吉林省高一上学期12月月考数学试卷
2024学年吉林省长春外国语学校高一上学期12月月考数学试题及答案

长春外国语学校2023-2024学年第一学期第二次月考高一年级数学试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页.考试结束后,将答题卡交回.注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区.2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚.3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效.4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑.5.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀.第Ⅰ卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 函数()ln(12)f x x =-的定义域为( )A. 1,2⎛⎤-∞ ⎥⎝⎦B. 1,2⎛⎫-∞ ⎪⎝⎭C. 10,2⎛⎫ ⎪⎝⎭D. 1,2⎛⎫+∞⎪⎝⎭2. 实数0.2,a b c ===的大小关系正确的是()A. a c b<< B. a b c<< C. b a c<< D. b<c<a 3. 已知对数函数()log a f x x =是增函数,则函数()1fx +的图象大致是().A.B.C. D.4. 已知函数2log ,0()91,0x x x f x x ->⎧=⎨+≤⎩,则31((1))(log )2f f f +的值是A. 2B. 3C. 5D. 75. 设()e ,0ln ,0x x g x x x ⎧≤=⎨>⎩,则关于x 的不等式()1g x ≤的解集是( )A. (],e -∞ B. (],1-∞ C. []0,e D. []0,16. 已知点(1,2)在α终边上,则cos α=( )A.B.C.23D.137. 已知α锐角,且cos 6πα⎛⎫+= ⎪⎝⎭,则tan 3πα⎛⎫-= ⎪⎝⎭( )A.B.C.D.8. 把物体放在冷空气中冷却,如果物体原来的温度为1θC ,空气的温度是0θC ,那么t 分钟后物体的温度θ(单位C )可由公式:()010kteθθθθ-=+-求得,其中k 是一个随着物体与空气的接触状况而定的正常数.现有100℃的物体,放在20C 的空气中冷却,4分钟后物体的温度是60C ,则再经过( )分钟,物体的温度是40C (假设空气的温度保持不变).A. 2B. 4C. 6D. 8二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列选项中正确的是( )9. 下列选项中正确的是( )A. ()sin 3sin απα-= B. 7cos sin 2απα⎛⎫-=- ⎪⎝⎭C. ()tan tan απα--=- D. 5sin cos 2παα⎛⎫-= ⎪⎝⎭的为10. 下列所给函数中值域为()0,∞+的是( )A. ()23f x x-= B.()1xf x e=C. ()()23log 1f x x =+ D. ()15,01,0x x f x x x ⎧⎪>=⎨⎪-+≤⎩11. 若105a =,1020b =,则( )A. 4a b += B. lg 4b a -= C. 22lg 5ab < D. lg 5b a ->12. 下列正确的命题是( )A 5πlg sin 02⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭B 若()cos cos 2f x x =,则()sin 30f ︒=C. 若()1sin π2α+=-,则()1sin 4π2α-=-D. 若()tan π2α+=,则()()()()sin πcos π3sin πcos παααα-+-=+--第Ⅱ卷三、填空题:本题共4小题,每小题5分,共20分.13. 半径为2,面积等于45π的扇形的圆心角的大小是_________.14. 若函数5()log f x x =(0x >),则方程(1)(3)1f x f x ++-=的解x =________.15. 设函数()2222x x f x x x ⎧<=⎨≥⎩,,,若()()121f a f a +≤-,则实数a 的取值范围是__________.16. 已知定义在R 上的函数()f x 图像关于点1(,0)2中心对称,且当12x >时,1()f x x m x=++,若()f x 的值域为R ,则实数m 的取值范围为________.四、解答题:本题共6小题,共70分.第17题10分,其他每题12分,解答应写出文字说明、证明过程或演算步骤.17. (1)3log 2832lg 2lg 253log 9log 64+++⨯(2)2102329272()(3)(()483----++..18. 已知角α的终边落在直线4y x =-上,且0x ≤,求sin α,cos α,tan α的值.19. 已知1sin cos 5θθ+=,(0,)θπ∈,求下列各式的值.(1)sin cos θθ⋅;(2)sin cos θθ-.20. 已知函数3sin cos tan()22()cos()sin(3)x x x f x x x πππππ⎛⎫⎛⎫-+-- ⎪ ⎪⎝⎭⎝⎭=+-,且1()3f α=.(1)求2sin cos sin 2cos αααα-+的值;(2)求222sin sin cos cos αααα--的值.21. 已知定义在R 上的函数2()51x f x m =-+(1)判断并证明函数()f x 的单调性;(2)若()f x 是奇函数,求m 的值;(3)若()f x 的值域为D ,且[3,1]D ⊆-,求m 的取值范围.22. 已知函数()1lg 1xf x x -=+.(1)求不等式()()()lg20ff x f +>解集;(2)函数()()30,1xg x a a a =->≠,若存在[)12,0,1x x ∈,使得()()12f x g x =成立,求实数a 的取值范围.的长春外国语学校2023-2024学年第一学期第二次月考高一年级数学试卷出题人 :赵宇审题人:王骏牧本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页.考试结束后,将答题卡交回.注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区.2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚.3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效.4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑.5.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀.第Ⅰ卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 函数()ln(12)f x x =-的定义域为( )A. 1,2⎛⎤-∞ ⎥⎝⎦B. 1,2⎛⎫-∞ ⎪⎝⎭C. 10,2⎛⎫ ⎪⎝⎭D. 1,2⎛⎫+∞⎪⎝⎭【答案】B 【解析】【分析】使得式子有意义,列出不等式即可求解.【详解】定义域要求120x ->,即12x <.故选:B .2. 实数0.2,a b c ===的大小关系正确的是()A. a c b <<B. a b c<< C. b a c<< D. b<c<a【答案】C【解析】【分析】利用指数函数、对数函数的单调性可得到a b c 、、的范围从而得到答案.【详解】000.21a <=<=,0.20b =<=,1c =>=,所以b a c <<,故选:C.3. 已知对数函数()log a f x x =是增函数,则函数()1fx +图象大致是().A.B.C. D.【答案】B 【解析】【分析】利用代特殊点和对数函数的图像性质排除选项即可.【详解】由题意,1a >,()()1log 1afx x +=+,()()11f x f x -+=+,所以函数()1f x +是偶函数,当0x =时,()()01log 010af+=+=,故排除选项C 、D ,当0x >时,由对数函数的单调性,对数函数增长越来越慢,可排除选项A.故选:B【点睛】本题主要考查函数图像的识别和判断,利用函数的奇偶性和带入特殊值排除法是解题的关键,属于基础题.4. 已知函数2log ,0()91,0x x x f x x ->⎧=⎨+≤⎩,则31((1))(log )2f f f +的值是A. 2B. 3C. 5D. 7【答案】D 【解析】的【分析】根据给定的分段函数,按条件分段计算即可作答.【详解】函数2log ,0()91,0xx x f x x ->⎧=⎨+≤⎩,则2(1)log 10f ==,0((1))(0)912f f f ==+=,而331log log 202=-<,因此,33log 2log 222331(log )(log 2)91(3)12152f f =-=+=+=+=,所以31((1))(log 2572f f f +=+=故选:D5. 设()e ,0ln ,0x x g x x x ⎧≤=⎨>⎩,则关于x 不等式()1g x ≤的解集是( )A. (],e -∞B. (],1-∞C. []0,eD. []0,1【答案】A 【解析】【分析】分0x ≤、0x >解不等式()1g x ≤,综合可得出原不等式的解集.【详解】当0x ≤时,由()e 1xg x =≤可得0x ≤;当0x >时,由()ln 1g x x =≤可得0e x <≤.综上所述,不等式()g x 的解集为(],e -∞.故选:A.6. 已知点(1,2)在α的终边上,则cos α=( )A.B.C.23D.13【答案】B 【解析】【分析】根据终边上点,结合三角函数的定义求余弦值即可.【详解】由题设cos α==.故选:B7. 已知α为锐角,且cos 6πα⎛⎫+= ⎪⎝⎭,则tan 3πα⎛⎫-= ⎪⎝⎭( )A.B.C.D.的的【答案】D 【解析】【分析】注意到πππ632αα⎛⎫⎛⎫++-= ⎪ ⎪⎝⎭⎝⎭,利用同角三角函数的关系求角π6α+的正弦,再利用诱导公式求角π3α-的正弦、余弦,从而得到π3α-的正切.【详解】因为α为锐角,所以ππ2π,663α⎛⎫+∈ ⎪⎝⎭且πcos 6α⎛⎫+= ⎪⎝⎭,所以22πsin 06ππsin cos 166ααα⎧⎛⎫+> ⎪⎪⎪⎝⎭⎨⎛⎫⎛⎫⎪+++= ⎪ ⎪⎪⎝⎭⎝⎭⎩得πsin 6α⎛⎫+= ⎪⎝⎭由诱导公式得ππππsin sin cos 3266ααα⎡⎤⎛⎫⎛⎫⎛⎫-=-+=+=⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,ππcos sin 36αα⎛⎫⎛⎫-=+=⎪ ⎪⎝⎭⎝⎭.所以πsin π3tan π3cos 3ααα⎛⎫- ⎪⎛⎫⎝⎭-=== ⎪⎛⎫⎝⎭- ⎪⎝⎭.故选:D8. 把物体放在冷空气中冷却,如果物体原来的温度为1θC ,空气的温度是0θC ,那么t 分钟后物体的温度θ(单位C )可由公式:()010kteθθθθ-=+-求得,其中k 是一个随着物体与空气的接触状况而定的正常数.现有100℃的物体,放在20C 的空气中冷却,4分钟后物体的温度是60C ,则再经过( )分钟,物体的温度是40C (假设空气的温度保持不变).A. 2 B. 4 C. 6 D. 8【答案】B 【解析】【分析】根据题意将数据120θ=o,0100θ= ,60θ= ,4t =代入()010kte θθθθ-=+-,可得1412k e -⎛⎫= ⎪⎝⎭,再将40θ =代入即可得8t =,即可得答案.【详解】由题意知:120θ=o,0100θ= ,60θ= ,4t =代入()010kte θθθθ-=+-得:()4602010020ke-=+-,解得1412k e -⎛⎫= ⎪⎝⎭所以当40θ =时,()1440201002012t ⎛⎫ -⎪⎭=+⎝,解得:124114212t ⎛⎫== ⎛⎫ ⎝⎪⎭⎪⎭⎝,所以8t =,所以再经过4分钟物体的温度是40C , 故选:B【点睛】本题主要考查了指数函数的综合题,关键是弄清楚每个字母的含义,属于中档题.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列选项中正确的是( )9. 下列选项中正确的是( )A. ()sin 3sin απα-= B. 7cos sin 2απα⎛⎫-=- ⎪⎝⎭C. ()tan tan απα--=- D. 5sin cos 2παα⎛⎫-= ⎪⎝⎭【答案】BCD 【解析】【分析】利用诱导公式一一验证即可;【详解】解:sin(3)sin()sin()sin απαππαα-=-=--=-,故A 不正确;71cos cos sin 22απαπα⎛⎫⎛⎫-=+=- ⎪ ⎪⎝⎭⎝⎭,故B 正确;tan()tan()tan απαα--=-=-,故C 正确;51sin sin cos 22παπαα⎛⎫⎛⎫-=-= ⎪ ⎪⎝⎭⎝⎭,故D 正确.故选:BCD10. 下列所给函数中值域为()0,∞+的是()A. ()23f x x-= B.()1xf x e=C. ()()23log 1f x x =+ D. ()15,01,0x x f x x x ⎧⎪>=⎨⎪-+≤⎩【答案】AD 【解析】【分析】A. 利用幂函数的性质判断;B.令 ()()1,00,t x=∈-∞⋃+∞,转化为指数函数判断;C. 令211t x =+≥,转化为对数函数判断;D. 分0x >和 0x ≤讨论求解判断.【详解】A. 因为()23f x x -=的定义域为{}|0x x ≠,因为函数在()0,∞+上是减函数且为偶函数,所以其值域是()0,∞+,故正确;B.令 ()()1,00,t x=∈-∞⋃+∞,则()()()10,11,x f x e =∈⋃+∞,故错误;C. 令211t x =+≥,则()()23log 1[0,)f x x =+∈+∞,故错误;D. 当0x >时,()()0,f x ∈+∞,当 0x ≤时,()[1,)f x ∈+∞,综上:()()0,f x ∈+∞,故正确;故选:AD11. 若105a =,1020b =,则( )A. 4a b += B. lg 4b a -= C. 22lg 5ab < D. lg 5b a ->【答案】BC 【解析】【分析】由105,1020a b ==,得lg 5,lg 20a b ==,再利用对数运算公式对,a b 进行a b +,b a -,ab 运算,从而可判断各选项.【详解】由105,1020a b ==,得lg 5,lg 20a b ==,则()lg 5lg 20lg 520lg1002a b +=+=⨯==,选项A 错误;20lg 20lg 5lglg 4lg 55b a -=-==<,选项B 正确,选项D 错误;()2lg 5lg 20lg 5lg 4lg 5lg 5lg 4lg 5ab =⨯=⨯+=⨯+,lg 4lg 5<Q ,222lg 5lg 4lg 5lg 5lg 5lg 52lg 5⨯+<⨯+=∴,22lg 5ab <∴ ,选项C 正确.故选:BC.12. 下列正确的命题是( )A. 5πlg sin 02⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭B. 若()cos cos 2f x x =,则()sin 30f ︒=C. 若()1sin π2α+=-,则()1sin 4π2α-=-D. 若()tan π2α+=,则()()()()sin πcos π3sin πcos παααα-+-=+--【答案】ACD【解析】【分析】运用诱导公式、特殊角的三角函数值及同角三角函数的商数关系即可求得各个选项.【详解】对于A 项,5ππlg sin lg sin lg1022⎛⎫⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,故A 项正确;对于B 项,因为()cos cos 2f x x =,所以1(sin 30)(cos 60)cos1202f f ︒︒︒===-,故B 项错误;对于C 项,因为()1sin πsin 2αα+=-=-,所以1sin 2α=,所以()1sin 4πsin()sin 2ααα-=-=-=-,故C 项正确;对于D 项,因为()tan πtan 2αα+==,所以()()()()sin πcos πsin cos sin cos tan 1213sin πcos πsin cos sin cos tan 121αααααααααααααα-+---+++=====+---+---,故D 项正确.故选:ACD.第Ⅱ卷三、填空题:本题共4小题,每小题5分,共20分.13. 半径为2,面积等于45π的扇形的圆心角的大小是_________.【答案】25π【解析】【分析】根据扇形面积公式即可求出.【详解】设扇形的圆心角的大小为α,由212S r α=可得,241252πα=⨯⨯,解得25πα=.故答案为:25π.14. 若函数5()log f x x =(0x >),则方程(1)(3)1f x f x ++-=的解x =________.【答案】4.【解析】【分析】根据对数的运算性质,可得(1)(3)5x x +-=,解得答案.【详解】解:因为5()log f x x =,所以()()555(1)(3)log 1log 3log (1)(3)f x f x x x x x ++-=++-=+-,5(1)(3)log (1)(3)1f x f x x x ++-=+-= 即(1)(3)5x x +-=,所以4x =或2x =-(舍去),故答案为:4.【点睛】本题考查对数函数的图象和性质,二次函数的图象和性质,属于基础题.15. 设函数()2222x x f x x x ⎧<=⎨≥⎩,,,若()()121f a f a +≤-,则实数a 的取值范围是__________.【答案】[2,)+∞【解析】【分析】根据指数函数和幂函数的性质可得()f x 在R 上为增函数,利用函数的单调性解不等式即可得解.【详解】由于当2x <时,()2xf x =为增函数,且()()24f x f <=,由于当2x ≥时,()2f x x =为增函数,且()()24f x f ≥=,∴()f x 在R 上为增函数,∵()()121f a f a +≤-,∴121a a +≤-,解得2a ≥,所以实数a 的取值范围为[2,)+∞,故答案为:[2,)+∞.16. 已知定义在R 上的函数()f x 图像关于点1(,0)2中心对称,且当12x >时,1()f x x m x =++,若()f x 的值域为R ,则实数m 的取值范围为________.【答案】(,2]-∞-【解析】【分析】由题可得函数()f x 关于点1,02⎛⎫⎪⎝⎭对称,进而可得当12x >时,1()0f x x m x =++≤有解,利用基本不等式即得.【详解】∵定义在R 上的函数()f x 满足1122f x f x ⎛⎫⎛⎫-=-+ ⎪ ⎪⎝⎭⎝⎭,∴函数()f x 关于点1,02⎛⎫⎪⎝⎭对称,又当12x >时,1()f x x m x =++,在1,12x ⎛⎫∈ ⎪⎝⎭,()f x 单调递减,当()1,x ∈+∞,()f x 单调递增,要使函数()f x 的值域为R ,则当12x >时,1()0f x x m x=++≤有解,又当12x >时,12x m m m x ++≥=+,当且仅当1x x =,即1x =取等号,∴20m +≤,即实数m 的取值范围为(,2]-∞-.故答案为:(,2]-∞-.四、解答题:本题共6小题,共70分.第17题10分,其他每题12分,解答应写出文字说明、证明过程或演算步骤.17. (1)3log 2832lg 2lg 253log 9log 64+++⨯(2)2102329272()(3)(()483----++【答案】(1)8 ;(2)132【解析】【分析】(1)利用对数运算性质化简即可得出答案(2)利用指数运算性质化简即可得到答案.【详解】(1)原式6232=lg 4lg 252log 3log 23+++⨯2lg100263=++⨯2248=++=;(2)原式34413162992=--++=18. 已知角α的终边落在直线4y x =-上,且0x ≤,求sin α,cos α,tan α的值.【答案】sin α=,cos α=tan 4α=-.【解析】【分析】根据给定条件,求出角α的终边上一个点的坐标,再利用三角函数定义求解即得.【详解】角α的终边落在直线4y x =-上,且0x ≤,取角α的终边上的点(1,4)P -,则||r OP ===,所以sin α==cos α==;4tan 41α==--.19. 已知1sin cos 5θθ+=,(0,)θπ∈,求下列各式的值.(1)sin cos θθ⋅;(2)sin cos θθ-.【答案】(1)1225-;(2)75.【解析】【分析】(1)由1sin cos ,(0,)5θθθπ+=∈,利用三角函数的基本关系式,即可求解;(2)由(1)知sin cos 0θθ⋅<,得出可得sin θcos θ0->,结合三角函数的基本关系式,即可求解.【详解】(1)由题意知1sin cos ,(0,)5θθθπ+=∈,可得21(sin cos )12sin cos 25θθθθ+=+⋅=,解得12sin cos 25θθ⋅=-.(2)由(1)知12sin cos 025θθ⋅=-<,所以sin 0,cos 0θθ><,可得sin θcos θ0->,所以sin cos θθ-===75=.20. 已知函数3sin cos tan()22()cos()sin(3)x x x f x x x πππππ⎛⎫⎛⎫-+-- ⎪ ⎪⎝⎭⎝⎭=+-,且1()3f α=.(1)求2sin cos sin 2cos αααα-+的值;(2)求222sin sin cos cos αααα--的值.【答案】(1)17-;(2)-1.【解析】【分析】(1)用诱导公式化简函数得()tan f x x =,已知条件为1tan 3α=,然后求值式利用弦化切法化为正切的函数,再求值;(2)由“1”的代换得2222222sin sin cos cos 2sin sin cos cos sin cos αααααααααα----=+,然后分子分母同除以2cos αtan α的函数再代入求值.【详解】(1)cos sin (tan )()tan cos sin x x x f x x x x -==- ∵1()3f α=,∴1tan 3α= 2sin cos 2tan 1sin 2cos tan 2αααααα--=++121131723⨯-==-+(2)2222222sin sin cos cos 2sin sin cos cos sin cos αααααααααα----=+2211212tan tan 19311tan 119ααα⨯----===-++.【点睛】本题考查诱导公式,考查同角间三角函数关系,齐次式求值问题.关于sin ,cos αα的齐次分式均可化为关于tan α的函数求值.21. 已知定义在R 上的函数2()51x f x m =-+(1)判断并证明函数()f x 的单调性;的(2)若()f x 是奇函数,求m 的值;(3)若()f x 的值域为D ,且[3,1]D ⊆-,求m 的取值范围.【答案】(1)见解析;(2)1;(3)[1,1]-【解析】【分析】(1)利用函数单调性的定义进行证明即可;(2)利用函数奇偶性的定义求解即可;(3)求出函数的值域,利用子集关系求解即可.【小问1详解】证明:设12x x <且12,x x R∈则()()()()()121212122552251515151x x x x x x f x f x m m -⎛⎫-=---= ⎪++++⎝⎭121212510,510,550x x x x x x <∴+>+>-< ()()120f x f x -<即()()12f x f x <()f x 在R 上单调递增【小问2详解】()f x 是R 上的奇函数,22()()05151x x f x f x m m -+-=-+-=++即225202205151x x x m m ⎛⎫⨯-+=⇒-= ⎪++⎝⎭1m =【小问3详解】由22500225151x x x m m m >⇒<<⇒-<-<++(2,)D m m =-,[3,1]D ⊆-23111m m m -≥-⎧⇒-≤≤⎨≤⎩m 的取值范围是[1,1]-22. 已知函数()1lg1x f x x -=+.(1)求不等式()()()lg20f f x f +>的解集;(2)函数()()30,1x g x aa a =->≠,若存在[)12,0,1x x ∈,使得()()12f x g x =成立,求实数a 的取值范围.【答案】(1)19,311⎛⎫ ⎪⎝⎭(2)()3,+∞【解析】【分析】(1)求得()f x 的定义域和值域及函数的单调性,得1111012x x -<<+,解不等式即可得到所求范围;(2)求得当01x ≤<时,()f x 的值域;以及讨论1a >,01a <<时()g x 的值域,由题意可得()f x 和()g x 的值域存在交集,即可得到所求范围;【小问1详解】由101x x ->+,可得11x -<<,故函数定义域为()1,1-,关于原点对称,又()()11lg lg 11x x f x f x x x +--==-=--+,即()f x 为奇函数.又()()1212lg lg lg 1111x x f x x x x -++-⎛⎫===-+ ⎪+++⎝⎭,函数211y x =-++在()1,1-上单调递减,值域()0,∞+.由复合函数的单调性质知()f x 在()1,1-上单调递减,且()f x 的值域为R ,不等式()()()lg20f f x f +>,转化为()()()lg2f f x f >-,因为()f x 为奇函数,所以()()()()lg2lg2ff x f f >-=-,因为()f x 在()1,1-上单调递减,所以()1lg2f x -<<-,即11lg lg21x x --<<-+,即1111012x x -<<+,即111102x x x ++<-<,解得19311x <<,为则原不等式的解集为19,311⎛⎫ ⎪⎝⎭.【小问2详解】因为存在[)12,0,1x x ∈,使得()()12f x g x =成立,所以[)0,1x ∈时,()f x 的值域与()g x 的值域有交集.因为()2lg 11f x x ⎛⎫=-+ ⎪+⎝⎭在[)0,1上是减函数,()01f =,所以()f x 的值域为(],0-∞,当1a >时,()3xg x a =-在[)0,1上单调递减,故()g x 的值域为(]3,2a -,所以30a -<即3a >,当01a <<时,()3xg x a =-在[)0,1上单调递增,故()g x 的值域为[)2,3a -,不符.综上所述,实数a 的取值范围为()3,+∞.。
吉林省吉林市第一中学2024-2025学年高一上学期第一次月考数学试卷

吉林省吉林市第一中学2024-2025学年高一上学期第一次月考数学试卷一、单选题1.已知全集{}1,2,3,4,5U =,{}2,3A =,{}1,3,5B =,则()UA B =ð( )A .{}2,3,4B .{}2C .{}1,5D .{}1,3,4,52.下列各组函数中,()f x 与()g x 表示同一函数的是( )A .()2f x x =与()4g x =B .()2f x x =−与()242x g x x −=+ C .()f x x =与()g x =D .()21x f x x=−与()1g x x =−3.下列函数中,既是奇函数,又在区间(0,1)上为增函数的是( ) A.y =B .13y x = C .||y x =D .2y x =−4.若幂函数()2()22m f x m m x =−−在(0,+∞)单调递减,则(2)f =( ) A .8B .3C .1D .125.关于x 的不等式2210mx mx +−<恒成立的一个充分不必要条件是() A .112m −<<−B .10m −<≤C .21m −<<D .132m −<<−6.已知0.533,0.5,a b c === ) A .b a c <<B .a b c <<C .b c a <<D .c b a <<7.已知()12,1,1.2x x f x x −⎧<=≥⎩若()1f a =,则实数a 的值为( )A .1B .4C .1或4D .28.函数21()x f x x−=的图象大致为( )A .B .C .D .9.已知定义在[1,1]−上的偶函数()f x 在[0,1]上为减函数,且(1)(32)f x f x −>−,则实数x 的取值范围是( ) A .4,(2,)3⎛⎫−∞+∞ ⎪⎝⎭B .4,23⎛⎫⎪⎝⎭C .41,3⎡⎫⎪⎢⎣⎭ D .[1,2]10.已知函数()21x mf x x +=+,[]0,1x ∈,若()f x 的最小值为52,则实数m 的值为() A .32B .52C .3D .52或3二、多选题11.已知0a b >>,0c <,则下列四个不等式中,一定成立的是( )A .22a b >B .ac bc <C .22a c >D .a c b c −>−12.已知0a >,0b >,且1a b +=,则( )A .14ab ≤B .2212a b +≥C .221a b +≥D .114a b+≤13.以下命题正确的是( )A .不等式2131x x −≥+的解集是1|4x x ⎧⎫≤⎨⎬⎩⎭B .R a ∃∈,()2,0,,0,ax x f x x x ⎧<=⎨−≥⎩的值域为RC .若函数2()1f x x =+,则对12,R x x ∀∈,不等式()()121222f x f x x x f ++⎛⎫≤ ⎪⎝⎭恒成立D.若(1f x =,则函数()f x 的解析式为2()(1)f x x =−14.已知实数0a >,函数5,(,2)2()2,[2,)ax x f x a x a x x ∞∞⎧+∈−⎪⎪=⎨⎪++∈+⎪⎩在R 上是单调函数,若a 的取值集合是M ,则下列说法正确的是( )A .1M ∈B .{4,5}M ⊆C .20x x a ++>恒成立D .a M ∃∈,使得()(2)3x g x a =−⋅是指数函数三、填空题15.2103241)8+−−= . 16.0x ∃>,12x x+>的否定是 . 17.已知函数53()4f x ax bx cx =++−,(10)6f =,则(10)f −= .18.函数221()(1)x f x x x −=−的单调增区间为 .四、解答题19.已知函数()x f x a b =+(0a >,且1a ≠).(1)若函数()f x 的图象过(0,2)和(2,10)两点,求()f x 在[0,1]上的值域; (2)若01a <<,且函数()f x 在区间[2,3]上的最大值比最小值大22a,求a 的值.20.小王大学毕业后,决定利用所学专业进行自主创业.经过市场调查,生产某小型电子产品需投入年固定成本为3万元,每生产x 万件,需另投入流动成本为()W x 万元.在年产量不足8万件时,()213W x x x =+万元;在年产量不小于8万件时,()100638W x x x =+−万元,每件产品售价为5元.通过市场分析,小王生产的商品当年能全部售完.(1)写出年利润()L x 万元关于年产量x 万件的函数解析式;(注:年利润=年销售收入-固定成本-流动成本)(2)年产量为多少万件时,小王在这一商品的生产中所获利润最大?最大利润是多少? 21.已知()2af x x x=++,[1,)x ∈+∞. (1)当12a =时,用单调性定义证明函数()y f x =的单调性,并求出函数()y f x =的最小值; (2)若对任意[1,)x ∈+∞,()0f x >恒成立,试求实数a 的取值范围;22.已知函数()y f x =是定义在R 上的奇函数,当x >0时,()2f x x ax =−,其中a R ∈.(1)求函数()y f x =的解析式;(2)若函数()y f x =在区间()0,+∞不单调,求出实数a 的取值范围;(3)当0a =时,若()1,1m ∃∈−,不等式()()22330f m m f m k −+−>成立,求实数k 的取值范围.。
吉林省四平市公主岭一中高一数学上学期第一次月考试卷(含解析)

吉林省四平市公主岭一中2014-2015学年高一上学期第一次月考数学试卷一.选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有且只有一个选项是正确的)1.已知全集U={0,1,2,3,4},M={0,1,2},N={2,3},则(C U M)∩N=()A.{2} B.{3} C.{2,3,4} D.{0,1,2,3,4} 2.下列图象中表示函数图象的是()A.B.C.D.3.已知f(x﹣1)=x2+4x﹣5,则f(x)的表达式是()A.f(x)=x2+6x B.f(x)=x2+8x+7 C.f(x)=x2+2x﹣3 D.f(x)=x2+6x﹣10 4.下列各组中的两个函数是同一函数的是()(1)y1=;y2=x﹣5;(2)y1=,y2=;(3)f (x)=x,g(x)=;(4)f(x)=,F(x)=x3;(5)f 1(x)=()2,f2(x)=2x﹣5.A.(1)(2)B.(2)(3)C.(4)D.(3)(5)5.下列函数中值域为R的函数有()①y=()x②y=x2③y=④y=log2x.A.1个B.2个C.3个D.4个6.已知函数y=使函数值为5的x的值是()A.﹣2 B.2或﹣C.2或﹣2 D.2或﹣2或﹣7.下列函数中,定义域为[0,+∞)的函数是()A.y=B.y=﹣2x2C.y=3x+1 D.y=(x﹣1)28.若x,y∈R,且f(x+y)=f(x)+f(y),则函数f(x)()A.f(0)=0且f(x)为奇函数B.f(0)=0且f(x)为偶函数C.f(x)为增函数且为奇函数D.f(x)为增函数且为偶函数9.已知函数f(x)=.若f(a)+f(1)=0,则实数a的值等于()A.﹣3 B.﹣1 C.1 D.310.若x∈R,n∈N*,规定:=x(x+1)(x+2)…(x+n﹣1),例如:=(﹣4)•(﹣3)•(﹣2)•(﹣1)=24,则f(x)=x•的奇偶性为()A.是奇函数不是偶函数B.是偶函数不是奇函数C.既是奇函数又是偶函数D.既不是奇函数又不是偶函数11.已知函数f(x)=在R上单调递减,那么实数a的取值范围是()A.(0,1)B.(0,)C.(,)D.(,1)12.设偶函数f(x)满足f(x)=2x﹣4(x≥0),则{x|f(x﹣2)>0}=()A.{x|x<﹣2或x>4} B.{x|x<0或x>4} C.{x|x<0或x>6} D.{x|x<﹣2或x>2}二.填空题(每小题5分,共20分)13.已知函数f(x)=a x(a>0,且a≠1)在区间(1,2)上的最大值与最小值的差为,则a=.14.已知集合M={(x,y)|x+y=2},N={(x,y)|x﹣y=4},则M∩N等于.15.函数f(x)=,f(7)=.16.已知函数y=的值域为[0,+∞),则a的取值范围是.三.解答题(解答应写出文字说明,证明过程,演算步骤)17.设A={x|x2﹣ax+a2﹣19=0},B={x|x2﹣5x+6=0},C={x|x2+2x﹣8=0}.(1)若A=B,求实数a的值;(2)若∅⊊A∩B,A∩C=∅,求实数a的值.18.设函数f(x)的定义域为R,当x<0时,f(x)>1,且对任意的实数x,y∈R,有f (x+y)=f(x)f(y),且f(2)=4(Ⅰ)求f(0),f(1)的值;(Ⅱ)证明f(x)在R上是减函数.19.设函数f(x)=ax2+bx+1(a≠0,b∈R),若f(﹣1)=0,且对任意实数x(x∈R)不等式f(x)≥0恒成立.(1)求实数a、b的值;(2)在(1)的条件下,当x∈[﹣2,2]时,g(x)=f(x)﹣kx是单调函数,求实数k的取值范围.20.设函数f(x)=a x﹣a﹣x(a>0且a≠1).(1)判断函数f(x)的奇偶性;(2)若f(1)<0,试判断函数f(x)的单调性.并求使不等式f(x2+tx)+f(4﹣x)<0对一切x∈R恒成立的t的取值范围;(3)若f(1)=,g(x)=a2x+a﹣2x﹣2mf(x)且g(x)在[1,+∞)上的最小值为﹣2,求m的值.吉林省四平市公主岭一中2014-2015学年高一上学期第一次月考数学试卷一.选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有且只有一个选项是正确的)1.已知全集U={0,1,2,3,4},M={0,1,2},N={2,3},则(C U M)∩N=()A.{2} B.{3} C.{2,3,4} D.{0,1,2,3,4}考点:交、并、补集的混合运算.专题:计算题.分析:本题思路较为清晰,欲求(C U M)∩N,先求M的补集,再与N求交集.解答:解:∵全集U={0,1,2,3,4},M={0,1,2},∴C U M={3,4}.∵N={2,3},∴(C U M)∩N={3}.故选B.点评:本题考查了交、并、补集的混合运算,是基础题.2.下列图象中表示函数图象的是()A.B.C.D.考点:函数的图象;函数的概念及其构成要素.专题:作图题.分析:根据函数的定义,对任意的一个x都存在唯一的y与之对应可求解答:解:根据函数的定义,对任意的一个x都存在唯一的y与之对应而A、B、D都是一对多,只有C是多对一.故选C点评:本题主要考查了函数定义与函数对应的应用,要注意构成函数的要素之一:必须形成一一对应或多对一,但是不能多对一,属于基础试题3.已知f(x﹣1)=x2+4x﹣5,则f(x)的表达式是()A.f(x)=x2+6x B.f(x)=x2+8x+7 C.f(x)=x2+2x﹣3 D.f(x)=x2+6x﹣10考点:函数解析式的求解及常用方法.专题:换元法;函数的性质及应用.分析:【方法﹣】用换元法,设t=x﹣1,用t表示x,代入f(x﹣1)即得f(t)的表达式;【方法二】凑元法,把f(x﹣1)的表达式x2+4x﹣5凑成含(x﹣1)的形式即得f(x)的表达式;解答:解:【方法﹣】设t=x﹣1,则x=t+1,∵f(x﹣1)=x2+4x﹣5,∴f(t)=(t+1)2+4(t+1)﹣5=t2+6t,f(x)的表达式是f(x)=x2+6x;【方法二】∵f(x﹣1)=x2+4x﹣5=(x﹣1)2+6(x﹣1),∴f(x)=x2+6x;∴f(x)的表达式是f(x)=x2+6x;故选:A.点评:本题考查了函数解析式的常用求法的问题,是基础题.4.下列各组中的两个函数是同一函数的是()(1)y1=;y2=x﹣5;(2)y1=,y2=;(3)f (x)=x,g(x)=;(4)f(x)=,F(x)=x3;(5)f 1(x)=()2,f2(x)=2x﹣5.A.(1)(2)B.(2)(3)C.(4)D.(3)(5)考点:判断两个函数是否为同一函数.专题:函数的性质及应用.分析:判断两个函数的定义域以及对应法则是否相同,即可得到结果.解答:解:对于(1),y1=的定义域是{x|x∈R且x≠﹣3},y2=x﹣5的定义域是R,两个函数的定义域不相同不是相同函数;对于(2),y1=的定义域是{x|x≥1},y2=的定义域是{x|x≤﹣1,或x≥1},两个函数的定义域不相同不是相同函数;对于(3),f (x)=x,g(x)=的定义域均是R,但g(x)==|x|,两个函数对应关系不相同,不是相同的函数;对于(4),f(x)==x3,F(x)=x3;两个函数的定义域均为R,对应法则相同,是相同的函数;对于(5),函数f 1(x)=()2的定义域为{x|x≥},f2(x)=2x﹣5的定义域为R,不是相同的函数;故只有第(4)组的两个函数是同一函数,故选:C.点评:本题考查两个函数是否相同的判定,注意两个函数相同条件:定义域与对应法则相同.基本知识的考查.5.下列函数中值域为R的函数有()①y=()x②y=x2③y=④y=log2x.A.1个B.2个C.3个D.4个考点:函数的值域.分析:根据指数函数,幂函数,对数函数的性质,分别求出值域即可判断.解答:解:①y=()x的值域为(0,+∞),②y=x2的值域为[0,+∞),③y=的值域为(﹣∞,0)∪(0,+∞),④y=log2x.的值域为R,故选:A点评:本题考查了基本的函数的值域,对常见的函数要熟练运用,属于容易题,难度不大.6.已知函数y=使函数值为5的x的值是()A.﹣2 B.2或﹣C.2或﹣2 D.2或﹣2或﹣考点:分段函数的解析式求法及其图象的作法;函数的值.分析:分x≤0和x>0两段解方程即可.x≤0时,x2+1=5;x>0时,﹣2x=5.解答:解:由题意,当x≤0时,f(x)=x2+1=5,得x=±2,又x≤0,所以x=﹣2;当x>0时,f(x)=﹣2x=5,得x=﹣,舍去.故选A点评:本题考查分段函数求值问题,属基本题,难度不大.7.下列函数中,定义域为[0,+∞)的函数是()A.y=B.y=﹣2x2C.y=3x+1 D.y=(x﹣1)2考点:函数的定义域及其求法.专题:计算题.分析:选项根据偶次根式下大于等于0可得定义域,选项B、D都是二次函数,定义域为R,选项C是一次函数,定义域为R,可得正确选项.解答:解:选项A,y=的定义域为[0,+∞)选项B,y=﹣2x2定义域为R选项C,y=3x+1定义域为R选项D,y=(x﹣1)2定义域为R故选A.点评:本题主要考查了幂函数、二次函数和一次函数的定义域,属于容易题.8.若x,y∈R,且f(x+y)=f(x)+f(y),则函数f(x)()A.f(0)=0且f(x)为奇函数B.f(0)=0且f(x)为偶函数C.f(x)为增函数且为奇函数D.f(x)为增函数且为偶函数考点:抽象函数及其应用.分析:根据已知中对任意的x、y∈R,都有f(x+y)=f(x)+f(y),令x=y=0,得f(0)=0,令y=﹣x,结合函数奇偶性的定义,即可得到结论.解答:解:∵对任意的x、y∈R,都有f(x+y)=f(x)+f(y),∴令x=y=0得,f(0)=f(0)+f(0)=2f(0),∴f(0)=0令y=﹣x得,f(x﹣x)=f(x)+f(﹣x)=f(0)=0,∴f(﹣x)=﹣f(x)∴函数f(x)为奇函数.故选A.点评:本题考查函数的奇偶性,考查赋值法的运用,考查学生的计算能力,属于基础题.9.已知函数f(x)=.若f(a)+f(1)=0,则实数a的值等于()A.﹣3 B.﹣1 C.1 D.3考点:指数函数综合题.专题:计算题.分析:由分段函数f(x)=,我们易求出f(1)的值,进而将式子f(a)+f(1)=0转化为一个关于a的方程,结合指数的函数的值域,及分段函数的解析式,解方程即可得到实数a的值.解答:解:∵f(x)=∴f(1)=2若f(a)+f(1)=0∴f(a)=﹣2∵2x>0∴x+1=﹣2解得x=﹣3故选A点评:本题考查的知识点是分段函数的函数值,及指数函数的综合应用,其中根据分段函数及指数函数的性质,构造关于a的方程是解答本题的关键.10.若x∈R,n∈N*,规定:=x(x+1)(x+2)…(x+n﹣1),例如:=(﹣4)•(﹣3)•(﹣2)•(﹣1)=24,则f(x)=x•的奇偶性为()A.是奇函数不是偶函数B.是偶函数不是奇函数C.既是奇函数又是偶函数D.既不是奇函数又不是偶函数考点:函数奇偶性的判断.专题:新定义.分析:根据定义先求出函数f(x)=x•的表达式,然后利用函数奇偶性的定义进行判断.解答:解:由定义可知,f(x)=x•=x(x﹣2)(x﹣1)(x)(x+1)(x+2)=x2(x2﹣1)(x2﹣4),因为f(﹣x)=x2(x2﹣1)(x2﹣4)=f(x),所以函数f(x)是偶函数不是奇函数.故选B.点评:本题主要考查函数奇偶性的判断,利用新定理求出函数f(x)的表达式,是解决本题的关键.11.已知函数f(x)=在R上单调递减,那么实数a的取值范围是()A.(0,1)B.(0,)C.(,)D.(,1)考点:函数单调性的性质.专题:计算题;函数的性质及应用.分析:讨论当x<1时,3a﹣2<0,当x≥1时,0<a<1;且3a﹣2+6a﹣1≥a,分别解出它们,再求交集即可.解答:解:当x<1时,y=(3a﹣2)x+6a﹣1为减,则3a﹣2<0,解得,a<;当x≥1时,y=a x为减,则0<a<1;由于f(x)在R上递减,则3a﹣2+6a﹣1≥a,解得,a,综上,可得.故选C.点评:本题考查函数的单调性的运用,考查分段函数的单调性,注意各段的情况及分界点,考查运算能力,属于中档题和易错题.12.设偶函数f(x)满足f(x)=2x﹣4(x≥0),则{x|f(x﹣2)>0}=()A.{x|x<﹣2或x>4} B.{x|x<0或x>4} C.{x|x<0或x>6} D.{x|x<﹣2或x>2}考点:偶函数;其他不等式的解法.专题:计算题.分析:由偶函数f(x)满足f(x)=2x﹣4(x≥0),可得f(x)=f(|x|)=2|x|﹣4,根据偶函数的性质将函数转化为绝对值函数,再求解不等式,可得答案.解答:解:由偶函数f(x)满足f(x)=2x﹣4(x≥0),可得f(x)=f(|x|)=2|x|﹣4,则f(x﹣2)=f(|x﹣2|)=2|x﹣2|﹣4,要使f(|x﹣2|)>0,只需2|x﹣2|﹣4>0,|x﹣2|>2解得x>4,或x<0.应选:B.点评:本题主要考查偶函数性质、不等式的解法以及相应的运算能力,解答本题的关键是利用偶函数的性质将函数转化为绝对值函数,从而简化计算.二.填空题(每小题5分,共20分)13.已知函数f(x)=a x(a>0,且a≠1)在区间(1,2)上的最大值与最小值的差为,则a=或.考点:指数函数的图像与性质.专题:函数的性质及应用.分析:讨论指数函数y=a x(a>0且a≠1)的单调性,从而确定函数的最值,从而求a.解答:解:由题意,若0<a<1,则有a﹣a2=,解得,a=;若a>1,则有a2﹣a=,则a=,故答案为:或.点评:本题考查了指数函数的单调性的应用及最值的求法,属于基础题.14.已知集合M={(x,y)|x+y=2},N={(x,y)|x﹣y=4},则M∩N等于{(3,﹣1)}.考点:交集及其运算.分析:集合M,N实际上是两条直线,其交集即是两直线的交点.解答:解:联立两方程解得∴M∩N={(3,﹣1)}.故答案为{(3,﹣1)}.点评:本题主要考查了集合的交运算,注意把握好各集合中的元素.15.函数f(x)=,f(7)=8.考点:函数的值.专题:函数的性质及应用.分析:由已知得f(7)=f(f(12))=f(9)=f(f(14))=f(11)=8.解答:解:∵数f(x)=,∴f(7)=f(f(12))=f(9)=f(f(14))=f(11)=8.故答案为:8.点评:本题考查查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.16.已知函数y=的值域为[0,+∞),则a的取值范围是{a|,或}.考点:函数的值域.专题:函数的性质及应用.分析:令t=g(x)=x2+ax﹣1+2a,由题意可得a2﹣4(2a﹣1)≥0,解此一元二次不等式,求得a的取值范围.解答:解:令t=g(x)=x2+ax﹣1+2a,要使函数的值域为[0,+∞),则说明[0,+∞)⊆{y|y=g(x)},即二次函数的判别式△≥0,即a2﹣4(2a﹣1)≥0,即a2﹣8a+4≥0,解得或,所以a的取值范围是{a|,或},故答案为:{a|,或}.点评:本题主要考查函数的值域的应用,二次函数的性质,体现了转化的数学思想,属于基础题.三.解答题(解答应写出文字说明,证明过程,演算步骤)17.设A={x|x2﹣ax+a2﹣19=0},B={x|x2﹣5x+6=0},C={x|x2+2x﹣8=0}.(1)若A=B,求实数a的值;(2)若∅⊊A∩B,A∩C=∅,求实数a的值.考点:集合关系中的参数取值问题.专题:计算题.分析:(1)先根据A=B,化简集合B,根据集合相等的定义,结合二次方程根的定义建立等量关系,解之即可;(2)先求出集合B和集合C,然后根据A∩B≠∅,A∩C=∅,则只有3∈A,代入方程x2﹣ax+a2﹣19=0求出a的值,最后分别验证a的值是否符合题意,从而求出a的值.解答:解:(1)由题意知:B={2,3}∵A=B∴2和3是方程x2﹣ax+a2﹣19=0的两根.由得a=5.(2)由题意知:C={﹣4,2}∵∅⊂A∩B,A∩C=∅∴3∈A∴3是方程x2﹣ax+a2﹣19=0的根.∴9﹣3a+a2﹣19=0∴a=﹣2或5当a=5时,A=B={2,3},A∩C≠∅;当a=﹣2时,符合题意故a=﹣2.点评:本题主要考查了子集与交集、并集运算的转换,以及两集合相等的定义,同时考查了验证的数学方法,属于基础题.18.设函数f(x)的定义域为R,当x<0时,f(x)>1,且对任意的实数x,y∈R,有f (x+y)=f(x)f(y),且f(2)=4(Ⅰ)求f(0),f(1)的值;(Ⅱ)证明f(x)在R上是减函数.考点:抽象函数及其应用.专题:函数的性质及应用.分析:本题(Ⅰ)利用抽象函数的条件,取行列值代入,可得f(0),f(1)的值,得到本题结论;(Ⅱ)利用抽象函数条件和函数单调性的定义,证明f(x)在R上是减函数,得到本题结论.解答:解:(Ⅰ)∵x,y∈R,f(x+y)=f(x)•f(y),当x<0时,f(x)>1,令x=﹣1,y=0,则f(﹣1)=f(﹣1)f(0)∵f(﹣1)>1,∴f(0)=1∴f(1)=f(0)f(1)=1.(Ⅱ)若x>0,﹣x<0,∴f(x﹣x)=f(0)=f(x)f(﹣x),∴f(x)=∈(0,1),故x∈R,f(x)>0任取x1<x2,f(x2)=f(x1+x2﹣x1)=f(x1)f(x2﹣x1)∵x2﹣x1>0,∴0<f(x2﹣x1)<1,∴f(x2)<f(x1).故f(x)在R上减函数.点评:本题考查了函数单调性定义和抽象函数的研究,本题难度不大,属于基础题.19.设函数f(x)=ax2+bx+1(a≠0,b∈R),若f(﹣1)=0,且对任意实数x(x∈R)不等式f(x)≥0恒成立.(1)求实数a、b的值;(2)在(1)的条件下,当x∈[﹣2,2]时,g(x)=f(x)﹣kx是单调函数,求实数k的取值范围.考点:二次函数的性质.专题:函数的性质及应用.分析:(1)由已知条件便得,,所以便可得到(a﹣1)2≤0,所以只有(a﹣1)2=0,这样便求出a=1,b=2;(2)先求出g(x)=x2+(2﹣k)x+1,该函数为二次函数,在对称轴一边有单调性,所以求出该函数对称轴为x=,所以便有,解不等式即得k的取值范围.解答:解:(1)由f(﹣1)=0得,a﹣b+1=0,∴b=a+1 ①;∵对任意x∈R不等式f(x)≥0恒成立;∴△=b2﹣4a≤0 ②;①带入②得,(a﹣1)2≤0;∴a=1,b=2;(2)g(x)=x2+(2﹣k)x+1;该函数对称轴为:x=;又g(x)在[﹣2,2]上是单调函数;∴;∴k≥6,或k≤﹣2;∴实数k的取值范围为(﹣∞,﹣2]∪[6,+∞).点评:考查一元二次不等式的解为R时判别式△的取值情况,以及二次函数的单调性和对称轴的关系.20.设函数f(x)=a x﹣a﹣x(a>0且a≠1).(1)判断函数f(x)的奇偶性;(2)若f(1)<0,试判断函数f(x)的单调性.并求使不等式f(x2+tx)+f(4﹣x)<0对一切x∈R恒成立的t的取值范围;(3)若f(1)=,g(x)=a2x+a﹣2x﹣2mf(x)且g(x)在[1,+∞)上的最小值为﹣2,求m的值.考点:指数函数综合题.专题:函数的性质及应用.分析:(1)根据奇函数定义判断,(2)根据奇函数,单调性转化为x2+tx>x﹣4,即x2+(t﹣1)x+4>0恒成立,△=(t﹣1)2﹣16<0,求解.(3)令t=f(x)=2x﹣2﹣x,由(1)可知f(x)=2x﹣2﹣x为增函数,转化求解.解答:解:(1)f(x)的定义域为R,关于原点对称,且f(﹣x)=a﹣x﹣a x=﹣f(x),∴f(x)为奇函数.(2)f( x)=a x﹣a﹣x(a>0且a≠1).∵f(1)<0,∴a﹣<0,又a>0,且a≠1,∴0<a<1,故f(x)在R上单调递减,不等式化为f(x2+tx)<f(x﹣4),∴x2+tx>x﹣4,即x2+(t﹣1)x+4>0恒成立,∴△=(t﹣1)2﹣16<0,解得﹣3<t<5;(3)∵f(1)=,∴a﹣=,即2a2﹣3a﹣2=0,解得a=2或a=﹣(舍去),∴g(x)=a2x+a﹣2x﹣2mf(x)=(2x﹣2﹣x)2﹣2m(2x﹣2﹣x)+2,令t=f(x)=2x﹣2﹣x,由(1)可知f(x)=2x﹣2﹣x为增函数,∵x≥1,∴t≥f(1)=,令h(t)=t2﹣2mt+2=(t﹣m)2+2﹣m2(t≥),若m≥,当t=m时,h(t)min=2﹣m2=﹣2,∴m=2;若m<时,当t=时,h(t)min=﹣2,解得m=>,无解;综上,m=2点评:本题考查了函数的性质,运用解决综合问题,属于难题.。
吉林省长春实验中学2024-2025学年高一上学期第一次月考数学试题

吉林省长春实验中学2024-2025学年高一上学期第一次月考数学试题一、单选题1.若集合{|11}M x x =-<<,{|02}N x x =≤<,则M N =I ( ).A .{|12}x x -<<B .{|01}x x ≤<C .{|01}x x <<D .{|10}x x -<<2.已知:0p x ∀<,0x x +≥,则p ⌝为( )A .0x ∀<,0x x +<B .0x ∃<,0x x +≥C .0x ∃>,0x x +≥D .0x ∃<,0x x +<3.下列所给4个图象中,与所给3件事吻合最好的顺序为( )(1)我离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再上学; (2)我骑着车一路以匀速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间; (3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速.A .(1)(2)(4)B .(2)(3)(4)C .(4)(1)(3)D .(4)(1)(2) 4.下列函数中是增函数的是( )A .1y x =-B .21y x =-+C .yD .y x x =5.已知集合{}0A x x a =<<,{}12B x x =<<,若B A ⊆,则实数a 的取值范围是( ) A .(),2-∞ B .(],2-∞ C .()2,+∞ D .[)2,+∞ 6.已知不等式20ax bx c ++>的解集为 −2,3 ,则下列结论正确的是( ) A .0a < B .0b < C .0c < D .0a b c ++<7.下列不等式中成立的是( )A .若0a b >>,则22ac bc >B .若0a b >>,则22a b >C .若0a b <<,则22a ab b <<D .若0a b <<,则11a b< 8.已知命题[)2:0,,40p x x ax ∃∈+∞++<,若p 为假命题,则实数a 的取值范围为( )A .[]4,4-B .()(),44,∞∞--⋃+C .[)4,-+∞D .(],4∞-二、多选题9.已知函数()f x 满足,x y ∀∈R ,有()()()f x y f x f y +=+,()12f =-,则下列命题正确的是( )A .()00f =B .()24f =-C .()36f -=-D .()f x 是增函数 10.已知0,0a b >>,且1a b +=,则( )A .2212a b +≥B 12C .114a b +≥D 11.已知关于x 的方程()()230R x m x m m +-+=∈,则下列说法正确的是( )A .当2m =时,方程的两个实数根之和为1B .方程无实数根的一个必要条件是1m >C .方程有两个不等正根的充要条件是01m <<D .方程有一个正根和一个负根的充要条件是0m <三、填空题12.已知()22,123,1x x f x x x ⎧-≤=⎨+>⎩,求()()2f f -=. 13.已知函数()[]f x x =表示不大于x 的最大整数,如[]π3=,[]2.53-=-则不等式[]()[]20x x +⋅≤的解集为.14.函数2211x y x -=+的值域为.四、解答题15.已知二次函数()f x 的图象过点()2,6-,()1,6-,()3,4-.(1)求函数的解析式;(2)画出函数在[]2,4x ∈-上图象.16.设函数()212x f x x +=- (1)判断函数在(),2-∞上的单调性,并证明;(2)求()f x 在区间(]7,3--上的值域.17.已知0x >,0y >,且20x y xy +-=.(1)求xy 的最小值;(2)求x y +的最小值.18.回答下面两个题(1)一家金店使用一架两臂不等长的天平称黄金,一位顾客到店内购买20g 黄金,店员先将10g 的砝码放在天平左盘中,取出一些黄金放在天平右盘中,使天平平衡:再将10g 的砝码放在天平右盘中,再取出一些黄金放在天平左盘中,使得天平平衡;最后将两次称得的黄金交给顾客.记顾客实际购得的黄金是大于20还是小于20,通过计算得出你的结论.(2)设矩形()ABCD AB AD >的周长为12,把ABC V 沿AC 向ADC △折叠,AB 折过去后交DC 于点P ,设AB x =,求ADP △的最大面积及相应x 的值.19.已知函数()()22R f x ax x a =++∈.(1)若()()13f x a x ≤++恒成立,求a 的取值范围;(2)解关于x 的不等式()0f x >.。
2021-2022学年吉林省四平市第一高一年级上册学期第三次月考数学试题【含答案】

2021-2022学年吉林省四平市第一高级中学高一上学期第三次月考数学试题一、单选题1.角度20230'︒化成弧度为( ) A .98π B .5π4C .11π8D .19π16【答案】A【分析】根据题意,结合π180=,即可求解. 【详解】根据题意,π9π2023018022.50π88'︒=︒+︒=+=. 故选:A.2.已知集合(,2]A =-∞,集合{}2|230,B x x x x Z =--≤∈,则A B =( )A .[1,2]-B .{1,0,1,2,3}-C .{1,0,1,2}-D .[1,3]-【答案】C【分析】解一元二次不等式求集合B ,再由集合的交运算求A B ⋂. 【详解】由题设,{|13,}{1,0,1,2,3}B x x x Z =-≤≤∈=-, ∴{1,0,1,2}A B =-. 故选:C3.若角α的终边经过点()2,4-,则cos α=( )A .BC .D 【答案】A【分析】根据角α终边上的一点以及cos α=.【详解】由题可知:角α的终边经过点()2,4-则cos α= 故选:A【点睛】本题主要考查角的三角函数的定义,掌握公式cos α=α=,属基础题.4.已知2log 3a =,12b -=,4log 8c =,则a ,b ,c 的大小关系为( ) A .a b c << B .b<c<a C .a c b << D .c b a <<【答案】B【分析】利用对数函数的单调性证明1a c >>即得解.【详解】解:244log 3log 9log 81a c ==>=>,11212b -==<, 所以b<c<a . 故选:B5.已知集合{}51A x x x =><-或,{}8B x a x a =<<+,若A B =R ,则实数a 的取值范围是( ) A .{}31a a -<<- B .{}12a a << C .{}31a a -≤≤- D .{}12a a ≤≤【答案】A【分析】根据集合并集的定义,则185a a <-⎧⎨+>⎩即可求解.【详解】因为{}51A x x x =><-或,{}8B x a x a =<<+又A B =R ,则185a a <-⎧⎨+>⎩ 解得31a -<<- 故选:A6.已知θ为第四象限角,sin cos θθ+=,则sin cos θθ-=( )A .B .C .43- D .53-【答案】C【分析】根据θ为第四象限角且sin cos 0θθ+=>可得:cos sin θθ>,然后利用完全平方即可求解.【详解】因为θ为第四象限角且sin cos 0θθ+=>,所以cos sin θθ>,也即sin cos 0θθ-<,将sin cos θθ+=两边同时平方可得: 212sin cos 9θθ+=,所以72sin cos 9θθ=-,则4sin cos 3θθ-==-,故选:C .7.已知函数2,1()log ,1x aa x f x x x ⎧-<=⎨≥⎩,在R 上单调递增,则实数a 的取值范围为( )A .(1,)+∞B .(2,)+∞C .(1,2]D .(1,e]【答案】C【分析】根据题意,结合分段函数的单调性,以及指数、对数的图像性质,即可求解.【详解】根据题意,易知1log 12a a a >⎧⎨≥-⎩,解得12a <≤.故选:C.8.已知函数()()2ln 1f x ax ax =++的值域为R ,则实数a 的取值范围是( )A .()0,4B .[)4,+∞C .(),0∞-D .()4,+∞【答案】B【分析】根据对数函数的值域知,()0,∞+是函数21y ax ax =++值域的子集,从而得到关于a 的不等式组,解该不等式组可得答案.【详解】设21y ax ax =++,根据题意(){}20,|1+∞⊆=++y y ax ax ,∴20Δ40a a a ⎧⎨=-≥⎩>,解得4a ≥, ∴实数a 的取值范围为[)4,+∞. 故选:B .9.已知函数()f x 为定义在[]1,4a -上的偶函数,在[]0,4上单调递减,并且()25a f m f ⎛⎫--< ⎪⎝⎭,则实数m 的取值范围是( ) A .[]3,1- B .()(),31,-∞-⋃+∞ C .[)(]3,13,5-⋃ D .[)(]5,31,3--⋃【答案】D【分析】利用函数的奇偶性得到5a =,再解不等式组41412m m -≤--≤⎧⎨-->⎩即得解.【详解】解:由题得14,5a a -=-∴=.因为在[]0,4上单调递减,并且()()12f m f --<,所以41412m m -≤--≤⎧⎨-->⎩,所以13m <≤或53m -≤<-.故选:D10.已知实数x 满足不等式2122log 4log 30x x ⎛⎫++≤ ⎪⎝⎭,则函数()248log log 8x f x x ⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭取最小值时x 的值为( ) A .3 B .12C .18D .116【答案】C【分析】解不等式得23log 1x -≤≤-,再化简函数的解析式换元得到二次函数,利用二次函数的图象和性质求解.【详解】解:由题得()222log 4log 30x x -++≤, 所以()222log 4log 30x x ++≤, 所以()22log +1(log 3)0x x +≤, 所以23log 1x -≤≤-.()2242228311log log (log 3)(log )(log 3)8222x f x x x x x ⎛⎫⎛⎫==--=-- ⎪⎪⎝⎭⎝⎭,设2log [3,1]t x =∈--, 所以21()(3)2g t t =--,所以2min 1()(3)(33)182g t g =-=---=-. 此时321log 3,28x x -=-∴==.故选:C二、多选题11.已知角θ是第二象限角,则角2θ所在的象限可能为( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】AC【分析】用不等式表出第二象限角θ的范围,再求得2θ的范围后判断.【详解】角θ是第二象限角,则22,Z 2k k k ππθππ+<<+∈,,Z 422k k k πθπππ+<<+∈,k 为奇数时,2θ是第三象限角,k 为偶数时,2θ是第一象限角,故选:AC .12.下列命题为真命题的是( )A .若函数()f x 在(),0∞-和()0,∞+上都单调递减,则()f x 在定义域内单调递减B .“0x ∀>,21x >”的否定是“00x ∃>,21x ≤” C .“0x =或0y =”是“0xy =”的充要条件 D .“0a ∃>,12a a+<”的否定是“0a ∀>,12a a +>”【答案】BC【分析】根据函数的单调性,和含有量词的命题的否定,以及充要条件的定义,即可判断正误. 【详解】对于A ,函数1()f x x =在(,0)-∞和(0,)+∞上都单调递减,但是1()f x x=在定义域内不单调,所以A 不是真命题;对于B ,命题“20,1x x ∀>>”是一个全称量词命题,它的否定是“2000,1x x ∃>≤”,所 以B 是真命题;对于C ,因为0xy =等价于0x =或0y =,所以“0x =或0y =”是“0xy =”的充要条件,所以C 是真命题;对于D ,命题“10,2a a a∃>+<”是一个存在量词命题,它的否定是“0a ∀>,12a a +≥”,所以D 不是真命题; 故选:BC.13.已知函数()f x 是奇函数,且满足()()()2f x f x x -=∈R ,当01x <≤时,()12f x =,则函数()f x 在()2,2-上的零点为( ) A .0 B .14C .12D .74±【答案】ABD【分析】由题意求出函数的周期和对称轴,根据函数的性质作图,即可分析出函数的零点. 【详解】解:函数()f x 是奇函数,∴()00f = 且满足()()()2f x f x x -=∈R ,则()()()()()222f x f x f x f x -+=-=-=+,()()()24f x f x f x ∴-+=+=,即函数()f x 的周期为4,对称轴为2012x +==, 当01x <≤时,()12f x x =-,0141214f ⎛⎫=-= ⎪⎝⎭, 由题意作出函数()f x 的图像,如图所示,可知函数()f x 在()2,2-上的零点为:74-,14-,0,14,74,故选:ABD.14.设{},min ,,a a b a b b b a ≤⎧=⎨<⎩,函数()24min log ,1f x x x ⎧⎫=+⎨⎬⎩⎭(0x >),则( )A .函数()f x 的最小值是0B .函数()f x 的最大值是2C .函数()f x 在()0,4上递增D .函数()f x 在()4,+∞上递减【答案】BCD【分析】化简函数()f x 的表达式,再分析其性质,逐项判断作答.【详解】令函数2244()log (1)log 1g x x x x x =-+=--,0x >,显然,()g x 在(0,)+∞上单调递增,而24(4)log 4104g =--=,当04x <≤时,()()40g x g ≤=,即24log 1x x ≤+,则有()2log ,0441,4x x f x y x x <≤⎧⎪=⎨=+>⎪⎩, 当04x <≤时,2log y x =在(0,4]上单调递增,max 2y =,其值域为(,2]-∞, 当>4x 时,41y x=+在()4,+∞上单调递减,max 2y =,其值域为(1,2],因此,函数()f x 的值域是(,2]-∞,A 不正确;B ,C ,D 都正确. 故选:BCD15.已知不等式20x ax b ++≥的解集为{2x x ≤或}3x ≥,则ab =______. 【答案】30-【分析】由题意可知,2,3是一元二次方程20x ax b ++=的两根,由韦达定理即可得出答案. 【详解】因为不等式20x ax b ++≥的解集为{2x x ≤或}3x ≥, 所以2,3是一元二次方程20x ax b ++=的两根, 所以2+3,23a b =-⨯=,则5,6a b =-=. 则30ab =-. 故答案为:30-.16.已知()()1,63,6x x f x f x x +≤⎧=⎨->⎩,则()7f =______.【答案】5【分析】利用函数()f x 的解析式可求得()7f 的值.【详解】因为()()1,63,6x x f x f x x +≤⎧=⎨->⎩,则()()74415f f ==+=.故答案为:5.17.若函数()()log 1a f x ax =-在1,4⎛⎤-∞ ⎥⎝⎦上单调递减,则实数a 的取值范围为______.【答案】()1,4【分析】结合已知条件,由对数型复合函数单调性和定义域即可求解. 【详解】由题意可知,0a >且1a ≠,所以1y ax =-在1,4⎛⎤-∞ ⎥⎝⎦上单调递减,因为函数()()log 1a f x ax =-在1,4⎛⎤-∞ ⎥⎝⎦上单调递减,由复合函数单调性可知,1a >,又由对数型函数定义域可知,1104a ->,即4a <,综上可知,14a <<. 故答案为:()1,4.四、双空题18.已知扇形的周长为8,则扇形的面积的最大值为_________,此时扇形的圆心角的弧度数为【答案】 4 2【分析】根据扇形的面积公式,结合配方法和弧长公式进行求解即可. 【详解】设扇形所在圆周的半径为r ,弧长为l ,有28l r +=,211(82)422S lr r r r r ==-=-+=2(2)44r --+≤,此时2r =,4l ,422l r α===.故答案为:4;2五、解答题19.计算下列各式的值:(1)()()13369611log 18log 3log 2278-⎛⎫⎛⎫-++⋅-- ⎪ ⎪⎝⎭⎝⎭; (2)已知角0,4πθ⎛⎫∈ ⎪⎝⎭,且2sin cos 5θθ=.求tan θ的值.【答案】(1)3- (2)1tan 2θ=【分析】(1)根据分数指数幂及对数的运算法则计算可得; (2)由题意可得22sin cos 2sin cos 5θθθθ=+,在根据同角三角函数的基本关系将弦化切,即可得到tan θ的方程,并根据θ的范围求解.【详解】(1)()()13369611log 18log 3log 2278-⎛⎫⎛⎫-++⋅-- ⎪ ⎪⎝⎭⎝⎭()2213666631127log 18log 3log 213log 18log 2122=-++⋅-=-++-()61log 18241432=⨯-=-=-. (2)由2sin cos 5θθ=,有22sin cos 2sin cos 5θθθθ=+, 则2tan 2tan 15θθ=+,整理为22tan 5tan 20θθ-+=. 所以()()2tan 1tan 20θθ--=,解得1tan 2θ=或tan 2θ=. 又由0,4πθ⎛⎫∈ ⎪⎝⎭,有0tan 1θ<<,可得1tan 2θ=.20.已知集合{}42A x x =-≤≤,{}23B x x =+>,{}61,0C x m x m m =-<+. (1)求A B ⋃;()R C B A ;(2)若R x C B ∈是x C ∈的充分不必要条件,求实数m 的取值范围. 【答案】(1){|5A B x x =<-或4}x ≥-,()[4,1]R C B A =-;(2)01m <<.【分析】(1)求出{|1B x x =>或5}x <-,即得解; (2)解不等式组06511m m m >⎧⎪-<-⎨⎪+>⎩即得解.【详解】(1)由题得{|1B x x =>或5}x <-,所以{|5A B x x =<-或4}x ≥-,}5|1{RB x x =-≤≤,所以()[4,1]R C B A =-.(2)因为R x C B ∈是x C ∈的充分不必要条件, 所以06511m m m >⎧⎪-<-⎨⎪+>⎩,解得01m <<.所以实数m 的取值范围是01m <<.21.某变异病毒感染的治疗过程中,需要用到某医药公司生产的A 类药品.该公司每年生产此类药品的年固定成本为160万元,每生产x 千件需另投入成本为21()2010C x x x =+(万元),每千件药品售价为60万元,此类药品年生产量不超过280千件,假设在疫情期间,该公司生产的药品能全部售完. (1)求公司生产A 类药品当年所获利润y (万元)的最大值;(2)当年产量为多少千件时,每千件药品的平均利润最大?并求最大平均利润.【答案】(1)3840万元;(2)当年产量为40千件时,每千件药品的平均利润最大为32万元. 【解析】(1)先由题意,得到0280x <≤,利润等于销售收入减去成本,由此即可得出函数关系式,再由配方法,即可求出最值;(2)由(1)得出平均利润为240001161x xx -+-,化简整理,利用基本不等式,即可求出最值,以及此时的x .【详解】(1)由题可得0280x <≤,()22211120200360160840384010101040160x x x x y x x ⎛⎫=--=-+-=- ⎪⎝++≤⎭-,当且仅当200x =时,max 3840y =,所以当年产量为200千件时,在这一药品的生产中所获利润最大为3840万元; (2)可知平均利润为240001161x xx -+-16040403210x x ⎛⎫++≤--= ⎪⎝=⎭. 当且仅当16010x x=,即40x =时等号成立 所以当年产量为40千件时,每千件药品的平均利润最大为32万元. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方. 22.已知幂函数()()1221m f m x m x -=--在()0,∞+上为增函数.(1)求实数m 的值;(2)求函数()()2345g x f x x =--+的值域. 【答案】(1)2m =;(2)7(,]8-∞-.【分析】(1)解方程211m m --=再检验即得解;(22(0),()21t t h t t t =≥=-+-,再求函数()h t 的值域即得解.【详解】(1)解:由题得2211,20,(2)(1)0,2m m m m m m m --=∴--=∴-+=∴=或1m =-. 当2m =时,()12f x x =在()0,∞+上为增函数,符合题意;当1m =-时,()1f x x -=在()0,∞+上为减函数,不符合题意.综上所述2m =.(2)解:由题得()452(23)1g x x x =+--,2(0),()21t t h t t t ≥∴=-+-, 抛物线的对称轴为14t =,所以max 111287()2116488h t -+-=-⨯+-==-.所以函数()()2345g x f x x =--+的值域为7(,]8-∞-. 23.已知函数()32log f x a x ⎛⎫=- ⎪⎝⎭. (1)当1a =时,解关于x 的不等式()0f x <;(2)请判断函数()()()3log 1g x f x ax a =-+-是否可能有两个零点,并说明理由;(3)设a<0,若对任意的1,14t ⎡⎤∈⎢⎥⎣⎦,函数()f x 在区间[],1t t +上的最大值与最小值的差不超过1,求实数a 的取值范围.【答案】(1)()1,2(2)不可能,理由见解析 (3)8,5⎛⎤-∞- ⎥⎝⎦【分析】(1)结合对数函数的定义域,解对数不等式求得不等式()0f x <的解集.(2)由()0g x =,求得12x =-,21x a=,但推出矛盾,由此判断()g x 没有两个零点. (3)根据函数()f x 在区间[],1t t +上的最大值与最小值的差不超过1列不等式,结合分离常数法来求得a 的取值范围.【详解】(1)当1a =时,不等式()0f x <可化为32log 10⎛⎫-< ⎪⎝⎭x , 有2011<-<x ,有20,10,x x x x-⎧>⎪⎪⎨-⎪<⎪⎩ 解得12x <<,故不等式,()0f x <的解集为()1,2.(2)令()0g x =,有()332log log 1a ax a x ⎛⎫-=+- ⎪⎝⎭, 有210a ax a x -=+->,()22122210,0ax a x a ax x x---+--+==, ()22120ax a x x+--=,()()210x ax x +-=, 则()()20210a x x ax x ⎧->⎪⎪⎨+-⎪=⎪⎩,若函数()g x 有两个零点,记为()1212,x x x x ≠,必有12x =-,21x a=, 且有20 220a a a ⎧->⎪-⎨⎪->⎩,此不等式组无解, 故函数()g x 不可能有两个零点.(3)当a<0,1,14t ⎡⎤∈⎢⎥⎣⎦,1t x t ≤≤+时,20->a x,函数()f x 单调递减, 有()()3max 2log f x f t a t ⎛⎫==- ⎪⎝⎭,()()3min 21log 1f x f t a t ⎛⎫=+=- ⎪+⎝⎭ 有3322log log 11⎛⎫⎛⎫---≤ ⎪ ⎪+⎝⎭⎝⎭a a t t , 有3322log log 31⎡⎤⎛⎫⎛⎫-≤- ⎪ ⎪⎢⎥+⎝⎭⎝⎭⎣⎦a a t t 有2231⎛⎫-≤- ⎪+⎝⎭a a t t ,整理为311≤-+a t t , 由311≤-+a t t 对任意的1,14t ⎡⎤∈⎢⎥⎣⎦恒成立,必有31,231,11144a a ⎧≤-⎪⎪⎨≤-⎪+⎪⎩解得85≤-a , 又由()()()254131801551t t t t t t +-⎛⎫---=≥ ⎪++⎝⎭,可得31815-≥-+t t , 由上知实数a 的取值范围为8,5⎛⎤-∞- ⎥⎝⎦.。
吉林省高一上学期数学第一次月考试卷

吉林省高一上学期数学第一次月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)(2019·安徽模拟) 已知集合,,则()A .B .C .D .2. (2分) (2020高一上·天津月考) 已知集合,且,则集合可以是()A .B .C .D .3. (2分)若a∈R,n>1且n∈N* ,则下列各式中正确的是()A .B . a0=1C . =a2D . =4. (2分) (2020高三上·赣县期中) 函数的图象可能是()A .B .C .D .5. (2分) (2017高一上·辽源月考) 函数y=的定义域是()A .B .C .D .6. (2分) (2018高一上·长安期末) 下列函数为奇函数的是()A .B .C .D .7. (2分) (2017高三上·嘉兴期中) 下列函数中,其图象既是轴对称图形又在区间上单调递增的是()A .B .C .D .8. (2分) (2020高二上·河北月考) 在正项等比数列中,和为方程的两根,则()A . 16B . 32C . 6 4D . 2569. (2分)设Q是有理数,集合X={x|x=a+b ,a,b∈Q,x≠0},在下列集合中:(1){2x|x∈X}(2){|x∈X}(3){ |x∈X}(4){x2|x∈X},与X相同的集合是()A . 4个B . 3个C . 2个D . 1个10. (2分)二次函数f(x)=ax2+bx+c的图象开口向下,对称轴为x=1,图象与x轴的两个交点中,一个交点的横坐标x1∈(2,3),则有()A . abc>0B . a+b+c<0C . a+c<bD . 3b<2c11. (2分) (2018高一上·荆州月考) 下列函数中,既是奇函数,又是增函数的是()A .B .C .D .12. (2分)已知函数。
2022-2023学年吉林省四平市第一高二年级上册学期12月月考数学试题【含答案】

2022-2023学年吉林省四平市第一高级中学高二上学期12月月考数学试题一、单选题1.从6名员工中选出3人分别从事教育、培训、管理三项不同的工作,则选派方案共有( ) A .60种 B .80种 C .100种 D .120种【答案】D【分析】利用排列的定义直接列式求解.【详解】从6名员工中选出3人分别从事教育、培训、管理三项不同的工作,则选派方案共36654120A (种).故选:D .2.下列问题是排列问题的是( )A .10个朋友聚会,每两人握手一次,一共握手多少次?B .平面上有2022个不同的点,且任意三点不共线,连接任意两点可以构成多少条线段?C .集合{}123,,,,n a a a a ⋅⋅⋅的含有三个元素的子集有多少个?D .从高三(19)班的54名学生中选出2名学生分别参加校庆晚会的独唱、独舞节目,有多少种选法? 【答案】D【分析】根据排列的定义逐个选项辨析即可.【详解】A 中握手次数的计算与次序无关,不是排列问题; B 中线段的条数计算与点的次序无关,不是排列问题; C 中子集的个数与该集合中元素的次序无关,不是排列问题;D 中,选出的2名学生,如甲、乙,其中“甲参加独唱、乙参加独舞”与“乙参加独唱、甲参加独舞”是2种不同的选法,因此是排列问题. 故选:D3.计算:7733A =A ( ) A .44AB .47AC .47CD .37A【答案】B【分析】根据排列数公式计算即可【详解】747733A 7!7!===A A 3!(7-4)!故选 :B4.78915⨯⨯⨯⋅⋅⋅⨯可表示为( )A .915AB .815AC .915CD .815C【答案】A【分析】由排列数公式判断即可【详解】因为是78915⨯⨯⨯⋅⋅⋅⨯连续9个数和相乘, 所以91578915A ⨯⨯⨯⋅⋅⋅⨯=, 故选:A5.为了丰富学生的课余生活,某学校开设了篮球、书法、美术、吉他、舞蹈、击剑共六门活动课程,甲、乙、丙3名同学从中各自任选一门活动课程参加,则这3名学生所选活动课程不全相同的选法有( ) A .120种 B .150种 C .210种 D .216种【答案】C【分析】用甲、乙、丙3名同学从中各自任选一门活动课程参加的方法数,减去3名学生所选活动课程全部相同的方法数,从而求得正确答案. 【详解】依题意,每名同学都有6种选择方法,所以这3名学生所选活动课程不全相同的选法有366210-=种. 故选:C6.将4张座位编号分别为1,2,3,4的电影票全部分给三人,每人至少1张.如果分给同一人的2张电影票具有连续的编号,那么不同的分法种数是( ) A .24 B .18 C .12 D .6【答案】B【分析】首先将2张一份的电影票编号连续,列出所有可能的分法,再将三份电影票分给三个人,按照分步乘法计数原理计算可得;【详解】解:将4张电影票分成三份,其中2张一份的电影票编号连续,则有12,3,4;1,23,4;1,2,34三种分法,然后将三份电影票分给三个人,有33A 6=种分法,所以不同的分法种数为1863=⨯.故选:B .7.若一个三位正整数的十位数字比个位数字和百位数字都大,则称这个数为“伞数”,现从1,2,3,4,5这5个数字中任取3个数字,组成没有重复数字的三位数,其中“伞数”共有( )个. A .60 B .35 C .20 D .53【答案】C【分析】根据的“伞数”定义,十位数只能是3,4,5,然后分3类,分别求得“伞数”的个数再求和, 【详解】由题意得:十位数只能是3,4,5,当十位数是3时,个位和百位只能是1,2,“伞数”共有22A 2=个;当十位数是4时,个位和百位只能是1,2,3,“伞数”共有23A 6=个;当十位数是5时,个位和百位只能是1,2,3,4,“伞数”共有24A 12=个;所以“伞数”共有20个, 故选:C.8.不等式288A 6A x x -<⨯的解集为( )A .[]28,B .()7,12C .{712,}xx x N <<∈∣ D .{}8 【答案】D【分析】根据排列数的性质和计算公式化简求其解即可.【详解】因为288A 6A x x -<⨯,所以88!6(8)!(10)!x x <⨯--!,所以(10)(9)6x x --<,所以(7)(12)0x x --<,又28x ≤≤,x ∈N , 所以8x =,所以不等式288A 6A x x -<⨯的解集为{}8,故选:D.9.若3265A !A m =,则m =( )A .6B .5C .4D .3【答案】D【分析】根据排列数与阶乘的公式求解即可【详解】由3265A !A m =,则!6m =,故3m =.故选:D10.将4名新老师安排到,,A B C 三所学校去任教,每所学校至少一人,则不同的安排方案的种数是( ) A .54 B .36 C .24 D .18【答案】B【分析】分类讨论,,A B C 分别有两名新教师的情况,进而计算出4名新教师安排到,,A B C 三所学校去任教每所学校至少一人的所有情况,【详解】将4名新教师安排到,,A B C 三所学校去任教,每所学校至少一人,分配方案是:1,1,2,A 学校有两名新老师:2142C C 12=;B 学校有两名新老师:2142C C 12=;C 学校有两名新老师:2142C C 12=所以共有2142363C C =种情况,故选:B.11.用数字0,1,2,3,4,5组成没有重复数字且大于的六位数的个数为( ) A .478 B .479 C .480 D .481【答案】B【分析】可从反面入手,考虑比小,即首位是1的情况【详解】用数字0,1,2,3,4,5组成的没有重复数字的六位数的个数为555A 600=. 以1为十万位的没有重复数字的六位数的个数为55A 120=,由于是以2为十万位的没有重复数字的六位数中最小的一个, 所以没有重复数字且大于的六位数的个数为6001201479--=. 故选:B12.中国古代中的“礼、乐、射、御、书、数”合称“六艺”.为传承和弘扬中华优秀传统文化,某校国学社团开展“六艺”讲座活动,每艺安排一次讲座,共讲六次.讲座次序要求“礼”在第一次,“数”不在最后,“射”和“御”两次相邻,则“六艺”讲座不同的次序共有( ) A .48种 B .36种C .24种D .20种【答案】B【分析】由题意,将“射”和“御”捆绑看作一个元素与“乐”和“书”进行全排列,再将“射”和“御”交换位置,最后安排“数”, 根据分步计数原理即可求解.【详解】解:因为“礼”在第一次,所以只需安排后面五次讲座的次序即可,又“数”不在最后,“射”和“御”两次相邻,所以先将“射”和“御”捆绑看作一个元素与“乐”和“书”进行全排列有33A 种排法,再将“射”和“御”交换位置有22A 种排法,最后安排“数”有13A 种排法,所以根据分步计数原理共有321323A A A 36=种排法,故选:B.13.汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”是我国古代数学的瑰宝.如图所示的弦图由四个全等的直角三角形和一个正方形构成.现用5种不同的颜色对这四个直角三角形和一个正方形区域涂色,要求相邻的区域不能用同一种颜色,则不同的涂色方案有( )A .180B .192C .300D .420【答案】D【分析】将五个区域表示为①②③④⑤,先考虑区域①②③,再分情况考虑区域④⑤,由分步乘法计数原理求解即可.【详解】如图,将五个区域表示为①②③④⑤,对于区域①②③,三个区域两两相邻,有35A 60=种;对于区域④⑤,若①与⑤颜色相同,则④有3种情况,若①与⑤颜色不同,则⑤有2种情况,④有2种情况,此时区域④⑤的情况有3227+⨯=种情况;则一共有607420⨯=种情况 故选:D .14.给如图所示的5块区域A ,B ,C ,D ,E 涂色,要求同一区域用同一种颜色,有公共边的区域使用不同的颜色,现有红、黄、蓝、绿、橙5种颜色可供选择,则不同的涂色方法有( )A .120种B .720种C .840种D .960种【答案】D【分析】依次给区域,,,,A B D C E 涂色,求出每一步的种数,由乘法分步原理即得解.【详解】解:A 有5种颜色可选,B 有4种颜色可选,D 有3种颜色可选,C 有4种颜色可选,E 有4种颜色可选,故共有5×4×3×4×4=960种不同的涂色方法. 故选:D .二、多选题15.已知23301A A 2!4m+=-,则m 的可能取值是( ) A .0 B .1 C .2 D .3【答案】CD【分析】将题设中的方程化为3A 6m=,从而可求m 的可能取值.【详解】因为23301A A 2!4m+=-,所以31A 6142m -⨯+=,所以3A 6m =,其中,3N m m ∈≤,而 01233333A 1,A 3,A 6A ====,所以m 的值可能是2或3. 故选:CD .16.下列等式正确的是( ) A .()111A Am m nn n +++=B .()1!A 1!m n n n m -=--C .()()!21n n n n =--!D .11A A m mnn n m+=- 【答案】ACD【分析】根据阶乘和排列数的运算公式,进行推理与判断选项中的运算是否正确即可.【详解】对于A ,(1)A mn n +=()()()()111!!(1)A !11!m n n n n n m n m ++++⋅==-⎡⎤+-+⎣⎦,选项A 正确;对于B ,()()1!!A 1!1!m n n n n m n m -==-+⎡⎤--⎣⎦,所以选项B 错误; 对于C ,()()()()()12!!2!11n n n n n n n n n -⋅-==---,选项C 正确;对于D ,111A m nn m n m +=--•()()!!A !1!m n n n n m n m ==-⎡⎤-+⎣⎦,选项D 正确. 故选:ACD .17.(多选)某校以大课程观为理论基础,以关键能力和核心素养的课程化为突破口,深入探索普通高中创新人才培养的校本化课程体系.本学期共开设了八大类校本课程,具体为学科拓展(X )、体艺特长(T )、实践创新(S )、生涯规划(C )、国际视野(I )、公民素养(G )、大学先修(D )、PBL 项目课程(P ),假期里决定继续开设这八大类课程,每天开设一类且不重复,连续开设八天,则( )A .某学生从中选两类,共有28A 种选法B .课程“X ”“T ”排在不相邻两天,共有6267A A 种排法C .课程中“S ”“C ”“T ”排在相邻三天,且“C ”只能排在“S ”与“T ”的中间,共有720种排法D .课程“T ”不排在第一天,课程“G ”不排在最后一天,共有()71167666A A A A +种排法【答案】BD【分析】A 选项,属于组合问题,故为28C 种;B 选项,采用插空法求解;C 选项,采用捆绑法求解;D 选项,使用分类加法计数原理进行所求解.【详解】对于A ,某学生从中选两类,如选“X ”“T ”与选“T ”“X ”是一种选法,没有顺序之分,所以28A 种选法计算重复,故A 错误;对于B ,课程“X ”“T ”排在不相邻两天,先将剩余六类课程全排列,产生7个空隙,再将课程“X ”“T ”插空,共有6267A A 种排法,故B 正确;对于C ,课程“S ”,“C ”,“T ”排在相邻三天,且“C ”只能排在“S ”与“T ”的中间,采用捆绑法,共有6262A A 1440=种排法,故C 错误;对于D ,课程“T ”不排在第一天,课程“G ”不排在最后一天,则分两类情况:①课程“G ”排在第一天,②课程“G ”排在除第一天和最后一天之外的某一天,则共有()71167666A A A A +种排法,故D 正确.故选:BD .三、填空题18.方程421A 18A x x +=,的解为x =_______.【答案】5【分析】由排列数公式直接得到关于x 的方程,解出x 的值,再代入检验得到答案. 【详解】因为421A 18A x x +=,则14,2x x +≥≥且*x ∈N ,则3x ≥且*x ∈N所以()()()()112181x x x x x x +--=-,即()()1218x x +-=,解得5x =或4x =-(舍去). 故答案为: 519.某学校举行校庆文艺晚会,已知节目单中共有七个节目,为了活跃现场气氛,主办方特地邀请了三位老校友演唱经典歌曲,并要将这三个不同节目添入节目单,而不改变原来的节目顺序,则不同的安排方式有________种. 【答案】720【分析】根据分步乘法计数原理求得正确答案.【详解】原来7个节目,形成8个空位,安排一位老校友;8个节目,形成9个空位,安排一位老校友; 9个节目,形成10个空位,安排一位老校友.所以不同的安排方式有8910720⨯⨯=种. 故答案为:72020.如图,一个地区分为5个行政区域,现给地图着色,要求相邻地区不得使用同一颜色,现有4种颜色可供选择,则不同的着色方法共有种___________.(以数字作答)【答案】72【分析】本题考查分类加法计数原理和分步乘法计数原理,按照颜色的种数进行分为3种颜色和四种颜色依次讨论即可.【详解】按照使用颜色的种类分类,第一类:使用了4种颜色,2,4同色,或3,5同色,则共有1424C A 48=(种),第二类:使用了三种颜色,2,4同色且3,5同色,则共有34A 24=(种)所以共有48+24=72(种) 故答案为:7221.冬奥会首金诞生于短道速滑男女混合接力赛,赛后4位运动员依次接受采访,曲春雨要求不第1个接受采访,武大靖在任子威后接受采访(可以不相邻),则采访安排方式有__________种. 【答案】9【分析】先考虑曲春雨,再结合倍缩法解决定序问题考虑剩下的3位选手,最后由分步计数原理求解即可.【详解】先考虑曲春雨,有3种采访安排,再考虑剩下的3位选手,武大靖在任子威后,有3322A 3A =种,按照分步计数原理共有339⨯=种. 故答案为:9.22.正整数484有个不同的正约数___________. 【答案】9【分析】先将484分解质因数,484的约数由质因数的乘积组成,使用分步乘法计数原理,可求出484正约数的个数.【详解】22484221111211=⨯⨯⨯=⨯设d 为484的正约数,则211i j d =⨯,(i =0,1,2,j =0,1,2) 例如:0i =,0j =时,00211=11=1d =⨯⨯是484的约数,1i =,2j =时,12211=2121=242d =⨯⨯是484的约数,2i =,2j =时,22211=4121=484d =⨯⨯是484的约数,因此,484的正约数个数,即d 的不同取值个数,第一步确定i 的值,有3种可能,第二步确定j 的值,有3种可能,因此d 的取值共有339⨯=种. 故答案为:9.23.用0,1,2,3,4,5,6七个数共可以组成______个没有重复数字的三位数. 【答案】180【分析】根据分类加法原理和分步乘法原理即可求解.【详解】选0时,0不能在首位,故有1226C A 60=个,不选0时,有36A 120=个,根据分类加法原理,共有60120180+=个, 故答案为:180.24.将1,2,3,4,5,6,7,8八个数字排成一排,满足相邻两项以及头尾两项的差均不大于2,则这样的排列方式共有_______种.(用数字作答) 【答案】16【分析】根据题意可将该排列问题看成一个圆环上有1,2,3,4,5,6,7,8八个数字使其满足题意要求进行摆放,有两种情形,然后再将此圆环分别从某一个数字处剪开排成一列,一个作为头一个作为尾,由此即可求出结果.【详解】根据题意可将该排列问题看成一个圆环上有1,2,3,4,5,6,7,8八个数字使其满足题意要求进行摆放,有两种情形,如下图所示:然后再将此圆环分别从某一个数字处剪开排成一列,一个作为头一个作为尾,则每一个圆环有8种剪开方式情况,故满足题意的有2816⨯=种. 故答案为:16.四、解答题25.3张卡片正、反面分别标有数字1和2,3和4,5和7,若将3张卡片并列组成一个三位数,则可以得到多少个不同的三位数?【答案】333A 248⨯=故可以得到48个不同的三位数【分析】通过分步乘法计数原理即可得到结果 【详解】“组成三位数”这件事,分两步完成:第一步:确定排在百位、十位、个位上的卡片,即3个元素的一个全排列,即33A ;第二步:分别确定百位、十位、个位上的数字,各有2种选法,即32.根据分步乘法计数原理,可以得到333A 248⨯=个不同的三位数.26.现有8个人(5男3女)站成一排.(1)其中甲必须站在排头有多少种不同排法?(2)女生必须排在一起,共有多少种不同的排法?(3)其中甲、乙两人不能排在两端有多少种不同的排法?(4)其中甲在乙的左边有多少种不同的排法?(5)甲、乙不能排在前3位,有多少种不同排法?(6)女生两旁必须有男生,有多少种不同排法?【答案】(1)5040(2)4320(3)21600(4)20160(5)14400(6)2880【分析】(1)分两步,先考虑甲必须站在排头的特殊要求,用特殊元素优先法可解;(2)女生必须排在一起,用捆绑法求解;(3)甲、乙两人不能排在两端,用插空法求解;(4)甲在乙的左边,可采用倍缩法求解;(5)甲、乙不能排在前3位,用特殊元素或特殊位置优先法可解;(6)女生两旁必须有男生,用插空法求解.【详解】(1)根据题意,甲必须站在排头,有1种情况,将剩下的7人全排列,有77A 种情况,则甲必须站在排头有77A 5040=种排法; (2)根据题意,先将3名女生看成一个整体,考虑三人之间的顺序,有33A 种情况,将这个整体与5名男生全排列,有66A 种情况,则女生必须排在一起的排法有3636A A 4320=种; (3)根据题意,将甲、乙两人安排在中间6个位置,有26A 种情况,将剩下的6人全排列,有66A 种情况,则甲、乙两人不能排在两端有2666A A 21600=种排法;(4)根据题意,将8人全排列,有88A 种情况,其中甲在乙的左边与甲在乙的右边的情况数目相同,则甲在乙的左边有881A 201602=种不同的排法; (5)根据题意,将甲、乙两人安排在后面的5个位置,有25A 种情况, 将剩下的6人全排列,有66A 种情况,甲、乙不能排在前3位,有2656A A 14400=种不同排法;(6)根据题意,将5名男生全排列,有55A 种情况,排好后除去2端有4个空位可选,在4个空位中任选3个,安排3名女生,有34A 种情况,则女生两旁必须有男生,有5354A A 2880=种不同排法.。
吉林省长春市2023-2024学年高一上学期10月联考试题 数学含解析

2023-2024学年度上学期第一次月考高一数学试卷(答案在最后)本试卷满分150分,共2页考试试卷:120分钟考试结束后只上交答题卡一、单选题(每题5分,共40分)1.已知全集为U ,M N M = ,则其图象为()A .B .C .D .2.对于实数a ,b ,c ,下列说法正确的是()A .若a b >,则11a b<B .若a b >,则22ac bc >C .若0a b >>,则2ab a<D .若c a b >>,则a bc a c b>--3.下列四个命题中正确命题的个数是()①“2x >”是“3x <”的既不充分也不必要条件②“三角形为正三角形”是“三角形为等腰三角形”的必要不充分条件③()200ax bx c a ++=≠有实数根2Δ40b ac ⇔=-≥④若集合A B ⊆,则x A ∈是x B ∈的充分不必要条件A .1B .3C .2D .04.下列不等式一定成立的是()A .222x x +≥B .1323x x ++≥+(其中3x >-)C 2的最小值为2D .111x x -+-的最小值为2(其中2x >)5.若集合U 有71个元素,S ,T U ⊆且各有14,28个元素,则()S T S T ð的元素个数最少是()A .14B .30C .32D .426.已知关于x 的不等式()()()2233100,0a m x b m x a b +--->>>的解集为()1,1,2⎛⎫-∞-+∞ ⎪⎝⎭,则下列结论错误的是()A .21a b +=B .ab 的最大值为18C .12a b +的最小值为4D .11a b+的最小值为3+7.定义:设A 是非空实数集,若a A ∃∈,使得x A ∀∈,都有()x a x a <>,则称a 是A 的最大(小)值.若B 是一个不含零的非空实数集,且0a 是B 的最大值,则()A .当00a >时,10a -是集合{}1x x B -∈的最小值B .当00a >时,10a -是集合{}1x x B -∈的最大值C .当00a <时,10a --是集合{}1x x B --∈的最小值D .当00a <时,10a --是集合{}1x x B --∈的最大值8.一元二次等式20ax bx c ++≥的解集为R ,则32a cb a++最小值为()A .1B .0C .2D .3二、多选题(每题5分,漏选得2分,错选和不选不得分,共20分)9.若22811a x x =-+,269b x x =-+,1c =,则()A .b a >B .a c>C .ac bc>D .b c>10.下列选项正确的有()A .已知全集{}2320U x x x =-+=,{}220A x x px =-+=,U A =∅ð,则实数p 的值为3.B .若{}2,,1,,0b a a a b a ⎧⎫=+⎨⎬⎩⎭,则202320231a b +=C .已知集合{}220,A x ax x a =++=∈R 中元素至多只有1个,则实数a 的范围是18a ≥D .若{}25A x x =-≤≤,{}121B x m x m =+≤≤-,且B A ⊆,则3m ≤11.关下列结论中正确的是()A .若p q ⇒,则p 是q 的充分条件B .已知x ,y 是实数,则“xy 为无理数”是“x ,y 均为无理数”的充分条件C .“x M ∀∈,()p x ”的否定是“x M ∃∈,()p x ⌝”D .“x M ∃∈,()p x ”的否定是“x M ∃∈,()p x ⌝”12.(多选)《九章算术》中“勾股容方”问题:“今有勾五步,股十二步,问勾中容方几何?”魏晋时期数学家刘徽在其《九章算术注》中利用出入相补原理给出了这个问题的一般解法:如图(1),用对角线将长和宽分别为b 和a 的矩形分成两个直角三角形,每个直角三角形再分成一个内接正方形(黄)和两个小直角三角形(朱、青).将三种颜色的图形进行重组,得到如图(2)所示的矩形,该矩形长为a b +,宽为内接正方形的边长d .由刘徽构造的图形可以得到许多重要的结论,如图(3),设D 为斜边BC 的中点,作直角三角形ABC 的内接正方形的对角线AE ,过点A 作AF BC ⊥于点F ,则下列推理正确的是()A .由题图(1)和题图(2)面积相等得2ab d a b=+B .由AE AF ≥2222a b a b++≥C .由AD AE ≥222112a b a b+≥+D .由AD AF ≥可得222a b ab+≥三、填空题(每题5分,共20分)13.“生命在于运动”,某学校教师在普及程度比较高的三个体育项目——乒乓球、羽毛球、篮球中,会打乒乓球的教师人数为30,会打羽毛球的教师人数为60,会打篮球的教师人数为20,若会至少其中一个体育项目的教师人数为80,且三个体育项目都会的教师人数为5,则会且仅会其中两个体育项目的教师人数为______.14.若集合94a xx ⎧⎫<<⎨⎬⎩⎭恰有8个整数元素,写出整数a 的一个值:______.15.已知命题p :x ∀,y 满足21x y +=,且0xy >,不等式2122a a x y+≥-恒成立,命题q :45a -<<,则p 是q 的______条件.16.设全集{}2,3,5,6,9U =,对其子集引进“势”的概念:①空集的“势”最小;②非空子集的元素越多,其“势”越大;③若两个子集的元素个数相同,则子集中最大的元素越大,子集的“势”就越大,最大的元素相同,则第二大的元素越大,子集的“势”就越大,依次类推.若将全部的子集按“势”从小到大的顺序排列,则排在第23位的子集是______.四、解答题17.(本题满分10分)已知全集{}4U x x =≤,集合{}23A x x =-<<,{}32B x x =-≤≤,求(1)()U A B ð;(2)()U A B ð.18.(本题满分12分)2018年9月,习近平总书记在东北三省考察并明确提出“新时代东北振兴,是全面振兴、全方位振兴”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
吉林省高一上学期12月月考数学试卷
姓名:________ 班级:________ 成绩:________
一、单选题 (共12题;共24分)
1. (2分)设全集U={1,2,3,4,5,6}A={1,2},B={2,3,4},则A∩(∁UB)=()
A . {1,2,5,6}
B . {1}
C . {2}
D . {1,2,3,4}
2. (2分)函数的定义域为开区间,导函数在内的图象如图所示,则函数f(x)在开区间(a,b)内极值点有()
A . 1个
B . 2个
C . 3个
D . 4个
3. (2分) (2019高一上·齐齐哈尔月考) 下列四个函数中,在区间上单调递增的函数是()
A .
B .
C .
D .
4. (2分) (2019高二上·桂林期末) 在数列中,,(),则
()
A .
B .
C .
D .
5. (2分)已知函数y=f(x)的定义域为{x|且},值域为{y|且}.下列关于函数y=f(x)的说法:①当x=-3时,y=-1;②将y=f(x)的图像补上点(5,0),得到的图像必定是一条连续的曲线;③y=f(x)是[-3,5)上的单调函数;④y=f(x)的图象与坐标轴只有一个交点.其中正确命题的个数为()
A . 1
B . 2
C . 3
D . 4
6. (2分)设a>0,b>0且a+b=1则的最小值是()
A . 2
B . 4
C .
D . 6
7. (2分)如果,,,那么等于()
A .
B .
C .
D .
8. (2分)已知全集U=R,集合,,则()
A .
B .
C .
D .
9. (2分) (2019高二下·蒙山期末) 是单调函数,对任意都有,则
的值为()
A .
B .
C .
D .
10. (2分)若不等式x2+ax+1≥0对于一切x∈(0,)成立,则a的取值范围是()
A . a≤﹣2
B . a≤﹣
C .
D . a≥2
11. (2分) (2020高一上·贵州期中) 已知关于的方程有两个不等实根,则实数的取值范围是
A . ,
B .
C . ,
D .
12. (2分)全集,则集合M=()
A . {0,1,3}
B . {1,3}
C . {0,3}
D . {2}
二、填空题 (共4题;共6分)
13. (1分) (2018高二上·会宁月考) 函数的定义域为________.
14. (2分) (2016高二上·杭州期中) 若x>0,y>0,且+ =1,则x+3y的最小值为________;则xy的最小值为________.
15. (1分) (2016高一上·荆州期中) 已知函数f(x)=|loga|x﹣1||(a>0,a≠1),若x1<x2<x3<x4 ,且f(x1)=f(x2)=f(x3)=f(x4),则 + + + =________.
16. (2分)设函数f(x)在区间[a,b]上满足f′(x)<0,则函数f(x)在区间[a,b]上的最小值为________,最大值为________.
三、解答题 (共5题;共40分)
17. (10分) (2019高一上·成都期中) 已知全集,集合,集合是
的定义域.
(1)当时,求集合;
(2)若,求实数的取值范围.
18. (10分) (2017高一上·黑龙江月考) 函数的定义域为集合,集合
.
(1)求,;
(2)若,且,求实数的取值范围.
19. (5分) (2018高二上·长寿月考) 已知命题P:-2x-2≥1 的解集是A;命题Q:的解集不是B.若P是真命题,Q是假命题,求A∩B.
20. (5分) (2015高一下·自贡开学考) 如图,定义在[﹣1,5]上的函数f(x)由一段线段和抛物线的一部分组成.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)指出函数f(x)的自变量x在什么范围内取值时,函数值大于0,小于0或等于0(不需说理由).
21. (10分) (2016高二上·绍兴期末) 如图,一个圆锥的底面半径为2cm,高为6cm,其中有一个高为xcm 的内接圆柱.
(1)试用x表示圆柱的侧面积;
(2)当x为何值时,圆柱的侧面积最大.
参考答案一、单选题 (共12题;共24分)
答案:1-1、
考点:
解析:
答案:2-1、
考点:
解析:
答案:3-1、
考点:
解析:
答案:4-1、
考点:
解析:
答案:5-1、考点:
解析:
答案:6-1、考点:
解析:
答案:7-1、
考点:
解析:
答案:8-1、考点:
解析:
答案:9-1、考点:
解析:
答案:10-1、考点:
解析:
答案:11-1、
考点:
解析:
答案:12-1、
考点:
解析:
二、填空题 (共4题;共6分)答案:13-1、
考点:
解析:
答案:14-1、考点:
解析:
答案:15-1、考点:
解析:
答案:16-1、
考点:
解析:
三、解答题 (共5题;共40分)答案:17-1、
答案:17-2、考点:
解析:
答案:18-1、答案:18-2、
考点:
解析:
答案:19-1、考点:
解析:
答案:20-1、考点:
解析:
答案:21-1、答案:21-2、
考点:解析:。