河南省郑州市思齐实验中学2014-2015学年高一1月月考数学试卷
河南省郑州市思齐实验中学高一英语1月月考试卷
河南省郑州市思齐实验中学2014-2015学年高一1月月考地英语试卷第一部分听力(共两节,满分30分)第一节(共5小题;每小题1.5分,满分7.5分)听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
1. What does the woman want to do?A. To have an X ray.B. To go to the hospital.C. To help the wounded man.2. Where and when will the meeting be held?A. Room 303,3:00 pm.B. Room 303,2:00 pm.C. Room 302,2:00 pm.3. When would Thomas and Lily like to leave?A. Tomorrow.B. Next Monday or Tuesday.C. This Monday.4. What is the man’s choice?A. He prefers train for trip.B. He doesn’t like traveling.C. Not mentioned.5. According to the woman, what should the man do at first?A. He should ask about the flat on the phone.B. He should read the advertisements for flats in the newspaper.C. He should phone and make an appointment.第二节(共15小题;每小题1.5分,满分22.5分)听下面5段对话或独白。
高一数学第一次月考试卷及答案
高一数学第一次月考试卷及答案上学期第一次考试高一数学试卷一、选择题(每小题5分;共60分)1.在下列四个关系中,错误的个数是()A。
1个 B。
2个 C。
3个 D。
4个2.已知全集U=R;集合A={x|y=-x};B={y|y=1-x^2};那么集合(C U A)B=()A。
(-∞,0] B。
(0,1) C。
(0,1] D。
[0,1)3.已知集合M={x|x=2kπ,k∈Z};N={x|x=2kπ+π,k∈Z};则(M ∩ N)'=()A。
M' ∪ N' B。
M' ∩ N' C。
(M ∪ N)' D。
(M ∩ N)'4.函数f(x)=x+(3a+1)x+2a在(-∞,4)上为减函数;则实数a 的取值范围是()A。
a≤-3 B。
a≤3 C。
a≤5 D。
a=-3/55.集合A,B各有两个元素;AB中有一个元素;若集合C 同时满足:(1) C∩(AB)={}。
(2) C⊊(AB);则满足条件C的个数为()A。
1 B。
2 C。
3 D。
46.函数y=-|x-5||x|的递减区间是()A。
(5,+∞) B。
(-∞,0) U (5,+∞) C。
(-∞,0) U (0,5) D。
(-∞,0) U (0,5)7.设M,P是两个非空集合;定义M与P的差集为M-P={x|x∈M且x∉P};则(M- (M-P))'=()A。
P' B。
M' C。
M ∩ P D。
M ∪ P8.若函数y=f(x)的定义域是[0,2];则函数g(x)=f((x-1)/2)的定义域是()A。
[0,1) U (1,2] B。
[0,1) U (1,4] C。
[0,1) D。
(1,4]9.不等式(a-4)x+(a+2)x-1≥0的解集是空集;则实数a的范围为()A。
(-∞,-2) U (2,+∞) B。
(-∞,-2] U [2,+∞) C。
[-2,+∞) D。
[-2,+∞) - {2}10.已知函数f(x)=begin{cases}2b-1)x+b-1.& x>\frac{b-1}{2b-1}\\x+(2-b)x。
河南省郑州市思齐实验中学2014-2015学年高一语文1月月考试卷
河南省郑州市思齐实验中学2014-2015学年高一1月月考语文试卷第Ⅰ卷阅读题(70分)一、现代文阅读(9分,每小题3分)阅读下面文字,完成1-3题。
①长江流域同黄河流域一样,很早就孕育着古老的文化。
楚民族兴起以后,其文化就成为这一地域文化的代表,并不断与中原文化交流。
春秋战国时代,北方的主要文化典籍,如《诗》《书》《礼》《乐》等,已成为楚国贵族诵习的对象。
但另一方面.楚文化始终保持着自身鲜明的特征,与中原文化有显著区别,因而楚人长期被中原国家看作野蛮的异族。
不过,一般认为楚文化比中原文化落后的看法,却不完全对。
楚文化的兴起也许比中原文化迟,但到了春秋战国时代,楚文化的落后,主要表现在国家制度不够成熟,尤其是用于维护统治秩序、等级关系的政治与伦理思想远不及北方文化完密。
——所以楚人需要引进有关的学说和典籍。
原始宗教——巫教的盛行,也可以看作楚文化落后的表现。
但在其它方面,楚文化不一定落后,甚互有许多地方远远超过中原文化。
②南方的生存环境较北方具有某些优越性,因此谋生较为容易,不需要组成强大的集体力量以克服自然,维护生存,所以楚国也没有形成像北方国家那样严密的宗法政治制度。
但另一方面.在这样的生活环境中,个人受集体的压抑较少.个体意识相应就比较强烈。
③以上原因,使楚国艺术高度发达,明显超过中原地区。
在中原文化中,艺术(包括音乐、舞蹈等)被当作调节群体生活、实现一定伦理目的的手段,中庸平和被视为艺术的极致。
而楚国的艺术,仍然在注重审美愉悦的方向上发展,充分展示出人们情感的活跃性。
楚地出土的各种器物,往往绘有艳丽华美图案。
楚国的音乐舞蹈,也显示出诡谲奇丽的气氛。
今湖北随县出土的一套具备五个半八度的编钟,证明了楚国音乐及歌舞的发达。
而北方的正统音乐,通常是限制在一个八度的音域范围内的。
④文学是广义艺术的一个方面。
以战国时楚国屈原的创作为代表的新诗体楚辞既是楚文化土壤上开出的奇葩,又代表了楚文化的辉煌成就。
河南省郑州市思齐实验中学2014-2015学年高一上学期第一次(10月)月考英语试卷
第一部分阅读理解(共两节,满分30分)第一节(共10小题;每小题2分,满分20分)AMany teenagers find it hard to make friends. It is NOT! Here are some ways for them.Make the first move.Don’t be shy, because it won’t help you in anything. Look around for someone that seems interesting, and then talk to them. A good subject to talk about to anyone is music, because almost everybody likes music. You can ask someone what kind of music they like and start a cool conversation with them and even find things in common. Other topics could be movies or sports. Keep away from those subjects like politics, religion, relationship problems and drama.Be nice. How do you expect them to like you if you are not nice? Put a calm smile on your face and find out what you and the person you are trying to befriend (与……交朋友) have in common. You’ll be able to be more comfortable (轻松的) if you find out that the other person has things in common with you.Be a good listener. Pay attention to what they say, look straight in their eyes and show you’re paying atten tion. It’s important to be a good listener, because everyone likes to be heard. If this person feels like you’re listening to them, your new friend will enjoy talking with you more.Develop friendships.You may talk to someone now but soon they’ll forget y ou if you stop. You’d better take a time to say hi to them every day and ask how they’re doing. Say their name s as often as you can. If you do that every day, they’ll be happy that you care about them and rememberthem, so they won’t forget you and they wi ll become your good friends.1. What’s the main idea of the text?A. How to help shy teenagers.B. How to make friends.C. Listen to others carefully.D. Being yourself is important.2. Which of the following is a good subject to start a conversation with a stranger?A. MusicB. PoliticsC. ReligionD. Drama3. When you listen to others speaking, you should _______.A. close your eyesB. stare at the groundC. nod your head oftenD. look straight in their eyes4. Which of the following is a good way to develop friendships?A. Ask others personal questions.B. Invite others to dinner every day.C. Say hello to others every day.D. Forget a bout others’ shortcomings.BI heard many parents complaining (抱怨) that their teenage children are rebelling (叛逆的). I wish it were so. At your age you ought to be growing away from your parents. You should be learning to stand on your own two feet. But take a good look at the present rebellion. It seems that teenagers are taking the same way of showing that they disagree with their parents. Instead of striking out boldly (大胆地) on their own, most of them are clutching (紧握) at one another’s hands for reassurance (安心).They claim (声称) they want to dress as they please. But they all wear the same clothes. They set off in new directions in music. But somehow they all end up huddling (聚在一起) round listening to the same record. Their reason for thinking or acting in thus-and-such a way is that the crowd is doing it. They have come out of their cocoon (蚕茧) into a larger cocoon.It has become harder and harder for a teenager to stand up against the popularity (流行) wave and to go his or her own way. Industry has firmly carved (雕刻) out a teenage market. These days every teenager can learn from the advertisements what a teenager should have and be. And many of today’s parents have come to award high marks for the popularity of their children. All this adds up to a great barrier for the teenager who wants to find his or her own path.But the barrier is worth climbing over. The path is worth following. You may want to listen to classical music instead of going to a party. You may want to collect rocks when everyone else iscollecting records. You may have some thoughts tha t you don’t care to share at once with your classmates. Well, go to it. Find yourself. Be yourself. Popularity will come –with the people who respect you for who you are. That is the only kind of popularity that really counts.5. In this passage, the author wants to tell _______.A. teenagers to try to find their real selvesB. readers to try to be popular with people aroundC. parents to try to control and guide their childrenD. people to try to understand and respect each other6. The author disapproves (不赞成) of rebelling teenagers _______.A. growing away from their parentsB. following the popularity trendC. walking a new way on their ownD. turning to their friends for help7. The phrase “larger cocoon” at the end of the second paragraph refers to _______.A. the parental care and loveB. the dazzling (眼花缭乱的) music worldC. the variable (易变的) societyD. the popularity wave in the societyCThe Top 4 Lies Girls Hear1. “You’ll never be good at math.”It’s generally accepted that boys are good at math while girls aren’t. The fact is that it isn’t true —at least, it doesn’t have to be. When girls reach their teens, most of them lose their interest in math. They’re trying to be regarded as female (女性). They want to stay away from things that are boy things, and math is still considered a boy thing. Math class is hard, but if you gave it a chance you could be great at math, especially because you are a girl.2. “Being skinny (骨瘦如柴的) is good, and how you diet (节食) is your business.”Lots of websites tell visitors that losing interest in eating is a beautiful thing. These “skinny is better” sites are lying. Losing interest in eating is a disease, not a fashion statement. It can kill you.3. “You don’t deserve to make as much money as a guy.”It’s said that in 2002 women who work full-time earn about 23 percent less than guys earn. Once you see real women succeeding in cool jobs, you’ll truly get that you’re worth just as much as — or more than any guys.4. “Caffeine (咖啡因) will help you study better.”Caffeinated soft drinks have long been advertised as must haves when you have to work very hard. But if you want to do your body a big favor, you’d better give up caffeine altogether.8. Why do girls lose their interest in math?A. Because they don’t realize the importance of math.B. Because math class is too hard for girls.C. Because they aren’t interested in the things which are considered boy things.D. Because girls are not as clever as boys.9. If in 2002 a man earns $20,000, how much will a woman doing the same job probably get?A. $25,000B. $20,000C. $10,000D. $15,00010. Which of the statements is NOT true?A. Girls sometimes can do better than boys in math.B. Being s kinny is good for girls’ health.C. Girls can earn as much money as boys do.D. Caffeine can make people feel more excited.第二节(共5小题;每小题2分,满分10分)根据短文内容,从短文后的选项中选出能填入空白处的最佳选项,选项中有两项为多余选项。
河南省郑州市思齐实验中学2014-2015学年高一上学期第一次月考数学试卷
河南省郑州市思齐实验中学2014-2015学年高一上学期第一次月考数学试卷一、选择题(本大题共12小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(4分)设集合A={a,b},B={b,c,d},则A∪B=()A.{b} B.{b,c,d} C.{a,c,d} D.{a,b,c,d}2.(4分)已知a=,A={x|x>,x∈R},则()A.a⊆A B.{a}⊊A C.{a}∈A D.{a}=A3.(4分)如图所示,U是全集,A,B是U的子集,则阴影部分所表示的集合是()A.A∩B B.A∪B C.B∩(∁U A)D.A∩(∁U B)4.(4分)下列各组函数表示同一函数的是()A.与y=x+3 B.与y=x﹣1C.y=x0(x≠0)与y=1(x≠0)D.y=2x+1,x∈Z与y=2x﹣1,x∈Z5.(4分)=()A.3B.1C.0D.﹣16.(4分)下列判断正确的是()A.1.72.5>1.73B.0.82<0.83C.D.1.70.3>0.90.37.(4分)已知函数y=f(x+1)定义域是,则y=f(2x﹣1)的定义域()A.B.C.D.8.(4分)已知f(x)=x5+ax3+bx﹣8,且f(﹣2)=10,那么f(2)等于()A.﹣26 B.﹣18 C.﹣10 D.109.(4分)已知集合P={x|x2=1},集合Q={x|ax=1},若Q⊆P,那么a的值是()A.1B.﹣1 C.1或﹣1 D.0,1或﹣110.(4分)函数f(x)=在其定义域内是()A.奇函数B.偶函数C.既奇又偶函数D.非奇非偶函数11.(4分)若对于任意实数x总有f(﹣x)=f(x),且f(x)在区间(﹣∞,﹣1上是递减的,则a 的取值范围是()A.a≥﹣3 B.a≤﹣3 C.a≤5 D.a≥3二、填空题(本大题共4小题,每小题4分,共16分,请把正确的答案填在题中的横线上)13.(4分)函数的定义域为.14.(4分)若f(x)是一次函数,且f=4x﹣1,则f(x)=.15.(4分)函数y=x2+2x﹣3在区间上的值域为.16.(4分)已知函数f(x)=为R上的增函数,则实数a取值的范围是.三、解答题(本大题共4小题,共36分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(8分)已知集合A={x|2﹣a≤x≤2+a},B={x|x≤1或x≥4}.(1)当a=1时,求A∪B;(2)若a>0,且A∩B=∅,求实数a的取值范围.18.(8分)已知f(x)的定义域为(0,+∞),且满足f(2)=1,f(xy)=f(x)+f(y),又当x2>x1>0时,f(x2)>f(x1).(1)求f(1)、f(4)、f(8)的值;(2)若有f(x)+f(x﹣2)≤3成立,求x的取值范围.19.(10分)函数是定义在(﹣1,1)上的奇函数,且.(1)确定函数的解析式;(2)证明函数f(x)在(﹣1,1)上是增函数;(3)解不等式f(t﹣1)+f(t)<0.20.(10分)已知函数f(x)=4x﹣2•2x+1﹣6,其中x∈.(1)求函数f(x)的最大值和最小值;(2)若实数a满足:f(x)﹣a≥0恒成立,求a的取值范围.河南省郑州市思齐实验中学2014-2015学年高一上学期第一次月考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(4分)设集合A={a,b},B={b,c,d},则A∪B=()A.{b} B.{b,c,d} C.{a,c,d} D.{a,b,c,d}考点:并集及其运算.专题:计算题.分析:由题意,集合A={a,b},B={b,c,d},由并运算的定义直接写出两集合的并集即可选出正确选项.解答:解:由题意A={a,b},B={b,c,d},∴A∪B={a,b,c,d}故选D.点评:本题考查并集及其运算,是集合中的基本计算题,解题的关键是理解并能熟练进行求并的计算.2.(4分)已知a=,A={x|x>,x∈R},则()A.a⊆A B.{a}⊊A C.{a}∈A D.{a}=A考点:元素与集合关系的判断.专题:集合.分析:显然,所以a∈A,根据子集的概念,所以{a}⊊A,所以B是正确的.解答:解:,∴a∈A,∴{a}⊆A.故选B.点评:考查描述法表示集合,元素与集合的关系,以及子集的概念.3.(4分)如图所示,U是全集,A,B是U的子集,则阴影部分所表示的集合是()A.A∩B B.A∪B C.B∩(∁U A)D.A∩(∁U B)考点:Venn图表达集合的关系及运算.专题:计算题.分析:由图可知(∁U A)∩B即为所求.解答:解:由图可知,阴影部分所表示的集合为(∁U A)∩B,故选C.点评:本题考查集合的交、并、补运算,考查识图能力,属于基础题.4.(4分)下列各组函数表示同一函数的是()A.与y=x+3 B.与y=x﹣1C.y=x0(x≠0)与y=1(x≠0)D.y=2x+1,x∈Z与y=2x﹣1,x∈Z考点:判断两个函数是否为同一函数.专题:函数的性质及应用.分析:分别判断两个函数的定义域和对应法则是否一致即可.解答:解:A.=x+3,(x≠3),两个函数的定义域不相同.不是同一函数.B.y=|x|﹣1,两个函数的对应法则不相同.不是同一函数.C.y=x0=1(x≠0).两个函数的定义域和对应法则相同.是同一函数.两个函数的定义域不相同.不是同一函数.D.两个函数的对应法则不相同.不是同一函数.故选:C.点评:本题主要考查判断两个函数是否为同一函数,判断的主要依据是判断两个函数的定义域和对应法则是否一致.5.(4分)=()A.3B.1C.0D.﹣1考点:函数的值;分段函数的解析式求法及其图象的作法.专题:计算题.分析:由f(x)=,知f=f(1),由此能够求出结果.解答:解:∵f(x)=,∴f=f(1)=1+2=3.故选A.点评:本题考查函数值的求法,是基础题.解题时要认真审题,仔细解答,注意分段函数的性质和应用.6.(4分)下列判断正确的是()A.1.72.5>1.73B.0.82<0.83C.D.1.70.3>0.90.3考点:指数函数单调性的应用.专题:计算题.分析:本题中四个选项中A,B,C三个是指数型函数,D选项中函数是幂函数类型的,依据相关的函数单调性验证那个判断是正确的即可.解答:解:对于选项A:考察函数y=1.7x性质知1.72.5<1.73,A不正确对于选项B:考察函数y=0.8x性质知0.82>0.83,B不正确对于选项C:考察函数y=πx性质知,C不正确对于选项D:考察函数y=X0.3性质知1.70.3>0.90.3,D正确由上分析知,判断正确的是D.故应选D.点评:本题的考点是指数函数单调性的应用,考查用函数的单调性比较大小,用单调性比较大小是函数单调性的一个重要应用.7.(4分)已知函数y=f(x+1)定义域是,则y=f(2x﹣1)的定义域()A.B.C.D.考点:函数的定义域及其求法.专题:函数的性质及应用.分析:根据题目给出的函数y=f(x+1)定义域,求出函数y=f(x)的定义域,然后由2x﹣1在f (x)的定义域内求解x即可得到函数y=f(2x﹣1)定义域解答:解:解:∵函数y=f(x+1)定义域为,∴x∈,则x+1∈,即函数f(x)的定义域为,再由﹣1≤2x﹣1≤4,得:0≤x≤,∴函数y=f(2x﹣1)的定义域为.故选A.点评:本题考查了函数的定义域及其求法,给出了函数y=f(x)的定义域为,求解y=f的定义域,只要让g(x)∈,求解x即可.8.(4分)已知f(x)=x5+ax3+bx﹣8,且f(﹣2)=10,那么f(2)等于()A.﹣26 B.﹣18 C.﹣10 D.10考点:奇函数.专题:计算题;转化思想.分析:函数f(x)不具备奇偶性,但其中g(x)=x5+ax3+bx是奇函数,则可充分利用奇函数的定义解决问题.解答:解:令g(x)=x5+ax3+bx,由函数奇偶性的定义,易得其为奇函数;则f(x)=g(x)﹣8所以f(﹣2)=g(﹣2)﹣8=10得g(﹣2)=18又因为g(x)是奇函数,即g(2)=﹣g(﹣2)所以g(2)=﹣18则f(2)=g(2)﹣8=﹣18﹣8=﹣26故选A.点评:本题较灵活地考查奇函数的定义.9.(4分)已知集合P={x|x2=1},集合Q={x|ax=1},若Q⊆P,那么a的值是()A.1B.﹣1 C.1或﹣1 D.0,1或﹣1考点:集合的包含关系判断及应用.专题:计算题;函数的性质及应用.分析:先化简P,再根据Q⊆P分情况对参数的取值进行讨论,即可求出参数a的取值集合.解答:解:∵P={x|x2=1}={1,﹣1},Q={x|ax=1},Q⊆P,∴当Q是空集时,有a=0显然成立;当Q={1}时,有a=1,符合题意;当Q={﹣1}时,有a=﹣1,符合题意;故满足条件的a的值为1,﹣1,0.故选D.点评:本题考查集合关系中的参数取值问题,解题的关键是根据包含关系的定义对集合Q的情况进行正确分类,本题求解中有一易错点,就是忘记讨论Q是空集的情况,分类讨论时一定注意不要漏掉情况.10.(4分)函数f(x)=在其定义域内是()A.奇函数B.偶函数C.既奇又偶函数D.非奇非偶函数考点:函数的定义域及其求法.专题:函数的性质及应用.分析:先求出函数定义域,然后根据奇偶函数的定义判断即可.解答:解:由2x﹣1≠0,得x≠0,∴函数f(x)的定义域为(﹣∞,0)∪(0,+∞),关于原点对称,又f(﹣x)===﹣=﹣f(x),故函数f(x)为奇函数,故选A.点评:本题考查函数的奇偶性的判断,属基础题,定义是解决该类问题的常用方法,应熟练掌握.11.(4分)若对于任意实数x总有f(﹣x)=f(x),且f(x)在区间(﹣∞,﹣1上是增函数,即可作出判断.解答:解:∵f(﹣x)=f(x),∴f(x)为偶函数,又f(x)在区间(﹣∞,﹣1上是递减的,则a的取值范围是()A.a≥﹣3 B.a≤﹣3 C.a≤5 D.a≥3考点:二次函数的性质;函数单调性的性质.专题:计算题;数形结合.分析:本题中的函数是一个二次函数,由于其在(﹣∞,4上是递减的,∴4≤1﹣a∴a≤﹣3故选B点评:本题的考点是二次函数的性质,考查由二次函数的性质得到相关参数的不等式,求解析式中的参数的取值范围,属于二次函数的基础考查题.二、填空题(本大题共4小题,每小题4分,共16分,请把正确的答案填在题中的横线上)13.(4分)函数的定义域为﹣4,﹣2)∪(﹣2,+∞)点评:求定义域经常遇到偶次开方时的被开方数一定非负,分母不为0,对数函数的真数一定要大于0的情况.14.(4分)若f(x)是一次函数,且f=4x﹣1,则f(x)=f(x)=2x﹣或﹣2x+1.考点:函数解析式的求解及常用方法.专题:计算题.分析:利用待定系数法求解该函数的解析式是解决本题的关键.结合着复合函数表达式的求解,根据多项式相等即对应各项的系数相等得出关于一次项系数和常数项的方程组,通过方程思想求解出该函数的解析式.解答:解:设f(x)=kx+b(k≠0),则f=f(kx+b)=k(kx+b)+b=k2x+kb+b=4x﹣1,根据多项式相等得出,解得或.因此所求的函数解析式为:f(x)=2x﹣或﹣2x+1.故答案为:f(x)=2x﹣或﹣2x+1.点评:本题考查函数解析式的求解,考查确定函数解析式的待定系数法.学生只要设出一次函数的解析式的形式,寻找关于系数的方程或方程组,通过求解方程是不难求出该函数的解析式的.属于函数中的基本题型.15.(4分)函数y=x2+2x﹣3在区间上的值域为.考点:二次函数在闭区间上的最值.专题:计算题;函数的性质及应用.分析:将二次函数y=x2+2x﹣3配方,结合图象性质,求出最大值和最小值.解答:解:y=x2+2x﹣3=(x+1)2﹣4,抛物线的开口向上,对称轴为x=﹣1,在区间上,x=﹣1时,y有最小值﹣4,x=﹣3时,y有最大值0,故y的值域为:;故答案为:.点评:本题考查二次函数的闭区间上的最值的求法,利用配方法,注意函数的对称轴和区间是解题的关键,考查计算能力.16.(4分)已知函数f(x)=为R上的增函数,则实数a取值的范围是2,3).点评:本题主要考查函数的单调性的定义和性质,属于中档题.三、解答题(本大题共4小题,共36分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(8分)已知集合A={x|2﹣a≤x≤2+a},B={x|x≤1或x≥4}.(1)当a=1时,求A∪B;(2)若a>0,且A∩B=∅,求实数a的取值范围.考点:并集及其运算;交集及其运算.专题:集合.分析:(1)当a=1时,A={x|1≤x≤3},B={x|x≤1或x≥4},由此能求出AUB.(2)由A∩B=∅,得,由此能求出0<a<1.解答:解:(1)∵当a=1时,A={x|1≤x≤3},B={x|x≤1或x≥4},∴AUB={x|x≤3或4≤x}.(4分)(2)∵A∩B=∅,又A={x|2﹣a≤x≤2+a}(a>0),B={x|x≤1或x≥4},∴,解得0<a<1.(8分)点评:本题考查并集的求法,考查实数的取值范围的求法,解题时要注意集合性质的合理运用.18.(8分)已知f(x)的定义域为(0,+∞),且满足f(2)=1,f(xy)=f(x)+f(y),又当x2>x1>0时,f(x2)>f(x1).(1)求f(1)、f(4)、f(8)的值;(2)若有f(x)+f(x﹣2)≤3成立,求x的取值范围.考点:抽象函数及其应用;函数单调性的性质.专题:函数的性质及应用.分析:(1)由f(xy)=f(x)+f(y),通过赋值法即可求得f(1),f(4),f(8)的值;(2)由“x2>x1>0时,f(x2)>f(x1)”可知f(x)在定义域(0,+∞)上为增函数,从而f≤f(8)可脱去函数“外衣”,求得x的取值范围.解答:解:(1)f(1)=f(1)+f(1),∴f(1)=0,f(4)=f(2)+f(2)=1+1=2,f(8)=f(2)+f(4)=2+1=3.(2)∵f(x)+f(x﹣2)≤3,∴f≤f(8),又∵对于函数f(x)有x2>x1>0时f(x2)>f(x1),∴f(x)在(0,+∞)上为增函数.∴解得2<x≤4∴x的取值范围为(2,40,31,81,22,8…(14分)点评:本题以指数函数的值域为载体,主要考查了二次函数在闭区间上的最值的求解,及函数的恒成立与函数最值的相互转化关系的应用.。
2014-2015年河南省实验中学高一(下)期中数学试卷和答案
2014-2015学年河南省实验中学高一(下)期中数学试卷一.选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)若sinθ>0,cosθ<0,,则θ所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限2.(5分)已知sinα=﹣,且α是第三象限角,则sin2α﹣tanα=()A.B.C.D.3.(5分),向量与的位置关系为()A.垂直B.平行C.夹角为D.不平行也不垂直4.(5分)函数f(x)=sinxcosx+cos2x的最小正周期和振幅分别是()A.π,1B.π,2C.2π,1D.2π,25.(5分)=()A.﹣B.﹣C.D.6.(5分)圆弧长度等于圆内接正三角形的边长,则其圆心角弧度数为()A.B.C.D.27.(5分)平面直角坐标系中,O为坐标原点,已知两点A(3,1)、B(﹣1,3),若点C满足=α+β,其中α、β∈R,且α+β=1,则点C的轨迹方程为()A.3x+2y﹣11=0B.(x﹣1)2+(y﹣2)2=5C.2x﹣y=0D.x+2y﹣5=08.(5分)在△ABC中,=2,=,=,=,则下列等式成立的是()A.=2﹣B.=2﹣C.=﹣D.=﹣9.(5分)点P是△ABC所在平面内的一点,且满足,则△PAC的面积与△ABC的面积之比为()A.B.C.D.10.(5分)已知ω>0,0<φ<π,直线x=和x=是函数f(x)=sin(ωx+φ)图象的两条相邻的对称轴,则φ=()A.B.C.D.11.(5分)已知tanα=,tan(α﹣β)=﹣,那么tan(β﹣2α)的值是()A.﹣B.C.D.12.(5分)若函数f(x)=2sin()(﹣2<x<10)的图象与x轴交于点A,过点A的直线l与函数的图象交于B、C两点,则(+)•=()A.﹣32B.﹣16C.16D.32二.填空题(本大题共4小题,每小题5分,共20分)13.(5分)设α∈(0,),若tan(α+)=2cos2α,则α=.14.(5分)已知向量与的夹角为120°,且||=||=4,那么|﹣3|等于.15.(5分)已知,试求sin2α+3sinα•cosα﹣1的值为.16.(5分)函数f(x)=3sin(2x﹣)的图象为C,如下结论中正确的是①图象C关于直线x=π对称;②图象C关于点(,0)对称;③函数即f(x)在区间(﹣,)内是增函数;④由y=3sin2x的图角向右平移个单位长度可以得到图象C.三、解答题(本小题共70分,解答应写出文字说明、证明过程或演算步骤)17.(10分)设两个非零向量与不共线.(1)若=+,=2+8,=3(﹣).求证:A,B,D三点共线;(2)试确定实数k,使k+和+k共线.18.(12分)已知点A(4,0)、B(0,4)、C(3cosα,3sinα).(1)若α∈(0,π),且||=||,求α的大小;(2),求的值.19.(12分)已知函数,点A、B分别是函数y=f (x)图象上的最高点和最低点.(1)求点A、B的坐标以及的值;(2)设点A、B分别在角α、β的终边上,求tan(α﹣2β)的值.20.(12分)设函数(其中ω>0),且函数f(x)图象的两条相邻的对称轴间的距离为.(1)求ω的值;(2)将函数y=f(x)的图象上各点横坐标伸长到原来的2倍,纵坐标不变,得到函数y=g(x)的图象,求函数g(x)在区间的最大值和最小值.21.(12分)函数f(x)=sin2x﹣﹣(1)若x属于[,],求f(x)的最值及对应的x值;(2)若不等式[f(x)﹣m]2<1在x上恒成立,求实数m的取值范围.22.(12分)已知向量=(sin x,1),=(4cos x,2cosx),设函数f(x)=•.(1)求函数f(x)的解析式.(2)求函数f(x),x∈[﹣π,π]的单调递增区间.(3)设函数h(x)=f(x)﹣k(k∈R)在区间[﹣π,π]上的零点的个数为n,试探求n的值及对应的k的取值范围.2014-2015学年河南省实验中学高一(下)期中数学试卷参考答案与试题解析一.选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)若sinθ>0,cosθ<0,,则θ所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:由题意,根据三角函数的定义sinθ=,cosθ=∵r>0,∴y>0,x<0.∴θ在第二象限,故选:B.2.(5分)已知sinα=﹣,且α是第三象限角,则sin2α﹣tanα=()A.B.C.D.【解答】解:∵sinα=﹣,且α是第三象限角,∴cosα=﹣=﹣,tanα=,则原式=2sinαcosα﹣tanα=2×(﹣)×(﹣)﹣=,故选:C.3.(5分),向量与的位置关系为()A.垂直B.平行C.夹角为D.不平行也不垂直【解答】解:由于==0所以向量与的位置关系是垂直.故选:A.4.(5分)函数f(x)=sinxcosx+cos2x的最小正周期和振幅分别是()A.π,1B.π,2C.2π,1D.2π,2【解答】解:f(x)=sin2x+cos2x=sin(2x+),∵﹣1≤sin(2x+)≤1,∴振幅为1,∵ω=2,∴T=π.故选:A.5.(5分)=()A.﹣B.﹣C.D.【解答】解:===sin30°=.故选:C.6.(5分)圆弧长度等于圆内接正三角形的边长,则其圆心角弧度数为()A.B.C.D.2【解答】解:如图,等边三角形ABC是半径为r的圆O的内接三角形,则线AB所对的圆心角∠AOB=,作OM⊥AB,垂足为M,在rt△AOM中,AO=r,∠AOM=,∴AM=r,AB=r,∴l=r,由弧长公式l=|α|r,得,α===.故选:C.7.(5分)平面直角坐标系中,O为坐标原点,已知两点A(3,1)、B(﹣1,3),若点C满足=α+β,其中α、β∈R,且α+β=1,则点C的轨迹方程为()A.3x+2y﹣11=0B.(x﹣1)2+(y﹣2)2=5C.2x﹣y=0D.x+2y﹣5=0【解答】解:C点满足=α+β且α+β=1,∴A、B、C三点共线.∴C点的轨迹是直线AB又A(3,1)、B(﹣1,3),∴直线AB的方程为:整理得x+2y﹣5=0故C点的轨迹方程为x+2y﹣5=0故选:D.8.(5分)在△ABC中,=2,=,=,=,则下列等式成立的是()A.=2﹣B.=2﹣C.=﹣D.=﹣【解答】解:如图所示,∵,,,∴,∴,化为.故选:D.9.(5分)点P是△ABC所在平面内的一点,且满足,则△PAC的面积与△ABC的面积之比为()A.B.C.D.【解答】解:,∵∴∴==即,故P点是线段BC的靠近C点的三等分点,则△PAC的面积与△ABC的面积之比为故选:C.10.(5分)已知ω>0,0<φ<π,直线x=和x=是函数f(x)=sin(ωx+φ)图象的两条相邻的对称轴,则φ=()A.B.C.D.【解答】解:因为直线x=和x=是函数f(x)=sin(ωx+φ)图象的两条相邻的对称轴,所以T==2π.所以ω=1,并且sin(+φ)与sin(+φ)分别是最大值与最小值,0<φ<π,所以φ=.故选:A.11.(5分)已知tanα=,tan(α﹣β)=﹣,那么tan(β﹣2α)的值是()A.﹣B.C.D.【解答】解;∵tan,∴tan(β﹣2α)=﹣tan(2α﹣β)=﹣tan[(α﹣β)+α]=﹣=﹣=﹣.故选:B.12.(5分)若函数f(x)=2sin()(﹣2<x<10)的图象与x轴交于点A,过点A的直线l与函数的图象交于B、C两点,则(+)•=()A.﹣32B.﹣16C.16D.32【解答】解:由f(x)=2sin()=0可得∴x=6k﹣2,k∈Z∵﹣2<x<10∴x=4即A(4,0)设B(x1,y1),C(x2,y2)∵过点A的直线l与函数的图象交于B、C两点∴B,C 两点关于A对称即x1+x2=8,y1+y2=0则(+)•=(x1+x2,y1+y2)•(4,0)=4(x1+x2)=32故选:D.二.填空题(本大题共4小题,每小题5分,共20分)13.(5分)设α∈(0,),若tan(α+)=2cos2α,则α=arctan(2﹣).【解答】解:∵tan(α+)=2cos2α,∴,∵α∈(0,),∴tan2α﹣4tanα+1=0,∴tanα=2﹣,∴α=arctan(2﹣),故答案为:arctan(2﹣).14.(5分)已知向量与的夹角为120°,且||=||=4,那么|﹣3|等于.【解答】解:由题意可得=||•||cos120°=16×(﹣)=﹣8.∴|﹣3|====,故答案为:.15.(5分)已知,试求sin2α+3sinα•cosα﹣1的值为﹣.【解答】解:∵==﹣1,即tanα﹣2=﹣3tanα﹣5,∴tanα=﹣,则原式====﹣,故答案为:﹣.16.(5分)函数f(x)=3sin(2x﹣)的图象为C,如下结论中正确的是①②③①图象C关于直线x=π对称;②图象C关于点(,0)对称;③函数即f(x)在区间(﹣,)内是增函数;④由y=3sin2x的图角向右平移个单位长度可以得到图象C.【解答】解:①、把代入得,,故①正确;②、把x=代入得,,故②正确;③、当时,求得,故③正确;④、有条件得,,故④不正确.故答案为:①②③.三、解答题(本小题共70分,解答应写出文字说明、证明过程或演算步骤)17.(10分)设两个非零向量与不共线.(1)若=+,=2+8,=3(﹣).求证:A,B,D三点共线;(2)试确定实数k,使k+和+k共线.【解答】解:(1)∵===,∴与共线两个向量有公共点B,∴A,B,D三点共线.(2)∵和共线,则存在实数λ,使得=λ(),即,∵非零向量与不共线,∴k﹣λ=0且1﹣λk=0,∴k=±1.18.(12分)已知点A(4,0)、B(0,4)、C(3cosα,3sinα).(1)若α∈(0,π),且||=||,求α的大小;(2),求的值.【解答】解:(1)点A(4,0)、B(0,4)、C(3cosα,3sinα).α∈(0,π),且||=||,可得:(3cosα﹣4)2+(3sinα﹣0)2=(3cosα)2+(3sinα﹣4)2,可得:﹣24cosα=﹣24sinα,即tanα=1,∴α=(2)=(3cosα﹣4,3sinα),=(3cosα,3sinα﹣4),,可得:9cos2α﹣12cosα+9sin2α﹣12sinα=0,sinα+cosα=.∴1+2sinαcosα=,∴2sinαcosα===2sinαcosα=19.(12分)已知函数,点A、B分别是函数y=f (x)图象上的最高点和最低点.(1)求点A、B的坐标以及的值;(2)设点A、B分别在角α、β的终边上,求tan(α﹣2β)的值.【解答】解:(1)∵0≤x≤5,∴,…(1分)∴.…(2分)当,即x=1时,,f(x)取得最大值2;当,即x=5时,,f(x)取得最小值﹣1.因此,点A、B的坐标分别是A(1,2)、B(5,﹣1).…(4分)∴.…(6分)(2)∵点A(1,2)、B(5,﹣1)分别在角α、β的终边上,∴tanα=2,,…(8分)∵,…(10分)∴.…(12分)20.(12分)设函数(其中ω>0),且函数f(x)图象的两条相邻的对称轴间的距离为.(1)求ω的值;(2)将函数y=f(x)的图象上各点横坐标伸长到原来的2倍,纵坐标不变,得到函数y=g(x)的图象,求函数g(x)在区间的最大值和最小值.【解答】解:(1)由于=.…(3分)∵函数f(x)图象的两条相邻的对称轴间的距离为,∴.…(5分)∴ω=2.…(6分)(2)由(1)得f(x)=,∴g(x)=.…(8分)由x∈可得,…(10分)∴当,即x=时,g(x)取得最大值为;当,即x=时,g(x)取得最小值为.…(12分)21.(12分)函数f(x)=sin2x﹣﹣(1)若x属于[,],求f(x)的最值及对应的x值;(2)若不等式[f(x)﹣m]2<1在x上恒成立,求实数m的取值范围.【解答】解:(1)f(x)=sin2x﹣﹣=sin(2x﹣)﹣1,∵x属于[,],∴2x﹣∈[,],∴2x﹣=,即x=时,函数取得最小值﹣;2x﹣=,即x=时,函数取得最大值0;(2)[f(x)﹣m]2<1等价于m﹣1<f(x)<m+1,∵不等式[f(x)﹣m]2<1在x上恒成立,∴,∴﹣1<m<.22.(12分)已知向量=(sin x,1),=(4cos x,2cosx),设函数f(x)=•.(1)求函数f(x)的解析式.(2)求函数f(x),x∈[﹣π,π]的单调递增区间.(3)设函数h(x)=f(x)﹣k(k∈R)在区间[﹣π,π]上的零点的个数为n,试探求n的值及对应的k的取值范围.【解答】解:(1)函数f(x)=•=4sin cos+2cosx=2sinx+2cosx=4sin(x+).(2)令2kπ﹣≤x+≤2kπ+,k∈z,求得2kπ﹣≤x≤2kπ+,k∈z.再结合x∈[﹣π,π]可得函数的增区间为[﹣,].(3)∵函数h(x)=f(x)﹣k(k∈R)在区间[﹣π,π]上的零点的个数为n,即函数y=f(x)的图象和直线y=k在区间[﹣π,π]上的零点的个数为n,结合函数f(x)的图象可得:当k>4,或k<﹣4时,n=0;当k=4,或k=﹣4时,n=1;当﹣4<k<﹣2,或﹣2<k<4时,n=2;当k=﹣2时,n=3.。
河南省郑州市2014-2015学年上期期末高一数学试题卷(含答案)(K12教育文档)
河南省郑州市2014-2015学年上期期末高一数学试题卷(含答案)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(河南省郑州市2014-2015学年上期期末高一数学试题卷(含答案)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为河南省郑州市2014-2015学年上期期末高一数学试题卷(含答案)(word版可编辑修改)的全部内容。
郑州市2014-2015学年上期期末考试高 一 数 学 试 题 卷考试时间120分钟一、选择题(本大题共12小题,每小题5分,共60分。
在每小题所给出的四个选项中,只有一项是符合题目要求的)1。
已知集合={2014,2015}A ,非空集合B 满足{20142015}A B =, ,则满足条件的集合B 的个数是A 。
1 B. 2 C. 3 D. 4 2. 下列函数中与函数3y x = 相等的是A 。
y =y =63x y x= D 。
6y =3.已知集合={1,2,3}B=A , {,}x y ,则从A 到B 的映射共有A 。
6个B 。
5个 C. 8个 D 。
9个 4。
下列命题正确的是A. 有两个平面平行,其余各面都是四边形的几何体叫棱柱 B 。
六条棱长均相等的四面体是正四面体C 。
有两个平面平行,其余各面都是平行四边形的几何体叫棱柱D 。
用一个平面去截圆锥,底面与截面之间的部分组成的几何体叫圆台 5.已知一个圆的方程满足:圆心在点(3,4)- ,且经过原点,则它的方程为 A.22(3)(4)5x y -+-= B. 22(+3)(+4)25x y += C. 22(3)(+4)5x y -+= D. 22(+3)(4)25x y +-= 6.下列命题中不是公理的是A 。
2014-2015学年河南省郑州市思齐实验中学高一(上)第一次月考物理试卷(10月份)
a=﹣2m/s2,故 A 正确,B 错误.
1 C、质点在前两秒内的位移 x=������0 ������ + 2 ������������2 = 4 × 2 − 4������ = 4������,故 C 正确. 1 D、质点在前三秒内的位移������ = ������0 ������ + 2 ������������ 2 = 4 × 3 − 9������ = 3������.故 D 错误.
加速度的方向就是物体速度变化量的方向,与物体速度无关,即物体的速度变化 越快物体的加速度越大.加速度是表示速度变化快慢的物理量. 【解答】解:A、如果物体加速度方向与速度方向相同,加速度在减小,速度却 在增大,即速度增大得越来越慢,故 A 错误; B、 物体的速度为零时, 加速度不一定为零, 例如竖直上抛到最高点, 故 B 错误; C、根据 a=
第 1 页(共 12 页)
)
)
)
6. (3 分)质点做直线运动的 v﹣t 图象如图所示,则(
)
A.在 1~3s 内质点做匀变速直线运动 B.在 1~3s 内质点的加速度 a=﹣2m/s2 C.在 2~3s 内质点的运动方向与规定的正方向相反,加速度方向同 1~2s 内的 加速度方向相同 D.以上说法均不正确 7. (3 分)质点在直线上运动,位移与时间的关系为 x=4t﹣t2,式中 x 的单位是 m,t 的单位是 s,则( A.质点的初速度是 4m/s ) B.质点的加速度﹣1m/s2
△������ △������ 0−2 1
2014-2015年河南省郑州市五校联考高一(上)期中数学试卷及参考答案
A.f(x)=x B.f(x)=x3 C.f(x)=( )x D.f(x)=3x
9.(5 分)小路、小华与小敏三位同学讨论一道数学题,当他们每个人都把自己 的解法说出来以后,小路说:“我做错了,”小华说:“小路做对了,”小敏说:“我 做错了.”老师看过他们的答案并听了他们以上的陈述之后说:“你们三位同学中 只有一人做对了,只有一人说对了.”那么请问:根据老师的回答,谁做对了呢? ()
【解答】解:由所给的表格可得 f(3)=﹣3.5,f(2)=2.9,f(2)f(3)<0,
根据函数零点的判定定理可得函数 f(x)一定存在零点的区间是(2,3),
故选:C.
2014-2015 学年河南省郑州市五校联考高一(上)期中数 学试卷
参考答案与试题解析
一、选择题(每小题 5 分,共 60 分)
1.(5 分)若 A={x|0<x< },B={x|1≤x<2},则 A∪B=( )
A.{x|x≤0} B.{x|x≥2} C.
D.{x|0<x<2}
【解答】解:由
,B={x|1≤x<2},
A.1 个 B.2 个 C.3 个 D.4 个 12.(5 分)已知函数 f(x)=|log3(x﹣1)|﹣( )x﹣1 有 2 个不同的零点 x1、
x2,则( ) A.x1•x2<1 B.x1•x2=x1+x2 C.x1•x2>x1+x2 D.x1•x2<x1+x2
二、填空题(本大题有 4 小题,每小题 5 分,共 20 分)
A.小路 B.小华 C.小敏 D.不能确定
10.(5 分)已知 a=π ,b=logπ3,c=ln( ﹣1),d=logπ ,则 a,b,c,d 的大小关系是( ) A.a<b<c<d B.c<d<b<a C.d<c<b<a D.d<b<a<c 11.(5 分)如图下面的四个容器高度都相同,将水从容器顶部一个孔中以相同 的速度注入其中,注满为止.用下面对应的图象显示该容器中水面的高度 h 和时 间 t 之间的关系,其中不正确的有( )
2014-2015学年河南省郑州市高一(上)数学期末试卷 及解析
2014-2015学年河南省郑州市高一(上)期末数学试卷一、选择题(本大题共14个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5.00分)80﹣lg100的值为()A.2 B.﹣2 C.﹣1 D.2.(5.00分)点(1,2)到直线y=2x+1的距离为()A.B.C.D.23.(5.00分)过点(1,0)且与直线x﹣2y﹣2=0平行的直线方程是()A.x﹣2y﹣1=0 B.x﹣2y+1=0 C.2x+y﹣2=0 D.x+2y﹣1=04.(5.00分)一个几何体的三视图如图所示,其中主(正)视图是边长为2的正三角形,俯视图是正方形,那么该几何体的左(侧)视图的面积是()A.2 B.C.4 D.25.(5.00分)若函数f(x)=,则f(f(e))(其中e为自然对数的底数)=()A.0 B.1 C.2 D.eln26.(5.00分)两圆x2+y2﹣1=0和x2+y2﹣4x+2y﹣4=0的位置关系是()A.内切B.相交C.外切D.外离7.(5.00分)在同一坐标系中,当0<a<1时,函数y=a﹣x与y=log a x的图象是()A.B. C. D.8.(5.00分)三个数20.3,0.32,log0.32的大小顺序是()A.0.32<log0.32<20.3B.0.32<20.3<log0.32C.log0.32<20.3<0.32D.log0.32<0.32<20.39.(5.00分)函数y=log2(x2﹣3x+2)的递减区间是()A.(﹣∞,1)B.(2,+∞)C.(﹣∞,) D.(,+∞)10.(5.00分)函数y=的值域是()A.[0,+∞)B.[0,4]C.(0,4) D.[0,4)11.(5.00分)已知互不相同的直线l,m,n与平面α,β,则下列叙述错误的是()A.若m∥l,n∥l,则m∥n B.若m∥α,n∥α,则m∥nC.若m⊥α,m∥β,则α⊥βD.若m⊥β,α⊥β,则m∥α或m⊂α12.(5.00分)偶函数f(x)的定义域为R,当x∈[0,+∞)时,f(x)是增函数,则不等式f(x)>f(1)的解集是()A.(1,+∞)B.(﹣∞,﹣1)∪(1,+∞).C.(﹣∞,) D.(,+∞)13.(5.00分)函数f(x)=x﹣的零点所在的区间是()A.(0,)B.(,)C.(,)D.(,1)14.(5.00分)已知圆C的圆心是直线x+y+1=0与直线x﹣y﹣1=0的交点,直线3x+4y﹣11=0与圆C相交于A,B两点,且|AB|=6,则圆C的方程为()A.x2+(y+1)2=18 B.x2+(y﹣1)2=3C.(x﹣1)2+y2=18 D.(x﹣1)2+y2=3二、填空题:本大题共4小题,每小题4分,共16分,把答案填在答题卷的横线上..15.(4.00分)已知直线l在y轴上的截距为1,且垂直于直线y=x,则l的方程是.16.(4.00分)已知圆锥的母线长是10,侧面展开图是半圆,则该圆锥的侧面积为.17.(4.00分)已知各顶点都在同一球面上的正四棱柱高为4,体积为16,则这个球的体积为.18.(4.00分)下列命题中:①若集合A={x|kx2+4x+4=0}中只有一个元素,则k=1;②已知函数y=f(3x)的定义域为[﹣1,1],则函数y=f(x)的定义域为(﹣∞,0);③函数y=在(﹣∞,0)上是增函数;④方程2|x|=log2(x+2)+1的实根的个数是2.所有正确命题的序号是(请将所有正确命题的序号都填上)三、解答题:本大题共5小题,满分64分,解答应写出文字说明、证明过程或演算步骤19.(12.00分)已知集合A={x|3≤x<6},B={x|2<x<9}(1)求A∩B,(∁R B)∪A;(2)已知C={x|a<x<a+1},若C⊆B,求实数a的取值的集合.20.(12.00分)已知函数.(Ⅰ)若g(x)=f(x)﹣a为奇函数,求a的值;(Ⅱ)试判断f(x)在(0,+∞)内的单调性,并用定义证明.21.(13.00分)如图,正四棱锥S﹣ABCD的底面是边长为a的正方形,侧棱长是底面边长为倍,O为底面对角线的交点,P为侧棱SD上的点.(1)求证:AC⊥SD;(2)F为SD的中点,若SD⊥平面PAC,求证:BF∥平面PAC.22.(13.00分)某厂借嫦娥奔月的东风,推出品牌为“玉兔”的新产品,生产“玉兔”的固定成本为20000元,每生产一件“玉兔”需要增加投入100元,根据初步测算,总收益(单位:元)满足分段函数φ(x),其中φ(x)=,x是“玉兔”的月产量(单位:件),总收益=成本+利润(1)试将利润用y元表示为月产量x的函数;(2)当月产量x为多少件时利润最大?最大利润是多少?23.(14.00分)已知圆C过坐标原点O,且与x轴,y轴分别交于点A,B,圆心坐标C(t,)(t∈R,t≠0)(1)求证:△AOB的面积为定值;(2)直线2x+y﹣4=0与圆C交于点M,N,若|OM|=|ON|,求圆C的方程;(3)在(2)的条件下,设P,Q分别是直线l:x+y+2=0和圆C上的动点,求|PB|+|PQ|的最小值及此时点P的坐标.2014-2015学年河南省郑州市高一(上)期末数学试卷参考答案与试题解析一、选择题(本大题共14个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5.00分)80﹣lg100的值为()A.2 B.﹣2 C.﹣1 D.【解答】解;80﹣lg100=1﹣2=﹣1,故选:C.2.(5.00分)点(1,2)到直线y=2x+1的距离为()A.B.C.D.2【解答】解:由点到直线的距离公式d==,故选:A.3.(5.00分)过点(1,0)且与直线x﹣2y﹣2=0平行的直线方程是()A.x﹣2y﹣1=0 B.x﹣2y+1=0 C.2x+y﹣2=0 D.x+2y﹣1=0【解答】解:设直线方程为x﹣2y+c=0,又经过(1,0),∴1﹣0+c=0故c=﹣1,∴所求方程为x﹣2y﹣1=0;故选:A.4.(5.00分)一个几何体的三视图如图所示,其中主(正)视图是边长为2的正三角形,俯视图是正方形,那么该几何体的左(侧)视图的面积是()A.2 B.C.4 D.2【解答】解:由题意可知左视图与主视图形状完全一样是正三角形,因为主(正)视图是边长为2的正三角形,所以几何体的左(侧)视图的面积S==故选:B.5.(5.00分)若函数f(x)=,则f(f(e))(其中e为自然对数的底数)=()A.0 B.1 C.2 D.eln2【解答】解:∵函数f(x)=,∴f(e)=lne=1,∴f(f(e))=f(1)=21=2.故选:C.6.(5.00分)两圆x2+y2﹣1=0和x2+y2﹣4x+2y﹣4=0的位置关系是()A.内切B.相交C.外切D.外离【解答】解:圆x2+y2﹣1=0表示以O1(0,0)点为圆心,以R1=1为半径的圆;圆x2+y2﹣4x+2y﹣4=0表示以O2(2,﹣1)点为圆心,以R2=3为半径的圆;∵|O1O2|=∴R2﹣R1<|O1O2|<R2+R1,∴圆x2+y2﹣1=0和圆x2+y2﹣4x+2y﹣4=0相交故选:B.7.(5.00分)在同一坐标系中,当0<a<1时,函数y=a﹣x与y=log a x的图象是()A.B. C. D.【解答】解:当0<a<1时,y=a﹣x是过(0,1)点的增函数,y=log a x是过(1,0)点的减函数,综上答案为C.故选:C.8.(5.00分)三个数20.3,0.32,log 0.32的大小顺序是()A.0.32<log0.32<20.3B.0.32<20.3<log0.32C.log0.32<20.3<0.32D.log0.32<0.32<20.3【解答】解:∵20.3>1,0<0.32<1,log0.32<0,∴log0.32<0.32<20.3,故选:D.9.(5.00分)函数y=log2(x2﹣3x+2)的递减区间是()A.(﹣∞,1)B.(2,+∞)C.(﹣∞,) D.(,+∞)【解答】解:由x2﹣3x+2>0,得x<1或x>2,设t=x2﹣3x+2,则y═log2t为增函数,则根据复合函数单调性之间的关系知要求函数y=log2(x2﹣3x+2)的递减区间,即求函数t=x2﹣3x+2的递减区间,∵t=x2﹣3x+2的递减区间为(﹣∞,1),∴函数y=log2(x2﹣3x+2)的递减区间是(﹣∞,1),故选:A.10.(5.00分)函数y=的值域是()A.[0,+∞)B.[0,4]C.(0,4) D.[0,4)【解答】解:当x=2时,函数有最小值0,当x趋向于﹣∞时,y趋向于4,函数y=的值域是[0,4)故选:D.11.(5.00分)已知互不相同的直线l,m,n与平面α,β,则下列叙述错误的是()A.若m∥l,n∥l,则m∥n B.若m∥α,n∥α,则m∥nC.若m⊥α,m∥β,则α⊥βD.若m⊥β,α⊥β,则m∥α或m⊂α【解答】解:若m∥l,n∥l,则由平行公理得m∥n,故A正确;若m∥α,n∥α,则m与n相交、平行或异面,故B错误;若m⊥α,m∥β,则由平面与平面垂直的判定定理得α⊥β,故C正确;若m⊥β,α⊥β,则由平面与平面垂直的性质得m∥α或m⊂α,故D正确.故选:B.12.(5.00分)偶函数f(x)的定义域为R,当x∈[0,+∞)时,f(x)是增函数,则不等式f(x)>f(1)的解集是()A.(1,+∞)B.(﹣∞,﹣1)∪(1,+∞).C.(﹣∞,) D.(,+∞)【解答】解:∵f(x)是偶函数有f(|x|)=f(x),∴不等式f(x)>f(1)可转化为f(|x|)>f(1),又当x∈[0,+∞)时,f(x)是增函数,∴|x|>1,即x>1或x<﹣1,则解集为(﹣∞,﹣1)∪(1,+∞).故选:B.13.(5.00分)函数f(x)=x﹣的零点所在的区间是()A.(0,)B.(,)C.(,)D.(,1)【解答】解:若f(x)=x﹣=0,则x=,得x=,令g(x)=x﹣,可得g()=﹣<0,g()=﹣>0,因此f(x)零点所在的区间是(,).故选:C.14.(5.00分)已知圆C的圆心是直线x+y+1=0与直线x﹣y﹣1=0的交点,直线3x+4y﹣11=0与圆C相交于A,B两点,且|AB|=6,则圆C的方程为()A.x2+(y+1)2=18 B.x2+(y﹣1)2=3C.(x﹣1)2+y2=18 D.(x﹣1)2+y2=3【解答】解:直线x+y+1=0与直线x﹣y﹣1=0的交点为(0,﹣1),∴所以圆C的圆心为C(0,﹣1),设半径为r,由题意可得+32=r2,即解得r2=18,故圆C的方程为x2+(y+1)2=18.故选:A.二、填空题:本大题共4小题,每小题4分,共16分,把答案填在答题卷的横线上..15.(4.00分)已知直线l在y轴上的截距为1,且垂直于直线y=x,则l的方程是y=﹣2x+1.【解答】解:∵要求的直线垂直于直线y=x,∴要求直线的斜率为﹣2,由斜截式可求得l的方程为:y=﹣2x+1.故答案为:y=﹣2x+1.16.(4.00分)已知圆锥的母线长是10,侧面展开图是半圆,则该圆锥的侧面积为50π.【解答】解:圆锥的侧面展开图半圆的面积即为该圆锥的侧面积,该半圆的半径即为圆锥的母线长10,所以圆锥的侧面积为=50π.故答案为:50π.17.(4.00分)已知各顶点都在同一球面上的正四棱柱高为4,体积为16,则这个球的体积为.【解答】解:正四棱柱高为4,体积为16,底面积为4,正方形边长为2,正四棱柱的对角线长即球的直径为2 ,∴球的半径为,球的体积是V==,故答案为:18.(4.00分)下列命题中:①若集合A={x|kx2+4x+4=0}中只有一个元素,则k=1;②已知函数y=f(3x)的定义域为[﹣1,1],则函数y=f(x)的定义域为(﹣∞,0);③函数y=在(﹣∞,0)上是增函数;④方程2|x|=log2(x+2)+1的实根的个数是2.所有正确命题的序号是③④(请将所有正确命题的序号都填上)【解答】解:对于①,当k=0时,A={﹣1},也符合题意,则①错;对于②,函数y=f(3x)的定义域为[﹣1,1],即有﹣1≤x≤1,则,则y=f(x)的定义域应该是[,3],则②错;对于③,y=的图象可由函数y=的图象向右平移1个单位得到,由于y=在(﹣∞,0)递增,则y=在(﹣∞,1)递增,则③对;对于④,在同一坐标系中作出y=2|x|,y=log2(x+2)+1的图象,由图可知有两个交点.故方程的实根的个数为2.则④对.故答案:③④.三、解答题:本大题共5小题,满分64分,解答应写出文字说明、证明过程或演算步骤19.(12.00分)已知集合A={x|3≤x<6},B={x|2<x<9}(1)求A∩B,(∁R B)∪A;(2)已知C={x|a<x<a+1},若C⊆B,求实数a的取值的集合.【解答】解:(1)显然A∩B={x|3≤x<6},又∵B={x|2<x<9},∴∁R B={x|x≤2或x≥9},∴(∁R B)∪A={x|x≤2或3≤x<6或x≥9};(2)∵C⊆B,如图,应有解得2≤a≤8,故实数a的取值的集合为[2,8].20.(12.00分)已知函数.(Ⅰ)若g(x)=f(x)﹣a为奇函数,求a的值;(Ⅱ)试判断f(x)在(0,+∞)内的单调性,并用定义证明.【解答】解:(Ⅰ)∵∴g(x)=f(x)﹣a=,…(2分)∵g(x)是奇函数,∴g(﹣x)=﹣g(x),即,解之得a=1.…(5分)(Ⅱ)设0<x1<x2,则=.(9分)∵0<x1<x2,∴x1﹣x2<0,x1x2>0,从而,(11分)即f(x1)<f(x2).所以函数f(x)在(0,+∞)内是单调增函数.(12分)21.(13.00分)如图,正四棱锥S﹣ABCD的底面是边长为a的正方形,侧棱长是底面边长为倍,O为底面对角线的交点,P为侧棱SD上的点.(1)求证:AC⊥SD;(2)F为SD的中点,若SD⊥平面PAC,求证:BF∥平面PAC.【解答】证明:(Ⅰ)连接SO,∵四边形ABCD为正方形,∴AC⊥BD且O为AC中点,又∵SA=SC∴SO⊥AC又∵SO∩BD=O,∴AC⊥平面SBD,(5分)又∵SD⊂平面SBD,∴AC⊥SD.(7分)(Ⅱ)连接OP,∵SD⊥平面ACP,OP⊂平面ACP,∴OP⊥SD,(9分)又△SBD中,BD==SB,且F为SD中点,∴BF⊥SD,因为OP,BF⊂平面BDF,所以OP∥BF,(11分)又∵OP⊂平面ACP,BF⊄平面PAC,∴BF∥平面PAC.(13分)22.(13.00分)某厂借嫦娥奔月的东风,推出品牌为“玉兔”的新产品,生产“玉兔”的固定成本为20000元,每生产一件“玉兔”需要增加投入100元,根据初步测算,总收益(单位:元)满足分段函数φ(x),其中φ(x)=,x是“玉兔”的月产量(单位:件),总收益=成本+利润(1)试将利润用y元表示为月产量x的函数;(2)当月产量x为多少件时利润最大?最大利润是多少?【解答】解:(Ⅰ)依题设,总成本为20000+100x,则y=;(Ⅱ)当<x≤400时,y=﹣(x﹣300)2+25000,则当x=300时,y max=25000;当x>400时,y=60000﹣100x是减函数,则y<60000﹣100×400=20000,所以,当x=300时,有最大利润25000元.23.(14.00分)已知圆C过坐标原点O,且与x轴,y轴分别交于点A,B,圆心坐标C(t,)(t∈R,t≠0)(1)求证:△AOB的面积为定值;(2)直线2x+y﹣4=0与圆C交于点M,N,若|OM|=|ON|,求圆C的方程;(3)在(2)的条件下,设P,Q分别是直线l:x+y+2=0和圆C上的动点,求|PB|+|PQ|的最小值及此时点P的坐标.【解答】(1)证明:由题设知,圆C的方程为(x﹣t)2+(y﹣)2=t2+,化简得x2﹣2tx+y2﹣y=0,当y=0时,x=0或2t,则A(2t,0);当x=0时,y=0或,则B(0,),∴S=|OA|•|OB|=|2t|•||=4为定值.△AOB解:(2)∵|OM|=|ON|,则原点O在MN的中垂线上,设MN的中点为H,则CH⊥MN,∴C、H、O三点共线,则直线OC的斜率k===,∴t=2或t=﹣2.∴圆心为C(2,1)或C(﹣2,﹣1),∴圆C的方程为(x﹣2)2+(y﹣1)2=5或(x+2)2+(y+1)2=5,由于当圆方程为(x+2)2+(y+1)2=5时,直线2x+y﹣4=0到圆心的距离d>r,此时不满足直线与圆相交,故舍去,∴圆C的方程为(x﹣2)2+(y﹣1)2=5.(3)点B(0,2)关于直线x+y+2=0的对称点为B′(﹣4,﹣2),则|PB|+|PQ|=|PB′|+|PQ|≥|B′Q|,又B′到圆上点Q的最短距离为|B′C|﹣r=﹣=3﹣=2.故|PB|+|PQ|的最小值为2,直线B′C的方程为y=x,则直线B′C与直线x+y+2=0的交点P的坐标为(﹣,﹣).。
河南省郑州市思齐实验中学2014-2015学年高一1月月考化学试卷.pdf
一.选择题(本题包括6小题,每小题分,共分。
每小题只有一个选项符合题意)1.我省经常出现大雾天气,致使部分高速公路关闭,雾属于下列分散系中的A.胶体 B.悬浊液 C.乳浊液 D.溶液 Murad等三位教授最早提出NO分子在人体内有独特功能而获1998年诺贝尔奖,关于NO的下列叙述,不正确的是() A.NO可以是某些低价N物质氧化的产物 B.NO在人体内可作为信使分子 C.NO是红棕色气体 D.NO可以是某些高价N物质还原的产物 3.除去下列物质中的杂质选用试剂正确的是 ( ) A. B.FeCl2溶液中混有FeCl3:过量铁粉C.NaHCO3中混有少量Na2CO3:适量a(OH)2溶液D..NA表示阿伏加德罗常数下列说法中正确的是A.在常温下,22.4L氧气所含的分子总数NA B.在标准状况下,NA个CO2分子与NA个H2SO4分子所占的体积之比为11 C.NA 个乙醇分子 D.在0.1mol/L的碳酸钠溶液中,所含Na+的数目0.2NA 5.下列说法正确的是A.硫酸、纯碱、小苏打和生石灰分别属于酸、碱、盐和氧化物B.蔗糖、硫酸钡和水分别属于非电解质、强电解质和弱电解质C.金属原子只有还原性,金属阳离子只有氧化性D. 6.下列实验现象描述正确的是( ) 选项实验现象ANa2CO3溶液中通入足量的CO2气体无明显现象B在酒精灯上加热铜片变黑,然后硫磺燃烧,发出蓝紫色火焰C向久置空气中的NaOH溶液立刻产生大量D加热放在坩埚中的小块钠钠先熔化成光亮的小球,燃烧时火焰为黄色,燃烧后生成淡黄色固体7.Cl—的物质的量浓度最大的是 ( ) A.50mL 0.5mol/L AlCl3 B.100mL 0.5mol/L MgCl2C.100mL1mol/L NaClD.50mL0.5mol/L HCl8.x,并在管口P处点燃,实验结果使澄清石灰水变浑浊,则X、Y不可能是( ) A.H2和NaHCO3 B.CO和CaCO3 C.CO和CuO D.H2和Na2CO3 9.钠与水反应的现象和钠的下列性质无关的是 ( )A.钠的熔点较低 B.钠的硬度较小 C.钠的密度小于水 D.钠的还原性强 1.检验某溶液中是否含有SO42-时,为防止Ag+、CO32-、SO32-等离子的干扰,下列实验方案比较严密的是() A.先加稀HCl将溶液酸化,再滴加BaCl2溶液,看是否生成白色沉淀; B.先加稀HNO3将溶液酸化,再滴加BaCl2溶液,看是否生成白色沉淀; C.向溶液中滴加稀盐酸酸化的BaCl2溶液,看是否生成白色沉淀; D.向溶液中滴加稀硝酸酸化的BaCl2溶液,看是否生成白色沉淀; 11. A.NH4+、NO3— 、K+、SO42—B.CO32—、NO3—、HCO3—、Na+ C.Na+、K+、CO32—、 NO3—D.MnO4-、K+、Na+、SO42— 12. 下列反应的离子方程式正确的是( ) ANaHCO3溶液与醋酸:CO32? + 2CH3COOH 2CH3COO? + H2O + CO2↑ B.硝酸银溶液与铜:Cu + Ag+=Cu2+ + Ag C.将足量的铁粉投入稀硝酸中:Fe + NO3- + 4 H+=Fe3+ + NO↑+ 2H2O D.用醋酸除水垢:2CH3COOH + CaCO3 Ca2+ + 2CH3COO? + H2O + CO2↑ 13.已知下列分子或离子在酸性条件下都能氧化KI,自身发生如下变化:H2O2→H2O IO3—→I2 ,MnO4—→Mn2+,HNO3→NO,如果分别用等物质的量的这些物质氧化足量的KI,得到I2最多的是( )A.H2O2B.IO3C.MnO4D.HNO14.a,将滴管内的液体b挤入烧瓶内,轻轻振荡烧瓶,并打开弹簧夹f,烧杯中的液体b呈喷泉状喷出,最终几乎充满烧瓶。
河南省郑州市思齐实验中学2015届高三10月月考数学(文)试题 Word版含答案
河南省郑州市思齐实验中学2015届高三10月月考数学(文)试题一、选择题:本大题共12题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设全集{}1,2,3,4U =,集合{}1,2,4A =,{}2,3,4B =,则()U C A B =A. {}2,4B. ∅C. {}1,2,3,4D.{}1,3 2.已知i 为虚数单位,则复数1i1i+=- A .i -B .iC .1i +D .1i -3.若R y ,x ∈,则1≤y ,x 是122≤+y x 成立的 A .必要而不充分条件 B .充分而不必要条件 C .充要条件D .既不充分也不必要条件4.下列函数中,在定义域内既是奇函数又为增函数的是B.sin y x =C.3y x =5.已知1||=a ,2||=b ,向量a 与b 的夹角为60,则=+||b aABC .1D .2621x -=,则双曲线离心率为AB .3CD7A .3B .2C .1D8.等差数列{}n a 的前n 项和为n S ,且336,0S a ==,则公差d 等于 A .-1B .1C .2D .-29.设 2.8log 3.1,log ,log e a b e c ππ===,则 A .b c a <<B .b a c <<C .c a b <<D .a c b <<10.已知函数2()212x f x x x =++-,则()y f x =的图象大致为AB C D11.已知直线l 与双曲线C 交于A ,B 两点(A ,B 不在同一支上),21,F F 为双曲线的两个焦点,则21,F F 在A .以A ,B 为焦点的双曲线上 B .以A ,B 为焦点的椭圆上C .以A ,B 为直径两端点的圆上D .以上说法均不正确12.设函数()f x 是定义在(),0-∞上的可导函数,其导函数为()f x ',且有x x f x x f <'+)()(,则不等式0)2(2)2014()2014(>-+++f x f x 的解集为 A .(),2012-∞- B .()20120-, C .(),2016-∞-D .()20160-,第Ⅱ卷(非选择题,共90分)本卷包括必考题和选考题两部分。
河南省郑州市思齐实验中学2014-2015学年高一1月月考英语试卷
河南省郑州市思齐实验中学2014-2015学年高一1月月考地英语试卷第一部分听力(共两节,满分30分)第一节(共5小题;每小题1.5分,满分7.5分)听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
1. What does the woman want to do?A. To have an X ray.B. To go to the hospital.C. To help the wounded man.2. Where and when will the meeting be held?A. Room 303,3:00 pm.B. Room 303,2:00 pm.C. Room 302,2:00 pm.3. When would Thomas and Lily like to leave?A. Tomorrow.B. Next Monday or Tuesday.C. This Monday.4. What is the man’s choice?A. He prefers train for trip.B. He doesn’t like traveling.C. Not mentioned.5. According to the woman, what should the man do at first?A. He should ask about the flat on the phone.B. He should read the advertisements for flats in the newspaper.C. He should phone and make an appointment.第二节(共15小题;每小题1.5分,满分22.5分)听下面5段对话或独白。
河南省郑州市2014-2015学年上期期末考试高一数学试题(含答案)(word精校版)
河南省郑州市2014-2015学年高一上学期期末考试数学试题一、选择题(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、已知集合{}2014,2015A =,非空集合B 满足{}2014,2015A B =,则满足条件的集合B 的个数是A .1B .2C .3D .42、下列函数中与函数3y x =相等的是A .y =B .y =C .63x y x = D .6y = 3、已知集合{}1,2,3A =,{},x y B =,则从A 到B 的映射共有A .6个B .5个C .8个D .9个4、下列命题正确的是A .有两个面平行,其余各面都是四边形的几何体叫棱柱B .六条棱长均相等的四面体是正四面体C .有两个面平行,其余各面都是平行四边形的几何体叫棱柱D .用一个平面去截圆锥,底面与截面之间的部分组成的几何体叫圆台5、已知一个圆的方程满足:圆心在点()3,4-,且经过原点,则它的方程为A .()()22345x y -+-=B .()()223425x y +++=C .()()22345x y -++=D .()()223425x y ++-=6、下列命题中不是公理的是A .如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线B .过不在一条直线上的三点,有且只有一个平面C .垂直于同一个平面的两条直线平行D .平行于同一条直线的两条直线互相平行7、函数()f x =的定义域为 A .(]1,2 B .(],2-∞ C .[]1,2 D .()1,28、已知直线l 在x 轴上的截距为3,在y 轴上的截距为2-,则l 的方程为A .3260x y --=B .2360x y -+=C .2360x y --=D .3260x y -+=9、已知点()2,0A -,动点B 的纵坐标小于等于零,且点B 满足方程221x y +=,则直线AB 的斜率的取值范围是A .⎡⎢⎣⎦ B .⎡⎤⎢⎥⎣⎦C .⎡⎣D .⎡⎤⎣⎦ 10、已知点()1,2A 和点()2,4B --,点P 在坐标轴上,且满足∠APB 为直角,则这样的点P 有A .4个B .3个C .2个D .6个11、函数2x y x=-的图象的对称中心的坐标为 A .()2,1- B .()2,1-- C .()2,1 D .()2,1-12、已知2log 3a =,3log 5b =,则lg 24可用a ,b 表示为A .3b B .31a ab ++ C .13a a b ++ D .31a b ++二、填空题(本大题共4小题,每小题5分,共20分.)13、已知空间直角坐标系中有两点()1,2,3A ,()5,1,4B -,则它们之间的距离为 .14、已知15x x -+=,则1122x x -+= .15、圆224x y +=与圆()()222220x y -++=的公共弦所在的直线方程为 .16、在三棱锥C P -AB 中,C 3B =,C 4A =,5AB =,若三个侧面与底面C AB 所成二面角均为60,则三棱锥的体积是 .三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17、(本小题满分10分)已知()321x f x k =+-是奇函数,求实数k 的值.。
2014-2015学年高一数学第一次月考试卷
绝密★启用前郑州市实验高级中学2014-2015学年10月份月考试题卷高一数学时间:120分钟 分值:150分 命题人:魏 睿 审核人: 魏 睿注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卷上一.选择题(本题共12小题,每题5分,共60分)1. 已知集合,5}{0,1,2,3,4=A ,3,6,9}{1,=B ,{3,7,8}=C ,则(A B C )等于( )A .{0,1,2,6,8}B .{3,7,8} C. {1,3,6,7,8} D {1,3,7,8}2.下列四个集合中是空集的是 ( )A .{0}B .{x |x >8且x <5}C .{x ∈N |x 2-1=0}D .{x |x >4}3.下列函数与y =|x |相等的函数是 ( )A .2x y =B .()2x y =C .()33x y =D .33x y =4.已知集合{}{}3,,6,A x x k k Z B x x k k Z ==∈==∈, 则A 与B 最适合的关系是A.A B ⊆B. B A =C. A B ⊇D.B B A =5.下列所给的四个图象中,可以作为函数y =f (x )的图象的有 ( )A .(1)(2)(3)B .(1)(2)(4)C .(1)(3)(4)D .(3)(4)6.设函数f (x )=2x +3,g (x +2)=f (x ),则g (x )的解析式是 ( )A .g (x )=2x +1B .g (x )=2x -1C .g (x )=2x -3D .g (x )=2x +7 7.若函数y =f (x )的定义域是[0,2],则函数g (x )=1)2(-x x f 的定义域是 ( ) A .[0,1) B .[0,1] C .[0,1)∪(1,4] D .(0,1)8.下列函数在其定义域上是增函数的是 ( )A . xy 3-= B .x x y 1+= C . 12+=x y D .122++=x x y 9. f (x )=⎩⎪⎨⎪⎧-x ,x ≤0,x 2,x >0,若f (a )=4,则实数a = ( ) A .-4或-2 B .-4或2 C .-2或4 D .-2或210.设函数f (x )(x ∈R )为奇函数,f (1)=12,f (x +2)=f (x )+f (2),则f (5)= ( ) A .0 B .1 C . 5 D . 5211.若f (x )是偶函数且在(0,+∞)上减函数,又f (-3)=1,则不等式f (x )<1的解集为( )A . {x |x <-3或x >3}B .{x |x <-3或0<x <3} C. {x |x >3或-3<x <0} D .{x |-3<x <0或0<x <3}12.若函数f (x )=⎩⎪⎨⎪⎧-x 2+2ax -2a ,x ≥1,ax +1,x <1是(-∞,+∞)上的减函数,则实数a 的取值范围是 A .[-2,0) B .(-2,0) C .(-∞,1] D .(-∞,0)二.填空题(本题共4个小题,每题5分,共20分)13. 函数f (x )=2x -2mx +4是偶函数,则实数m =________.14.设集合A ={-1,1,3},B ={a +2,a 2+4},A ∩B ={3},则实数a =________.15.已知()538,f x x ax bx =++-5)5(=-f ,则)5(f =________. 16.已知奇函数)(x f 在0)4()12( 2<-+-x f x f R 上为减函数,且,则x 的取值范围是________.三.解答题(解答应写出文字说明,证明过程或演算步骤.)17.(本小题满分10分) 设集合}32{+≤≤=a x a x A ,集合}51{>-<=x x x B 或(1)当2-=a 时,求B A ;(2)若B A ⊆, 求实数a 的取值范围.18. (本小题满分12分)定义域为R 的二次函数()f x 的最小值为1,且3)2()0(==f f(1)求()f x 的解析式;(2)若()f x 在区间]12[+a a ,上不单调,求a 的取值范围.19.(本小题满分12分)设f (x )为定义在R 上的偶函数,当0≤x ≤2时,y =x ;当x >2时,y =f (x )的图象是顶点为P (3,4)且过点A (2,2)的抛物线的一部分.(1)求函数f (x )在(-∞,-2)上的解析式;(2)在直角坐标系中画出函数f (x )的图象; (3)写出函数f (x )的值域和单调区间.20.(本小题满分12分)已知函数f (x )=x +a x,且f (1)=10. (1)求a 的值;(2)判断f (x )的奇偶性,并证明你的结论;(3)函数在(3,+∞)上是增函数,还是减函数?并证明你的结论.21.(本小题满分12分)某公司生产一种电子仪器的固定成本为20000元,每生产一台仪器需增加投入100元,已知总收益满足函数:R (x )=⎩⎪⎨⎪⎧ 400x -12x 2,0≤x ≤400,80 000,x >400.其中x 是仪器的月总量.(1)将利润表示为月产量的函数)(x f(2)当月产量为何值时,公司所获利润最大?最大利润为多少元?(总收益=总成本+利润)22(本题满分12分)函数f(x)的定义域为R,且对任意x,y∈R,有f(x+y)=f(x)+f(y),且当x>0时,f(x)<0.(1)猜想f(x)的奇偶性和单调性,并证明。
河南省实验中学2014-2015学年高一上学期第一次月考数学试卷
河南省实验中学2014-2015学年高一上学期第一次月考数学试卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设U=R,A={x|x>0},B={x|x>1},则A∩∁U B=()A.{x|0≤x<1} B.{x|0<x≤1} C.{x|x<0} D.{x|x>1}2.(5分)已知f(x﹣1)=x2+4x﹣5,则f(x+1)=()A.x2+6x B.x2+8x+7 C.x2+2x﹣3 D.x2+6x﹣103.(5分)已知P={a,b},M={t|t⊆P},则P与M关系为()A.P⊆M B.P∉M C.M⊆P D.P∈M4.(5分)函数y=x2+x (﹣1≤x≤3 )的值域是()A.B.C.D.5.(5分)设集合{A=x|1<x<2},{B=x|x<a},若A⊆B,则a的取值范围是()A.{a|a≥2} B.{a|a>2} C.{a|a≥1} D.{a|a≤2}6.(5分)集合M={x|x=+,k∈Z},N={x|x=k+,k∈Z},则()A.M=N B.M⊆N C.N⊆M D.M∩N=∅7.(5分)已知偶函数f(x)在区间(﹣∞,0]单调减小,则满足f(2x﹣1)<f()的x 的取值范围是()A.(,)B.B.C.D.11.(5分)若函数f(x)=(a2﹣2a﹣3)x2+(a﹣3)x+1的定义域和值域都为R,则a的取值范围是()A.a=﹣1或3 B.a=﹣1 C.a>3或a<﹣1 D.﹣1<a<312.(5分)由于被墨水污染,一道数学题仅能见到如下文字:已知二次函数y=x2+bx+c的图象经过(1,0),…,求证:这个二次函数的图象关于直线x=2对称.根据已知信息,题中二次函数图象不具有的性质是()A.过点(3,0)B.顶点(2,﹣2)C.在x轴上截线段长是2 D.与y轴交点是(0,3)二、填空题:(本大题共4小题,每小题5分,共20分)13.(5分)集合A={x|ax﹣1=0},B={x|x2﹣3x+2=0},且A∪B=B,则a的值是.14.(5分)若f(x)是定义在R上的奇函数,当x<0时,f(x)=x(1﹣x),则当x≥0时,函数f(x)的解析式为.15.(5分)若函数f(x)=的定义域为R,则实数m的取值范围是.16.(5分)当x∈(1,2)时,不等式x2+mx+4<0恒成立,则m的取值范围是.三.解答题:解答应写出文字说明,证明过程或演算步骤.17.(10分)用函数单调性定义证明f(x)=x+在x∈(0,)上是减函数.18.(12分)已知全集合A={x|x2﹣3x﹣10≤0},B={x|x2+x﹣12≤0},C={x|x2﹣4ax+3a2<0},若A∩(C R B)⊆C,试确定实数a的取值范围.19.(12分)已知二次函数f(x)=2kx2﹣2x﹣3k﹣2,x∈.(1)当k=1时,求函数f(x)的最大值和最小值;(2)求实数k的取值范围,使y=f(x)在区间上是单调函数.20.(12分)如果函数f(x)是定义在(0,+∞)上的增函数,且满足f(xy)=f(x)+f(y)(1)求f(1)的值.(2)已知f(3)=1且f(a)>f(a﹣1)+2,求a的取值范围.(3)证明:f()=f(x)﹣f(y).21.(12分)已知函数f(x)=x2+,常数a∈R.(1)讨论函数f(x)的奇偶性,并说明理由;(2)若函数f(x)在x∈,都有f(x)﹣2mx≤1成立,求实数m的取值范围.河南省实验中学2014-2015学年高一上学期第一次月考数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设U=R,A={x|x>0},B={x|x>1},则A∩∁U B=()A.{x|0≤x<1} B.{x|0<x≤1} C.{x|x<0} D.{x|x>1}考点:交、并、补集的混合运算.专题:集合.分析:欲求两个集合的交集,先得求集合C U B,再求它与A的交集即可.解答:解:对于C U B={x|x≤1},因此A∩C U B={x|0<x≤1},故选B.点评:这是一个集合的常见题,属于基础题之列.2.(5分)已知f(x﹣1)=x2+4x﹣5,则f(x+1)=()A.x2+6x B.x2+8x+7 C.x2+2x﹣3 D.x2+6x﹣10考点:函数解析式的求解及常用方法.专题:函数的性质及应用.分析:通过已知的f(x﹣1)解析式求出f(x)的解析式,根据f(x)的解析式即可求得f(x+1)的解析式.解答:解:f(x﹣1)=(x﹣1)2+6(x﹣1),∴f(x)=x2+6x;∴f(x+1)=(x+1)2+6(x+1)=x2+8x+7.点评:考查函数的解析式,以及通过f(x﹣1)解析式先求出f(x)解析式,再求f(x+1)解析式的方法.3.(5分)已知P={a,b},M={t|t⊆P},则P与M关系为()A.P⊆M B.P∉M C.M⊆P D.P∈M考点:集合的包含关系判断及应用;元素与集合关系的判断.专题:常规题型.分析:判断集合P与集合M的关系,首先弄清集合M的元素,集合P的子集充当了集合M的元素,即集合M是一个集合集.解答:解:因为集合P的子集有∅,{a},{b},{a,b},所以集合M={∅,{a},{b},{a,b}},所以P∈M.故答案为:D.点评:本题考查了元素与集合、集合与集合之间的关系,解答本题的关键是找出集合M 的元素,明确p在集合M中,属易错题.4.(5分)函数y=x2+x (﹣1≤x≤3 )的值域是()A.B.C.D.考点:二次函数在闭区间上的最值.专题:计算题.分析:先将二次函数配方,确定函数在指定区间上的单调性,从而可求函数的值域.解答:解:由y=x2+x得,∴函数的对称轴为直线∵﹣1≤x≤3,∴函数在上为减函数,在上为增函数∴x=时,函数的最小值为x=3时,函数的最大值为12∴≤y≤12.故值域是故选B.点评:本题重点考查二次函数在指定区间上的值域,解题的关键是配方,确定函数的单调性,属于基础题.5.(5分)设集合{A=x|1<x<2},{B=x|x<a},若A⊆B,则a的取值范围是()A.{a|a≥2} B.{a|a>2} C.{a|a≥1} D.{a|a≤2}考点:集合的包含关系判断及应用.专题:计算题.分析:在数轴上画出图形,结合图形易得a≥2.解答:解:在数轴上画出图形易得a≥2.故选A.点评:本题考查集合的包含关系,解题时要作出图形,结合数轴进行求解.6.(5分)集合M={x|x=+,k∈Z},N={x|x=k+,k∈Z},则()A.M=N B.M⊆N C.N⊆M D.M∩N=∅考点:集合的包含关系判断及应用.专题:计算题.分析:通过化简集合中元素的一般形式,比较分析来判断集合关系.解答:解:∵M中:x=+=;N中:x=k+=n+,k=n∈Z,∴N⊆M.故选:C.点评:本题考查集合关系.可通过化简集合中元素的一般形式来判断,这是此类题的常见解法.7.(5分)已知偶函数f(x)在区间(﹣∞,0]单调减小,则满足f(2x﹣1)<f()的x 的取值范围是()A.(,)B.单调减小,在且f(﹣)=f(),故由f(2x﹣1)<f()可得﹣<2x﹣1<,解得<x<,故选A.点评:本题主要考查函数的单调性和奇偶性的应用,求得﹣<2x﹣1<,是解题的关键,属于中档题.8.(5分)已知,则f(2)+f(﹣2)的值为()A.6B.5C.4D.2考点:函数的值.专题:计算题.分析:根据2>0,直接求出f(2)=22=4,由于﹣2<0,将f(﹣2)逐步转化,转化到自变量的值大于0,求出函数值.再相加.解答:解:∵2>0,∴f(2)=22=4,∵﹣2<0,∴f(﹣2)=f(﹣2+1)=f(﹣1)又﹣1<0,∴f(﹣1)=f(﹣1+1)=f(0)=f(0+1)=1,即f(﹣2)=1.∴f(2)+f(﹣2)=4+1=5故选B.点评:本题考查分段函数求函数值,要确定好自变量的取值或范围,再代入相应的解析式求得对应的函数值.分段函数分段处理,这是研究分段函数图象和性质最核心的理念.9.(5分)已知函数f(x+1)的定义域为(﹣2,﹣1),则函数f(2x+1)的定义域为()A.(﹣,﹣1)B.(﹣1,﹣)C.(﹣5,﹣3)D.(﹣2,﹣)考点:函数的定义域及其求法.专题:函数的性质及应用.分析:由函数f(x+1)的定义域为(﹣2,﹣1),即x∈(﹣2,﹣1)求出x+1的范围,得到函数f(x)的定义域,再由2x+1在f(x)的定义域内求解x的取值集合求得函数f(2x+1)的定义域.解答:解:∵函数f(x+1)的定义域为(﹣2,﹣1),由﹣2<x<﹣1,得﹣1<x+1<0.∴函数f(x)的定义域为(﹣1,0).再由﹣1<2x+1<0,解得﹣1<x<.∴函数f(2x+1)的定义域为.故选B.点评:本题考查了函数的定义域及其求法,考查了抽象函数的定义域,解答的关键是熟记并理解方法,是中档题.10.(5分)函数y=2﹣的值域是()A.B.C.D.考点:函数的值域.专题:计算题.分析:欲求原函数的值域,转化为求二次函数﹣x2+4x的值域问题的求解,基本方法是配方法,显然﹣x2+4x=﹣(x﹣2)2+4≤4,因此能很容易地解得函数的值域.解答:解:对被开方式进行配方得到:﹣x2+4x=﹣(x﹣2)2+4≤4,于是可得函数的最大值为4,又从而函数的值域为:.故选C.点评:本题考查二次函数的值域的求法,较为基本,方法是配方法,配方法是2015届高考考查的重点方法,学生应该能做到很熟练的对二次式进行配方.11.(5分)若函数f(x)=(a2﹣2a﹣3)x2+(a﹣3)x+1的定义域和值域都为R,则a的取值范围是()A.a=﹣1或3 B.a=﹣1 C.a>3或a<﹣1 D.﹣1<a<3考点:函数的值域;函数的定义域及其求法.专题:计算题.分析:分类讨论,二次项系数等于0时,二次项系数不等于0时,两种情况进行分析.解答:解:若a2﹣2a﹣3≠0,则f(x)为二次函数,定义域和值域都为R是不可能的.若a2﹣2a﹣3=0,即a=﹣1或3;当a=3时,f(x)=1不合题意;当a=﹣1时,f(x)=﹣4x+1符合题意.故答案B点评:本题考查函数的值域和定义域,体现分类讨论的数学思想方法.12.(5分)由于被墨水污染,一道数学题仅能见到如下文字:已知二次函数y=x2+bx+c的图象经过(1,0),…,求证:这个二次函数的图象关于直线x=2对称.根据已知信息,题中二次函数图象不具有的性质是()A.过点(3,0)B.顶点(2,﹣2)C.在x轴上截线段长是2 D.与y轴交点是(0,3)考点:二次函数的性质.专题:函数的性质及应用.分析:采用代入法进行验证最后确定答案解答:证明:已知二次函数y=x2+bx+c的图象经过(1,0),…,这个二次函数的图象关于直线x=2对称则:函数图象过(3,0)或在x轴上截线段长为2 与y轴交点可能是(0,3)定点的纵标不确定故选:B点评:本题考查的知识点:二次函数的对称轴,在x轴上截得的线段长,顶点坐标.二、填空题:(本大题共4小题,每小题5分,共20分)13.(5分)集合A={x|ax﹣1=0},B={x|x2﹣3x+2=0},且A∪B=B,则a的值是0或1或.考点:集合的包含关系判断及应用.专题:计算题.分析:解一元二次方程,可得集合B={x|x=1或x=2},再由且A∪B=B得到集合A是集合B的子集,最后分析集合A的元素,可得a的值是0或1或.解答:解:对于B,解方程可得B={x|x=1或x=2}∵A={x|ax﹣1=0},且A∪B=B,∴集合A是集合B的子集①a=0时,集合A为空集,满足题意;②a≠0时,集合A化简为A={x|x=},所以=1或=2,解之得:a=1或a=综上所述,可得a的值是0或1或故答案为:0或1或点评:本题以方程的解集为例,考查了集合包含关系的判断及应用,属于基础题.在解决一个集合是另一个集合子集的问题时,应注意不能忽略空集这一特殊情况而致错.14.(5分)若f(x)是定义在R上的奇函数,当x<0时,f(x)=x(1﹣x),则当x≥0时,函数f(x)的解析式为f(x)=x(1+x).考点:函数奇偶性的性质.专题:函数的性质及应用.分析:f(x)是定义在R上的奇函数,得定义f(﹣x)=﹣f(x),设x>0时,则﹣x<0,转化为x<0时,f(x)=x(1﹣x)求解,注意别忘了x=0,解答:解:∵f(x)是定义在R上的奇函数,∴f(﹣x)=﹣f(x),x=0时f(0)=,0当x<0时,f(x)=x(1﹣x),设x>0时,则﹣x<0,f(x)=﹣f(﹣x)=﹣=x(1+x),综上当x≥0时,函数f(x)=x(1+x),故答案为:f(x)=x(1+x),点评:本题考查了奇函数的定义,性质,运用求解析式.15.(5分)若函数f(x)=的定义域为R,则实数m的取值范围是.考点:函数的定义域及其求法.专题:分类讨论.分析:从函数解析式的结构来看,要使其有意义需满足mx2+4mx+3≠0,所以由题意将所给条件转化为mx2+4mx+3≠0对任意x∈R恒成立,再进行分类讨论求解.解答:解:由题意知mx2+4mx+3≠0对任意x∈R恒成立,(1)若m=0,则mx2+4mx+3=3≠0,符合题意.(2)若m≠0,则mx2+4mx+3≠0对任意x∈R恒成立,等价于,解得:,综上所述,实数m的取值范围是.故答案为.点评:此题表面看是研究函数的定义域,实则是一个恒成立问题,转化题意后因为最早次幂位置有参数,所以要进行分类讨论,此处为易错点.16.(5分)当x∈(1,2)时,不等式x2+mx+4<0恒成立,则m的取值范围是m≤﹣5.考点:一元二次不等式的应用;函数恒成立问题.专题:不等式.分析:①构造函数:f(x)=x2+mx+4,x∈.②讨论对称轴x=﹣>或<时f(x)的单调性,得f(1),f(2)为两部分的最大值若满足f(1),f(2)都小于等于0即能满足x∈(1,2)时f(x)<0,由此则可求出m的取值范围解答:解:法一:根据题意,构造函数:f(x)=x2+mx+4,x∈.由于当x∈(1,2)时,不等式x2+mx+4<0恒成立.则由开口向上的一元二次函数f(x)图象可知f(x)=0必有△>0,①当图象对称轴x=﹣≤时,f(2)为函数最大值当f(2)≤0,得m解集为空集.②同理当﹣>时,f(1)为函数最大值,当f(1)≤0可使x∈(1,2)时f(x)<0.由f(1)≤0解得m≤﹣5.综合①②得m范围m≤﹣5法二:根据题意,构造函数:f(x)=x2+mx+4,x∈.由于当x∈(1,2)时,不等式x2+mx+4<0恒成立即解得即m≤﹣5故答案为m≤﹣5点评:本题考查二次函数图象讨论以及单调性问题.三.解答题:解答应写出文字说明,证明过程或演算步骤.17.(10分)用函数单调性定义证明f(x)=x+在x∈(0,)上是减函数.考点:函数单调性的判断与证明.专题:函数的性质及应用.分析:设0<x1<x2<,证出f(x1)>f(x2),从而解决问题.解答:证明:设0<x1<x2<,则f(x1)﹣f(x2)=x1+﹣(x2+)=(x1﹣x2)﹣=(x1﹣x2)(1﹣).由0<x1<x2,可得(x1﹣x2)<0,(1﹣)<0,∴(x1﹣x2)(1﹣)>0,f(x1)>f(x2),故函数在(0,)上单调递减.点评:本题考查了函数的单调性的证明问题,定义法是常用方法之一,本题属于基础题.18.(12分)已知全集合A={x|x2﹣3x﹣10≤0},B={x|x2+x﹣12≤0},C={x|x2﹣4ax+3a2<0},若A∩(C R B)⊆C,试确定实数a的取值范围.考点:子集与交集、并集运算的转换.专题:计算题.分析:先通过解一元二次不等式化简集合A和B,再求集合B的补集,最后求出A∩(C R B),由于A∩(C R B)⊆C,则a>0,且,解出a,即可求得a的取值范围.解答:解:依题意得:A={x|﹣2≤x≤5},B={x|﹣4≤x≤3},则C R B={x|x<﹣4或x>3},∴A∩(C R B)=(3,5],由于A∩(C R B)⊆C,故a>0,∴C={x|a<x<3a},且,解得<a≤3;故实数a的取值范围为<a≤3.点评:本小题主要考查一元二次不等式的解法、集合的包含关系判断及应用、交集及其运算、补集及其运算不等式的解法等基础知识,考查运算求解能力,考查分类讨论思想.属于基础题.19.(12分)已知二次函数f(x)=2kx2﹣2x﹣3k﹣2,x∈.(1)当k=1时,求函数f(x)的最大值和最小值;(2)求实数k的取值范围,使y=f(x)在区间上是单调函数.考点:二次函数的性质.专题:函数的性质及应用.分析:(1)当k=1时,f(x)=2x2﹣2x﹣5,可得区间(﹣5,)上函数为减函数,在区间(,5)上函数为增函数.由此可得max=55,min=﹣;(2)由题意,得函数y=f(x)的单调减区间是⊂min=f()=﹣,函数的最大值为f(5)和f(﹣5)中较大的值,比较得max=f(﹣5)=55.综上所述,得max=55,min=﹣.(2)∵二次函数f(x)图象关于直线x=对称,∴要使y=f(x)在区间上是单调函数,则必有≤﹣5或≥5,解得≤k<0或0<k≤.即实数k的取值范围为.点评:本题给出含有参数的二次函数,讨论函数的单调性并求函数在闭区间上的最值,着重考查了二次函数的图象与性质和函数的单调性等知识.20.(12分)如果函数f(x)是定义在(0,+∞)上的增函数,且满足f(xy)=f(x)+f(y)(1)求f(1)的值.(2)已知f(3)=1且f(a)>f(a﹣1)+2,求a的取值范围.(3)证明:f()=f(x)﹣f(y).考点:抽象函数及其应用;函数单调性的性质.专题:计算题;函数的性质及应用.分析:(1)对题中的等式取x=y=1,化简即可得到f(1)=0;(2)算出2=1+1=f(3)+f(3)=f(3×3)=f(9),从而将原不等式化简为f(a)>f,再利用函数的单调性与定义域,建立关于a的不等式组,解之即可得到实数a的取值范围;(3)配方:x=•y,利用题中的等式化简整理,即可得到f()=f(x)﹣f(y)成立.解答:解:(1)∵f(xy)=f(x)+f(y)∴令x=y=1,得f(1×1)=f(1)+f(1),可得f(1)=0;(2)∵f(3)=1,∴2=1+1=f(3)+f(3)=f(3×3)=f(9),不等式f(a)>f(a﹣1)+2,可化为f(a)>f(a﹣1)+f(9)=f∵f(x)是定义在(0,+∞)上的增函数,∴,解之得1<a<;(3)∵x=•y,∴f(x)=f(•y)=f()+f(y),由此可得f()=f(x)﹣f(y).点评:本题给出抽象函数满足的条件,求特殊的函数值并解关于a的不等式,着重考查了函数的单调性、抽象函数的理解和不等式的解法等知识,属于中档题.21.(12分)已知函数f(x)=x2+,常数a∈R.(1)讨论函数f(x)的奇偶性,并说明理由;(2)若函数f(x)在x∈.点评:考查奇偶函数的定义,函数单调性和函数导数符号的关系,2x3的单调性并根据单调性求最值.22.(12分)已知函数f(x)=ax2+2x+c(a、c∈N*)满足:①f(1)=5;②6<f(2)<11.(1)求a、c的值;(2)若对任意的实数x∈,都有f(x)﹣2mx≤1成立,求实数m的取值范围.考点:函数解析式的求解及常用方法;函数的最值及其几何意义;函数恒成立问题.专题:计算题.分析:(1)把条件①f(1)=5;②6<f(2)<11代入到f(x)中求出a和c即可;(2)不等式f(x)﹣2mx≤1恒成立⇔2(1﹣m)≤﹣(x+)在上恒成立,只需要求出min=﹣,然后2(1﹣m)≤﹣求出m的范围即可.解答:解:(1)∵f(1)=a+2+c=5,∴c=3﹣a.①又∵6<f(2)<11,即6<4a+c+4<11,②将①式代入②式,得﹣<a<,又∵a、c∈N*,∴a=1,c=2.(2)由(1)知f(x)=x2+2x+2.证明:∵x∈,∴不等式f(x)﹣2mx≤1恒成立⇔2(1﹣m)≤﹣(x+)在上恒成立.易知min=﹣,故只需2(1﹣m)≤﹣即可.解得m≥.点评:考查学生利用待定系数法求函数解析式的能力,理解函数最值及几何意义的能力,理解不等式恒成立的能力.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
河南省郑州市思齐实验中学2014-2015学年高一1月月考
数学试卷
一、选择题(本题满分60分,每小题5分)
1、给出下列命题
(1)如果一个几何体的三视图是完全相同的,则这个几何体是正方体 (2)如果一个几何体的正视图和俯视图都是矩形,则这个几何体是长方体 (3)如果一个几何体的三视图都是矩形,则这个几何体是长方体
(4)如果一个几何体的正视图和侧视图都是等腰梯形,则这个几何体是圆台 其中正确的命题的个数是( ) A .0
B .1
C .2
D .3
2、一个四面体的所有棱长都为2,四个项点在同一球面上,则此球的表面积为( ) A .3π
B .4π
C .33
π
D .6π
3、长方体的六个面的面积之和为11,十二条棱长度之和为24,则这个长方体的一条对角线长为( ) A .23
B .14
C .5
D .6
4、若正棱锥的底面边长与侧棱长相等,则该棱锥一定不是( ) A .三棱锥
B .四棱锥
C .五棱锥
D .六棱锥
5、长方体三条棱长分别是AA /
=1,AB=2,AD=4,则从A 点出发,沿长方体的表面到C /
的最短矩离是( ) A .5
B .7
C .29
D.37
6、已知集合{}{}2M 101N |0log 1.x x x Z =-=≤≤∈,
,,,则M N =( )
A.{}10,
B.{}01,-
C.{}0
D.{}1 7、设11,1,,32
α⎧
⎫∈-⎨⎬⎩
⎭
,则使函数y x α
=的定义域为R ,且为奇函数的所有α的值为( )
A. 1,3
B.
1
2
,1 C. -1,3 D. -1,1,3 8、已知α、β是平面,m 、n 是直线,则下列命题不正确...
的是 ( )
A .若//,m n m α⊥,则n α⊥
B .若,m m αβ⊥⊥,则//αβ
C .若,//,m m n n αβ⊥⊂,则αβ⊥
D .若//,m n αα
β=,则//m n
9、正六棱柱ABCDEF -A 1B 1C 1D 1E 1F 1的侧面是正方形,若底面的边长为a ,则该正六棱柱的外接球的表面积是( )
A .4πa 2
B .5 πa 2
C . 8πa 2
D .10πa 2 10、垂直于同一条直线的两条直线一定( )
A .平行
B .相交
C .异面
D .以上都有可能
11、过直线l 外两点作与直线l 平行的平面,可以作( )
A .1个
B .1个或无数个
C .0个或无数个
D .0个、1个或无数个
12、如下图,在ABC ∆中,2AB =,BC=1.5,120ABC ∠=,如图所示。
若将ABC ∆绕
BC 旋转一周,则所形成的旋转体的体积是( )
A .92π
B .72π
C .52π
D .32
π
二、填空题(共4小题.每小题5分.共20分)
13、已知a 为实数,函数2
()21f x x ax =++在区间[]0,1上有零点,
D
C
则a 的取值范围__________________;
14.如图,已知四边形ABCD ,ABEF 都是 矩形,N M 、分别是对角线AC 和BF 的
中点,则MN 与平面BCE 的关系是 .
15.正方体ABCD-A 1B 1C 1D 1中,与对角线AC 1异面的棱有---------条 . 16.已知(3)4(1)
()(,)log (1)
a a x a x f x x x --<⎧=-∞+∞⎨
≥⎩是上的增函数,那么a 值范围是
——————————————————.
三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤. 17、(本小题10分)已知圆台的上下底面半径分别是2、5,且侧面面积等于两底面面积之和,求该圆台的母线长.
18、(本小题12分)已知在三棱锥S--ABC 中,∠ACB=900,又SA ⊥平面ABC ,AD ⊥SC 于D ,求证:AD ⊥平面SBC ,
19.(本小题12分)函数()lg(lg )lg 3lg(3)y f x y x x ==+-满足
(1)求()f x ;(2)求()f x 的值域;(3)求()f x 的递减区间。
20、(本小题12分)已知四棱锥P-ABCD ,底面ABCD 是 60=∠A 、
边长为a 的菱形, 又ABCD PD 底⊥,且PD=CD ,点M 、N 分 别是棱AD 、PC 的中点.
(1)证明:DN//平面PMB ; (2)证明:平面PMB ⊥平面PAD ; (3)求点A 到平面PMB 的距离.
C
A
21. (本小题12分)截止到1999年底,我国人口约13亿。
如果今后能将人口平均增长率
控制在1%,那么经过20年后,我国人口数最多为多少(精确到亿)?
22. (本小题满分12分)
如图,已知正方体1111ABCD A B C D 中,1AD 与1A D 相交于点O 。
(1)判断1AD 与平面11A B CD 的位置关系,并证明; (2)求直线1AB 与平面11A B CD 所成的角。
郑州市思齐实验中学2014—2015学年上期高一年级第二次月考试题
高一数学答题卡
一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的
二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡的横线上.
13、a小于等于-1或(0,1 )14、__平行_____
15、________6_________________ 16、_____1<a<3______________
三、解答题:本大题共6小题,共70分.解答题写出文字说明,证明过程或演算步骤
17、(本题满分10分)
解:设圆台的母线长为l,则
圆台的上底面面积为,
圆台的下底面面积为,
所以,圆台的底面面积为,
又圆台的侧面积,
于是,,
即为所求。
18、(本题满分12分)
证明:SA⊥面ABC,BC⊥面ABC,Þ BC ⊥SA;
又BC⊥AC,且AC、SA是面SAC内的两相交线,∴BC⊥面SAC;
又ADÌ面SAC,∴BC⊥AD又已知SC⊥AD,且BC、SC是面SB
C内两相交线,∴AD⊥面SBC。
19、(本题满分12分)
20、(本题满分12分)
21. (本题满分12分)
22. (本题满分12分)。