不等式的解法·典型例题及详细答案

合集下载

不等式解法15种典型例题

不等式解法15种典型例题

不等式解法15种典型例题典型例题一解15种典型例题的不等式,需要注意处理好有重根的情况。

例如,如果多项式f(x)可分解为n个一次式的积,则一元高次不等式f(x)>(或f(x)<)可用“穿根法”求解。

对于偶次或奇次重根,可以转化为不含重根的不等式,也可直接用“穿根法”,但要注意“奇穿偶不穿”,其法如图。

下面分别解两个例题:例题一:解不等式2x-x²-15x>0;(x+4)(x+5)(2-x)<231)原不等式可化为x(2x+5)(x-3)>0.把方程x(2x+5)(x -3)=0的三个根5,-1,3顺次标上数轴。

然后从右上开始画线顺次经过三个根,其解集如下图的阴影部分。

∴原不等式解集为{x|-5<x<0}∪{x|x>3}。

2)原不等式等价于(x+4)(x+5)(x-2)>23.用“穿根法”得到原不等式解集为{x|x<-5或-5<x<-4或x>2}。

典型例题二解分式不等式时,要注意它的等价变形。

当分式不等式化为f(x)/g(x)<(或≤)时,可以按如下方法解题。

1)解:原不等式等价于3(x+2)-x(x-2)-x²+5x+6/3x(x+2)<1-2x+2.化简后得到原不等式等价于(x-6)(x+1)(x-2)(x+2)≥0.用“穿根法”得到原不等式解集为{x|x<-2或-1≤x≤2或x≥6}。

2)解法一:原不等式等价于2x²-3x+1/2x²-9x+14>0.化简后得到原不等式等价于(x-1)(2x-1)(3x-7)<0.用“穿根法”得到原不等式解集为{x|x<1/2或7/3<x<1}。

解法二:原不等式等价于(2x-1)(x-1)<0.用“穿根法”得到原不等式解集为{x|x<1/2或x>1}。

例7解不等式2ax-a2>1-x(a>0)。

分析:将不等式移项整理得到2ax+x>a2+1,然后按照无理不等式的解法化为两个不等式组,再分类讨论求解。

解:原不等式等价于(1) 2ax-a2>1-x,或(2) 2ax-a2<1-x。

一元二次不等式解法练习题及答案

一元二次不等式解法练习题及答案

高一数学一元二次不等式例题例1 解下列不等式(1)(x -1)(3-x)<5-2x (2)x(x +11)≥3(x +1)2 (3)(2x +1)(x -3)>3(x 2+2)(4)3x 2-+--+-31325113122x x x x x x >>()()答 (1){x|x <2或x >4} (2){x|1x }≤≤32 (3)∅ (4)R (5)R【介绍定义域】例有意义,则的取值范围是.2 x x 2--x 6解 x ≥3或x ≤-2.练习:例3 若01a <<,则不等式()10a x x a ⎛⎫--> ⎪⎝⎭的解是( )[ ]A a xB x a .<<.<<11a a C x aD x x a.>或<.<或>x aa 11分析比较与的大小后写出答案.a 1a 解∵<<,∴<,解应当在“两根之间”,得<<.选. 0a 1a a x A 11a a【求a 、b 的值】例4 若ax 2+bx -1<0的解集为{x|-1<x <2},则a =________,b =________.解 根据题意,-1,2应为方程ax 2+bx -1=0的两根,则由韦达定理知-=-+=-=-=-⎧⎨⎪⎪⎩⎪⎪b a a ()()1211122×得 a b ==-1212,.练习:1、()21680k x x --+<的解集是425x x x ⎧⎫<->⎨⎬⎩⎭或,则k =_________. 2、已知不等式20x px q ++<的解集是{}32x x -<<,则p q +=________.3、不等式20ax bx c ++>的解集为{}23x x <<,则不等式20ax bx c -+>的解集是________________________.例不等式+>的解集为5 1x 11-x[] A .{x|x >0} B .{x|x ≥1}C .{x|x >1}D .{x|x >1或x =0}分析 直接去分母需要考虑分母的符号,所以通常是采用移项后通分.解不等式化为+->,通分得>,即>,1x 000111122----x x x x x ∵x 2>0,∴x -1>0,即x >1.选C .例与不等式≥同解的不等式是6 0x x --32[] A .(x -3)(2-x)≥0 B .0<x -2≤1 C .≥230--xx D .(x -3)(2-x)≤0选B .【有关判别式】例7、若不等式210x mx ++>的解集为R ,则m 的取值范围是( )A .RB .()2,2-C .()(),22,-∞-+∞D .[]2,2- 例8、不等式()20ax bx c a ++<≠的解集为∅,那么( )A .0a <,0∆>B .0a <,0∆≤C .0a >,0∆≤D .0a >,0∆≥。

高三数学不等式解法15个典型例题doc

高三数学不等式解法15个典型例题doc

高三数学不等式解法15个典型例题典型例题一例1 解不等式:(1)015223>--x x x ;(2)0)2()5)(4(32<-++x x x .分析:如果多项式)(x f 可分解为n 个一次式的积,则一元高次不等式0)(>x f (或0)(<x f )可用“穿根法”求解,但要注意处理好有重根的情况.解:(1)原不等式可化为0)3)(52(>-+x x x把方程0)3)(52(=-+x x x 的三个根3,25,0321=-==x x x 顺次标上数轴.然后从右上开始画线顺次经过三个根,其解集如下图的阴影部分.∴原不等式解集为⎭⎬⎫⎩⎨⎧><<-3025x x x 或 (2)原不等式等价于⎩⎨⎧>-<-≠⇔⎩⎨⎧>-+≠+⇔>-++2450)2)(4(050)2()5)(4(32x x x x x x x x x 或 ∴原不等式解集为{}2455>-<<--<x x x x 或或说明:用“穿根法”解不等式时应注意:①各一次项中x 的系数必为正;②对于偶次或奇次重根可转化为不含重根的不等式,也可直接用“穿根法”,但注意“奇穿偶不穿”,其法如下图.典型例题二例2 解下列分式不等式:(1)22123+-≤-x x ; (2)12731422<+-+-x x x x 分析:当分式不等式化为)0(0)()(≤<或x g x f 时,要注意它的等价变形①0)()(0)()(<⋅⇔<x g x f x g x f ②0)()(0)(0)()(0)(0)()(0)()(<⋅=⇔≤⎩⎨⎧≠≤⋅⇔≤x g x f x f x g x f x g x g x f x g x f 或或(1)解:原不等式等价于⎩⎨⎧≠-+≥+-+-⇔≥+-+-⇔≤+-++-⇔≤+---+⇔≤+--⇔+≤-0)2)(2(0)2)(2)(1)(6(0)2)(2()1)(6(0)2)(2(650)2)(2()2()2(302232232x x x x x x x x x x x x x x x x x x x x x x x x x用“穿根法”∴原不等式解集为[)[)+∞⋃-⋃--∞,62,1)2,(。

01绝对值不等式(含经典例题+答案)

01绝对值不等式(含经典例题+答案)

绝对值不等式一、绝对值三角不等式1.定理1:如果a,b是实数,则|a+b|≤|a|+|b|,当且仅当ab≥0时,等号成立.2.定理2:如果a,b,c是实数,则|a-c|≤|a-b|+|b-c|,当且仅当(a-b)(b-c)≥0时,等号成立.二、绝对值不等式的解法(1)|a x+b|≤c⇔-c≤a x+b≤c ;(2)|a x+b|≥c⇔a x+b≥c或a x+b≤-c .3.|x-a|+|x-b|≥c(c>0)和|x-a|+|x-b|≤c(c>0)型不等式的解法方法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想.方法二:利用“零点分段法”求解,体现了分类讨论的思想;方法三:通过构造函数,利用函数的图像求解,体现了函数与方程的思想.二、绝对值不等式的解法(1)|a x+b|≤c⇔-c≤ax+b≤c ;(2)|a x+b|≥c⇔ax+b≥c或ax+b≤-c .3.|x-a|+|x-b|≥c(c>0)和|x-a|+|x-b|≤c(c>0)型不等式的解法方法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想.方法二:利用“零点分段法”求解,体现了分类讨论的思想;方法三:通过构造函数,利用函数的图像求解,体现了函数与方程的思想.1.不等式|a|-|b|≤|a+b|≤|a|+|b|,右侧“=”成立的条件是ab≥0,左侧“=”成立的条件是ab≤0且|a|≥|b|;不等式|a|-|b|≤|a-b|≤|a|+|b|,右侧“=”成立的条件是ab≤0,左侧“=”成立的条件是ab≥0且|a|≥|b|.2.|x-a|+|x-b|≥c表示到数轴上点A(a),B(b)距离之和大于或等于c的所有点,只要在数轴上确定出具有上述特点的点的位置,就可以得出不等式的解.例4:若不等式|x+1|+|x-2|≥a对任意x∈R恒成立,则a的取值范围是________.解:由于|x+1|+|x-2|≥|(x+1)-(x-2)|=3,所以只需a≤3即可.若本题条件变为“∃x∈R使不等式|x+1|+|x-2|<a成立为假命题”,求a的范围.解:由条件知其等价命题为对∀x∈R,|x+1|+|x-2|≥a恒成立,故a≤(|x+1|+|x-2|)min,又|x+1|+|x-2|≥|(x+1)-(x-2)|=3,∴a≤3.例5:不等式log3(|x-4|+|x+5|)>a对于一切x∈R恒成立,则实数a的取值范围是________.解:由绝对值的几何意义知:|x-4|+|x+5|≥9,则log3(|x-4|+|x+5|)≥2所以要使不等式log3(|x-4|+|x+5|)>a对于一切x∈R恒成立,则需a<2.例6:某地街道呈现东——西,南——北向的网络状,相邻街距都为1,两街道相交的点称为格点.若以相互垂直的两条街道为轴建立直角坐标系,现有下述格点(-2,2),(3,1),(3,4),(-2,3),(4,5),(6,6)为报刊零售点,请确定一个格点(除零售点外)________为发行站,使6个零售点沿街道到发行站之间的路程的和最短.解:设格点(x,y)(其中x,y∈Z)为发行站,使6个零售点沿街道到发行站之间的路程的和最短,即使(|x+2|+|y-2|+(|x-3|+|y-1|)+(|x-3|+|y-4|)+(|x+2|+|y-3|)+(|x-4|+|y-5|)+(|x-6|+|y-6|)=[(|x+2|+|x-6|)+(|x+2|+|x-4|)+2|x-3|]+[|y-1|+|y-2|+|y-3|+|y-4|+|y-5|+|y-6|]取得最小值的格点(x,y)(其中x,y∈Z).注意到[(|x+2|+|x-6|)+(|x+2|+|x-4|) +2|x-3|]≥|(x+2)-(x-6)|+|(x+2)-(x-4)|+0=14,当且仅当x=3取等号;|y-1|+|y-2|+|y-3|+|y-4|+|y-5|+|y-6|=(|y-1|+|y-6|)+(|y-2|+|y-5|+(|y-3|+|y-4|)≥|(y-1)-(y-6)|+|(y-2)-(y-5)|+|(y-3)-(y-4)|=9,当且仅当y=3或y=4时取等号.因此,应确定格点(3,3)或(3,4)为发行站.又所求格点不能是零售点,所以应确定格点(3,3)为发行站.1.对绝对值三角不等式定理|a|-|b|≤|a±b|≤|a|+|b|中等号成立的条件要深刻理解,特别是用此定理求函数的最值时.2.该定理可以强化为:||a|-|b||≤|a±b|≤|a|+|b|,它经常用于证明含绝对值的不等式.3.对于求y=|x-a|+|x-b|或y=|x+a|-|x-b|型的最值问题利用绝对值三角不等式更简洁、方便.例7:设函数f(x)=|x-a|+3x,其中a>0.(1)当a=1时,求不等式f(x)≥3x+2的解集;(2)若不等式f(x)≤0的例9:已知关于x的不等式|2x+1|+|x-3|>2a-32恒成立,求实数a的取值范围.y =⎩⎪⎨⎪⎧ -3x +2,x <-12,x +4,-12≤x <3,3x -2,x ≥3,∴当x =-12时,y =|2x +1|+|x -3|取最小值72,∴72>2a -32,即得a <52. 例10:已知f (x )=1+x 2,a ≠b ,求证:|f (a )-f (b )|<|a -b |.解:∵|f (a )-f (b )|=|1+a 2-1+b 2|=|a 2-b 2|1+a 2+1+b 2=|a -b ||a +b |1+a 2+1+b 2, 又|a +b |≤|a |+|b |=a 2+b 2<1+a 2+1+b 2,∴|a +b |1+a 2+1+b 2<1.∵a ≠b ,∴|a -b |>0.∴|f (a )-f (b )|<|a -b |.例11:已知a ,b ∈R 且a ≠0,求证:|a |2|a |≥|a |2-|b |2. 证明:①若|a |>|b |,则左边=|a +b |·|a -b |2|a |=|a +b |·|a -b ||a +b +a -b |≥|a +b |·|a -b ||a +b |+|a -b |=11|a +b |+1|a -b |. ∵1|a +b |≤1|a |-|b |,1|a -b |≤1|a |-|b |,∴1|a +b |+1|a -b |≤2|a |-|b |.∴左边≥|a |-|b |2=右边,∴原不等式成立. ②若|a|=|b|,则a 2=b 2,左边=0=右边,∴原不等式成立.③若|a|<|b|,则左边>0,右边<0,原不等式显然成立.综上可知原不等式成立.证明:|f(x)-f(a)|=|x 2-x +43-a 2+a -43|=|(x -a)(x +a -1)|=|x -a|·|x +a -1|.∵|x -a|<1, ∴|x|-|a|≤|x -a|<1.∴|x|<|a|+1.∴|f(x)-f(a)|=|x -a|·|x +a -1|<|x +a -1|≤|x|+|a|+1<2(|a|+1). 例13:已知函数f (x )=log 2(|x -1|+|x -5|-a ).(1)当a =2时,求函数f (x )的最小值;(2)当函数f (x )的定义域为R 时,求实数a 的取值范围.解:函数的定义域满足|x -1|+|x -5|-a >0,即|x -1|+|x -5|>a .(1)当a =2时,f (x )=log 2(|x -1|+|x -5|-2),设g (x )=|x -1|+|x -5|,则g (x )=|x -1|+|x -5|=⎩⎪⎨⎪⎧ 2x -6,x ≥5,4,1<x <5,6-2x ,x ≤1,g (x )min =4,f (x )min =log 2(4-2)=1.(2)由(1)知,g (x )=|x -1|+|x -5|的最小值为4,|x -1|+|x -5|-a >0,∴a <4.∴a 的取值范围是(-∞,4). x -4|-|x -2|>1.解:(1)f (x )=⎩⎪⎨⎪⎧ -2, x >4,-2x +6, 2≤x ≤4,2, x <2.则函数y =f (x )的图像如图所示.(2)由函数y =f (x )的图像容易求得不等式|x -4|-|x -2|>1的解集为5,2⎛⎫-∞ ⎪⎝⎭。

完整版)解不等式组计算专项练习60题(有答案)

完整版)解不等式组计算专项练习60题(有答案)

完整版)解不等式组计算专项练习60题(有答案)1.解不等式组60题参考答案:1.解:由不等式①得2a-3x+1≥0,即x≤(2a+1)/3;由不等式②得3b-2x-16≥0,即x≤(3b-16)/2.又因为a≤4<b,所以2a+1≤9,3b-16≥8,所以x的取值范围为x≤3或x≥-11/2.2.解:由不等式①得x≤-1或x≥3;由不等式②得x≤4/3或x≥2.综合起来,x的取值范围为x≤-1或x≥3,或者4/3≤x≤2.3.解:由不等式①得x>(a+1)/2;由不等式②得x0,所以a/2>(a+1)/2,所以不等式组的解集为a/2<x<(a+1)/2.4.解:由不等式①得x≥1;由不等式②得x<3.所以不等式组的解集为1≤x<3.5.解:由不等式①得x≤-2;由不等式②得x>-3.所以不等式组的解集为-3<x≤-2.6.解:由不等式①得x>-1;由不等式②得x≤2.所以不等式组的解集为-1<x≤2.7.解:由不等式①得x≤-1;由不等式②得x≥-2.所以不等式组的解集为-2≤x≤-1.8.解:由不等式①得x>-3;由不等式②得x≤1.所以不等式组的解集为-3<x≤1.9.解:由不等式①得x>-1;由不等式②得x≤4.所以不等式组的解集为-1<x≤4.10.解:由不等式①得x-3.所以不等式组的解集为-3<x<2.11.解:由不等式①得x≥1;由不等式②得x<3.所以不等式组的解集为1≤x<3.1.由不等式组的①得x≥-1,由不等式组的②得 x<4,因此不等式组的解集为 -1≤x<4.2.由不等式①得x≤3,由不等式②得 x>0,因此不等式组的解集为0<x≤3.3.解不等式①得x≥1,解不等式②得 x<4,因此不等式组的解集为1≤x<4.4.原不等式组可化为:x+45,x<-1.因此不等式组的解集为-3<x≤3.5.解不等式①得 x<5,解不等式②得x≥-2,因此不等式组的解集为 -2≤x<5.6.解不等式①得x≥1,解不等式②得 x<4,因此不等式组的解集为1≤x<4.7.解不等式①得x≥-1,解不等式②得 x<3,因此不等式组的解集为 -1≤x<3.8.解不等式①得 x<1,解不等式②得x≥-2,因此不等式组的解集为 -2≤x<1.9.解不等式①得 x>-1,解不等式②得x≤4,因此不等式组的解集为 -1<x≤4.10.解不等式①得x≥1,解不等式②得 x<4,因此不等式组的解集为1≤x<4.11.解不等式①得 x>-1,解不等式②得x≤4,因此不等式组的解集为 -1<x≤4.12.解不等式组的①得-∞<x<1,因为②中的不等式没有解,所以不等式组的解集为 -∞<x<1.13.解不等式①得x≥1,解不等式②得 x<4,因此不等式组的解集为1≤x<4.14.原不等式组可化为:x>-3,x≤3.因此不等式组的解集为-3<x≤3.15.解不等式组的①得 x<1,因为②中的不等式没有解,所以不等式组的解集为 -∞<x<1.16.解不等式①得 x<2,解不等式②得x≥-1,因此不等式组的解集为 -1≤x<2.17.解不等式①得x≥1,解不等式②得1≤x<4,因此不等式组的解集为1≤x<4.18.解不等式①得x≥-1,解不等式②得 x<3,因此不等式组的解集为 -1≤x<3.19.解不等式①得 x<1,解不等式②得x≥-2,因此不等式组的解集为 -2≤x<1.20.解不等式①得 x>-1,解不等式②得x≤4,因此不等式组的解集为 -1<x≤4.21.不等式①的解集为x≥1,不等式②的解集为 x<4,因此原不等式的解集为1≤x<4.22.解不等式①得 x<0,解不等式②得x≥3,因此原不等式无解。

常见不等式的解法--高考数学【解析版】

常见不等式的解法--高考数学【解析版】

专题04 常见不等式的解法所谓常见不等式是指,一元二次不等式、含绝对值不等式、指数对数不等式、函数不等式等,高考中独立考查的同时,更多地是在对其他知识的考查中,作为工具进行考查.正是解不等式的这一基础地位,要求务必做到求解快捷、准确.【重点知识回眸】(一)常见不等式的代数解法1、一元二次不等式:()200ax bx c a ++>≠可考虑将左边视为一个二次函数()2f x ax bx c =++,作出图象,再找出x 轴上方的部分即可——关键点:图象与x 轴的交点2、高次不等式(1)可考虑采用“数轴穿根法”,分为以下步骤:(令关于x 的表达式为()f x ,不等式为()0f x >)①求出()0f x =的根12,,x x ② 在数轴上依次标出根③ 从数轴的右上方开始,从右向左画.如同穿针引线穿过每一个根④ 观察图象,()0f x >⇒ 寻找x 轴上方的部分()0f x <⇒ 寻找x 轴下方的部分(2)高次不等式中的偶次项,由于其非负性在解不等式过程中可以忽略,但是要验证偶次项为零时是否符合不等式3、分式不等式(1)将分母含有x 的表达式称为分式,即为()()f xg x 的形式 (2)分式若成立,则必须满足分母不为零,即()0g x ≠(3)对形如()()0f x g x >的不等式,可根据符号特征得到只需()(),f x g x 同号即可,所以将分式不等式转化为()()()00f xg x g x ⋅>⎧⎪⎨≠⎪⎩ (化商为积),进而转化为整式不等式求解4、含有绝对值的不等式(1)绝对值的属性:非负性(2)式子中含有绝对值,通常的处理方法有两种:一是通过对绝对值内部符号进行分类讨论(常用);二是通过平方(3)若不等式满足以下特点,可直接利用公式进行变形求解:① ()()f x g x >的解集与()()f x g x >或()()f x g x <-的解集相同② ()()f x g x <的解集与()()()g x f x g x -<<的解集相同(4)对于其它含绝对值的问题,则要具体问题具体分析,通常可用的手段就是先利用分类讨论去掉绝对值,将其转化为整式不等式,再做处理5、指数、对数不等式的解法:(1)利用函数的单调性:1a >时,x y > log log (,0)x ya a a a x y x y ⇔>⇔>>01a <<时,x y > log log (,0)x y a a a a x y x y ⇔<⇔<>(2)对于对数的两点补充:① 对数能够成立,要求真数大于0,所以在解对数不等式时首先要考虑真数大于0这个条件,如当1a >时,()()()()()()0log log 0a a f x f x g x g x f x g x >⎧⎪>⇒>⎨⎪>⎩② 如何将常数转化为某个底的对数.可活用“1”:因为1log a a =,可作为转换的桥梁6、利用换元法解不等式利用换元法解不等式的步骤通常为:①选择合适的对象进行换元:观察不等式中是否有相同的结构,则可将相同的结构视为一个整体 ②求出新元的初始范围,并将原不等式转化为新变量的不等式③解出新元的范围④在根据新元的范围解x 的范围(二)构造函数解不等式1、函数单调性的作用:()f x 在[],a b 单调递增,则[]()()121212,,,x x a b x x f x f x ∀∈<⇔<(在单调区间内,单调性是自变量大小关系与函数值大小关系的桥梁)2、假设()f x 在[],a b 上连续且单调递增,()()00,,0x a b f x ∃∈=,则()0,x a x ∈时,()0f x <;()0,x x b ∈时,()0f x > (单调性与零点配合可确定零点左右点的函数值的符号)3、导数运算法则:(1)()()()()()()()'''f x g x fx g x f x g x =+ (2)()()()()()()()'''2f x f x g x f x g x g x g x ⎛⎫-= ⎪⎝⎭4、构造函数解不等式的技巧:(1)此类问题往往条件比较零散,不易寻找入手点.所以处理这类问题要将条件与结论结合着分析.在草稿纸上列出条件能够提供什么,也列出要得出结论需要什么.两者对接通常可以确定入手点(2)在构造函数时要根据条件的特点进行猜想,例如出现轮流求导便猜有可能是具备乘除关系的函数.在构造时多进行试验与项的调整(3)此类问题处理的核心要素是单调性与零点,对称性与图象只是辅助手段.所以如果能够确定构造函数的单调性,猜出函数的零点.那么问题便易于解决了.(三)利用函数性质与图象解不等式:1、轴对称与单调性:此类问题的实质就是自变量与轴距离大小与其函数值大小的等价关系.通常可作草图帮助观察.例如:()f x 的对称轴为1x =,且在()1,+∞但增.则可以作出草图(不比关心单调增的情况是否符合()f x ,不会影响结论),得到:距离1x =越近,点的函数值越小.从而得到函数值与自变量的等价关系2、图象与不等式:如果所解不等式不便于用传统方法解决,通常的处理手段有两种,一类是如前文所说可构造一个函数,利用单调性与零点解不等式;另一类就是将不等式变形为两个函数的大小关系如()()f x g x <,其中()(),f x g x 的图象均可作出.再由()()f x g x <可知()f x 的图象在()g x 图象的下方.按图象找到符合条件的范围即可.【典型考题解析】热点一 简单不等式的解法【典例1】(2022·全国·高考真题)已知集合{}{}1,1,2,4,11A B x x =-=-≤,则A B =( )A .{1,2}-B .{1,2}C .{1,4}D .{1,4}-【答案】B【解析】【分析】求出集合B 后可求A B .【详解】{}|02B x x =≤≤,故{}1,2A B =,故选:B.【典例2】(2020·全国·高考真题(文))已知集合2{|340},{4,1,3,5}A x x x B =--<=-,则A B =( )A .{4,1}-B .{1,5}C .{3,5}D .{1,3}【答案】D【解析】【分析】首先解一元二次不等式求得集合A ,之后利用交集中元素的特征求得A B ,得到结果.【详解】由2340x x --<解得14x -<<,所以{}|14A x x =-<<,又因为{}4,1,3,5B =-,所以{}1,3A B =,故选:D.【典例3】(2017·上海·高考真题)不等式11x x ->的解集为________【答案】(,0)-∞【解析】【详解】由题意,不等式11x x ->,得111100x x x->⇒<⇒<,所以不等式的解集为(,0)-∞. 【典例4】(2020·江苏·高考真题)设x ∈R ,解不等式2|1|||4x x ++<. 【答案】2(2,)3- 【解析】【分析】根据绝对值定义化为三个方程组,解得结果【详解】1224x x x <-⎧⎨---<⎩或10224x x x -≤≤⎧⎨+-<⎩或0224x x x >⎧⎨++<⎩21x ∴-<<-或10x -≤≤或203x << 所以解集为:2(2,)3- 【典例5】解下列高次不等式:(1)()()()1230x x x --->(2)()()()21230x x x +--< 【答案】(1)()()1,23,+∞;(2)()()1,22,3-. 【解析】(1)解:()()()()123f x x x x =---则()0f x =的根1231,2,3x x x ===作图可得:12x << 或3x >∴不等式的解集为()()1,23,+∞(2)思路:可知()220x -≥,所以只要2x ≠,则()22x -恒正,所以考虑先将恒正恒负的因式去掉,只需解()()13020x x x +-<⎧⎨-≠⎩ ,可得13x -<<且2x ≠∴不等式的解集为()()1,22,3-【名师点睛】在解高次不等式时,穿根前可考虑先将恒正恒负的项去掉,在进行穿根即可.穿根法的原理:它的实质是利用图象帮助判断每个因式符号,进而决定整个式子的符号,图象中的数轴分为上下两个部分,上面为()0f x > 的部分,下方为()0f x <的部分.以例2(1)为例,当3x >时,每一个因式均大于0,从而整个()f x 的符号为正,即在数轴的上方(这也是为什么不管不等号方向如何,穿根时一定要从数轴右上方开始的原因,因为此时()f x 的符号一定为正),当经过3x = 时,()3x -由正变负,而其余的式子符号未变,所以()f x 的符号发生一次改变,在图象上的体现就是穿根下来,而后经过下一个根时,()f x 的符号再次发生改变,曲线也就跑到x 轴上方来了.所以图象的“穿根引线”的实质是()f x 在经历每一个根时,式子符号的交替变化.【规律方法】1.含绝对值的不等式要注意观察式子特点,选择更简便的方法2.零点分段法的好处在于,一段范围可将所有的绝对值一次性去掉,缺点在于需要进行分类讨论,对学生书写的规范和分类讨论习惯提出了要求,以及如何整理结果,这些细节部分均要做好,才能保证答案的正确性.3.引入函数,通过画出分段函数的图象,观察可得不等式的解.热点二 含参数不等式问题【典例6】(2022·浙江·高考真题)已知,a b ∈R ,若对任意,|||4||25|0x a x b x x ∈-+---≥R ,则( )A .1,3a b ≤≥B .1,3a b ≤≤C .1,3a b ≥≥D .1,3a b ≥≤ 【答案】D【解析】【分析】将问题转换为|||25||4|a x b x x -≥---,再结合画图求解.【详解】由题意有:对任意的x ∈R ,有|||25||4|a x b x x -≥---恒成立.设()||f x a x b =-,()51,2525439,421,4x x g x x x x x x x ⎧-≤⎪⎪⎪=---=-<<⎨⎪-≥⎪⎪⎩,即()f x 的图像恒在()g x 的上方(可重合),如下图所示:由图可知,3a ≥,13b ≤≤,或13a ≤<,3143b a ≤≤-≤,故选:D .【典例7】(2020·浙江·高考真题)已知a ,b ∈R 且ab ≠0,对于任意x ≥0 均有(x –a )(x–b )(x–2a–b )≥0,则( )A .a <0B .a >0C .b <0D .b >0【答案】C【解析】【分析】对a 分0a >与0a <两种情况讨论,结合三次函数的性质分析即可得到答案.【详解】因为0ab ≠,所以0a ≠且0b ≠,设()()()(2)f x x a x b x a b =----,则()f x 的零点为123,,2x a x b x a b ===+当0a >时,则23x x <,1>0x ,要使()0f x ≥,必有2a b a +=,且0b <,即=-b a ,且0b <,所以0b <;当0a <时,则23x x >,10x <,要使()0f x ≥,必有0b <.综上一定有0b <.故选:C【典例8】(2023·全国·高三专题练习)解关于x 的不等式()222R ax x ax a ≥-∈-.【答案】详见解析.【解析】【分析】分类讨论a ,求不等式的解集即可.【详解】原不等式变形为()2220ax a x +--≥.①当0a =时,1x ≤-;②当0a ≠时,不等式即为()()210ax x -+≥,当0a >时,x 2a≥或1x ≤-; 由于()221a a a+--=,于是 当20a -<<时,21x a≤≤-; 当2a =-时,1x =-;当2a <-时,21x a-≤≤. 综上,当0a =时,不等式的解集为(,1]-∞-;当0a >时,不等式的解集为2(,1][,)a-∞-⋃+∞; 当20a -<<时,不等式的解集为2,1a ⎡⎤-⎢⎥⎣⎦;当2a =-时,不等式的解集为{}1-;当2a <-时,不等式的解集为21,a ⎡⎤-⎢⎥⎣⎦. 【总结提升】关于含参数不等式,其基本处理方法就是“分类讨论”,讨论过程中应注意“不重不漏”.关于含参数的一元二次不等式问题:(1)当判别式Δ能写成一个式子的平方的形式时,可先求方程的两根,再讨论两根的大小,从而写出解集.(2)三个方面讨论:二次项系数的讨论,根有无的讨论,根大小的讨论.(3)含参数分类讨论问题最后要写综述.热点三 函数不等式问题【典例9】(2018·全国·高考真题(文))设函数()2010x x f x x -⎧≤=⎨>⎩,,,则满足()()12f x f x +<的x 的取值范围是( )A .(]1-∞-,B .()0+∞,C .()10-,D .()0-∞,【答案】D【解析】【分析】 分析:首先根据题中所给的函数解析式,将函数图像画出来,从图中可以发现若有()()12f x f x +<成立,一定会有2021x x x <⎧⎨<+⎩,从而求得结果. 详解:将函数()f x 的图像画出来,观察图像可知会有2021x x x <⎧⎨<+⎩,解得0x <,所以满足()()12f x f x +<的x 的取值范围是()0-∞,,故选D .【典例10】(2020·北京·高考真题)已知函数()21x f x x =--,则不等式()0f x >的解集是( ). A .(1,1)-B .(,1)(1,)-∞-+∞C .(0,1)D .(,0)(1,)-∞⋃+∞ 【答案】D【解析】【分析】作出函数2x y =和1y x =+的图象,观察图象可得结果.【详解】因为()21x f x x =--,所以()0f x >等价于21x x >+,在同一直角坐标系中作出2x y =和1y x =+的图象如图:两函数图象的交点坐标为(0,1),(1,2),不等式21x x >+的解为0x <或1x >.所以不等式()0f x >的解集为:()(),01,-∞⋃+∞. 故选:D.【典例11】(天津·高考真题(理))设函数f (x )=()212log ,0log ,0x xx x >⎧⎪⎨-<⎪⎩若()()f a f a >-,则实数a 的取值范围是( ) A .()()1,00,1-B .()(),11,-∞-+∞C .()()1,01,-⋃+∞D .()(),10,1-∞-⋃【答案】C【解析】【分析】由于a 的范围不确定,故应分0a >和0a <两种情况求解.【详解】当0a >时,0a -<,由()()f a f a >-得212log log a a>,所以22log 0a >,可得:1a >,当0a <时,0a ->,由()()f a f a >-得()()122log log a a ->-,所以()22log 0a -<,即01a <-<,即10a -<<,综上可知:10a -<<或1a >.故选:C【典例12】(2020·海南·高考真题)若定义在R 的奇函数f (x )在(,0)-∞单调递减,且f (2)=0,则满足(10)xf x -≥的x 的取值范围是( )A .[)1,1][3,-+∞B .3,1][,[01]--C .[1,0][1,)-⋃+∞D .[1,0][1,3]-⋃【答案】D【解析】【分析】首先根据函数奇偶性与单调性,得到函数()f x 在相应区间上的符号,再根据两个数的乘积大于等于零,分类转化为对应自变量不等式,最后求并集得结果.【详解】因为定义在R 上的奇函数()f x 在(,0)-∞上单调递减,且(2)0f =,所以()f x 在(0,)+∞上也是单调递减,且(2)0f -=,(0)0f =,所以当(,2)(0,2)x ∈-∞-⋃时,()0f x >,当(2,0)(2,)x ∈-+∞时,()0f x <,所以由(10)xf x -≥可得: 0210x x <⎧⎨-≤-≤⎩或0012x x >⎧⎨≤-≤⎩或0x = 解得10x -≤≤或13x ≤≤,所以满足(10)xf x -≥的x 的取值范围是[1,0][1,3]-⋃,故选:D.【典例13】(2023·全国·高三专题练习)设函数()f x '是奇函数()f x (x ∈R )的导函数,f (﹣1)=0,当x >0时,()()0xf x f x '->,则使得f (x )>0成立的x 的取值范围是( )A .(﹣∞,﹣1)∪(﹣1,0)B .(0,1)∪(1,+∞)C .(﹣∞,﹣1)∪(0,1)D .(﹣1,0)∪(1,+∞)【答案】D【解析】【分析】构造函数()()f x g x x =,求导结合题意可得()()f x g x x =的单调性与奇偶性,结合()10g -=求解即可 【详解】由题意设()()f x g x x=,则()()()2xf x f x g x x '-'= ∵当x >0时,有()()0xf x f x '->,∴当x >0时,()0g x '>,∴函数()()f x g x x=在(0,+∞)上为增函数, ∵函数f (x )是奇函数,∴g (﹣x )=g (x ),∴函数g (x )为定义域上的偶函数,g (x )在(﹣∞,0)上递减,由f (﹣1)=0得,g (﹣1)=0,∵不等式f (x )>0⇔x •g (x )>0,∴()()01x g x g >⎧⎨>⎩或()()01x g x g <⎧⎨<-⎩, 即有x >1或﹣1<x <0,∴使得f (x )>0成立的x 的取值范围是:(﹣1,0)∪(1,+∞),故选:D .【总结提升】关于函数不等式问题,处理方法往往从以下几方面考虑:(1)利用函数的奇偶性、单调性.(2)借助于函数的图象(数形结合法).(3)涉及抽象函数、导数问题,利用构造辅助函数法,构造函数时往往从两方面着手:①根据导函数的“形状”变换不等式“形状”;②若是选择题,可根据选项的共性归纳构造恰当的函数.【精选精练】一、单选题1.(2020·全国·高考真题(文))已知集合2{|340},{4,1,3,5}A x x x B =--<=-,则A B =( )A .{4,1}-B .{1,5}C .{3,5}D .{1,3}【答案】D【解析】【分析】首先解一元二次不等式求得集合A ,之后利用交集中元素的特征求得A B ,得到结果.【详解】由2340x x --<解得14x -<<,所以{}|14A x x =-<<,又因为{}4,1,3,5B =-,所以{}1,3A B =,故选:D.2.(2021·湖南·高考真题)不等式|21|3x -<的解集是( )A .{}2x x <B .{}1x x >-C .{}12x x -<<D .{1x x <-或}2x >【答案】C【解析】【分析】根据绝对值的几何意义去绝对值即可求解.【详解】由|21|3x -<可得:3213x -<-<,解得:12x -<<, 所以原不等式的解集为:{}12x x -<<,故选:C.3.(2021·广东·潮阳一中明光学校高三阶段练习)设集合{}11A x x =-≤≤,{}2log 1B x x =<,则A B =( )A .{}11x x -<≤B .{}11x x -<<C .{}01x x <≤D .{}01x x <<【答案】C【解析】【分析】根据对数函数定义域以及对数函数不等式求解集合B ,再进行交集运算即可.【详解】 由题意得,{}{}2log 102B x x x x =<=<<,所以{}|01A B x x ⋂=<≤,故选:C.4.(2022·江苏·南京市第一中学高三开学考试)已知集合{}230A x x x =-<,{}|33x B x =≥,则A B =( ) A .10,2⎛⎫⎪⎝⎭ B .1,32⎡⎫⎪⎢⎣⎭ C .(2 D .()1,3【答案】B【解析】【分析】求出集合A 、B ,再由交集的定义求解即可【详解】 集合{}{}23003A x x x x x =-<=<<,{}1332x B x x x ⎧⎫==≥⎨⎬⎩⎭, 则132A B x x ⎧⎫⋂=≤<⎨⎬⎩⎭.故选:B.5.(天津·高考真题(理))设x ∈R ,则“21x -<”是“220x x +->”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】A【解析】【分析】求绝对值不等式、一元二次不等式的解集,根据解集的包含关系即可判断充分、必要关系.【详解】 由21x -<,可得13x <<,即x ∈(1,3);由22(1)(2)0x x x x +-=-+>,可得2x <-或1x >,即x ∈(,2)(1,)-∞-+∞;∴(1,3)是(,2)(1,)-∞-+∞的真子集,故“21x -<”是“220x x +->”的充分而不必要条件.故选:A6.(2023·全国·高三专题练习)已知函数f (x )=x 2+ax +b (a ,b ∈R )的值域为[0,+∞),若关于x 的不等式f (x )<c 的解集为(m ,m +6),则实数c 的值为( )A .4B .3C .9D .94【答案】C【解析】【分析】根据函数的值域求出a 与b 的关系,然后根据不等式的解集可得()f x c =的两个根为,6m m +,最后利用根与系数的关系建立等式,解之即可.【详解】∵函数f (x )=x 2+ax +b (a ,b ∈R )的值域为[0,+∞),∴f (x )=x 2+ax +b =0只有一个根,即Δ=a 2﹣4b =0则b 24a =, 不等式f (x )<c 的解集为(m ,m +6),即为x 2+ax 24a +<c 解集为(m ,m +6), 则x 2+ax 24a +-c =0的两个根为m ,m +6 ∴|m +6﹣m |22444a a c c ⎛⎫=-- ⎪⎝⎭6 解得c =9故选:C .7.(2022·吉林·长春市第二实验中学高三阶段练习)已知函数()y f x =是奇函数,当0x >时,()22x f x =-,则不等式()0f x >的解集是( )A .()()1,00,1-B .()()1,01,-⋃+∞C .()(),10,1-∞-⋃D .()(),11,-∞-⋃+∞ 【答案】B【解析】【分析】根据函数为奇函数求出当0x <时,函数()f x 的函数解析式,再分0x <和0x >两种情况讨论,结合指数函数的单调性解不等式即可.【详解】解:因为函数()y f x =是奇函数,所以()()f x f x -=-,且()00f =当0x <时,则0x ->,则()()22x f x f x --=-=-,所以当0x <时,()22x f x -=-+,则()0220x x f x >⎧⎨=->⎩,解得1x >,()0220x x f x -<⎧⎨=-+>⎩,解得10x -<<,所以不等式()0f x >的解集是()()1,01,-⋃+∞.故选:B.8.(2023·全国·高三专题练习)已知函数33,0()e 1,0x x x f x x --+<⎧=⎨+≥⎩,则不等式()(31)<-f a f a 的解集为()A .10,2⎛⎫⎪⎝⎭ B .1,02⎛⎫- ⎪⎝⎭C .1,2⎛⎫-∞ ⎪⎝⎭ D .1,2⎛⎫-∞- ⎪⎝⎭【答案】C【解析】【分析】由函数解析式判断函数的单调性,根据单调性将函数不等式转化为自变量的不等式,解得即可;【详解】解:因为33,0()e 1,0x x x f x x --+<⎧=⎨+≥⎩,当0x <时()33f x x =-+函数单调递减,且()3033f x >-⨯+=,当0x ≥时()e 1x f x -=+函数单调递减,且()00e 123f =+=<,所以函数()f x 在(,)-∞+∞上是单调递减,所以不等式()(31)<-f a f a 等价于31a a >-,解得12a <. 即不等式的解集为1,2⎛⎫-∞ ⎪⎝⎭; 故选:C9.(2020·海南·高考真题)若定义在R 的奇函数f (x )在(,0)-∞单调递减,且f (2)=0,则满足(10)xf x -≥的x 的取值范围是( )A .[)1,1][3,-+∞B .3,1][,[01]--C .[1,0][1,)-⋃+∞D .[1,0][1,3]-⋃【答案】D【解析】【分析】首先根据函数奇偶性与单调性,得到函数()f x 在相应区间上的符号,再根据两个数的乘积大于等于零,分类转化为对应自变量不等式,最后求并集得结果.【详解】因为定义在R 上的奇函数()f x 在(,0)-∞上单调递减,且(2)0f =,所以()f x 在(0,)+∞上也是单调递减,且(2)0f -=,(0)0f =,所以当(,2)(0,2)x ∈-∞-⋃时,()0f x >,当(2,0)(2,)x ∈-+∞时,()0f x <,所以由(10)xf x -≥可得: 0210x x <⎧⎨-≤-≤⎩或0012x x >⎧⎨≤-≤⎩或0x = 解得10x -≤≤或13x ≤≤,所以满足(10)xf x -≥的x 的取值范围是[1,0][1,3]-⋃,故选:D.10.(2023·全国·高三专题练习)定义在(0)+∞,上的函数()f x 满足()()110,2ln 2xf x f '+=>,则不等式)(e 0x f x +> 的解集为( ) A .(02ln2),B .(0,ln2)C .(ln21),D .(ln2)+∞, 【答案】D【解析】【分析】构造新函数()()ln ,(0)g x f x x x =+>,利用导数说明其单调性,将)(e 0x f x +>变形为)>(e (2)x g g ,利用函数的单调性即可求解.【详解】令()()ln ,(0)g x f x x x =+> , 则()11()()xf x g x f x x x'+''=+=,由于()10xf x '+>, 故()0g x '>,故()g x 在(0)+∞,单调递增, 而1(2)(2)ln2ln ln 202g f =+=+= , 由)(e 0x f x +>,得)>(e (2)x g g ,∴e 2x > ,即ln2x > ,∴不等式)(e 0x f x +>的解集为(ln2)+∞,, 故选:D .二、填空题11.(2023·全国·高三专题练习)不等式组230,340.x x x ->⎧⎨-->⎩的解集为_________. 【答案】()4,+∞【解析】【分析】解一元二次不等式取交集即可.【详解】原不等式组化简为3034(4)(1)041x x x x x x x ->>⎧⎧⇒⇒>⎨⎨-+>><-⎩⎩或 故答案为:()4,+∞.12.(2019·浙江·高考真题)已知a R ∈,函数3()f x ax x =-,若存在t R ∈,使得2|(2)()|3f t f t +-≤,则实数a 的最大值是____. 【答案】max 43a =【解析】【分析】本题主要考查含参绝对值不等式、函数方程思想及数形结合思想,属于能力型考题.从研究()2(2)()23642f t f t a t t +-=++-入手,令2364[1,)m t t =++∈+∞,从而使问题加以转化,通过绘制函数图象,观察得解.【详解】使得()222(2)()2(2)(2)2234{}2]6f t f t a t t t t a t t +-=•[++++-=++-,使得令2364[1,)m t t =++∈+∞,则原不等式转化为存在11,|1|3m am ≥-≤, 由折线函数,如图只需11133a -≤-≤,即2433a ≤≤,即a 的最大值是43【点睛】对于函数不等式问题,需充分利用转化与化归思想、数形结合思想.13.(2023·全国·高三专题练习)若函数f (x )=ln x +e x -sin x ,则不等式f (x -1)≤f (1)的解集为________.【答案】(1,2]【解析】【分析】先利用导数判断函数的单调性,再利用其单调性解不等式.【详解】解:f (x )的定义域为(0,+∞),∴()1f x x'=+e x -cos x . ∵x >0,∴e x >1,∴()f x '>0,∴f (x )在(0,+∞)上单调递增,又f (x -1)≤f (1),∴0<x -1≤1,即1<x ≤2,则原不等式的解集为(1,2].故答案为:(1,2]三、双空题14.(2019·北京·高考真题(理))李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x 元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.①当x =10时,顾客一次购买草莓和西瓜各1盒,需要支付__________元;②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x 的最大值为__________.【答案】 130. 15.【解析】【分析】由题意可得顾客需要支付的费用,然后分类讨论,将原问题转化为不等式恒成立的问题可得x 的最大值.【详解】(1)10x =,顾客一次购买草莓和西瓜各一盒,需要支付()608010130+-=元.(2)设顾客一次购买水果的促销前总价为y 元,120y <元时,李明得到的金额为80%y ⨯,符合要求.120y ≥元时,有()80%70%y x y -⨯≥⨯恒成立,即()87,8y y x y x -≥≤,即min158y x ⎛⎫≤= ⎪⎝⎭元. 所以x 的最大值为15.【点睛】本题主要考查不等式的概念与性质、数学的应用意识、数学式子变形与运算求解能力,以实际生活为背景,创设问题情境,考查学生身边的数学,考查学生的数学建模素养.15.(2023·全国·高三专题练习)已知函数f (x )111()12x x x x -≤⎧⎪=⎨⎪⎩,,>,则()()2f f =__,不等式()()32f x f -<的解集为__.【答案】12## 0.5 {x |x 72<或x >5} 【解析】【分析】第一空先求出()2f 的值,再求()()2f f 的值;第二空将3x -分为大于1或小于等于1两种情况讨论,分别解出不等式,写出解集即可.【详解】解:f (2)211122-⎛⎫== ⎪⎝⎭,1122f ⎛⎫= ⎪⎝⎭, ∴()()122f f =, 当x ﹣3>1时,即x >4时,311122x --⎛⎫ ⎪⎝⎭<,解得x >5, 当x ﹣3≤1时,即x ≤4时,x ﹣312<,解得x 72<, 综上所述不等式f (x ﹣3)<f (2)的解集为752x x x ⎧⎫⎨⎬⎩⎭或 故答案为:12,752x x x ⎧⎫⎨⎬⎩⎭或. 四、解答题16.(2020·山东·高考真题)已知函数()225,02,0x x f x x x x -≥⎧=⎨+<⎩. (1)求()1f f ⎡⎤⎣⎦的值;(2)求()13f a -<,求实数a 的取值范围.【答案】(1)3;(2)35a -<<.【解析】【分析】(1)根据分段函数的解析式,代入计算即可;(2)先判断1a -的取值范围,再代入分段函数解析式,得到()13f a -<的具体不等式写法,解不等式即可.【详解】解:(1)因为10>,所以()12153f =⨯-=-,因为30-<,所以()()()()2133233f f f =-=-+⨯⎤⎦-⎣=⎡.(2)因为10a -≥, 则()1215f a a -=--, 因为()13f a -<,所以2153a --<, 即14a -<,解得35a -<<.17.(2021·全国·高考真题(理))已知函数()3f x x a x =-++.(1)当1a =时,求不等式()6f x ≥的解集;(2)若()f x a >-,求a 的取值范围.【答案】(1)(][),42,-∞-+∞.(2)3,2⎛⎫-+∞ ⎪⎝⎭. 【解析】【分析】(1)利用绝对值的几何意义求得不等式的解集.(2)利用绝对值不等式化简()f x a >-,由此求得a 的取值范围.【详解】(1)[方法一]:绝对值的几何意义法当1a =时,()13f x x x =-++,13x x -++表示数轴上的点到1和3-的距离之和,则()6f x ≥表示数轴上的点到1和3-的距离之和不小于6, 当4x =-或2x =时所对应的数轴上的点到13-,所对应的点距离之和等于6, ∴数轴上到13-,所对应的点距离之和等于大于等于6得到所对应的坐标的范围是4x ≤-或2x ≥, 所以()6f x ≥的解集为(][),42,-∞-+∞.[方法二]【最优解】:零点分段求解法当1a =时,()|1||3|f x x x =-++.当3x ≤-时,(1)(3)6-+--≥x x ,解得4x ≤-;当31x -<<时,(1)(3)6-++≥x x ,无解;当1≥x 时,(1)(3)6-++≥x x ,解得2x ≥.综上,|1||3|6-++≥x x 的解集为(,4][2,)-∞-+∞.(2)[方法一]:绝对值不等式的性质法求最小值依题意()f x a >-,即3a x a x -+>-+恒成立,333x a x x a a x -++-+=≥++,当且仅当()()30a x x -+≥时取等号,()3min f x a ∴=+, 故3a a +>-,所以3a a +>-或3a a +<, 解得32a >-. 所以a 的取值范围是3,2⎛⎫-+∞ ⎪⎝⎭. [方法二]【最优解】:绝对值的几何意义法求最小值由||x a -是数轴上数x 表示的点到数a 表示的点的距离,得()|||3||3|f x x a x a =-++≥+,故|3|a a +>-,下同解法一.[方法三]:分类讨论+分段函数法当3a ≤-时,23,,()3,3,23,3,x a x a f x a a x x a x -+-<⎧⎪=--≤≤-⎨⎪-+>-⎩则min [()]3=--f x a ,此时3-->-a a ,无解.当3a >-时,23,3,()3,3,23,,x a x f x a x a x a x a -+-<-⎧⎪=+-≤≤⎨⎪-+>⎩则min [()]3=+f x a ,此时,由3a a +>-得,32a >-. 综上,a 的取值范围为32a >-. [方法四]:函数图象法解不等式由方法一求得()min 3f x a =+后,构造两个函数|3|=+y a 和y a =-,即3,3,3,3a a y a a --<-⎧=⎨+≥-⎩和y a =-, 如图,两个函数的图像有且仅有一个交点33,22⎛⎫- ⎪⎝⎭M , 由图易知|3|a a +>-,则32a >-.【整体点评】(1)解绝对值不等式的方法有几何意义法,零点分段法.方法一采用几何意义方法,适用于绝对值部分的系数为1的情况,方法二使用零点分段求解法,适用于更广泛的情况,为最优解;(2)方法一,利用绝对值不等式的性质求得()3min f x a =+,利用不等式恒成立的意义得到关于a 的不等式,然后利用绝对值的意义转化求解;方法二与方法一不同的是利用绝对值的几何意义求得()f x 的最小值,最有简洁快速,为最优解法方法三利用零点分区间转化为分段函数利用函数单调性求()f x 最小值,要注意函数()f x 中的各绝对值的零点的大小关系,采用分类讨论方法,使用与更广泛的情况;方法四与方法一的不同在于得到函数()f x 的最小值后,构造关于a 的函数,利用数形结合思想求解关于a 的不等式.18.(2023·全国·高三专题练习)已知函数2()2f x x ax =++,R a ∈.(1)若不等式()0f x 的解集为[1,2],求不等式2()1f x x -的解集;(2)若对于任意的[1x ∈-,1],不等式()2(1)4f x a x -+恒成立,求实数a 的取值范围;(3)已知2()(2)1g x ax a x =+++,若方程()()f x g x =在1(,3]2有解,求实数a 的取值范围. 【答案】(1)(-∞,1][12,)∞+ (2)13a ≤ (3)[0,1).【解析】【分析】(1)根据不等式的解集转化为一元二次方程,利用根与系数之间的关系求出a ,然后解一元二次不等式即可;(2)问题转化为222x a x --在[1x ∈-,1]恒成立,令22()2x h x x -=-,[1x ∈-,1],根据函数的单调性求出a 的范围即可;(3)利用参数分离法进行转化求解即可.(1)解:若不等式()0f x 的解集为[1,2],即1,2是方程220x ax ++=的两个根,则123a +=-=,即3a =-,则2()32f x x x =-+,由2()1f x x -得,22321x x x -+-即22310x x -+得(21)(1)0x x --,得1x 或12x ,即不等式的解集为(-∞,1][12,)∞+. (2)解:不等式()2(1)4f x a x -+恒成立,即222x a x --在[1x ∈-,1]恒成立,令22()2x h x x -=-,[1x ∈-,1],则2242()(2)x x h x x -+'=-,令()0h x '=,解得:22x =,故()h x 在[1-,22)递增,在(221]递减,故()min h x h =(1)或1()h -,而h (1)1=,1(1)3h -=,故13a . (3)解:由()()f x g x =得22(2)12ax a x x ax +++=++,2(1)210a x x ∴-+-=,即2(1)12a x x -=-,若方程()()f x g x =在1(2,3]有解,等价为2212121x a x x x --==-有解,设22121()(1)1h x x x x =-=--,1(2x ∈,3],∴11[3x ∈,2),即1()0h x -<,即110a --<,则01a <,即实数a 的取值范围是[0,1).。

不等式解法(全部)

不等式解法(全部)

1.(x-1)x-2)>0 ; (
( x-3)< 0; 4. x2-2x-3 < 0 . 3.(x+1)
x2-3x+2 <0. 解不等式 2 x -2x-3
解: 原不等式可化为 (x-1)x-2) ( <0. ( (x+1) x-3)
即 (x-1) (x-2) (x+1) (x-3)<0. 根据数轴标根法,
所以,当a>1时,原不等式的解集为{x|a≤x<a2};
当0<a<1时,原不等式的解集为{x|a2<x ≤a}.
logx 2 (x 2) 1
A {x | logx (5x 8x 3) 2}
2
底 数 不 型 logx0.8<1


B {x | x 2x 1 k 0}
M loga N = logaM-logaN
logaMn= nlogaM
1 log a M loga n M = n log b N (b 0且b 1) 3、换底公式:logaN= log b a 4、定义域: (0,+∞) 值域:R
5、单调性:(1)a>1时,为 增
(2)0<a<1时,为 减
例题分析:
例题1. 解不等式
例题2.
| x – 500 | ≤5 解不等式 | 2x+5 | > 7 | 5x-6 | < 5 - x
例题3. 解不等式4 〈 | 1-3 x | ≤ 7 例题4. 解不等式 例题5. 例题
| 2x+1 |> | x+2 |
| 5x-6| > 5-x
课堂练习:
(2)0<a<1时,有 4+3x-x2>0 4+3x-x2<2 (2x-1) 2<x<4

20道不等式组带解答过程

20道不等式组带解答过程

20道不等式组带解答过程不等式组是数学中一个重要的概念,用于解决不等式的问题。

下面,我们将介绍20道不等式组的题目,并给出相应的解答过程。

1. 某项工程,甲、乙两队合作完成,已知甲队每天完成工程的1/5,乙队每天完成工程的2/5,两队共完成工程的3/8,问甲、乙两队单独完成需要多少天?解答:甲、乙两队单独完成需要8天,因为甲队每天完成1/5,乙队每天完成2/5,所以甲队单独完成需要5天,乙队单独完成需要8天。

2. 两个数的和是10,差是3,其中一个数是另一个数的一半,求这两个数。

解答:设这两个数为x和y,则根据题意可以列出以下两个方程: x + y = 10 (1)x - y = 3 (2)将方程(2)乘以2,得到2x - 2y = 6将方程(1)减去上式,得到x + y = 10因此,x = 10 - y,代入方程(2)可得:2(10 - y) - 2y = 620 - 2y - 2y = 6-2y = -6y = 3因此,x = 10 - y = 10 - 3 = 73. 某项工程,如果由甲、乙、丙三人分别单独完成,需要15、20、25年,且甲、乙、丙三人的效率和分别为1/15、1/20、1/25,问三人合作完成需要多少年?解答:设三人合作完成需要t年,则甲、乙、丙三人单独完成需要分别为15t、20t、25t年。

因此,三人合作完成需要的总时间为:t + 15t + 20t + 25t = 60t因此,60t = 30,解得t = 5。

因此,三人合作完成需要5年。

4. 两个数的平均数是3,其中一个数是另一个数的2倍,求这两个数。

解答:设这两个数为x和y,则根据题意可以列出以下两个方程: x + y = 3 (1)2x + 2y = 3 (2)将方程(2)乘以2,得到4x + 4y = 6将方程(1)减去上式,得到x + y = 3因此,x = 3 - y,代入方程(2)可得:4(3 - y) + 4y = 69 - 4y + 4y = 6-2y = -6y = 3因此,x = 3 - y = 3 - 3 = 0因此,这两个数为0。

解不等式例题50道

解不等式例题50道

解不等式例题50道一、一元一次不等式1. 解不等式:2x + 5>9- 解析:- 首先对不等式进行移项,将常数项移到右边,得到2x>9 - 5。

- 计算右边式子得2x>4。

- 两边同时除以2,解得x > 2。

2. 解不等式:3x-1<8- 解析:- 移项可得3x<8 + 1。

- 即3x<9。

- 两边同时除以3,解得x<3。

3. 解不等式:5x+3≤slant2x + 9- 解析:- 移项,把含x的项移到左边,常数项移到右边,得到5x-2x≤slant9 - 3。

- 计算得3x≤slant6。

- 两边同时除以3,解得x≤slant2。

4. 解不等式:4x-7≥slant3x+1- 解析:- 移项得4x - 3x≥slant1+7。

- 即x≥slant8。

5. 解不等式:(1)/(2)x+3>x - 1- 解析:- 移项可得(1)/(2)x-x>-1 - 3。

- 通分计算,((1)/(2)-(2)/(2))x>-4,即-(1)/(2)x>-4。

- 两边同时乘以 - 2,不等号变向,解得x < 8。

6. 解不等式:(2)/(3)x-1≤slant(1)/(3)x+2- 解析:- 移项得(2)/(3)x-(1)/(3)x≤slant2 + 1。

- 计算得(1)/(3)x≤slant3。

- 两边同时乘以3,解得x≤slant9。

7. 解不等式:2(x + 3)>3(x - 1)- 解析:- 先展开括号,得到2x+6>3x - 3。

- 移项得2x-3x>-3 - 6。

- 计算得-x>-9。

- 两边同时乘以 - 1,不等号变向,解得x < 9。

8. 解不等式:3(x - 2)≤slant2(x+1)- 解析:- 展开括号得3x-6≤slant2x + 2。

- 移项得3x-2x≤slant2+6。

- 计算得x≤slant8。

20道不等式组带解答过程

20道不等式组带解答过程

20道不等式组带解答过程篇一:不等式组是数学中非常重要的一个概念,用于求解具有不等性质的数列或不等式。

下面列出了20道不等式组题目,并附带解答过程。

1. 某项数列{a1, a2, a3, ...}的公差为2,首项为a1,求该数列的第10个数是多少?2. 已知数列{an}的前n项和为Sn,求数列{bn}的前n项和Sn"。

3. 某项数列{a1, a2, a3, ...}的前n项和为Sn,第n+1个数是a1,求数列{an}的前n+1个数是多少?4. 已知数列{an}的前n项和为Sn,求数列{bn}的前n+1项和Sn"。

5. 已知数列{an}的公比为2,首项为a1,求数列{bn}的前n项和。

6. 某项数列{an}的前n项和为Sn,第n+1个数是an+1,求数列{bn}的前n+2个数是多少?7. 已知数列{an}的前n项和为Sn,第n+1个数是an+2,求数列{bn}的前n+3个数是多少?8. 已知数列{an}的前n项和为Sn,第n+1个数是an+3,求数列{bn}的前n+4个数是多少?9. 已知数列{an}的前n项和为Sn,第n+1个数是an+4,求数列{bn}的前n+5个数是多少?10. 某项数列{an}的前n项和为Sn,第n+1个数是an+5,求数列{bn}的前n+6个数是多少?11. 已知数列{an}的公比为2,首项为a1,求数列{bn}的前n项和。

12. 已知数列{an}的前n项和为Sn,第n+1个数是an+6,求数列{bn}的前n+7个数是多少?13. 已知数列{an}的前n项和为Sn,第n+1个数是an+7,求数列{bn}的前n+8个数是多少?14. 某项数列{an}的前n项和为Sn,第n+1个数是an+8,求数列{bn}的前n+9个数是多少?15. 已知数列{an}的前n项和为Sn,第n+1个数是an+9,求数列{bn}的前n+10个数是多少?16. 已知数列{an}的公比为2,首项为a1,求数列{bn}的前n项和。

含有绝对值不等式的解法典型例题

含有绝对值不等式的解法典型例题

含绝对值不等式的解法例1 解绝对值不等式|x+3|>|x-5|.解:由不等式|x+3|>|x-5|两边平方得>|x-5||x+3|22,x-5)即(x+3)>(.x>1x>1}.原不等式的解集为{∴ x|22,可在22,两边平方脱去绝对于两边都含“单项”绝对值的不等式依据|x|=x评析对值符号.当然,此例可按绝对值定义讨论脱去绝对值符号,但解题繁琐.的取值范围是|x-2|>k恒成立,则实数k例2 对任意实数x,若不等式|x+1|-)( C.k≤3 A.k<3 B.k<-3.k≤-3 D|的最小值x-2x>k对任意实数恒成立,只要|x+1|-|x+1分析要使||-|x-2|2-1x到的距离,|x-2|的几何意义为点x到大于k.因|x+1|的几何意义为数轴上点-3,与2的距离的差,其最小值为-1x+1的距离,||-|x-2|的几何意义为数轴上点x到.选B ∴ k<-3,∴此例利用绝对值的几何意义使问题迅速得解,若采用其他方法则解答过程冗评析长.>x+3.3例解不等式|3x-1|两种情况讨论.分析解此类不等式,要分x+3≥0和x+3<0x≥两种情况求解:和x+3≥0,即x≥-3时,原不等式又要分-3≤x< 解:当- ;①-,此时不等式的解为3≤x<,即当-3≤x< 时,-3x+1>x+3x<-x≥时,3x-1>x+3,即x>2,此时不等式的解为x>2.②当又当x+3<0,即x<-3时,不等式是绝对不等式.③取①、②、③并集知不等式的解集为x<-,或x>2}.x{|2x+3|-||<1解不等式例4|x-5- 分别使上式两个绝对值中代数式的值为零,它们将数轴分成三段:5和x=解:x=于是,原不等式变为(Ⅰ)或(Ⅱ)或(Ⅲ)<x≤5, x<-7,解(Ⅱ)得解(Ⅰ)得x>5;解(Ⅲ)得x> }即为原不等式的解集.x|x<-7或(Ⅰ)(Ⅱ)(Ⅲ)的并集{说明解这类绝对值不等式(仅限绝对值符号里面是一次式)可分如下几个步骤:第一步令每个绝对值号里的一次因式等于零求出相应的根;第二步把这些根按从小到大的顺序排号并把数轴分成相应的若干个区间;第三步根据所分区间去掉绝对值符号,组成若干个不等式组,最后分别解每个不等式组,取结果的并集就是原不等式的解.例5解不等式1≤|2x-1|<5.原不等式等价于解法一:或②①1≤x<3;解①得 -2<x≤0.解②得原不等式的解集为∴{x|-2<x≤0或1≤x<3}.解法二:原不等式等价于1≤2x-1<5,或 -5<2x-1≤-1,即 2≤2x<6,或 -4<2x≤0,解得 1≤x<3,或 -2<x≤0.∴原不等式的解集为{x|-2<x≤0,或1≤x<3}.评析比较两种解法,第二种解法比较简单,在解法二中,去掉绝对值符号的依据是|≤ba≤x≤b,或-b≤x≤-a(a≥0).a≤|x这一规律对我们今后解题很有作用,要在理解的基础上加以记忆.本例亦可用图像法求解,不妨一试.例6 解不等式|x+3|+|x-3|>8.分析这是一个含有两个绝对值符号的不等式,为了使其转化为解不含绝对值符号的不等式,要进行分类讨论.解法一:由代数式|x+3|、|x-3|知,-3和3把实数集分为三个区间:x<-3,-3≤x<3,x≥3.当x<-3时,-x-3-x+3>8,即x<-4,此时不等式的解为x<-4;①当-3≤x<3时,x+3-x+3>8,此时无解;②当x≥3时,x+3+x-3>8,即x>4,此时不等式的解为x>4.③取①、②、③的并集得原不等式的解集为{x|x<-4,或x>4}.点评解这类绝对值符号里是一次式的不等式,其一般步骤是:(1)令每个绝对值符号里的一次式为零,并求出相应的根;(2)把这些根由小到大排序并把实数集分为若干个区间;求出它们的解集;解这些不等式,由所分区间去掉绝对值符号组成若干个不等式,)3(.(4)取这些不等式的解集的并集就是原不等式的解集.模仿例1,我们还有解法二:不等式|x+3|+|x-3|>8表示数轴上与A(-3),B(3)两点距离之和大于8的点,而A,B两点距离为6.因此线段AB上每一点到A、B的距离之和都等于6.如下图,要找到A,B距离之和为8的点,只须由点B向右移1个单位(这时距离之和增加2个单位),即移到点B(4),或由点A向左移1个单位,即移到点A(-4).11可以看出,数轴上点B(4)向右的点或者点A(-4)向左的点到A、B两点的距离之11和均大于8.∴原不等式的解集为{x|x<-4,或x>4}.解法三:分别画出函数y=|x+3|+|x-3|和y=8的图像,如下图.21=y1不难看出,要使y>y,只须x<-4,或x>4.21∴原不等式的解集为{x|x<-4,或x>4}.点评对于形如|x-a|+|x-b|>c,或|x-a|-|x-b|<c的不等式,利用不等式的几何意义或者画出左、右两边函数的图像去解不等式,更为直观、简捷.这又一次体现了数!形结合思想方法的优越性.。

不等式的解法

不等式的解法

不等式的解法●知识梳理1.一元一次不等式的解法.任何一个一元一次不等式经过不等式的同解变形后,都可以化为ax >b (a ≠0)的形式. 当a >0时,解集为{x |x >ab };当a <0时,解集为{x |x <ab }.2.一元二次不等式的解法.任何一个一元二次不等式经过不等式的同解变形后,都可以化为ax 2+bx +c >0(或<0)(其中a >0)的形式,再根据“大于取两边,小于夹中间”求解集.3.简单的高次不等式、分式不等式的求解问题可采用“数轴标根法”.思考讨论用“数轴标根法”解高次、分式不等式时,对于偶次重根应怎样处理? ●点击双基1.(2004年全国Ⅳ,5)不等式32-+x x x )(<0的解集为A.{x |x <-2或0<x <3}B.{x |-2<x <0或x >3}C.{x |x <-2或x >0}D.{x |x <0或x >3} 解析:在数轴上标出各根.-2 0 3答案:A2.(2003年北京)若不等式|ax +2|<6的解集为(-1,2),则实数a 等于 A.8 B.2 C.-4 D.-8 解析:由|ax +2|<6得-6<ax +2<6,即-8<ax <4.∵不等式|ax +2|<6的解集为(-1,2),易检验a =-4. 答案:C3.(2003年重庆市诊断性考试题)已知函数f (x )是R 上的增函数,A (0,-1)、B (3,1)是其图象上的两点,那么| f (x +1)|<1的解集是A.(1,4)B.(-1,2)C.(-∞,1]∪[4,+∞)D.(-∞,-1]∪[2,+∞)解析:由题意知f (0)=-1,f (3)=1.又| f (x +1)|<1⇔-1<f (x +1)<1, 即f (0)<f (x +1)<f (3).又f (x )为R 上的增函数, ∴0<x +1<3.∴-1<x <2.答案:B 4.(理)(2003年山东潍坊市第二次模拟考试题)不等式x 2-|x -1|-1≤0的解集为____________.解析:当x -1≥0时,原不等式化为x 2-x ≤0,解得0≤x ≤1.∴x =1;当x -1<0时,原不等式化为x 2+x -2≤0,解得-2≤x ≤1.∴-2≤x <1. (文)不等式ax 2+(ab +1)x +b >0的解集为{x |1<x <2},则a +b =_______. 解析:∵ax 2+(ab +1)x +b >0的解集为{x |1<x <2},∴⎪⎪⎪⎩⎪⎪⎪⎨⎧==+-<.2310aba ab a ,,解得⎪⎩⎪⎨⎧-=-=121b a ,或⎩⎨⎧-=-=.21b a ,∴a +b =-23或-3. 5.不等式ax 2+bx +c >0的解集为{x |2<x <3},则不等式ax 2-bx +c >0的解集为_______. 解析:令f (x )=ax 2+bx +c ,其图象如下图所示,xyy y O = = f x ( )f x ()-3 -2 2 3-再画出f (-x )的图象即可.答案:{x |-3<x <-2} ●典例剖析 【例1】 解不等式3252---x x x<-1.剖析:这是一个分式不等式,其左边是两个关于x 的多项式的商,而右边是非零常数,故需移项通分,右边变为零,再利用商的符号法则,等价转化成整式不等式组.解:原不等式变为3252---x xx+1<0,即322322--+-x xx x <0⇔⎪⎩⎪⎨⎧<-->+-⎪⎩⎪⎨⎧>--<+-⇔0320230320232222x x x x x x x x 或,-1<x <1或2<x <3.∴原不等式的解集是{x |-1<x <1或2<x <3}.【例2】 求实数m 的范围,使y =lg [mx 2+2(m +1)x +9m +4]对任意x ∈R 恒有意义. 剖析:mx 2+2(m +1)x +9m +4>0恒成立的含义是该不等式的解集为R . 故应⎩⎨⎧>.00<,Δm解:由题意知mx 2+2(m +1)x +9m +4>0的解集为R ,则⎩⎨⎧<+-+=>.04941402)()(,m m m Δm 解得m >41. 评述:二次不等式ax 2+bx +c >0恒成立的条件:⎩⎨⎧<>.00Δa ,若未说明是二次不等式还应讨论a =0的情况.思考讨论本题若要使值域为全体实数,m 的范围是什么? 提示:对m 分类讨论,m =0适合. 当m ≠0时,⎩⎨⎧≥>.00Δm ,解m 即可.【例3】 若不等式2x -1>m (x 2-1)对满足|m |≤2的所有m 都成立,求x 的取值范围. 剖析:对于m ∈[-2,2],不等式2x -1>m (x 2-1)恒成立,把m 视为主元,利用函数的观点来解决.解:原不等式化为(x 2-1)m -(2x -1)<0. 令f (m )=(x 2-1)m -(2x -1)(-2≤m ≤2).则⎪⎩⎪⎨⎧<---=<----=-.01212201212222)()()(,)()()(x x f x x f 解得271+-<x <231+.深化拓展1.本题若变式:不等式2x -1>m (x 2-1)对一切-2≤x ≤2都成立,求m 的取值范围.2.本题若把m 分离出来再求m 的范围能行吗? ●闯关训练 夯实基础1.(2004年重庆,4)不等式x +12+x >2的解集是 A.(-1,0)∪(1,+∞) B.(-∞,-1)∪(0,1) C.(-1,0)∪(0,1)D.(-∞,-1)∪(1,+∞)解法一:x +12+x >2⇔x -2+12+x >0⇔11+-x x x )(>0⇔x (x -1)(x +1)>0⇔-1<x <0或x >1.解法二:验证,x =-2、21不满足不等式,排除B 、C 、D.2.设f (x )和g (x )都是定义域为R 的奇函数,不等式f (x )>0的解集为(m ,n ),不等式g (x )>0的解集为(2m ,2n ),其中0<m <2n ,则不等式f (x )·g (x )>0的解集是A.(m ,2n )B.(m ,2n )∪(-2n ,-m )C.(2m ,2n )∪(-n ,-m )D.(2m ,2n )∪(-2n ,-2m )解析:f (x )、g (x )都是定义域为R 的奇函数,f (x )>0的解集为(m ,n ),g (x )>0的解集为(2m ,2n ).∴f (-x )>0的解集为(-n ,-m ),g (-x )>0的解集为(-2n,-2m ),即f (x )<0的解集为(-n ,-m ),g (x )<0的解集为(-2n ,-2m ).由f (x )·g (x )>0得⎩⎨⎧>>00)(,)(x g x f 或⎩⎨⎧<<.00)(,)(x g x f .又0<m <2n,∴m <x <2n 或-2n <x <-m .3.若关于x 的不等式-21x 2+2x >mx 的解集为{x |0<x <2},则实数m 的值为_______.解析:由题意,知0、2是方程-21x 2+(2-m )x =0的两个根,∴-212--m =0+2.∴m =1.4.(2004年浙江,13)已知f (x )=⎩⎨⎧<-≥.0101x x ,则不等式x +(x +2)·f (x +2)≤5的解集是____________.解析:当x +2≥0,即x ≥-2时.x +(x +2)f (x +2)≤5⇔2x +2≤5⇔x ≤23.∴-2≤x ≤23.当x +2<0即x <-2时,x +(x +2)f (x +2)≤5 ⇔x +(x +2)·(-1)≤5⇔-2≤5,∴x <-2.综上x ≤23.5.(2004年宣武二模题)定义符号函数sgn x =⎪⎩⎪⎨⎧<-=>.010001)(),(),(x x x 当x ∈R 时,解不等式(x +2)>(2x -1)sgn x .解:当x >0时,原不等式为x +2>2x -1.∴0<x <3.当x =0时,成立.当x <0时,x +2>121-x .x -121-x +2>0.1224122--+--x x x x>0.123322--+x x x>0.∴-4333+<x <0.综上,原不等式的解集为{x |-4333+<x <3}.6.(2003年北京西城区一模题)解关于x 的不等式ax 2-2≥2x -ax (a ∈R ). 解:原不等式变形为ax 2+(a -2)x -2≥0. ①a =0时,x ≤-1;②a ≠0时,不等式即为(ax -2)(x +1)≥0, 当a >0时,x ≥a2或x ≤-1;由于a2-(-1)=aa 2+,于是当-2<a <0时,a2≤x ≤-1;当a =-2时,x =-1;当a <-2时,-1≤x ≤a2.综上,当a =0时,x ≤-1;当a >0时,x ≥a2或x ≤-1;当-2<a <0时,a2≤x ≤-1;当a =-2时,x =-1;当a <-2时,-1≤x ≤a2.培养能力7.(2004年春季安徽)解关于x 的不等式log a 3x <3log a x (a >0,且a ≠1). 解:令y =log a x ,则原不等式化为y 3-3y <0,解得y <-3或0<y <3,即log a x <-3或0<log a x <3. 当0<a <1时,不等式的解集为{x |x >a 3-}∪{x |a3<x <1};当a >1时,不等式的解集为{x |0<x <a 3-}∪{x |1<x <a3}.8.有点难度哟!(2003年天津质量检测题)已知适合不等式|x 2-4x +a |+|x -3|≤5的x 的最大值为3,求实数a 的值,并解该不等式.解:∵x ≤3,∴|x -3|=3-x .若x 2-4x +a <0,则原不等式化为x 2-3x +a +2≥0.此不等式的解集不可能是集合{x |x ≤3}的子集,∴x 2-4x +a <0不成立.于是,x 2-4x +a ≥0,则原不等式化为x 2-5x +a -2≤0.∵x ≤3,令x 2-5x +a -2=(x -3)(x -m )=x 2-(m +3)x +3m ,比较系数,得m =2,∴a =8. 此时,原不等式的解集为{x |2≤x ≤3}. 探究创新9.关于x 的不等式⎪⎩⎪⎨⎧<+++>--055220222k x k x x x )(,的整数解的集合为{-2},求实数k 的取值范围.解:由x 2-x -2>0可得x <-1或x >2.∵⎪⎩⎪⎨⎧<+++>--055220222k x k x x x )(,的整数解为x =-2,又∵方程2x 2+(2k +5)x +5k =0的两根为-k 和-25.①若-k <-25,则不等式组的整数解集合就不可能为{-2};②若-25<-k ,则应有-2<-k ≤3.∴-3≤k <2.综上,所求k 的取值范围为-3≤k <2.●思悟小结1.一元二次不等式的解集与二次项系数及判别式的符号有关.2.解分式不等式要使一边为零,转化为不等式组.如果能分解,可用数轴标根法或列表法.3.解高次不等式的思路是降低次数,利用数轴标根法求解较为容易.4.解含参数的不等式的基本途径是分类讨论,能避免讨论的应设法避免讨论. ●教师下载中心 教学点睛1.解不等式的过程,实质上是不等式等价转化过程.因此在教学中向学生强调保持同解变形是解不等式应遵循的基本原则.2.各类不等式最后一般都要化为一元一次不等式(组)或一元二次不等式(组)来解, 这体现了转化与化归的数学思想.3.解不等式几乎是每年高考的必考题,重点仍是含参数的有关不等式,对字母参数的逻辑划分要具体问题具体分析,必须注意分类不重、不漏、完全、准确. 拓展题例【例1】 (2003年南京市第二次质量检测题)解关于x 的不等式12-ax ax>x (a ∈R ).解法一:由12-ax ax>x ,得12-ax ax-x >0,即1-ax x >0.此不等式与x (ax -1)>0同解.若a <0,则a1<x <0; 若a =0,则x <0;若a >0,则x <0或x >a1.综上,a <0时,原不等式的解集是(a1,0);a =0时,原不等式的解集是(-∞,0); a >0时,原不等式的解集是(-∞,0)∪(a 1,+∞). 解法二:由12-ax ax>x ,得12-ax ax-x >0,即1-ax x>0.此不等式与x (ax -1)>0同解. 显然,x ≠0.(1)当x >0时,得ax -1>0.若a <0,则x <a1,与x >0矛盾,∴此时不等式无解;若a =0,则-1>0,此时不等式无解; 若a >0,则x >a1.(2)当x <0时,得ax -1<0.若a <0,则x >a1,得a1<x <0;若a =0,则-1<0,得x <0;若a >0,则x <a1,得x <0.综上,a <0时,原不等式的解集是(a1,0);a =0时,原不等式的解集是(-∞,0);a >0时,原不等式的解集是(-∞,0)∪(a1,+∞).【例2】 f (x )是定义在(-∞,3]上的减函数,不等式f (a 2-sin x )≤f (a +1+cos 2x )对一切x ∈R 均成立,求实数a 的取值范围.解:由题意可得⎪⎪⎩⎪⎪⎨⎧++≥-≤++≤-x a x a x a x a 2222cos 1sin 3cos 13sin ,,即⎪⎪⎩⎪⎪⎨⎧--≥---≤+≤222221sin 49cos 2sin 3)(,,x a a x a x a 对x ∈R 恒成立.故⎪⎪⎩⎪⎪⎨⎧--≥--≤≤max22221sin 4912)(,,x a a a a ∴-2≤a ≤2101-.●知识梳理1.|x |>a ⇔x >a 或x <-a (a >0); |x |<a ⇔-a <x <a (a >0).2.形如|x -a |+|x -b |≥c 的不等式的求解通常采用“零点分段讨论法”.3.含参不等式的求解,通常对参数分类讨论.4.绝对值不等式的性质: ||a |-|b ||≤|a ±b |≤|a |+|b |. 思考讨论1.在|x |>a ⇔x >a 或x <-a (a >0)、|x |<a ⇔-a <x <a (a >0)中的a >0改为a ∈R 还成立吗?2.绝对值不等式的性质中等号成立的条件是什么?●点击双基1.(2003年成都第三次诊断题)设a 、b 是满足ab <0的实数,那么 A.|a +b |>|a -b | B.|a +b |<|a -b | C.|a -b |<||a |-|b || D.|a -b |<|a |+|b | 解析:用赋值法.令a =1,b =-1,代入检验.2.(2004年春季安徽)不等式|2x 2-1|≤1的解集为 A.{x |-1≤x ≤1}B.{x |-2≤x ≤2}C.{x |0≤x ≤2}D.{x |-2≤x ≤0}解析:由|2x 2-1|≤1得-1≤2x 2-1≤1. ∴0≤x 2≤1,即-1≤x ≤1.3.不等式|x +log 3x |<|x |+|log 3x |的解集为 A.(0,1) B.(1,+∞) C.(0,+∞)D.(-∞,+∞)解析:∵x >0,x 与log 3x 异号, ∴log 3x <0.∴0<x <1. 4.已知不等式a ≤||22x x+对x 取一切负数恒成立,则a 的取值范围是____________.解析:要使a ≤||22x x +对x 取一切负数恒成立,令t =|x |>0,则a ≤tt22+.而tt22+≥tt 22=22,∴a ≤22.答案:a ≤225.已知不等式|2x -t |+t -1<0的解集为(-21,21),则t =____________.解析:|2x -t |<1-t ,t -1<2x -t <1-t ,2t -1<2x <1,t -21<x <21.∴t =0.●典例剖析【例1】 解不等式|2x +1|+|x -2|>4.剖析:解带绝对值的不等式,需先去绝对值,多个绝对值的不等式必须利用零点分段法去绝对值求解.令2x +1=0,x -2=0,得两个零点x 1=-21,x 2=2.解:当x ≤-21时,原不等式可化为-2x -1+2-x >4,∴x <-1.当-21<x ≤2时,原不等式可化为2x +1+2-x >4,∴x >1.又-21<x ≤2,∴1<x ≤2.当x >2时,原不等式可化为2x +1+x -2>4,∴x >35.又x >2,∴x >2.综上,得原不等式的解集为{x |x <-1或1<x }. 深化拓展若此题再多一个含绝对值式子.如:|2x +1|+|x -2|+|x -1|>4,你又如何去解? 分析:令2x +1=0,x -2=0,x -1=0,得x 1=-21,x 2=1,x 3=2.解:当x ≤-21时,原不等式化为-2x -1+2-x +1-x >4,∴x <-21.当-21<x ≤1时,原不等式可化为2x +1+2-x +1-x >4,4>4(矛盾).当1<x ≤2时,原不等式可化为2x +1+2-x +x -1>4,∴x >1. 又1<x ≤2,∴1<x ≤2.当x >2时,原不等式可化为2x +1+x -2+x -1>4,∴x >23.又x >2,∴x >2.综上所述,原不等式的解集为{x |x <-21或x >1}.【例2】 解不等式|x 2-9|≤x +3.剖析:需先去绝对值,可按定义去绝对值,也可利用|x |≤a ⇔-a ≤x ≤a 去绝对值.解法一:原不等式⇔(1)⎪⎩⎪⎨⎧+≤-≥-390922x x x ,或(2)⎪⎩⎪⎨⎧+≤-<-.390922x x x ,不等式(1)⇔⎩⎨⎧≤≤-≥≤4333x x x 或⇔x =-3或3≤x ≤4;不等式(2)⇔⎩⎨⎧≥-≤<<-2333x x x 或⇔2≤x <3.∴原不等式的解集是{x |2≤x ≤4或x =-3}.解法二:原不等式等价于⎩⎨⎧+≤-≤+-≥+393032x x x x )(⇔⎪⎩⎪⎨⎧≤≤--≤-≥4333x x x ,或x ≥2⇔x=-3或2≤x ≤4. ∴原不等式的解集是{x |2≤x ≤4或x =-3}. 【例3】 (理)已知函数f (x )=x |x -a |(a ∈R ). (1)判断f (x )的奇偶性;(2)解关于x 的不等式:f (x )≥2a 2. 解:(1)当a =0时, f (-x )=-x |-x |=-x |x |=-f (x ), ∴f (x )是奇函数.当a ≠0时,f (a )=0且f (-a )=-2a |a |.故f (-a )≠f (a )且f (-a )≠-f (a ). ∴f (x )是非奇非偶函数. (2)由题设知x |x -a |≥2a 2, ∴原不等式等价于⎩⎨⎧≥+-<222aax xa x , ①或⎩⎨⎧≥-≥.222a ax xa x , ②由①得⎩⎨⎧≤+-<.0222a ax x a x ,x ∈∅.由②得⎩⎨⎧≥+-≥.02))((,a x a x a x 当a =0时,x ≥0.当a >0时,⎩⎨⎧-≥≤≥,或,a x a x a x 2∴x ≥2a .当a <0时,⎩⎨⎧-≤≥≥,或,a x a x a x 2x≥-a . 综上a ≥0时,f (x )≥2a 2的解集为{x |x ≥2a };a <0时,f (x )≥2a 2的解集为{x |x ≥-a }.(文)设函数f (x )=ax +2,不等式| f (x )|<6的解集为(-1,2),试求不等式)(x f x ≤1的解集.解:|ax +2|<6,∴(ax +2)2<36,即a 2x 2+4ax -32<0.由题设可得⎪⎪⎩⎪⎪⎨⎧-=-=-.2321422aa a ,解得a =-4.∴f (x )=-4x +2.由)(x f x≤1,即24+-x x ≤1可得2425--x x ≥0.解得x >21或x ≤52.∴原不等式的解集为{x |x >21或x ≤52}.●闯关训练夯实基础1.(2003年北京海淀区一模题)已知集合A ={x |a -1≤x ≤a +2},B ={x |3<x <5},则能使A ⊇B 成立的实数a 的取值范围是A.{a |3<a ≤4}B.{a |3≤a ≤4}C.{a |3<a <4}D.∅解析:由题意知⎩⎨⎧≥+≤-,,5231a a 得3≤a ≤4.2.不等式|x 2+2x |<3的解集为____________. 解析:-3<x2+2x <3,即⎪⎩⎪⎨⎧>++<-+.03203222x x x x ,∴-3<x <1.3.(2004年全国Ⅰ,13)不等式|x +2|≥|x |的解集是____________.解法一:|x +2|≥|x |⇔(x +2)2≥x 2⇔4x +4≥0⇔x ≥-1.解法二: 在同一直角坐标系下作出f (x )=|x +2|与g (x )=|x |的图象,根据图象可得x ≥-1.|解法三:根据绝对值的几何意义,不等式|x +2|≥|x |表示数轴上x 到-2的距离不小于到0的距离,∴x ≥-1.答案:{x |x ≥-1}评述:本题的三种解法均为解绝对值不等式的基本方法,必须掌握. 4.(2004年春季北京)当0<a <1时,解关于x 的不等式a 12-x <a x -2.解:由0<a <1,原不等式可化为12-x >x -2.这个不等式的解集是下面不等式组①及②的解集的并集.⎩⎨⎧<-≥-02012x x , ⎪⎩⎪⎨⎧->-≥-≥-.212020122)(,,x x x x解不等式组①得解集为{x |21≤x <2},解不等式组②得解集为{x |2≤x <5}, 所以原不等式的解集为{x |21≤x <5}.5.关于x 的方程3x 2-6(m -1)x +m 2+1=0的两实根为x 1、x 2,若|x 1|+|x 2|=2,求m 的值.解:x 1、x 2为方程两实根,∴Δ=36(m -1)2-12(m 2+1)≥0.∴m ≥253+或m ≤253-.又∵x 1·x 2=212+m>0,∴x 1、x 2同号.∴|x 1|+|x 2|=|x 1+x 2|=2|m -1|.于是有2|m -1|=2,∴m =0或2.∴m =0. 培养能力 6.解不等式212-x≤||1x .解:(1)当x 2-2<0且x ≠0,即当-2<x <2且x ≠0时,原不等式显然成立. (2)当x 2-2>0时,原不等式与不等式组⎪⎩⎪⎨⎧≥->||22||2x xx ,等价.x 2-2≥|x |,即|x |2-|x |-2≥0.∴|x |≥2.∴不等式组的解为|x |≥2,即x ≤-2或x ≥2.∴原不等式的解集为(-∞,-2]∪(-2,0)∪(0,2)∪[2,+∞). 7.(2003年湖北黄冈模拟题)已知函数f (x )=xx ax122-+的定义域恰为不等式log 2(x +3)+log 21x ≤3的解集,且f (x )在定义域内单调递减,求实数a 的取值范围.解:由log 2(x +3)+log 21x ≤3得⎪⎩⎪⎨⎧>≤+033log 2x x x ⇔⎪⎩⎪⎨⎧>≤+⇔083x x x x ≥73,即f (x )的定义域为[73,+∞).∵f (x )在定义域[73,+∞)内单调递减,∴当x 2>x 1≥73时,f (x 1)-f (x 2)>0恒成立,即有(ax 1-11x +2)-(ax 2-21x +2>0⇔a (x 1-x 2)-(11x -21x )>0⇔(x 1-x 2)(a +211x x )>0恒成立.∵x 1<x 2,∴(x 1-x 2)(a +211x x )>0⇔a +211x x <0. ∵x 1x 2>499⇒-211x x >-949,要使a <-211x x 恒成立,则a 的取值范围是a ≤-949.8.有点难度哟!已知f (x )=x 2-x +c 定义在区间[0,1]上,x 1、x 2∈[0,1],且x 1≠x 2,求证: (1)f (0)=f (1);(2)| f (x 2)-f (x 1)|<|x 1-x 2|; (3)| f (x 1)-f (x 2)|<21;(4)| f (x 1)-f (x 2)|≤41.证明:(1)f (0)=c ,f (1)=c ,∴f (0)=f (1). (2)| f (x 2)-f (x 1)|=|x 2-x 1||x 2+x 1-1|.∵0≤x 1≤1,∴0≤x 2≤1,0<x 1+x 2<2(x 1≠x 2).∴-1<x 1+x 2-1<1. ∴| f (x 2)-f (x 1)|<|x 2-x 1|. (3)不妨设x 2>x 1,由(2)知| f (x 2)-f (x 1)|<x 2-x 1而由f (0)=f (1),从而| f (x 2)-f (x 1)|=| f (x 2)-f (1)+f (0)-f (x 1)|≤| f (x 2)-f (1)|+| f (0)- f (x 1)|<|1-x 2|+|x 1|<1-x 2+x 1. ②①+②得2| f (x 2)-f (x 1)|<1,即| f (x 2)-f (x 1)|<21.(4)|f (x 2)-f (x 1)|≤f max -f min =f (0)-f (21)=41.探究创新9.(1)已知|a |<1,|b |<1,求证:|ba ab --1|>1;(2)求实数λ的取值范围,使不等式|ba ab --λλ1|>1对满足|a |<1,|b |<1的一切实数a 、b 恒成立;(3)已知|a |<1,若|abb a ++1|<1,求b 的取值范围.(1)证明:|1-ab |2-|a -b |2=1+a 2b 2-a 2-b 2=(a 2-1)(b 2-1).∵|a |<1,|b |<1,∴a 2-1<0,b 2-1<0.∴|1-ab |2-|a -b |2>0.∴|1-ab |>|a -b |,|||1|b a ab --=|||1|b a b a -⋅->1.(2)解:∵|ba ab --λλ1|>1⇔|1-ab λ|2-|a λ-b |2=(a 2λ2-1)(b 2-1)>0.∵b 2<1,∴a 2λ2-1<0对于任意满足|a |<1的a 恒成立.。

含参不等式解法

含参不等式解法

例2.解关于x 的不等式:x 2-ax-2a 2<0例3.解关于x 的不等式:2a x a x --<0(a ∈R)例4.解关于x 的不等式:2)1(--x x a >1 (a >0)例5.解关于x 的不等式:22---x x x a >0练习:均值不等式的解法:5.若实数x,y 满足11122=+yx ,则222y x +有( ) A.最大值223+ B. 最小值223+ C. 最小值6 D.最小值610.若14<<-x ,则2222)(2-+-=x x x x f 有( ) A.最小值1 B. 最大值1 C. 最小值-1 D.最大值-113.函数1)(+=x x x f 的最大值为( ) A.52 B. 21 C. 22 D. 1 18.若0>x ,则xx 2+的最小值为 (1)已知0,0>>b a ,且14=+b a ,求ab 的最大值;(2)已知2>x ,求24-+x x 的最小值;(3)已知0,0>>y x ,且1=+y x ,求y x 94+的最小值.1. 凑系数当40<<x 时,求的最大值)28(x x y -=。

2. 凑项。

当 ,45<x 求函数54124)(-+-=x x x f 的最大值3. 拆项。

求)1(,11072-≠+++=x x x x y 的值域。

4. 整体代换(遇到1了)已知a>0, b>0, b a t b a 11,12+==+求的最小值。

5. 换元法 求函数522++=x x y 的最大值6. 试着取平方看看: 求函数)2521(,2512<<-+-=x x x y 的最大值。

【练习】1. 若,20<<x 求)36(x x y -=的最大值。

2. 求函数)3(,31>+-=x x x y 的最小值。

3. 求函数)1(,182>-+=x x x y 的最小值。

不等式的解法

不等式的解法

【例题精解】
【例2】 解下列不等式 (1)(3x-4)(2x+1)>0 (2)-x2-x+12>0
【例3】 解不等式-3x2≥-6x+2
【例6】 解下列不等式
(1)|x-2|>3
(2)|3x-5|<8
(3)|1-2x|≤5
【解】 (1)原不等式等价于x-2>3或x-2<-3即x>5或x<-1 ∴原不等式的解集是{x|x>5或x<-1}
13.不等式2x2+4>x2+6的解集是
.
[-1,1]
15.如果以x为未知数的方程mx2-(1-m)x+m=0没有实数根,那么m
的取值范围是
.
18.解下列不等式,并把解集在数轴上表示. (1)(7x+3)(4-3x)>0 (2)(x-3)(x-4)>-1
(2)原不等式等价于x2-7x+13>0
A.(15,-8) B.(-8,15] C.[-8,15)
D.[-8,15]
【答案】C
2.不等式-2x<-6的解集是 ( ) A.{x|x>3} B.{x|x>-3} C.{x|x<3} D.{x|x<-3}
【答案】A
【答案】A
4.不等式x2+12x+36>0的解集是 ( )
A.∅
B.R
C.{x|x≠-6} D.{x|x<-6或x>6}
【答案】B
【答案】D
5.已知|x-a|<b的解集是(-2,6),则a,b分别是
A.-2,-4
B.2,4
C.-2,4
() D.2,-4

不等式的解法·典型例题及详细答案

不等式的解法·典型例题及详细答案

不等式的解法·典型例题【例1】(x+4)(x+5)2(2-x)3<0.【例2】解下列不等式:【例3】解下列不等式1x5x2)2(;3x1x1+>+-≤-)(【例4】解下列不等式:【例5】 |x 2-4|<x+2.【例6】 解不等式1)123(log 2122<-+-x x x .不等式·典型例题参考答案【例1】(x+4)(x+5)2(2-x)3<0.【分析】如果多项式f(x)可分解为n个一次式的积,则一元高次不等式f(x)>0(或f(x)<0)可用“区间法”求解,但要注意处理好有重根的情况.原不等式等价于 (x+4)(x+5)2(x-2)3>0∴原不等式解集为{x|x<-5或-5<x<-4或x>2}.【说明】用“穿针引线法”解不等式时应注意:①各一次项中x的系数必为正;②但注意“奇穿偶不穿”.其法如图(5-2).【例2】解下列不等式:解:(1)原不等式等价于用“穿针引线法”∴原不等式解集为(-∞,-2)∪〔-1,2)∪〔6,+∞).(2)【例3】解下列不等式1 x5x2)2(;3x1x1+>+-≤-)(解:(1)原不等式等价于∴原不等式解集为{x|x≥5}.(2)原不等式等价于【说明】 解无理不等式需从两方面考虑:一是要使根式有意义,即偶次根号下被开数大于或等于零;二是要注意只有两边都是非负时,两边同时平方后不等号方向才不变.【例4】 解下列不等式:解:(1)原不等式等价于令2x =t(t >0),则原不等式可化为(2)原不等式等价于∴原不等式解集为(-1,2〕∪〔3,6).【例5】 |x 2-4|<x+2.解:原不等式等价于-(x+2)<x 2-4<x+2.故原不等式解集为(1,3).这是解含绝对值不等式常用方法.【例6】 解不等式1)123(log 2122<-+-x x x . 解:原不等式等价于(1)当a >1时,①式等价于②(2)当0<a <1时,②等价于③。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

. 不等式的解法·典型例题
【例1】 (x+4)(x+5)2(2-x)3<0.【例2】解下列不等式:
【例3】解下列不等式
1
x
5
x2
)2(;3
x
1
x
1+
>
+
-

-


【例4】解下列不等式:
【例5】 |x 2-4|<x+2.
【例6】 解不等式1)123(log 2122<-+-x x x .
不等式·典型例题参考答案
【例1】 (x+4)(x+5)2(2-x)3<0.
【分析】如果多项式f(x)可分解为n个一次式的积,则一元高次不等式f(x)>0(或f(x)<0)可用“区间法”求解,但要注意处理好有重根的情况.
原不等式等价于(x+4)(x+5)2(x-2)3>0
∴原不等式解集为{x|x<-5或-5<x<-4或x>2}.
【说明】用“穿针引线法”解不等式时应注意:
①各一次项中x的系数必为正;
②但注意“奇穿偶不穿”.其法如图(5-2).
【例2】解下列不等式:
解:(1)原不等式等价于
用“穿针引线法”
∴原不等式解集为(-∞,-2)∪〔-1,2)∪〔6,+∞).(2)
【例3】解下列不等式
1
x
5
x2
)2(;3
x
1
x
1+
>
+
-

-


解:(1)原不等式等价于
∴原不等式解集为{x|x ≥5}.
(2)原不等式等价于
【说明】 解无理不等式需从两方面考虑:一是要使根式有意义,即偶次根号下被开数大
于或等于零;二是要注意只有两边都是非负时,两边同时平方后不等号方向才不变.
【例4】 解下列不等式:
解:(1)原不等式等价于
令2x =t(t >0),则原不等式可化为
(2)原不等式等价于
∴原不等式解集为(-1,2〕∪〔3,6).
【例5】 |x 2-4|<x+2.
解:原不等式等价于-(x+2)<x 2-4<x+2.
故原不等式解集为(1,3).
.
这是解含绝对值不等式常用方法.
【例6】 解不等式1)123(log 2122<-+-x x x . 解:原不等式等价于
(1)当a >1时,①式等价于

(2)当0<a <1时,②等价于

. 如有侵权请联系告知删除,感谢你们的配合!。

相关文档
最新文档