14,均小于15秒,∴点P,Q移动6秒或14秒时,P,Q两点间的距离为6.【点睛】本题主要考查数轴上的动点问题、两点距离、线段的和差关系及一元一次方程的应用,熟练掌握数轴上的动点问题、两点距离、线段的和差关系及一元一次方程的应用是解题的关键.。

人教版七年级上册数学期末考试试卷含答案

人教版七年级上册数学期末考试试卷含答案

人教版七年级上册数学期末考试试题一、单选题1.﹣8的相反数是()A .8B .18C .18-D .-82.下列方程为一元一次方程的是()A .538+=B .24x y +=C .30y -=D .22x x =+3.下列几何体中,面的个数最少的是()A .B .C .D .4.整式23xy -的系数是()A .-3B .3C .3x -D .3x5.如图,数轴上A 、B 两点表示的数分别为a 、b ,则a+b 的值是()A .负数B .0C .正数D .无法判断6.将数据3800000用科学记数法表示为()A .63.810⨯B .53.810⨯C .60.3810⨯D .53810⨯7.若5620'A ∠=︒,则A ∠补角的大小是()A .3440'︒B .3340'︒C .12440'︒D .12340'︒8.下列各图中表示射线MN ,线段PQ 的是()A .B .C .D .9.下列是根据等式的性质进行变形,正确的是()A .若a b =,则66a b +=-B .若ax ay =,则x y =C .若11a b -=+,则a b =D .若55a b =--,则a b =10.如图,长方形ABCD 沿直线EF 、EG 折叠后,点A 和点D 分别落在直线l 上的点A '和点D ¢处,若130∠=︒,则2∠的度数为()A .30°B .60°C .50°D .55°二、填空题11.11月24日,某市的最低温度是8-℃,最高温度比最低温度高16℃,则该市的最高温度是__℃.12.如图,点A 、B 在直线l 上,点C 是直线l 外一点,可知AB AC BC <+,其依据是_____.13.一件校服,按标价的8折出售,售价是x 元,这件校服的标价是____元.14.已知1x =是关于x 的一元一次方程20x a -=的解,则a 的值为_____.15.若213n x y -与3m x y 是同类项,则m n +=_____.16.如图,甲从点A 出发向北偏东62︒方向走到点B ,乙从点A 出发向南偏西18︒方向走到点C ,则BAC ∠的度数是______.17.观察下列图形,用黑、白两种颜色的五边形地砖按如图所示的规律拼成若干个蝴蝶图案,则第n 个图案中白色地砖有___块.18.若有理数a ,b ,c 在数轴上的位置如图所示,则化简:2a c a b c b +++--=______.三、解答题19.计算:21(4)29()53-÷+⨯---.20.解方程:3x+2(x ﹣2)=6.21.先化简,再求值:7xy+2(3xy ﹣2x 2y )﹣13xy ,其中x =﹣1,y =2.22.把下列各数在数轴上表示出来,并将它们按从大到小的顺序排列.1.5--,3-,0,122+,()22-,12-.23.用简便方法计算:(1)110.53(2.75)742⎛⎫⎛⎫-+-+-++ ⎪ ⎪⎝⎭⎝⎭(2)31.530.750.534⎛⎫-⨯-⨯- ⎪⎝⎭24.甲每天加工零件80个,甲加工3天后,乙也加入加工同一种零件,再经过5天,两人共加工这种零件1120个,问乙每天加工这种零件多少个?25.如图,点C 为线段AB 上一点,点D 为BC 的中点,且12AB =,4AC CD =.(1)求AC 的长;(2)若点E 在直线AB 上,且3AE =,求DE 的长.26.“文明其精神,野蛮其体魄”,为进一步提升学生体质健康水平,我市某校计划用640元购买12个体育用品,备选体育用品及单价如表:备用体育用品足球篮球排球单价(元)806040(1)若640元全部用来购买足球和排球共12个,求足球和排球各买多少个?(2)若学校先用一部分资金购买了m 个排球,再用剩下的资金购买了相同数量的足球和篮球,此时正好剩余40元,求m 的值.27.如图,某纪念馆要在两块紧挨在一起的长方形荒地上修建一个半圆形花圃,尺寸如图所示(单位:m ).(1)求阴影部分的面积(用含x 的整式表示并保留π);(2)当9x =,π取3时,求阴影部分的面积.28.如图,OM 是∠AOC 的平分线,ON 是∠BOC 的平分线.(1)如图1,当∠AOB=90°,∠BOC=60°时,∠MON的度数是多少?为什么?(2)如图2,当∠AOB=70°,∠BOC=60°时,∠MON=_______(直接写出结果).(3)如图3,当∠AOB=α,∠BOC=β时,猜想:∠MON=_______(直接写出结果).参考答案1.A【分析】根据相反数的概念:只有符号不同的两个数互为相反数可得答案.【详解】解:-8的相反数是8,故选A.【点睛】此题主要考查了相反数,关键是掌握相反数的定义.2.C【分析】根据一元一次方程的定义进行判断即可.+=不含未知数,所以不是一元一次方程;【详解】538+=含有两个未知数,所以不是一元一次方程;x y24y-=含有一个未知数,且未知数的最高次数为1,所以是一元一次方程;3022x x=+含有一个未知数,且未知数的项的次数为2,所以不是一元一次方程.故选:C.【点睛】本题考查了一元一次方程的定义,即只含有一个未知数,且未知数的项的次数为1的整式方程,叫做一元一次方程.3.C【分析】根据三棱柱、四棱柱、圆锥和圆柱的特点找到答案即可.【详解】三棱柱有5个面;长方体有6个面;圆锥有一个曲面和一个底面共2个面;圆柱有一个侧面和两个底面共3个面,面的个数最少的是圆锥.故选C .【点睛】本题考查了立体图形的概念,根据几何体直观的写出其所有的面是解答本题的关键,属于基础题,比较简单.4.A【分析】根据单项式的系数的定义求解即可.【详解】解:23xy -的系数为-3,故选A .【点睛】本题主要考查了单项式的系数,解题的关键在于能够熟练掌握单项式的系数的定义.5.C【分析】根据数轴判断出a ,b 的取值范围,从而进一步解答问题.【详解】解:根据数轴可得,-1<a<0,1<b<2,且|a|<|b|∴ 0a b +>故选:C【点睛】本题考查了数轴,利用数轴上的点表示的数:原点左边的数小于零,原点右边的数大于零,得出a 、b 的大小是解题关键.6.A【分析】根据科学记数法进行改写即可.【详解】63800000 3.810=⨯故选:A .【点睛】本题考查用科学记数法表示较大的数,一般形式为10n a ⨯,其中110a ≤<,n 为整数,确定a 与n 的值是解题的关键.7.D【分析】根据补角的定义解答即可.【详解】解:∵∠A =56°20′,∴∠A 的补角=180°−∠A =180°−56°20′=123°40′.故选:D .【点睛】本题主要考查了补角的定义以及角的度分秒换算,正确理解补角的定义是解题的关键.8.B【分析】直线没有端点,射线只有一个端点,线段有两个端点.【详解】解:根据射线MN 有一个端点,线段PQ 有两个端点得到选项B 符合题意,选项A 、C 、D 均不符合题意,故选:B .【点睛】本题考查射线、线段的定义,是基础考点,掌握相关知识是解题关键.9.D【分析】根据等式的性质依次判断即可.【详解】解:A.若a b =,则66a b +=+,原选项错误,不符合题意;B.若ax ay =,当a≠0时x =y ,原选项错误,不符合题意;C.若11a b -=+,则2a b =+,原选项错误,不符合题意;D.若55a b =--,则a b =,原选项正确,符合题意.故选:D .【点睛】本题主要考查了等式的性质,熟记等式的性质是解题的关键.10.B【分析】根据折叠的性质得到∠AEF=130∠=︒,2D EG '∠=∠,根据12180AEF D EG '∠+∠+∠+∠=︒得到2(12)180∠+∠=︒,即可求出答案.【详解】解:由折叠得:∠AEF=130∠=︒,2D EG '∠=∠,∵12180AEF D EG '∠+∠+∠+∠=︒,∴2(12)180∠+∠=︒,∴260∠=︒故选:B .【点睛】此题考查折叠的性质,平角有关的计算,正确理解折叠性质得到∠AEF=130∠=︒,2D EG '∠=∠是解题的关键.11.8【分析】根据题意列出算式,再根据有理数的加法法则计算即可.【详解】解:8168-+=℃所以该市的最高温度是8℃.故答案为:8【点睛】本题主要考查了有理数的运算,掌握有理数的加法法则是解题关键.12.两点之间,线段最短【分析】根据题意可知,A B 两点之间,线段AB 和折线ACB 比较,线段最短【详解】解:点A 、B 在直线l 上,点C 是直线l 外一点,可知AB AC BC <+,其依据是两点之间,线段最短故答案为:两点之间,线段最短【点睛】本题考查了线段的性质,掌握两点之间,线段最短是解题的关键.13.54x 或者1.25x【分析】根据售价=标价⨯折扣,即可得到答案.【详解】x =标价0.8⨯∴标价=50.84x x =故答案为:54x .【点睛】本题考查了列代数式,掌握售价、标价和折扣之间的关系式解题的关键.14.2【分析】把x=1代入方程2x-a=0,再求出关于a 的方程的解即可.【详解】解:把x=1代入方程2x-a=0得:2-a=0,解得:a=2,故答案为:2.【点睛】本题考查了一元一次方程的解和解一元一次方程,能得出关于a 的一元一次方程是解此题的关键,注意:使方程左、右两边相等的未知数的值,叫方程的解.15.0【详解】解:∵213n xy -与3m x y 是同类项,∴2,13m n =-=,解得:2,2m n ==-,∴()220+=+-=m n .故答案为:0【点睛】本题主要考查了同类项的定义,熟练掌握所含字母相同,并且相同字母的次数相同的两个单项式称为单项式是解题的关键.16.136︒##136度【分析】先求得AB 与正东方向的夹角度数,再利用角的和差解题.【详解】解:AB 与正东方向的夹角为90°-62°=28°则BAC ∠=28°+90°+18°=136°故答案为:136︒【点睛】本题考查方向角,正确理解方向角的定义是解题关键.17.()31m +【分析】观察发现:第1个图里有白色地砖3×1+1=4;第2个图里有白色地砖3×2+1=7;第3个图里有白色地砖3×3+1=10;那么第n 个图里有白色地砖3n+1.【详解】解:根据图示得:每个图形都比其前一个图形多3个白色地砖,第1个图里有白色地砖3×1+1=4;第2个图里有白色地砖3×2+1=7;第3个图里有白色地砖3×3+1=10;那么第n 个图里有白色地砖3n+1块.故答案为(3n+1).【点睛】本题考查了图形的变化规律,找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律是解题的关键.18.a【详解】试题解析:根据数轴上点的位置得:c <b <0<a ,且|c|>|a|∴c-b <0,2a+b >0,a+c<0则原式=-(a+c)+(2a+b)+(c-b)=-a-c+2a+b+c-b=a.故答案为a.19.0【分析】先算乘方和绝对值,然后再按有理数的四则混合运算法则计算即可.【详解】解:原式162(3)5=÷+--835=--0=.20.x =2【分析】去括号、移项、合并同类项、系数化为1,据此求出方程的解是多少即可.【详解】解:去括号,可得:3x+2x ﹣4=6,移项,可得:3x+2x =6+4,合并同类项,可得:5x =10,系数化为1,可得:x =2.【点睛】此题主要考查解一元一次方程,解题的关键是熟知方程的解法.21.-4x 2y ,-8【分析】直接去括号合并同类项,再把已知数据代入得出答案.【详解】解:原式=7xy+6xy-4x 2y-13xy=-4x 2y ,当x=-1,y=2时,原式=-4×(-1)2×2=-4×1×2=-8.22.数轴见详解,-3< 1.5--<12-<0<122+<()22-.【分析】先将绝对值及乘方的数化简,再根据有理数与数轴上点的对应关系表示各数.【详解】 1.5--=-1.5,()22-=4,将各数表示在数轴上:∴-3< 1.5--<12-<0<122+<()22-.【点睛】此题考查绝对值的化简,有理数的乘方运算,利用数轴上的点表示有理数的方法,有理数的大小比较.23.(1)1(2)0.75-【分析】(1)根据有理数加法的运算律求解即可;(2)先把分数化为小数,然后根据有理数乘法的结合律求解即可.(1)解:原式110.573(2.75)24⎡⎤⎡⎤⎛⎫⎛⎫=-+++-+- ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦()76=+-1=.(2)解:原式 1.530.750.53(0.75)=-⨯-⨯-1.530.750.530.75=-⨯+⨯0.75(1.530.53)=⨯-+0.75(1)=⨯-0.75=-.【点睛】本题主要考查了有理数的计算,熟知有理数的加法和乘法运算律是解题的关键.24.乙每天加工这种零件96个.【分析】直接利用甲加工的零件+乙加工的零件=1120,进而得出等式求出答案.【详解】解:设乙每天加工这种零件x 个,根据题意可得:80×3+5(80+x )=1120,解得:x=96,答:乙每天加工这种零件96个.【点睛】本题主要考查了一元一次方程的应用,正确表示出甲乙加工的零件数是解题关键.25.(1)8;(2)7或13.【分析】(1)根据中点的定义可得22BC CD BD ==,由4AC CD =,12AB =求得CD 进而求得AC ;(2)分情况讨论,①当点E 在线段AB 上时,②当点在线段BA 的延长线上,分别根据线段的和差关系,求得ED .【详解】解:(1)∵点D 为BC 的中点,22BC CD BD∴==,4AB AC BC AC CD =+= ,4212CD CD ∴+=,2CD ∴=4428AC CD ∴==⨯=;(2)由(1)得2BD CD ==①当点E 在线段AB 上时,则12327DE AB AE BD =--=--=②当点在线段BA 的延长线上,则123213DE AB AE BD =+-=+-=12AB = ,∴E 点不在AB 的延长线上,所以DE 的长为7或13.【点睛】本题考查了线段的和差关系,线段中点的定义,数形结合是解题的关键.26.(1)购买足球4个,购买排球8个;(2)8【分析】(1)设购买足球x 个,排球y 个,然后根据题意列出方程求解即可;(2)根据题意求出购买足球和篮球的数量,然后列方程求解即可.【详解】解:(1)设购买足球x 个,排球y 个,根据题意得:128040640x y x y +=⎧⎨+=⎩,解得:48x y =⎧⎨=⎩.答:购买足球4个,购买排球8个.(2)依题意得:购买了m 个排球,则购买足球和排球的数量均为122m -个,所以有:12124080606404022m m m --+⨯+⨯=-解得:8m =.答:m 的值为8.【点睛】本题主要考查了二元一次方程组的实际应用,一元一次方程的实际应用,解题的关键在于能够熟练掌握相关知识进行求解.27.(1)()29620m 2x π--(2)241m 2【分析】(1)根据阴影部分与其它部分面积之间的关系列出代数式即可;(2)代入计算即可.(1)由图形中各个部分面积之间的关系,得221242(22)(42)22S x π+⎛⎫=+--+-⋅ ⎪⎝⎭阴影部分1462492x π=+--⨯()29620m 2x π=--.(2)当9x =,π取3时,()2 27415420m 22S =--=阴影部分.【点睛】本题考查了列代数式、代数式求值、圆的面积公式等知识,正确地列出代数式是正确解答的前提.28.(1)∠MON =45°,原因见解析;(2)35°;(3)12α【分析】(1)求出∠AOC 度数,求出∠MOC 和∠NOC 的度数,代入∠MON=∠MOC-∠NOC 求出即可;(2)求出∠AOC 度数,求出∠MOC 和∠NOC 的度数,代入∠MON=∠MOC-∠NOC 求出即可;(3)求出∠AOC 度数,求出∠MOC 和∠NOC 的度数,代入∠MON=∠MOC-∠NOC 求出即可.【详解】解:(1)如图1,∵∠AOB =90°,∠BOC =60°,∴∠AOC =90°+60°=150°,∵OM 平分∠AOC ,ON 平分∠BOC ,∴∠MOC =12∠AOC =75°,∠NOC =12∠BOC =30°∴∠MON =∠MOC ﹣∠NOC =45°.(2)如图2,∵∠AOB=70°,∠BOC=60°,∴∠AOC=70°+60°=130°,∵OM平分∠AOC,ON平分∠BOC,∴∠MOC=12∠AOC=65°,∠NOC=12∠BOC=30°∴∠MON=∠MOC﹣∠NOC=65°﹣30°=35°.故答案为:35°.(3)如图3,∠MON=12α,与β的大小无关.理由:∵∠AOB=α,∠BOC=β,∴∠AOC=α+β.∵OM是∠AOC的平分线,ON是∠BOC的平分线,∴∠MOC=12∠AOC=12(α+β),∠NOC=12∠BOC=12β,∴∠MON=∠MOC﹣∠NOC=12(α+β)﹣12β=12α即∠MON=12α.故答案为:12α.。

2024年上海市宝山区七年级上学期数学期末试卷含详解

2024年上海市宝山区七年级上学期数学期末试卷含详解

上海市宝山区 2023-2024 学年七年级上学期数学期末考试试卷
一、选择题(本大题共 6 题,每题分.满分 12 分)
5 1. 在 1、 x2 、 b c 、 a 中,单项式的个数有( )
A. 1 个
B. 2 个
C. 3 个
D. 4 个
【答案】B
【分析】本题考查单项式的识别,由数与字母的乘积组成的代数式是单项式,单独一个数或一个字母也是单项式,
边形的面积 S (用 x 的代数式表示),并写出 x 的取值范围.
(3)在第(2)小题中,记 S△MBG S1 , S正方形MHNA S2 , S△NDE S3 ,如果六边形 BCDEFG 的面积等于长方形 ABCD 面积的两倍,求 S1 、 S2 、 S3 之间存在什么数量关系?并说明理由.
所以旋转中心有 3 个.
故选:C.
二、填空题(本大题共 12 题,每题 3 分,满分 36 分)
7. 多项式 2 ab2 4 a3b 1 的次数是___________.
3
3
3
【答案】4
【分析】本题主要考查了多项式的次数,几个单项式的和的形式叫做多项式,每个单项式叫做多项式的项,不含字
母的项叫做常数项,多项式里,次数最高项的次数叫做多项式的次数,据此可得答案.
【详解】解:将 a 和 b 都扩大为原来的 2 倍,得 2a2 2b 2
2a 2b 4a2 4b2
1 ab 2 a2 b2

故分式的值缩小为原来的 1 ,
2
故选:A.
6. 如图,正方形 CDEF 旋转后能与正方形 ABCD 重合,那么图形所在的平面内可以作为旋转中心的点的个数是
()
A. 1 个
【点睛】本题考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系.注意根据题中的关键词来

2023-2024学年广东省东莞市七年级上学期期末数学试卷及参考答案

2023-2024学年广东省东莞市七年级上学期期末数学试卷及参考答案

东莞市2023—2024学年度第一学期期末考试七年级试卷AB a,BC(1)若线段18AB =,2BD CD =,求线段CD 的长度;(2)若:3:2AD BD =,且2CD =,求线段AB 的长度.六、解答题四(本大题共2小题,每小题10分,共20分)25.已知:如图,180AOB COD ∠=∠=︒,90EOC ∠=︒,OF 平分AOE ∠.(1)AOE ∠的余角是______;(2)若40BOC ∠=︒,求COF ∠的度数;(3)猜想COF ∠与BOC ∠的数量关系,并说明理由.26.数轴上两个动点A 、B 所对应的数为8-、4,A 、B 两点各自以一定的速度在数轴上运动,且A 点的运动速度为2个单位/秒.(1)点A 、B 两点同时出发相向而行,在原点处相遇,求B 点的运动速度;(2)A 、B 两点以(1)中的速度同时出发,向数轴正方向运动,几秒钟时点A 会追上B ;(3)A 、B 两点以(1)中的速度同时出发,向数轴正方向运动,求经过多少时间后,A 、O 、B 三点中有一点恰好是以另外两点为端点的线段的中点.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.解:正方体的表面展开图,相对的面之间一定相隔一个正方形,与“锦”字所在面相对的面上的汉字是“惟”.故选:A .【点评】本题考查正方体的展开与折叠,掌握正方体表面展开图的特征是正确判断的关键.6.B【分析】根据代数式表示实际意义的方法分别判断每个选项即可得到答案.解:A.若长方形的长为8cm ,宽为cm a ,则8a 2cm 表示长方形的面积,原说法正确,故A 不符合题意;B.原价为a 元的商品打8折后的售价为0.8a 元,原说法错误,故B 符合题意;C.购买8本单价为a 元的笔记本所需的费用为8a 元,原说法正确,故C 不符合题意;D.货车以km /h a 的平均速度行驶8h 的路程为8km a ,原说法正确,故D 不符合题意;故选:B .【点评】本题主要考查了代数式表示的实际意义,解题的关键是掌握代数式的书写规范和实际问题中数量间的关系.7.C【分析】分别对所给的四个方程利用等式性质进行变形,可以找出正确答案.A.D 不对,因为移项时没有变号;B:系数化1时,方程两端要同时除以未知数的系数;运用排除法可得C 正确.故选:C.【点评】此题主要考查解一元一次方程的一般步骤:去分母,去括号,移项,合并同类项,系数化为1等,移项,系数化为1的依据是等式的性质.8.A【分析】本题考查一元一次方程的实际应用.根据物品的价格是定值,列出方程即可.找准等量关系,是解题的关键.解:设共有x 人,由题意,得:8374x x -=+;故选A .9.C【分析】根据线段的和差即可得.解:AB a =,BC b =,CD c =,a b c AB BC CD AC CD AD ∴+-=+-=-=,故选:C .【点评】本题考查了作线段,熟练掌握线段的和差是解题关键.解:x解:小麦种植面积是【分析】根据三视图的含义分别画出从正面,左面,上面看到的平面图形即可.解:画图如下:【点评】本题考查了作图-三视图:确定主视图位置,画出主视图;再画出左视图与俯视图,注意与主视图“长对正”;注意与主视图“高平齐”、与俯视图“宽相等”.19.228a -,0【分析】本题考查了整式的加减-化简求值.去括号、合并同类项得到化简结果,再把字母的值代入化简结果计算即可.解:()()22242a a a ---22484a a a =--+228a =-,当2a =-时,原式()2228880=⨯--=-=.20.从甲组抽调了10个学生去乙组.【分析】此题考查了一元一次方程的应用.设从甲组抽调了x 个学生去乙组,根据题中数量关系,即可得出关于x 的一元一次方程,解之即可得出结论.解:设从甲组抽调了x 个学生去乙组,根据题意得:()23642x x -=+,解得:10x =,答:从甲组抽调了10个学生去乙组.21.(1)这一周内写家庭作业用时最多比用时最少的多24分钟;(2)小明这一周每天写家庭作业的平均时间是29分钟.【分析】此题考查了利用正负数的意义解决实际问题的能力,解决问题的关键是能根据实际问题准确列式、计算.(1)用最大的数减去最小的数,即可得出答案;(2)计算出一星期完成作业的总时间,再计算平均数即可.(1)解:∵98652815-<-<-<-<-<+<+,∴用时最多的是周日,用时最少的是周五.。

七年级上册数学期末测试卷(含答案)

七年级上册数学期末测试卷(含答案)

七年级上册数学期末测试卷(含答案)数学试卷(考试时间:120分钟试卷满分:120分)一、选择题(本题共12小题,每小题3分,共36分)。

1.下列四个数中,属于负数的是()A.﹣3B.3C.πD.0【答案】A【解答】解:A.﹣3是负数,故本选项符合题意;B.3是正数,故本选项不符合题意;C.π是正数,故本选项不符合题意;D.0既不是正数,也不是负数,故本选项不符合题意;故选:A.2.在﹣5,﹣3,0,1.7这4个数中绝对值最大的数是()A.﹣5B.﹣3C.0D.1.7【答案】A【解答】解:∵|﹣5|=5,|﹣3|=3,|0|=0,|1.7|=1.7,∴5>3>1.7>0,故选:A.3.下面四个立体图形的展开图中,是圆锥展开图的是()A.B.C.D.【答案】B【解答】解:A.这个立体图形是长方体,故本选项不符合题意;B.圆锥的展开图为一个扇形和一个圆形,故这个立体图形是圆锥,故本选项符合题意;C.这个立体图形是三棱柱,故本选项不符合题意;D.这个立体图形是圆柱,故本选项不符合题意;试题第1页(共22页)试题第2页(共22页)试题第3页(共22页)试题第4页(共22页)………………○………………内………………○………………装………………○………………订………………○………………线………………○………………此卷只装订不密封故选:B.4.近似数2.01精确到()A.百位B.个位C.十分位D.百分位【答案】D【解答】解:近似数2.01精确到百分位.故选:D.5.木匠师傅锯木料时,先在木板上画两个点,然后过这两点弹出一条墨线.他运用的数学原理是()A.两点之间,线段最短B.线动成面C.经过一点,可以作无数条直线D.两点确定一条直线【答案】D【解答】解:在木板上画出两个点,然后过这两点弹出一条墨线,此操作的依据是两点确定一条直线.故选:D.6.若单项式﹣x m y n与2x3y4是同类项,则m,n分别是()A.m=3,n=4B.m=4,n=3C.m=﹣3,n=﹣4D.m=﹣4,n=﹣3【答案】A【解答】解:∵单项式﹣x m y n与2x3y4是同类项,∴m=3,n=4,故选:A.7.根据等式的性质,下列变形错误的是()A.如果x=y,那么x+5=y+5B.如果x=y,那么﹣3x=﹣3yC.如果x=y,那么x﹣2=y+2D.如果x=y,那么+1=+1【答案】C【解答】解:A.如果x=y,那么x+5=y +5,故本选项不符合题意;B.如果x=y,那么﹣3x=﹣3y,故本选项不符合题意;C.如果x=y,那么x﹣2=y﹣2,故本选项符合题意;D.如果x=y,那么+1=+1,故本选项不符合题意;故选:C.8.有理数a、b在数轴上的对应点的位置如图所示:则下面结论正确的是()A.a+b>0B.a+b<0C.ab>0D.a+b=0【答案】D【解答】解:∵由图可知a、b两点到原点的距离相同,∴a+b=0,ab<0.故选:D.9.我国元朝朱世杰所著的《算学启蒙》中有个问题:良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之.这道题的意思是:跑得快的马每天走240里,跑得慢的马每天走150里,慢马先走12天,快马几天可以追上慢马?如果我们设快马x天可以追上慢马,则可列方程()A.240x=150x+12B.240x=150x﹣12C.240x=150(x+12)D.240x=150(x﹣12)【答案】C【解答】解:设快马x天可以追上慢马,依题意,得:240x=150(x+12).故选:C.10.在如图的月历表中,任意框出表中竖列上三个相邻的数,这三个数的和可能是()A.28B.54C.65D.75【答案】B【解答】解:设三个数中最小的数为x,则另外两数分别为x+7,x+14,∴三个数的和为x+(x+7)+(x+14)=3x+21,依题意得:3x+21=28,解得x=,不是整数,故A不符合题意,3x+21=54,解得x=11,由月历表可知此时框出的三个数是11,18,25,故B符合题意,3x+21=65,解得x=,不是整数,故C不符合题意,3x+21=75,解得x=18,由月历表可知此时不能框出符合题意的三个数,故D不符合题意,故选:B.11.已知线段AB,延长AB至C,使BC=2AB,D是线段AC上一点,且BD=AB,则的值是()A.6B.4C.6或4D.6或2【答案】D试题第5页(共22页)试题第6页(共22页)试题第7页(共22页)试题第8页(共22页)………………○………………内………………○………………装………………○………………订………………○………………线………………○………………此卷只装订不密封【解答】解:如图,当点D在线段AB时,∵BC=2AB,∴AC=AB+BC=3AB,∵BD=AB,∴AD=AB,∴==6,当点D在线段BC上时,∵BC=2AB,∴AC=AB+BC=3AB,∵BD′=AB,∴AD′=AB,∴==2,综上所述,的值是6或2,故选:D.12.OB是∠AOC内部一条射线,OM是∠AOB平分线,ON是∠AOC平分线,OP是∠NOA平分线,OQ是∠MOA平分线,则∠POQ:∠BOC=()A.1:2B.1:3C.2:5D .1:4【答案】D【解答】解:∵OM是∠AOB 平分线,OQ 是∠MOA平分线,∴∠AOQ=∠AOM=∠AOB,∵ON是∠AOC平分线,OP是∠NOA平分线,∴∠AOP=∠AON=∠AOC=(∠AOB+∠BOC),∴∠POQ=∠AOP﹣∠AOQ=(∠AOB+∠BOC)﹣∠AOB,=∠BOC,∴∠POQ:∠BOC=1:4,故选:D.二、填空题(本题共6题,每小题3分,共18分)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版七年级上学期期末测试
数学试卷
学校________班级________姓名________成绩________
一、选择题
1.-3相反数是()
A.3B.-3C. D.
2.据统计,自开展精准扶贫工作五年以来,湖南省减贫5510000人,贫困发生率由13.43%下降到3.86%,2695个贫困村出列,14个贫困县摘帽.将5510000用科学记数法表示是()
∵点D是线段BC的中点,∴BD=CD.
A、CD=BC-DB=AC-DB,故选项A正确;
B、AB-DB=AD≠CD,故选项B不正确;
C、AC-DB≠AD,故选项C不正确;
D、AB-BC=AC≠AD,故选项D不正确.
故选:A.
【点睛】此题主要考查了两点间的距离的求法,以及线段的中点的含义和应用,要熟练掌握.
9.若 ,则 的值为()
A. ﹣4B. ﹣2C.2D.4
【答案】C
【解析】
【分析】
由非负数的性质可得: ,解方程组可得答案.
【详解】解:由题意得:

故选C.
【点睛】本题考查的是非负数的性质,掌握非负数的性质是解题的关键.
10.观察下列算式: , , , , , , , ,…….根据上述算式中的规律,你认为 的个位数字是()
【详解】解:钟表的指针恰好是10点整,时针指向10,分针指向12,
所以此时钟表上时针与分针所夹的锐角的度数=2×30°=60°.
故选: .
【点睛】本题考查了钟面角:钟面被分成12大格,每大格为30度;分针每分钟转6度,时针每分钟转0.5度,掌握以上知识是解题的关键.
7.甲、乙两人练习短距离赛跑,测得甲每秒跑7米,乙每秒跑6.5米,如果甲让乙先跑2秒,那么几秒钟后甲可以追上乙.若设x秒后甲追上乙,列出的方程应为()
A. B. C. D.
【答案】B
【解析】
【分析】
科学记数法的形式是: ,其中 <10, 为整数.所以 , 取决于原数小数点的移动位数与移动方向, 是小数点的移动位数,往左移动, 为正整数,往右移动, 为负整数.本题小数点往左移动到 的后面,所以
【详解】解:
故选B.
【点睛】本题考查的知识点是用科学记数法表示绝对值较大的数,关键是在理解科学记数法的基础上确定好 的值,同时掌握小数点移动对一个数的影响.
三、解答题
19.(1)计算:
(2)合并同类项:
20.解方程:
(1)
(2)
21.已知: ,
(1)求 ;
(2)若x=-1, .求 值.
22.直线AB、CD相交于点O,OE平分∠AOD,∠FOC=90°,∠1=40°,求∠2与∠3的度数.
23.某校对该校七年级(1)班全体学生的血型做了一次全面调查,根据调查结果绘制了下列两幅不完整的统计图,请你根据统计图提供的信息解答以下问题:
故答案为:35°.
【点睛】本题考查了角平分线的性质和邻补角,求出∠AOC的度数是解题关键.
15.某公司有员工700人举行元旦庆祝活动(如图),A、B、C分别表示参加各种活动的人数的百分比,规定每人只参加一项且每人都要参加,则下围棋的员工共有_____人.
3.如图, 的倒数在数轴上表示的点位于下列哪两个点之间()
A. 点E和点FB. 点F和点GC. 点G和点HD. 点H和点I
【答案】C
【解析】
【分析】
根据倒数的定义即可判断.
【详解】 的倒数是 ,
∴ 在G和H之间,
故选C.
【点睛】本题考查倒数的定义,数轴等知识,解题的关键是熟练掌握基本知识.
4.为了解七年级1000名学生的身高情况,从中抽取了300名学生的身高进行统计.这300名学生的身高是()
15.某公司有员工700人举行元旦庆祝活动(如图),A、B、C分别表示参加各种活动的人数的百分比,规定每人只参加一项且每人都要参加,则下围棋的员工共有_____人.
16.已知 ,则 的值是________.
17.已知∠A 余角是∠A的补角的 ,则∠A=________.
18.十个人围成一个圆圈做游戏,游戏的规则是:每个人心里都想好一个整数,并把自己想好的数如实告诉他两旁的两个人,然后每人将他两旁的人告诉他的数计算出平均数并报出来.已知每个人报的结果如图所示,那么报“3”的人自己心里想的数是_______.
【答案】35°
【解析】
【分析】
根据∠AOC=180°-∠BOC,根据射线OM是∠AOC的平分线,可得∠MOA=∠MOC= ∠AOC,即可求出答案.
【详解】∵射线OM是∠AOC的平分线,
∴∠MOA=∠MOC= ∠AOC,
∵∠AOC=180°-∠BOC=180°-110°=70°,
∴∠MOA= ∠AOC=35°
(3)若E为线段BC上的点,M为EB的中点,DM=a,CE=b,求线段AB的长度.
26.已知点A、B、C在数轴上对应的实数分别为a,b,c,其中: 满足 , 满足 .点P位于该数轴上.
(1)求出a,b的值,并求出A、B两点间的距离.
(2)设点C与点A 距离为25个单位长度,且 ,若PB=2PC,求点P在数轴上对应的实数.
故选:D
【点睛】本题考查有理数 乘方运算,属于规律型试题,弄清本题的规律是解题关键.
二、填空题
11.在数轴上,点A对应的数是-20,点B对应的数是+7,则A、B两点的距离是________.
【答案】27
【解析】
【分析】
求数轴上两点之间的距离:数轴上表示两个点所对应的两个数的差的绝对值,即用较大的数减去较小的数即可.
C. =2x+1,故C正确;
D ,故D错误;
故选:C.
【点睛】本题考查有理数的混合运算和整式的加减混合运算,解题关键是熟练掌握以上运算法则.
6.10时整,钟表的时针与分针之间所成的角的度数是()
A.30°B.60°C.90°D.120°
【答案】B
【解析】
【分析】
由于钟表的指针恰好是10点整,时针指向10,分针指向12,根据钟面被分成12大格,每大格为30度得到此时钟表上时针与分针所夹的锐角的度数=2×30°.
【详解】解:根据求数轴上两点之间的距离,即用较大的数减去较小的数即可,
所以AB=7-(-20)=27.
故答案为:27.
【点睛】本题考查求数轴上两点间的距离的方法,数轴上表示两个点所对应的两个数的差的绝对值,即用较大的数减去较小的数即可.
12.单项式 的系数是________.
【答案】
【解析】
【分析】
【详解】 圆的半径为r,正方形的边长为a
表示的是圆与正方形的面积之和.
故答案为:圆的面积与正方形的面积和.
【点睛】本题主要考查代数式的意义,通过代数式及已知条件直接得出代数式所表示的意义.
14.如图,直线AB与CD相交于点O,射线OM是∠AOC的平分线,如果∠BOC=110°,那么∠AOM=______°.
A.7x=6.5B.7x=6.5(x+2)
C7(x+2)=6.5xD.7(x﹣2)=6.5x
【答案】B
【解析】
【详解】设x秒后甲追上乙,根据等量关系:甲x秒所跑的路程=乙x秒所跑的路程+乙2秒所跑的路程.
列方程得:
7x=65(x+2),
故选B.
【点睛】列方程解应用题的关键是找出题目中的相等关系,有的题目所含的等量关系比较隐藏,要注意仔细审题,耐心寻找.
(3)设点P从原点开始第一次向左移动1个单位长度,第二次向右移动3个单位长度,第三次向左移动5个单位长度,第四次向右移动7个单位长度,…(以此类推),问点P能移动到与点A或点B重合的位置吗?若能,请探究需要移动多少次才能重合?若不能,请说明理由.
答案与解析
一、选择题
1.-3相反数是()
A.3B.-3C. D.
A. B.
C. D.
6.10时整,钟表的时针与分针之间所成的角的度数是()
A.30°B.60°C.90°D.120°
7.甲、乙两人练习短距离赛跑,测得甲每秒跑7米,乙每秒跑6.5米,如果甲让乙先跑2秒,那么几秒钟后甲可以追上乙.若设x秒后甲追上乙,列出的方程应为()
A. 7x=6.5B. 7x=6.5(x+2)
A.2B.4C.6D.8
【答案】D
【解析】
【分析】
根据上述等式,得到结果的末位以四个数(2,4,8,6)依次循环,而2019除以4商504余3,故得到所求式子的末位数字为8.
【详解】解:根据上述等式,得到结果的末位以四个数(2,4,8,6)依次循环,
∵2019÷4=504…3,
∴22019的末位数字是8.
A. B. C. D.
3.如图, 的倒数在数轴上表示的点位于下列哪两个点之间()
A.点E和点FB.点F和点GC.点G和点HD.点H和点I
4.为了解七年级1000名学生的身高情况,从中抽取了300名学生的身高进行统计.这300名学生的身高是()
A.总体的一个样本B.个体C.总体D.样本容量
5.下面的计算正确的是( )
C. 7(x+2)=6.5xD. 7(x﹣2)=6.5x
8.如图,点C是线段AB的中点,点D是线段BC的中点,下列等式正确的是()
A. CD=AC-DBB. CD=AB-DB
C. AD=AC-DBD. AD=AB-BC
9.若 ,则 的值为()
A.﹣4B.﹣2C. 2D. 4
10.观察下列算式: , , , , , , , ,…….根据上述算式中的规律,你认为 的个位数字是()
A. 2B. 4C. 6D. 8
二、填空题
11.在数轴上,点A对应的数是-20,点B对应的数是+7,则A、B两点的距离是________.
12.单项式 的系数是________.
相关文档
最新文档