《25.1随机事件与概率——25.1.2 概率》(第1课时)教学设计【初中数学人教版九年级上册】
九年级数学上册(人教版)25.1.2概率教学设计
九年级的学生已经具备了一定的数学基础,掌握了基本的运算方法和逻辑思维能力。在此基础上,他们对概率的认识ห้องสมุดไป่ตู้要来源于日常生活经验,但尚未形成系统的概率知识体系。因此,在本章节的教学中,教师需要关注以下几个方面:
1.学生对随机事件的理解:学生在日常生活中已经接触过许多随机事件,但对其概念的理解可能不够深入。教师应引导学生从具体实例中抽象出随机事件的本质特征。
-纠正:针对学生的错误,教师及时进行纠正,帮助学生掌握正确的概率计算方法。
3.教师挑选部分优秀解答,进行展示和表扬,激发学生的学习积极性。
(五)总结归纳,500字
1.教师引导学生回顾本节课所学内容,总结概率的定义、表示方法和计算技巧。
-提醒:概率是描述随机事件发生可能性大小的量,计算概率时要认真分析事件的特点。
(2)某班级有30名学生,其中有18名女生,12名男生。如果随机选取一名学生参加比赛,求选到女生的概率。
3.实践活动
(1)组织一次小组活动,利用硬币、骰子等工具进行实验,记录实验结果,计算实际概率,并与理论概率进行比较。
(2)调查家人或朋友在一周内使用手机的时间分布情况,计算每个人每天使用手机的概率。
1.教师介绍概率的定义,解释概率是描述随机事件发生可能性大小的一种量。
-举例说明:抛硬币正面朝上的概率是0.5,表示正面朝上和反面朝上的可能性相等。
2.讲解概率的表示方法,如分数、小数和百分比,并进行具体演示。
-练习:让学生将一些具体事件的概率用不同形式表示出来,加深理解。
3.介绍概率的计算方法,通过实例引导学生学会计算简单事件的概率。
(二)过程与方法
在教学过程中,教师引导学生通过以下方法来掌握概率知识:
1.实践操作:通过实验和观察,让学生亲身体验随机事件,从而引出概率的概念。
九年级数学上册 第二十五章 概率初步 25.1 随机事件与概率 25.1.2 概率(1)教案 新人教版
——————————新学期新成绩新目标新方向——————————
25.1.2 概率
有可能的结果,以及指定事件
本节内容是在学生已经学习了必然事件、随机事件、不可能事件等知识的基础上,
解,学生可能会产2
解难度;但由于本经具有一定的动手实验能力和归纳概括能力;学生希望老师能创设便于观
流的意识与能力,锻炼质疑、独立思考的习惯与精神,帮助
准备
回答.因为纸团看上去
均匀,又是随机掷出,所以,可以发现以上
越接近
6.实例探究.
例1 掷一枚质地均匀的股子,观察向上一面
这节课你学到了什么?还有哪些困惑?
、必然事件A,则P(A)=1; 3、概率的条件及求法:。
九年级数学上册25.1.2概率教案(新版)新人教版【精品教案】
25.1.2 概率一、教学目标1.理解一个事件概率的意义.2.会在具体情境中求出一个事件的概率.3.会进行简单的概率计算及应用.二、课时安排1课时三、教学重点会在具体情境中求出一个事件的概率.四、教学难点会进行简单的概率计算及应用.五、教学过程(一)导入新课1.什么是必然事件,不可能事件和随机事件?2.下列事件是必然事件,不可能事件还是随机事件?(1)北京市举办2022年冬季奥运会.(2)篮球明星Stephen·Curry投10次篮,次次命中.(3)打开电视正在播恒大夺冠的比赛.(4)一个正方形的内角和为361度.(二)讲授新课探究1: 概率的定义及适用对象思考在同样条件下,随机事件可能发生,也可能不发生,那么它发生的可能性有多大呢?能否用数值进行刻画呢?活动1 从分别有数字1,2,3,4,5的五个纸团中随机抽取一个,这个纸团里的数字有5种可能,即1,2,3,4,5.因为纸团看上去完全一样,又是随机抽取,所以每个数字被抽取的可能性大小相等,所以我们可以用15表示每一个数字被抽到的可能性大小.活动2 掷一枚骰子,向上一面的点数有6种可能,即1,2,3,4,5,6.因为骰子形状规则、质地均匀,又是随机掷出,所以每种点数出现的可能性大小相等.我们用16表示每一种点数出现的可能性大小.探究2:概率的定义数值15和16刻画了实验中相应随机事件发生的可能性大小.一般地,对于一个随机事件A,我们把刻画其发生可能性大小的数值,称为随机事件A 发生的概率,记为P(A).1.试验具有两个共同特征:(1)每一次试验中,可能出现的结果只有有限个;(2)每一次试验中,各种结果出现的可能性相等.具有这些特点的试验称为古典概率.在这些试验中出现的事件为等可能事件.具有上述特点的实验,我们可以用事件所包含的各种可能的结果数在全部可能的结果数中所占的比,来表示事件发生的概率.探究3:概率计算公式一般地,如果在一次实验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包括其中的m种结果,那么事件A发生的概率()mP An活动2:探究归纳事件发生的可能性越大,它的概率越接近1;反之,事件发生的可能性越小,它的概率越接近0.(三)重难点精讲例1 掷一个骰子,观察向上的一面的点数,求下列事件的概率:(1)点数为2;(2)点数为奇数;(3)点数大于2小于5.解:(1)点数为2有1种可能,因此P(点数为2)=16;(2)点数为奇数有3种可能,即点数为1,3,5,因此P(点数为奇数)=12;(3)点数大于2且小于5有2种可能,即点数为3,4,因此P(点数大于2且小于5)= 13.例2 如图所示是一个转盘,转盘分成7个相同的扇形,颜色分为红黄绿三种,指针固定,转动转盘后任其自由停止,某个扇形会停在指针所指的位置,(指针指向交线时当作指向右边的扇形)求下列事件的概率.(1)指向红色;(2)指向红色或黄色;(3)不指向红色.解:一共有7种等可能的结果.(1)指向红色有3种结果,P(指向红色)=__ 37 _;(2)指向红色或黄色一共有5种等可能的结果,P( 指向红或黄)=__57__;(3)不指向红色有4种等可能的结果P( 不指向红色)= _47 _.例3、如图是计算机中“扫雷”游戏的画面.在一个有9×9的方格的正方形雷区中,随机埋藏着10颗地雷,每个方格内最多只能藏1颗地雷.小王在游戏开始时随机地点击一个方格,点击后出现如图所示的情况.我们把与标号3的方格相邻的方格记为A区域(画线部分),A区域外的部分记为B区域.数字3表示在A区域有3颗地雷.下一步应该点击A区域还是B区域?分析 下一步应该怎样走取决于点击哪部分遇到地雷的概率小,只要分别计算点击两区域内的任一方格遇到地雷的概率并加以比较就可以了.解:A 区域的方格总共有8个,标号3表示在这8个方格中有3个方格各藏有1颗地雷.因此,点击A 区域的任一方格,遇到地雷的概率是38; B 区域方格数为9×9-9=72.其中有地雷的方格数为10-3=7.因此,点击B 区域的任一方格,遇到地雷的概率是772 ; 由于38> 772,即点击A 区域遇到地雷的可能性大于点击B 区域遇到地雷的可能性,因而第二步应该点击B 区域.(四)归纳小结用P(A)=n m 计算概率的步骤: 1.列举出一次试验出现的所有等可能的结果(即求出 ). 2.找出要研究的事件中包括哪些事件(即求出 ). 3. 用P(A)= 计算出所求事件的概率.(五)随堂检测1. 1.从1、2、3、4、5、6、7、8、9、10这十个数中随机取出一个数,取出的数是3的倍数的概率是( ) A. 15 B. 310 C. 13 D. 122.话说唐僧师徒越过石砣岭,吃完午饭后,三徒弟商量着今天由谁来刷碗,可半天也没个好主意.还是悟空聪明,他灵机一动,扒根猴毛一吹,变成一粒骰子,对八戒说道:我们三人来掷骰子:如果掷到2的倍数就由八戒来刷碗;如果掷到3就由沙僧来刷碗;如果掷到7的倍数就由我来刷碗;徒弟三人洗碗的概率分别是多少!3.如图,能自由转动的转盘中, A 、B 、C 、D 四个扇形的圆心角的度数分别为180°、 30 °、 60 °、 90 °,转动转盘,当转盘停止时, 指针指向B 的概率是_____,指向C 或D 的概率是_____.【答案】1.B2. 1(=2P 八戒刷碗);1(=6P 沙僧刷碗);(=0P 悟空刷碗) 3. 512;112六.板书设计 25.1.2随机事件与概率用P(A)= nm 计算概率的步骤: 1.列举出一次试验出现的所有等可能的结果(即求出 ).2.找出要研究的事件中包括哪些事件(即求出 ).3.用P(A)= 计算出所求事件的概率.例题1: 例题2: 例题3:七、作业布置课本P133练习1、2、3练习册相关练习八、教学反思。
初三数学九年级上册25.1.2 概率教学设计
25.1.2 概率自学目标:1.知道通过大量重复试验时的频率可以作为事件发生概率的估计值2.在具体情境中了解概率的意义3.让学生经历猜想试验--收集数据--分析结果的探索过程,丰富对随机现象的体验,体会概率是描述不确定现象规律的数学模型.初步理解频率与概率的关系.重、难点:1.在具体情境中了解概率意义.2.对频率与概率关系的初步理解自学过程:一、课前准备:1、当A是必然事件时,P(A)= ;当A是不可能事件时,P(A)= ;任一事件A的概率P(A)的范围是;2.事件发生的可能性越大,则它的概率越接近________;反之,•事件发生的可能性越小,则它的概率越接近_________.3、一般地,在大量重复试验中,如果,那么这个常数p就叫做事件A的概率,记作。
4、在上面的定义中,m、n各代表什么含义?mn的范围如何?为什么?5.下列事件中哪些事件是随机事件?哪些事件是必然事件?哪些是不可能事件?(1)抛出的铅球会下落 (2)某运动员百米赛跑的成绩为2秒(3)买到的电影票,座位号为单号 (4)x2+1是正数(5)投掷硬币时,国徽朝上6.频率与概率有什么区别与联系?二、自主学习:1.某商场设立了一个可以自由转动的转盘,并规定:顾客购物10元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品.下表是活动进行中的一组统计数据:(1)计算并完成表格;(2)请估计,当n 很大时,频率将会接近多少?(3)假如你去转动该转盘一次,你获得铅笔的概率约是多少?2.在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20只,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.下表是活动进行中的一组统计数据:摸球的次数n100150 200 500 8001000 摸到白球的次数m58 96 116 295 484 601 摸到白球的频率nm0.580.640.580.590.6050.601(1)请估计:当n 很大时,摸到白球的频率将会接近______;(2)假如你去摸一次,你摸到白球的概率是______,摸到黑球的概率是______; (3)试估算口袋中黑、白两种颜色的球各有多少只? 三、达标检测:1.在抛掷一枚普通正六面体骰子的过程中,出现点数为2的概率是______.2.十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯恰是黄灯亮的概率为______.3.袋中有5个黑球,3个白球和2个红球,摸出后再放回,在连续摸9次且9次摸出的都是黑球的情况下,第10次摸出红球的概率为______.4.袋子中装有24个黑球2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋中摸出一个球,摸到黑球的概率大,还是摸到白球的概率大一些呢?说明理由,并说明你能得到什么结论?(要判断哪一个概率大,只要看哪一个可能性大.)5.设计如下游戏:将转盘分为A 、B 、C 区域(如图所示)转动转盘一次,•指针在A 区域小王得40分,小明失40分,指针在B 区域,小王失60分,小明得60分,指针转动转盘的次数n100 150 200 500 800 1000 落在“铅笔”的次数m68111 136 345 564 701落在“铅笔”的频率nm60BCA在C区域,小王失30分,小明得30分,这一游戏对小王有利吗?四、尝试小结:。
人教版数学九年级上册25.1.2《概率》教学设计
人教版数学九年级上册25.1.2《概率》教学设计一. 教材分析人教版数学九年级上册第25.1.2节《概率》是学生在学习了统计学基础知识之后,进一步了解和掌握概率学的基本概念和简单计算方法。
本节内容主要包括概率的定义、条件概率以及独立事件的概率计算。
通过本节课的学习,学生能够理解概率的概念,掌握利用树状图和列表法求解概率的方法,为后续深入学习概率论打下基础。
二. 学情分析学生在学习本节内容之前,已经掌握了统计学的一些基本知识,如平均数、中位数、众数等。
在思维方式上,学生已经具备了一定的逻辑分析能力和抽象概括能力。
但概率概念较为抽象,学生理解起来可能存在一定的困难。
因此,在教学过程中,教师需要运用生动具体的实例,帮助学生直观地理解概率的概念,引导学生运用已有的知识解决新问题。
三. 教学目标1.知识与技能:使学生理解概率的概念,掌握利用树状图和列表法求解概率的方法。
2.过程与方法:通过实例分析,培养学生运用概率知识解决实际问题的能力。
3.情感态度与价值观:激发学生学习概率的兴趣,培养学生的合作交流意识。
四. 教学重难点1.重点:概率的定义,条件概率,独立事件的概率计算。
2.难点:概率公式的灵活运用,解决实际问题。
五. 教学方法1.情境教学法:通过生活实例,引导学生理解概率的概念。
2.合作学习法:分组讨论,培养学生团队合作精神。
3.问题驱动法:设置问题,激发学生思考,引导学生主动探究。
六. 教学准备1.教学素材:准备与概率相关的实例,如抽奖、投篮等。
2.教学工具:多媒体课件,黑板,粉笔。
3.学生活动:提前分组,准备进行合作学习。
七. 教学过程1.导入(5分钟)教师通过一个简单的抽奖实例,引导学生思考:如何计算抽中一等奖的概率?从而引出本节课的主题——概率。
2.呈现(10分钟)教师讲解概率的定义,通过PPT展示概率的符号表示方法,如P(A)、P(B)等。
同时,介绍条件概率和独立事件的概率计算方法,并用具体的例子进行说明。
人教版九年级数学上册25.1.2:概率教案设计
祝愿所有的同学:
.
搜罗天下智慧
丰硕人生成果
与各位学生、评 委、老师共勉!
4/5
人教版九年级数学上册 25.1.2:概率教案设计
《概率》第一课时教案
赣州市第四中学 罗硕
5/5
(2)点数为奇数有 3 种可能,即点数为 1,3,5,指 导 学 生 如 何
P(点数为奇数)=
规范运用公式
(3)点数为点数大于 2 小于 5 有 2 种可能,即点解 决 求 概 率 问
数为 3,4, P(点数大于 2 小于 5)=
题,并在问题的 活动中获取成 功的体验,建立
点拨:
自信心.
第一步:计算该次等可能事件共可能有多少种结果
1
1
A. 4
B. 2
C. 2
D.1
5.下图分别是甲、乙两名同学手中的扑克牌在看不到
对方牌面的前提下,分别从对方手中随机抽取一张牌,若
牌上数字与自己手中某张牌上数字相同,则组成一对.
(1)甲先从乙手中抽取一张,恰好组成一对的概 率是______;
(2)若乙先从甲手中抽取一张,恰好组成一对的概 率是______.
内各地近50名彩民翘首以待。摇奖开始了,9、0、
7等7个数最先出来。奇怪的是,7号球出来后犹如被
固定一般,一动不动。惊讶的工作人员用手连扒两下,
它才掉下去。大厅里骚动起来:那个球有问题!有彩民
走上来察看——7号球上有裂缝!彩民因此与体彩中心
及公证处发生矛盾,且有2枚“问题”球被彩民抢走。
22时许,在省公证处公证员的监督下,民警剖开“问
出现,即基本事件的总数 n. 第二步:计算其中要求的事件 A 包含多少种结果,
即事件 A 包含的基本事件的个数 m. 第三步:利用公式计算结果.
人教版九年级数学上册25.1.2《概率》教学设计
人教版九年级数学上册25.1.2《概率》教学设计一. 教材分析人教版九年级数学上册25.1.2《概率》是概率统计部分的一个重要内容。
本节内容通过具体的实例,让学生理解概率的概念,掌握概率的计算方法,并能够运用概率解决实际问题。
教材中安排了丰富的例题和练习题,有助于学生巩固所学知识。
二. 学情分析九年级的学生已经具备了一定的数学基础,对于一些基本的数学概念和运算方法有一定的了解。
但是,对于概率这一抽象的概念,学生可能存在一定的理解难度。
因此,在教学过程中,需要注重引导学生从具体实例中理解概率的概念,逐步过渡到概率的计算方法。
三. 教学目标1.理解概率的概念,掌握概率的计算方法。
2.能够运用概率解决实际问题。
3.培养学生的数学思维能力和解决问题的能力。
四. 教学重难点1.概率的概念和计算方法。
2.如何运用概率解决实际问题。
五. 教学方法1.采用问题驱动的教学方法,引导学生从具体实例中理解概率的概念。
2.利用多媒体教学,通过动画和图片等形式,让学生更直观地理解概率的概念。
3.采用分组讨论和合作交流的方式,让学生在讨论中思考,在交流中学习。
4.注重练习,让学生在实践中掌握概率的计算方法。
六. 教学准备1.准备相关的教学课件和教学素材。
2.准备练习题和实际问题。
七. 教学过程1.导入(5分钟)通过一个简单的实例,如抛硬币实验,引导学生思考:抛硬币出现正面的概率是多少?让学生感受概率的存在,激发学生的学习兴趣。
2.呈现(10分钟)介绍概率的概念,讲解概率的计算方法。
以具体的例子为例,让学生理解概率的计算过程。
3.操练(10分钟)让学生分组讨论,每组选择一个实例,计算其概率。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)让学生运用所学的概率计算方法,解决实际问题。
可以安排一些练习题,让学生独立完成,教师批改并给予反馈。
5.拓展(10分钟)引导学生思考:如何提高事件的概率?以抛硬币实验为例,让学生探讨如何使抛硬币出现正面的概率增大。
2024年人教版九年级数学上册教案及教学反思第25章25.1.2 概 率
25.1 随机事件与概率25.1.2 概率一、教学目标【知识与技能】1.了解什么是概率,认识概率是反映随机事件发生可能性大小的量.2.了解频率可以看作为事件发生概率的估计值,了解必然事件和不可能事件的概率.3.理解概率反映可能性大小的一般规律.【过程与方法】通过试验得出和理解概率的意义,正确鉴别有限等可能性事件,了解简单事件发生概率的计算方法.【情感态度与价值观】通过分析探究简单随机事件的概率,培养学生良好的动脑习惯,提高运用数学知识解决实际问题的意识,激发学习兴趣,体验数学的应用价值.二、课型新授课三、课时1课时四、教学重难点【教学重点】1.正确理解有限等可能性.2.用概率定义求简单随机事件的概率.【教学难点】正确理解有限等可能性,准确计算随机事件的概率.五、课前准备课件、图片等.六、教学过程(二)导入新课篮球比赛中,裁判员一般是通过掷硬币决定哪个队先发球,这样的游戏公平吗?为什么?(出示课件2)学生思考并交流.出示课件3,4:5名同学参加讲演比赛,以抽签方式决定每个人的出场顺序,签筒中有5根形状、大小相同的纸签,上面分别标有出场的序号1,2,3,4,5.小军首先抽签,他在看不到纸签上的数字的情况下从签筒中随机(任意)地取一根纸签,请考虑以下问题:教师问:抽到的序号有几种可能的结果?学生答:每次抽签的结果不一定相同,序号1,2,3,4,5都有可能抽到,共有5种可能的结果,但是事先不能预料一次抽签会出现哪一种结果.教师问:抽到的序号小于6吗?学生答:抽到的序号一定小于6;教师问:抽到的序号会是0吗?学生答:抽到的序号不会是0.想一想:能算出抽到每个数字的可能数值吗?(板书课题)(二)探索新知探究一概率的定义出示课件6:活动1 抽纸团从分别有数字1、2、3、4、5的五个纸团中随机抽取一个,这个纸团里的数字有5种可能,即1、2、3、4、5.师生共同分析:因为纸团看上去完全一样,又是随机抽取,所以每个数字被表示每一个数字被抽到的可能性大抽取的可能性大小相等,所以我们可以用15小.出示课件7:活动2 掷骰子掷一枚骰子,向上一面的点数有6种可能,即1、2、3、4、5、6.师生共同分析:因为骰子形状规则、质地均匀,又是随机掷出,所以每种点表示每一种点数出现的可能性大小.数出现的可能性大小相等.我们用16教师归纳:(出示课件8)一般地,对于一个随机事件A,我们把刻画其发生可能性大小的数值,称为随机事件A发生的概率,记为P(A).例如:“抽到1”事件的概率:P(抽到1)=1.5探究二简单概率的计算出示课件9:试验1:抛掷一个质地均匀的骰子.教师问:它落地时向上的点数有几种可能的结果?学生答:6种.教师问:各点数出现的可能性会相等吗?学生答:相等.教师问:各点数出现的可能性大小是多少?学生答:1.6出示课件10:试验2:掷一枚硬币,落地后:教师问:会出现几种可能的结果?学生答:两种.教师问:正面朝上与反面朝上的可能性会相等吗?学生答:相等.教师问:正面朝上的可能性有多大呢?学生答:1.2出示课件11:上述试验都具有什么样的共同特点?师生共同解答:具有两个共同特征:⑴每一次试验中,可能出现的结果只有有限个;⑵每一次试验中,各种结果出现的可能性相等.教师强调:在这些试验中出现的事件为等可能事件.出示课件12:教师归纳:具有上述特点的试验,我们可以用事件所包含的各种可能的结果数在全部可能的结果数中所占的比,来表示事件发生的概率.出示课件13:一个袋中有5个球,分别标有1、2、3、4、5这5个号码,这些球除号码外都相同,搅匀后任意摸出一个球.教师问:会出现哪些可能的结果?学生答:1、2、3、4、5.教师问:每个结果出现的可能性相同吗?猜一猜它们的概率分别是多少?学生答:相同;1.5出示课件14,15:教师归纳:一般地,如果一个试验有n个可能的结果,并且它们发生的可能性都相等.事件A包含其中的m个结果,那么事件A发生的概率为:().m=p An事件发生的可能性越大,它的概率越接近于1;反之,事件发生的可能性越小,它的概率越接近于0.即:0≤P(A)≤1.特别地:当A为必然事件时,P(A)=1,当A为不可能事件时,P(A)=0.出示课件16:例1 任意掷一枚质地均匀骰子.(1)掷出的点数大于4的概率是多少?(2)掷出的点数是偶数的概率是多少?师生共同分析:任意掷一枚质地均匀的骰子,所有可能的结果有6种:掷出的点数分别是1、2、3、4、5、6,因为骰子是质地均匀的,所以每种结果出现的可能性相等.师生共同解答:(出示课件17)解:(1)掷出的点数大于4的结果只有2种:掷出的点数分别是5、6.所以P(掷出的点数大于4)=21;=63(2)掷出的点数是偶数的结果有3种:掷出的点数分别是2、4、6.所以P(掷出的点数是偶数)=21=.63教师强调:概率的求法关键是找准两点:①全部情况的总数;②符合条件的情况数目.二者的比值就是其发生的概率.巩固练习:(出示课件18)掷一个骰子,观察向上的一面的点数,求下列事件的概率:(1)点数为2;(2)点数为奇数;(3)点数大于2小于5.学生自主解决,一生板演:解:(1)点数为2有1种可能,因此P(点数为2)=1;6(2)点数为奇数有3种可能,即点数为1,3,5,因此P(点数为奇数)=1;2(3)点数大于2且小于5有2种可能,即点数为3,4,因此P(点数大于2且小于5)=1.3出示课件19:例2 袋中装有3个球,2红1白,除颜色外,其余如材料、大小、质量等完全相同,随意从中抽取1个球,抽到红球的概率是多少?学生独立思考后师生共同解答.解:抽出的球共有三种等可能的结果:红1、红2、白,三个结果中有两个结果使得事件A(抽得红球)发生,故抽得红球这个事件的概率为:P(抽到红球)=2.3巩固练习:(出示课件20)袋子里有1个红球,3个白球和5个黄球,每一个球除颜色外都相同,从中任意摸出一个球,则P(摸到红球)= ;P(摸到白球)= ;P(摸到黄球)= .学生独立思考后口答:19;13;59.出示课件21:例3 如图所示是一个转盘,转盘分成7个相同的扇形,颜色分为红黄绿三种,指针固定,转动转盘后任其自由停止,某个扇形会停在指针所指的位置,(指针指向交线时当作指向其右边的扇形)求下列事件的概率.(1)指向红色;(2)指向红色或黄色;(3)不指向红色.学生观察交流后师生共同解答.(出示课件22)解:一共有7种等可能的结果.(1)指向红色有3种等可能的结果,P(指向红色)=37;(2)指向红色或黄色一共有5种等可能的结果,P(指向红或黄)=57;(3)不指向红色有4种等可能的结果,P(不指向红色)=4.7巩固练习:(出示课件23)如图是一个转盘.转盘分成8个相同的部分,颜色分为红、绿、黄三种.指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个图形的交线时,当作指向其右边的图形).求下列事件的概率:(1)指针指向红色;(2)指针指向黄色或绿色.学生观察思考后独立解答:⑴14;⑵34.出示课件24,25:例4 如图是计算机中“扫雷”游戏的画面.在一个有9×9的方格的正方形雷区中,随机埋藏着10颗地雷,每个方格内最多只能藏1颗地雷.小王在游戏开始时随机地点击一个方格,点击后出现如图所示的情况.我们把与标号3的方格相邻的方格记为A区域(画线部分),A区域外的部分记为B 区域.数字3表示在A区域有3颗地雷.下一步应该点击A区域还是B区域?教师问:可能出现哪些点数?师生共同分析:第二步怎样走取决于踩在哪部分遇到地雷可能性的大小,因此,问题的关键是分别计算在两个区域的任何一个方格内踩中地雷的概率并比较大小就可以了.3解:A 区域的方格总共有8个,标号3表示在这8个方格中有3个方格各藏有1颗地雷.因此,点击A 区域的任一方格,遇到地雷的概率是38; B 区域方格数为9×9-9=72.其中有地雷的方格数为10-3=7.因此,点击B 区域的任一方格,遇到地雷的概率是772; 由于38>772,即点击A 区域遇到地雷的可能性大于点击B 区域遇到地雷的可能性,因而第二步应该点击B 区域.巩固练习:(出示课件26)小红和小明在操场上做游戏,他们先在地上画了半径分别为2m 和3m 的同心圆(如下图),然后蒙上眼睛,并在一定距离外向圈内掷小石子,掷中阴影小红胜,否则小明胜,未掷入圈内(半径为3m 的圆内)不算.你认为游戏公平吗?为什么?学生独立思考交流后自主解答,一生板演.解:不公平,因为P (小红胜)=9π4π59π9-=, P (小明胜)=.49所以小红胜的可能性更大.(三)课堂练习(出示课件27-34)1.如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°、90°、210°.让转盘自由转动,指针停止后落在黄色区域的概率是()A.16B.14C.13D.7122.掷一枚质地均匀的骰子,向上一面的点数为5的概率是______.3.从一副扑克牌(除去大小王)中任抽一张.P(抽到红心)=______;P(抽到黑桃)=______;P(抽到红心3)=______;P(抽到5)=______.4.将A、B、C、D、E这五个字母分别写在5张同样的纸条上,并将这些纸条放在一个盒子中.搅匀后从中任意摸出一张,会出现哪些可能的结果?它们是等可能的吗?5.一个桶里有60个弹珠——一些是红色的,一些是蓝色的,一些是白色的.拿出红色弹珠的概率是35%,拿出蓝色弹珠的概率是25%.桶里每种颜色的弹珠各有多少?6.某种彩票投注的规则如下:你可以从00~99中任意选取一个整数作为投注号码,中奖号码是00~99之间的一个整数,若你选中号码与中奖号码相同,即可获奖.请问中奖号码中两个数字相同的机会是多少?7.有7张纸签,分别标有数字1、1、2、2、3、4、5,从中随机地抽出一张,求:(1)抽出标有数字3的纸签的概率;(2)抽出标有数字1的纸签的概率;(3)抽出标有数字为奇数的纸签的概率.8.如图所示,转盘被等分为16个扇形.请在转盘的适当地方涂上颜色,使得自由转动这个转盘,当它停止转动时,指针落在红色区域的概率为38.你还能再举出一个不确定事件,使得它发生的概率也是38吗?参考答案:1.B2.1 6解析:掷一枚质地均匀的骰子,向上一面的点数为5的概率是:16.3.1 4;14;⑶152;⑷113.4.解:出现A、B、C、D、E五种结果.它们是等可能的.5.解:拿出白色弹珠的概率是1-35%-25%=40%;红色弹珠有60×35%=21;蓝色弹珠有60×25%=15;白色弹珠有60×40%=24.6.解:P (中奖号码数字相同)=110. 7.解:⑴P (数字3)=17; ⑵P (数字1)=27; ⑶P (数字为奇数)=47.8.解:选择任意六块涂色;8张卡片分别写上1,2,3,…,8,任意抽一张,抽到的数比4小的概率为38.(四)课堂小结本节课你学到了哪些数学知识和数学方法?请与同伴交流 .(五)课前预习预习下节课(25.2第1课时)的相关内容.七、课后作业配套练习册内容八、板书设计:一般地,如果一个试验有n 个等可能的结果,事件A 包含其中的m 个结果,那么事件A 发生的概率为:().m P A n(0≤P (A )≤1) 九、教学反思:1.用学生喜欢的抽签,抽纸团和掷骰子试验,吸引学生迅速进入状态,让学生充分认识概率的意义;由学生自主探索、合作交流此类型概率的求法,利用学生掌握本节课的知识,学生在解决问题的过程中,发展了思维能力,增强思维的缜密性,并且培养了学生解决问题的信心.2.在概率的古典定义基础上,教科书给出了概率的取值范围为0-1的性质,事件发生的可能性越大,它的概率越接近1,其中必然事件的概率为1,不可能事件的概率为0,两个确定事件可以看作特殊的随机事件.。
新人教版初中数学九年级上册第25章 概率初步《25.1.2概率》教案
第二十五章概率初步25.1随机事件与概率25.1.2概率1.明天下雨的概率为95%,那么 下列说法错误的是( ) (A) 明天下雨的可能性较大(B) (B) 明天不下雨的可能性较小 (C) 明天有可能是晴天 (D) 明天不可能是晴天2、1袋子里有1个红球,3个白球和5个黄球,每一个球除颜色外都相同,从中任意摸出一个球,则P(摸到红球)= ;P(摸到白球)= ; P(摸到黄球)= 。
3、有5张数字卡片,它们的背面完全相同,正面分别标有1,2,2,3,4.现将它们的背面朝上,从中任意摸到一张卡片,则:P (摸到1号卡片)= ; P (摸到2号卡片)= ; P (摸到奇数号卡片)= ; P (摸到偶数号卡片) =4、设有12只型号相同的杯子,其中一等品7只,二等品3只,三等品2只,则从中任意取1只,是二等品的概率为____。
5、一副扑克牌,从中任意抽出一张,求下列结果的概率: ① P(抽到红桃5)=____②P(抽到大王或小王)=____ ③P(抽到A)=____ ④P(抽到方块)=6、如图,能自由转动的转盘中, A 、B 、C 、D 四个扇形的圆心角的度数分别为180°、 30 °、 60 °、 90 °,转动转盘,当转盘停止时, 指针指向B 的概率是_____,指向C 或D 的概率是_____。
7.四张形状、大小、质地相同的卡片上分别画上圆、平行四边形、等边三角形、正方形,然后反扣在桌面上,洗匀后随机抽取一张,抽到轴对称图形的概率是( ), 抽到中心对称图形的概率是( )。
8、在分别写出1至20张小卡片中,随机抽出一张卡片,试求以下事件的概率.⑴该卡片上的数字是2的倍数,也是5的倍数 ⑵该卡片上的数字是4的倍数,但不是3的倍数 ⑶该卡片上的数不能写成一个整数的平方⑷该卡片上的数字除去1和自身外,至少还有3个约数.达标测评是为了加深对所学知识的理解运用,在问题的选择上以基础为主、疑难点突出,增加开放型、探究型问题,使学生思维得到拓展、能力得以提升.深化理解运用新知师生互动课堂小结 1.课堂总结:(1)你在本节课的学习中有哪些收获?有哪些进步? (2)学习本节课后,还存在哪些困惑? 2.布置作业:教材第134页习题25.1第3题.巩固、梳理所学知识.对学生进行鼓励,并进行思想教育.总结反思【知识网络】提纲挈领,重点突出【教学反思】 ①[授课流程反思]在概率应用问题的教学中,教师应随时充分展示建模的思维过程,使学生从问题的情境中感悟出模型提取的思维机制,获取模型选取的经验.②[讲授效果反思]引导学生注意:(1)概率从数量上刻画了一个事件发生的可能性的大小.(2)计算有关面积问题的概率,首先应分析哪些事件的发生与哪部分面积有关,再根据面积的计算方法求有关的比值. ③[师生互动反思]从课堂表现和教学效果分析,学生通过举例说明,理解问题的解答过程,积极性高,理解透彻,能圆满完成课题学习任务. ④[习题反思]好题题号__________________________________________ 错题题号__________________________________________反思教学过程和教师表现,进一步提升操作流程和自身素质.。
人教版九年级数学上册25.1.2《概率》教案
人教版九年级数学上册25.1.2《概率》教案一. 教材分析人教版九年级数学上册第25.1.2节《概率》是概率统计部分的重要内容。
本节主要介绍了概率的定义、计算方法以及如何运用概率解决实际问题。
通过本节的学习,学生能够理解概率的概念,掌握基本的概率计算方法,并能够运用概率知识解决生活中的问题。
二. 学情分析九年级的学生已经具备了一定的数学基础,对于一些基本的数学概念和运算方法有一定的了解。
但是,对于概率这一抽象的概念,学生可能难以理解和接受。
因此,在教学过程中,需要注重引导学生从实际问题中理解概率的概念,并通过大量的实例让学生掌握概率的计算方法。
三. 教学目标1.知识与技能:让学生理解概率的概念,掌握基本的概率计算方法,能够运用概率知识解决实际问题。
2.过程与方法:通过实例分析,让学生体验概率的计算过程,培养学生的逻辑思维能力。
3.情感态度与价值观:让学生感受数学与生活的紧密联系,培养学生的数学应用意识。
四. 教学重难点1.重点:概率的定义,概率的计算方法。
2.难点:如何从实际问题中抽象出概率模型,运用概率解决实际问题。
五. 教学方法1.情境教学法:通过生活实例引入概率的概念,让学生感受数学与生活的联系。
2.启发式教学法:在教学过程中,引导学生主动思考,通过讨论、交流等方式,让学生理解概率的计算方法。
3.巩固练习法:通过大量的练习,让学生掌握概率的计算方法,并能够运用到实际问题中。
六. 教学准备1.教学课件:制作相关的教学课件,以便于直观地展示概率的计算过程。
2.练习题:准备一些与本节课内容相关的练习题,以便于学生在课堂上进行操练。
七. 教学过程1.导入(5分钟)通过一个简单的实例引入概率的概念,如抛硬币、抽签等,让学生思考:这些事件的结果是随机的,那么我们如何来描述这种随机性呢?2.呈现(10分钟)讲解概率的定义,让学生理解概率的意义。
如:抛一枚硬币,正面朝上的概率是1/2。
同时,介绍如何用数学符号表示概率,如P(A)、P(B)等。
人教版九年级上册25.1.2概率课程设计
人教版九年级上册25.1.2概率课程设计一、课程背景•学生年级:九年级•学科:数学•教材版本:人教版•单元:25.1.2概率本次课程设计主要针对人教版九年级数学课程中的概率单元,旨在通过设计多种不同形式的概率实验活动,让学生在实践中体会概率理论中的基本概念和方法,提高学生的数学应用能力和创新思维能力。
二、教学目标1.掌握基本概率术语和概念的定义;2.了解概率实验的基本方法;3.能熟练设计并执行简单的实验活动,并分析实验结果;4.提高学生的探究能力和解决问题的能力。
三、教学过程1. 概率术语的概念讲解老师通过课堂讲解,给学生讲解概率的相关基本概念和术语,包括基本事件、样本空间、事件、概率、相对频率等。
2. 概率实验的基本方法老师在讲解完基本概念后,引导学生思考概率实验的基本方法,以掷骰子为例进行讲解,让学生深入理解实验过程中的基本概念和方法。
3. 概率实验活动设计1.基本实验设计:让学生分组进行简单的概率实验活动,例如抛硬币、摇骰子等,通过记录实验结果,计算出相应的概率值。
2.创新实验设计:让学生自主设计实验活动,并进行实际操作。
例如,利用棋类游戏进行概率实验活动设计,让学生能够根据实验结果得出相应的概率值。
4. 实验结果分析与展示1.基本实验结果分析:老师引导学生对实验结果进行统计和分析,计算相对频率和概率值,并对实验结果进行简单的数据展示和分析。
2.创新实验结果分析:学生自行对实验结果进行分析和总结,并用图表等形式进行展示。
四、教学评估1.考试评估:设置概率相关综合题,考察学生对概率概念和方法的掌握情况。
2.作业评估:布置概率相关的练习题,要求学生能够熟练运用概率方法解决问题。
3.实验评估:根据学生的实验表现和实验报告进行评估。
五、课程总结通过本次课程设计,旨在让学生在实践探究中深入理解概率理论的基本概念和方法,提高他们的数学应用能力和创新思维能力,同时促进学生的合作意识和探究意识,为他们未来的学习和发展打下坚实的基础。
人教版数学九年级上册25.1.2概率教案
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
人教版数学九年级上册25.1.2概率教案
一、教学内容
人教版数学九年级上册25.1.2概率教案,本节课主要内容包括:
1.概率的基本概念:理解必然事件、不可能事件、随机事件的概念,掌握事件发生的可能性大小。
2.概率的表示方法:学习用分数、小数和百分数表示事件发生的概率。
3.概率的计算:掌握计算简单事件概率的公式,并能运用到实际问题中。
1.理论介绍:首先,我们要了解概率的基本概念。概率是用来描述随机事件发生可能性大小的数学工具。它在生活中有着广泛的应用,如统计、决策等。
2.案例分析:接下来,我们来看一个具体的案例。比如在一次足球比赛中,某队获胜的概率是60%,这个案例展示了概率在实际中的应用,以及它如何帮助我们预测和解决问题。
3.重点难点解析:在讲授过程中,我会特别强调必然事件、不可能事件和随机事件的概念,以及概率的计算方法。对于难点部分,我会通过举例和比较来帮助大家理解。
-掌握简单事件概率的计算方法,如直接计算、利用频率估计等。
-能够运用概率知识解决实际生活中的问题。
举例解释:
-通过抛硬币、掷骰子等实验,让学生直观感受必然事件和随机事件,强调概率是用来描述பைடு நூலகம்件发生可能性大小的数学工具。
-通过具体实例,如“抽到红桃牌的概率是1/4”,让学生理解概率的表示方法,并能在实际问题中进行转换和计算。
人教版九年级数学上册第二十五章概率初步《25.1随机事件与概率》第1课时教学设计
人教版九年级数学上册第二十五章概率初步《25.1随机事件与概率》第1课时教学设计一. 教材分析本节课为人教版九年级数学上册第二十五章概率初步《25.1随机事件与概率》第1课时,主要内容包括随机事件的定义、必然事件、不可能事件以及概率的定义。
本节课的内容是学生对概率知识的一次初步认识,为后续学习更高级的概率知识打下基础。
二. 学情分析九年级的学生已经具备了一定的逻辑思维能力和抽象思维能力,对于事件的分类和概率的概念有一定的理解。
但同时,学生对于概率这一概念的理解还需要通过具体的例子来进行引导。
三. 教学目标1.了解随机事件的定义、必然事件、不可能事件。
2.理解概率的定义,并能运用概率知识解决简单问题。
3.培养学生的逻辑思维能力和抽象思维能力。
四. 教学重难点1.重点:随机事件的定义、必然事件、不可能事件,概率的定义。
2.难点:概率的计算和应用。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法,通过具体的例子引导学生理解概率的概念,培养学生的动手操作能力和团队协作能力。
六. 教学准备1.教学PPT。
2.教学案例和问题。
3.小组合作学习的任务单。
七. 教学过程1.导入(5分钟)通过一个简单的抛硬币实验,引导学生思考:抛硬币时,正面朝上和反面朝上的可能性是否相等?从而引出随机事件的定义。
2.呈现(15分钟)呈现必然事件、不可能事件的例子,让学生通过观察和分析,理解必然事件和不可能事件的含义。
3.操练(10分钟)让学生通过PPT上的练习题,巩固对随机事件、必然事件、不可能事件的理解。
4.巩固(10分钟)学生分小组,根据任务单,探讨并计算一些简单的概率问题,如抛硬币、掷骰子等。
教师巡回指导,帮助学生解决遇到的问题。
5.拓展(10分钟)让学生思考并讨论:如何计算一个事件的概率?引导学生理解概率的计算方法。
6.小结(5分钟)教师引导学生总结本节课所学的知识,让学生明确随机事件、必然事件、不可能事件的定义,以及概率的计算方法。
九年级数学: 25.1.1-25.1.2随机事件概率教案
1、理解必然事件、不可能事件、随机事件的概念。
2、了解随机事件发生的可能性有大有小,不同的随机事件发生的可能性的大小不同。
3、能根据随机事件的特点,辨别哪些事件是随机事件。
引领学生感受随机事件就在身边,增强学生珍惜机会,把握机会的意识。
一、查学诊断1、大家听说过“天有不测风云”这句话吗?这句话是什么意思?2、试根据事件发生可能性的不同,把下面的 8 个事件分类:(1)某人的体温是 100 ℃(2) a2 + b2 = -1(其中 a,b 都是实数);(3)太阳从西边下山;(4)经过城市中某一有交通信号灯的路口,遇到红灯;(5)一元二次方程 x2 + 2x + 3 = 0 无实数解.(6)掷一枚骰子,向上的一面是 6 点;(7)人离开水可以正常生活 100 天;(8)篮球队员在罚线上投篮一次,未投中.必然会发生的事件有_______________;不可能发生的事件有_______________;可能发生也可能不发生的事件有______________.二、示标导入定明天是否一定会下雨;参加抽奖活动,无法确定自己能否中奖,场的序号1,2,3,4,5.小军首先抽签,他在看不到纸签上的数字的情况下从签筒中随机(任意)地取一根纸签,请考虑以下问题:(1)抽到的序号有几种可能的结果?(2)抽到的序号小于6吗?(3)抽到的序号会是0吗?(4)抽到的序号会是1吗?2、问题2:小伟掷一枚质地均匀的骰子,骰子的六个面上分别刻有 1 到 6 的点数.请思考以下问题:掷一次骰子,在骰子向上的一面上,(1)可能出现哪些点数?(2)出现的点数大于 0 吗?(3)出现的点数会是 7 吗?(4)出现的点数会是 4 吗?3、归纳:在一定条件下,必然会发生的事件叫必然事件,不可能发生的事件叫不可能事件。
必然事件与不可能事件统称确定性事件。
在一定条件下,可能发生,也可能不发生的事件叫随机事件。
4、试分析:“从箱子中摸到白球”这一事件的发生情况(1)既有红球又有白球;(2)只有白球;(3)只有红球5、你能再列举出一些必然事件、不可能事件和随机事件吗?6、问题3:袋子中装有4个黑球、2个白球,这些球形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出一个球。
【人教版】九年级上册数学教案:-25.1.2 概率(1)
25.1.2 概率1.知道随机事件发生的可能性是有大小的.2.理解、掌握概率的意义及计算.3.会进行简单的概率计算及应用.一、情境导入一个箱子中放有红、黄、黑三个小球,三个人先后去摸球,一人摸一次,一次摸出一个小球,摸出后放回,摸出黑色小球为赢,这个游戏是否公平.二、合作探究探究点一:可能性的大小【类型一】可能性大小的意义的理解气象台预报“本市明天降雨可能性是80%”.对此信息,下列说法正确的是( )A.本市明天将有80%的地区降雨B.本市明天将有80%的时间降雨C.本市明天肯定下雨D.本市明天降水的可能性比较大解析:一个事件的发生的可能性的范围在0~1,80%应该是比较大,所以“本市明天降雨可能性是80%”是指“本市明天降雨的可能性比较大”.故选D.方法总结:某事发生的可能性大小是指其发生的概率大小.【类型二】利用面积关系判断可能性大小在如图所示(A,B,C三个区域)的图形中随机撒一把豆子,豆子落在________区域的可能性最大(填A或B或C).解析:先分别算出A,B,C三部分的面积,面积最大的就是豆子落入可能性最大的.S C =π×22=4π,S B=π(42-22)=12π,S A=π(62-42)=20π,由此可见,A的面积最大,则豆子落入可能性最大,故填A .探究点二:概率 【类型一】概率的简单计算小玲在一次班会中参与知识抢答活动,现有语文题6个,数学题5个,综合题9个,她从中随机抽取1个,抽中数学题的概率是( ) A.120 B.15 C.14 D.13解析:总共有20种情况,抽中数学题有5种可能,所以是520=14,故选择C. 方法总结:等可能性事件的概率的计算公式:P (A )=n m,其中m 是总的结果数,n 是该事件成立包含的结果数.【类型二】利用面积求概率(2014·四川绵阳)一儿童行走在如图所示的地板上,当他随意停下时,最终停在地板上阴影部分的概率是( ) A.13 B.12 C.34 D.23解析:观察这个图可知:阴影区域(3块)的面积占总面积(9块)的13,故其概率为13.故选A.方法总结:当某一事件A 发生的可能性大小与相关图形的面积大小有关时,概率的计算方法是事件A 所有可能结果所组成的图形的面积与所有可能结果组成的总图形面积之比,即P (A )=事件A 所占图形面积总图形面积.概率的求法关键是要找准两点:(1)全部情况的总数;(2)符合条件的情况数目;二者的比值就是其发生的概率.三、板书设计教学过程中,强调简单的概率的计算应确定事件总数及事件A包含的数目.事件A发生的概率P(A)的大小范围是0≤P(A)≤1.。
人教版数学九年级上册《25.1.2 概率》教学设计
概 率一、教材解析教材的地位与作用:该课时是在学生学习了必然事件,不可能事件和随机事件的概念以及定性判断随机事件发生的可能性大小的基础上,进一步学习从定量的角度去刻画随机事件发生的可能性大小的概念,概率概念的建立为学生后面学习用列举法求概率及用频率估计概率奠定基础.教学目标: 1,知识与技能(1)在具体情境中了解概率的意义,体会事件发生的可能性大小与概率的值的关系. (2)理解概率的定义及计算公式()nmp A =,明确概率的取值范围,能求简单的等可能性事件的概率.2,教学能力目标(1)让学生经历概率意义的探索过程,丰富对随机现象的体验,体会概率是描述不确定现象规律的数学模型.(2)经历用试验的方法获得概率的过程,积累数学活动经验,发展学生合作交流的意识,培养学生分析问题的能力和抽象思维的能力,锻炼质疑,独立思考的习惯与精神,帮助学生逐步建立正确的随机观念.3,情感态度与价值观在合作探究,动手操作的过程中,利用生活素材激发学生学习的好奇心与求知欲,体验数学价值,结合随机试验的随机性和规律性,让学生了解偶发性寓于必然性之中的辩证唯物主义的思想. 教学重,难点 :重点:在具体情境中了解概率的意义,理解概率计算的两个前提条件. 难点:理解概率的定义及计算公式()nmp A = 二,学情分析前面所学的数学知识,其结果往往是确定的,而本节的内容主要是接触结果不确定的数学问题,因此学生会出现一时的难以适应.但由于本节的内容与生活实际密切相关,所以学生的学习兴趣就会非常高涨,又有前面所学的与可能性有关的知识作为基础,学生肯定会愿意学的.三,教学方法教法:采用探究发现和启发式教学方法,借助学生熟悉的实例,激发学生的学习兴趣,以探究发现为主,引导为辅,在教师的合理启发引导下,循序渐进的探究有关问题,使其由感性认识上升到理性认识,学法:采用自主探究与合作交流相结合的方法,在教学活动中,学生要积极参加试验,积极思考,主动与同学进行合作交流,并能够从试验,探究,交流中获得规律.(一)情境引入,激发兴趣回顾:袋子中有4个黑球,2个白球,这些球的形状大小,质地等完全相同,即除颜色外无其他差别,在看不到球的条件下,随机从袋子中摸出1球,摸出黑球,白球的可能性一样大吗?若不一样,那么它们发生的可能性究竟有多大?能否用数值进行刻画呢?这节课我们就来研究这个问题.通过回顾上一课时的问题,在学生已经知道随机事件发生的可能性有大有小的基础上,设疑引入本节课的内容,就是用数字来刻画随机事件发生的可能性大小,直至教学目标,学生很容易接受,同是也使前面的知识得到巩固.(二)合作交流,探索新知1,试验探索试验1:学生拿出课前准备好的分别标有1,2,3,4,5号的5根纸签,从中随机地抽取一根,观察上面的数字,看看有几种可能.如此多次重复.教师提出以下三个问题:(1)抽出的签上的号码有几种可能?(2)每个号码被抽到的可能性相等吗?为什么?(3)抽到一号的可能性是多少?其它号数呢?试验2:随意掷一个质地均匀的正方体骰子,观察骰子向上一面的点数,看看有几种不同的可能,如此多次重复.教师提出以下三个问题:(1)向上一面的点数有几种可能?(2)各种可能性相等吗?为什么?(3)各种可能性分别是多少?2,建立概念形成概念:结合学生对问题(3)的回答,得出概率的含义,并且板书出来.一般地,对于一个随机事件A,我们把刻画其发生可能性大小的数值,称为随机事件A发生的概率.记为P(A).3,归纳知识思考:以上两个试验有哪些共同点?学生活动:学生自主探索,小组交流,比较,归纳.教师关注:(1)学生的合情推理与概括抽象能力(2)学生对有限与等可能这两个条件的理解.概率是与学生生活非常贴近的一个课题,所以本节课我通过两个试验活动,让学生体会如何用数字来描述随机事件发生的大小,获得一定的数学活动经验,同时也让学生体会了数学来源于生活,又服务于生活,这符合“从学生已有的生活经验出发,让学生亲身经历将实际问题抽象为数学模型,并进行解释与应用的过程”的新课标理念.两个实验中的问题3实际上就是引导学生开始进入数学化的一个过程,使学生在具体情境中了解概率的意义,理解概率是反映随机事件发生的可能性大小的量,从而加深对概率含义的理解.让学生通过试验,观察,分析的过程感受有限等可能试验的特点,由两个实验中的问题(1)(2)概括固 新 知一次就选对的概率是 ,他能一次选错的概率是 .③如图,小明周末到外婆家,走到十字路口处,记不清前面哪条路通往外婆家,那么他能一次选对路的概率是 ,一次就选错路的概率是 .④一次抽奖活动中,印发奖券10000张,其中一等奖一名,奖金5000元,那么第一位抽奖者,(仅买一张)中一等奖概率 为 ,不中一等奖概率为 .事件的概率,既能完成学习目标,又能让学生体会到数学存在于我们生活中,生活中处处有数学.以上三个活动的设计,环环相扣,重点突出概念的应用.问题的设计,体现了人文性,趣味性,生活性和应用性,让学生体会到数学概念不是枯燥的,无味的,而是建立在现实生活情境之中.(四) 课 堂小结与作 业 布置1,小结 通过今天的学习,你学到了哪些知识,有什么收获? 2,作业 教科书134-135页习题25.1第3-6题通过学生自己的回顾和反思,让学生看到自己的进步,激励学生在今后的学习中不断进步,促使学生形成良好的心理品质. 在本课教学中,我始终坚持以学生为主体,教师为主导的原则,选取贴近学生生活的素材,充分调动学生的兴趣和积极性,使他们能最大限度地参与到课堂的活动中去.整体地来看这节课的设计,四个环节,一是从学生已有的知识出发引出课题,二是从数学的角度分析对象获得概念,三是应用新知,懂得计算出有限等可能试验中相应事件的概率,四是将新的知识融入到学生的知识结构中去,并加于灵活应用.从学生的反馈来看,本节课在设计上有以下亮点及不足:亮点是:1素材的选取与使用贴近生活,符合学生的认知发展水平.2,将数学概念溶入到具体情境中,让学生体会到数学来源于生活,引导学生用数学的眼光观察生活的有关问题.不足是:学生书写的格式强调不够,预留的书写空间也不够,不利于学生自我纠错. 以上是我对这节课的简单说明,不足之处敬请大家多多指教.谢谢!附:板书设计25.1.2 概率有限等可能试验1,概率的定义 抽签试验 掷骰子试验5种 6种可能性相等 可能性相等2,概率的计算公式及概率的取值范围()nmp A =()10≤≤A p。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二十五章概率初步
25.1 随机事件与概率
25.1.2 概率教学设计(第1课时)
一、教学目标
1.了解概率的意义,渗透随机观念.
2.能计算一些简单随机事件的概率.
二、教学重点及难点
重点:概率的意义.
难点:概率的意义,判断试验条件的意识.
三、教学用具
多媒体课件.
四、相关资源
《杞人忧天》、《瓮中捉鳖》、《守株待兔》动画,《事情发生可能性与概率的关系》动画.
五、教学过程
【创设情境,引入新课】
学习数学的人应该用数学的眼光看待周围的事物你如何用数学的眼光看待“杞人忧天”“瓮中捉鳖”“守株待兔”这几个成语呢?
师生活动:教师提出问题,学生思考,归纳成语故事与数学的联系.
设计意图:通过数学人用数学思想的角度,引导学生思考成语故事,让学生觉得新奇有趣,瞬间抓住学生的兴趣点引人入胜,带入数学课堂.
【合作探究,形成新知】
【知识点解析】概率,微课中系统介绍概率的基础知识及相应练习.
问题1从分别标有1,2,3,4,5的五根签中随机地抽取一根,抽到的签号是5.这个事件是随机事件吗?抽到5个号码中任意一个号码的可能性的大小一样吗?
师生活动:提问一学生回答,教师根据学生的回答情况总结这个事件是随机事件,抽到5个号码中任意一个号码的可能性的大小一样.
问题2抽出的可能的结果一共有多少种?每一种占总数的几分之几?
师生活动:小组讨论、交流,教师巡查,关注学生是否真正讨论,指导学困生.
归纳总结:这五根签中有五种可能,即1,2,3,4,5.因为签看上去完全一样,又是随
机抽取,所以每个数字被抽到的可能性大小相等.我们用1
5
表示每一个数字被抽到的可能性
大小.
问题3掷一枚质地均匀的骰子,向上的一面的点数有多少种可能?分别是什么?向上的点数是1,2,3,4,5,6的可能性的大小相等吗?它们都是总数的几分之几?
师生活动:一学生回答,全班订正.
【数学探究】掷一枚质地均匀的骰子,随机出现点数,体现随机事件的基本属实.
归纳总结:掷一枚质地均匀的骰子,向上的一面的点数有6种可能,即1,2,3,4,5,6.因为骰子形状规则、质地均匀,又是随机掷出,所以每种点数出现的可能性大小相等.我
们用1
6
表示每种点数出现的可能性大小.
问题4掷一枚质地均匀的骰子,向上的一面的点数有几种可能?出现向上一面的点数是1的可能性是多少?其它点数呢?
师生活动:小组交流,小组代表汇报讨论结果,教师引导学生注意事件的特点.
归纳总结:由于骰子形状规则、质地均匀,又是随机掷出,所以出现每种结果的可能性大小相等,都是全部可能结果总数分之一.
设计意图:建构主义主张教学应从学生已有的知识体系出发,这样设计有利于引导学生顺利地进入学习情境.通过抽签的方式回答问题,让学生亲身体验,这样容易激发学生的学习兴趣.这样安排一方面复习了必然事件、随机事件和不可能事件的内容,而且还加深了对三种事件的理解;另一方面也为过渡到本节课的教学作了一个很好的铺垫.以问题串的形式创设情境,引起学生的认知冲突,使学生对旧知识设疑,从而激发学生的学习兴趣和求知欲望.通过情境创设,学生已激发了强烈的求知欲望,产生了强劲的学习动力,此时把学生带入下一环节.
提问概率的定义是什么?问题1至问题4有什么共同特点?
师生活动:小组讨论,一同学回答,不足地方其他学生补充,教师引导学生注意概率的共同特点.
概率:一般地,对于一个随机事件A,我们把刻画其发生可能性大小的数值,称为随机事件A发生的概率.表示方法:事件A的概率表示为P(A).
问题1至问题4的共同特点:
(1)每一次试验中,可能出现的结果只有有限个;
(2)每一次试验中,各种结果出现的可能性相等.
思考1你能类似求“点数是1”的概率的方法,由特殊上升到一般,总结出古典概型的概率的求法吗?
师生活动:小组讨论、交流,教师在课件上显示古典概型的概率的求法.
概率求法:一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都
相等,事件A包含其中的m种结果,那么事件A发生的概率为P(A)=m
n
.
思考2你知道m与n之间的大小关系吗?
师生活动:师生共同总结m与n的大小关系.归纳总结:
在P(A)=m
n
中,由m和n的含义,可知0≤m≤n,进而有0≤
m
n
≤1.∴0≤P(A)≤1.
特别地:当A为必然事件时,P(A)=1;
当A为不可能事件时,P(A)=0.
易知:事件发生的可能性越大,它的概率越接近1;事件发生的可能性越小,它的概率越接近0.
设计意图:通过对具体事件的特征的分析,使学生了解在现实生活中有些事件具备了两个基本特征,我们一般可称为“有限等可能型事件”,而这种随机事件的概率称为“古典概型”.思考1和思考2设置的目的在于帮助学生认识、理解概率的概念,以及分析概率是表示一个随机事件发生的可能性大小的一个比值,概率是一个常数,是一个客观值,结合数轴表示随机事件的概率意义,并形象的体会随着概率的改变,随机事件发生的可能性大小的变化.使数值更形象具体化,更利于理解和记忆.
【例题分析,深化提升】
例掷一枚质地均匀的骰子,观察向上一面的点数,求下列事件的概率:
(1)点数为2;
(2)点数为奇数;
(3)点数大于2且小于5.
师生活动:一学生上黑板板演,全班订正,教师补充.
解:掷一枚质地均匀的骰子时,向上一面的点数可能为1,2,3,4,5,6,共6种.这些点数出现的可能性相等.
(1)点数为2有1种可能,因此P(点数为2)=1
6
.
(2)点数为奇数有3种可能,即点数为1,3,5,因此P(点数为奇数)=3
6
=
1
2
;
(3)点数大于2且小于5有2种可能,即点数为3,4,因此
P(点数大于2且小于5)=3
6
=
1
2
.
设计意图:数学教学论指出数学概念要明确其内涵和外延(条件、结论、应用范围等),通过对概率的几个重要方面的阐述,使学生的认知结构得到优化,知识体系得到完善,使学生的数学理解又一次突破思维的难点,使学生初步会求随机事件发生的概率,从而解决实际问题,培养学生的应用意识.
【练习巩固,综合应用】
1.在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号大于2的概率为().
A.1
5
B.
2
5
C.
3
5
D.
4
5
2.风华中学七(2)班的“精英小组”有男生4人,女生3人,若选出一人担任组长,组长是男生的概率为.
3.开展整治“六乱”行动以来,我市学生更加自觉遵守交通规则.某校学生小明每天骑自行车上学时都要经过一个十字路口,该十字路口有红、黄、绿三色交通信号灯,他在路口
遇到红灯的概率为1
3
,遇到黄灯的概率为
1
9
,那么他遇到绿灯的概率为( ).
A.1
3
B.
2
3
C.
4
9
D.
5
9
4.从-1、0、1
3
、π3中随机抽取一数,抽到无理数的概率是.
5.掷一个质地均匀的正方体骰子,观察向上一面的点数.
(1)求掷得点数为2或4或6的概率;
(2)小明在做掷骰子的试验时,前五次都没掷得点数2,求他第六次掷得点数为2的概率.
参考答案
1.C2.4
7
3.D4.
2
5
5.解:掷一个质地均匀的正方体骰子,向上一面的点数可能为1,2,3,4,5,6,共6种,这些点数出现的可能性相等.
(1)掷得点数为2或4或6(记为事件A)有3种结果,因此P(A)=3
6
=
1
2
;
(2)小明前五次都没掷得点数2,可他第六次掷得点数仍然可能为1,2,3,4,5,6,
共6种.他第六次掷得点数为2(记为事件B)有1种结果,因此P(B)=1
6
.
设计意图:巩固学生对概率定义的理解和认识,及对概率的计算公式的简单运用技能,以达到及时学习、及时应用,让学生从中找到成功的感觉,从而提高学生学习数学的兴趣.
六、课堂小结
1.概率的定义:一般地,对于一个随机事件A,我们把刻画其发生可能性大小的数值,称为随机事件A发生的概率.表示方法:事件A的概率表示为P(A).
2.概率的求法:一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能
性都相等,事件A包含其中的m种结果,那么事件A发生的概率为P(A)=m
n
.其中0≤P(A)
≤1,当A为必然事件时,P(A)=1,当A为不可能事件时,P(A)=0.
设计意图:归纳总结不应该仅仅是知识的简单罗列,而应该是优化认知结构,完善知识体系的一种有效手段.为充分发挥学生的主体地位,让学生畅谈本节课的收获,加强学习反思,帮助学生养成系统整理知识的习惯.
七、板书设计
25.1 随机事件与概率——25.1.2 概率(1)
1.概率的定义
2.概率的求法。