华南理工大学高数期末考题参考答案
华南理工大学高数答案第9章

第九章 曲线积分与曲面积分作业13 对弧长的曲线积分1.计算d Lx s ⎰,其中L 为直线y x =及抛物线2y x =所围成的区域的整个边界.解:L 可以分解为[]1:,1,0,1L y x y x '==∈及[]22:,2,0,1L y x y x x '==∈1211d d d LL L x s x s x s x x x x =+=+⎰⎰⎰⎰⎰()()113222001121d 1414883212x x x x =++=+⋅+=+2.4433d L x y s ⎛⎫+ ⎪⎝⎭⎰,其中L 为星形线33cos ,sin x a t y a t = =在第一象限内的弧π02t ⎛⎫≤≤ ⎪⎝⎭.解:L 为33cos ,sin ,0,,2x a t y a t t π⎡⎤= =∈⎢⎥⎣⎦223cos sin ,3sin cos ,3sin cos dx dya t t a t t ds a t tdt dt dt=-== 原式()4722442233031cossin 3sin cos 1sin 2sin 222a t t a t tdt a t tdt ππ⎛⎫=+⋅=- ⎪⎝⎭⎰⎰()7772223333003311cos 2cos 2cos 2cos 2883a t d t a t t a ππ⎛⎫=-+=-+= ⎪⎝⎭⎰ 3.计算d xyz s Γ⎰,其中Γ折线ABC ,这里A ,B ,C 依次为点)3,4,1(),3,2,1(),0,0,0(.解:[]:,,2,3,0,1,123x y zAB x t y t z t t ds =====∈= []:1,3,,2,4,BC x z y t t ds dt ===∈=[]:,,4,3,0,1,143x y zCA x t y t z t t ds =====∈=142d d d 231318ABBCxyz s xyz s xyz s t t t t dt Γ=+=⋅⋅+⋅⋅=⎰⎰⎰⎰⎰4.()22d xy z s Γ+⎰,其中Γ为螺线cos ,sin ,x t t y t t z t = ==上相应于t 从0变到1的一段弧.解:Γ为[]cos ,sin ,,0,1,x t t y t t z t t ds = ==∈=()()112222201d (222x y z s t t t t Γ+=⋅=+-+⎰⎰⎰ ()()1532222122222253t t ⎡⎤=+-⋅+==⎢⎥⎣⎦5.计算22d Lx y s +⎰,其中L :0,22>=+a ax y x .解:将L 参数化,22cos ,sin cos ,cos ,cos ,x r t y r t r ar t r a t x a t ==⇒===cos sin ,,,sin 2,cos 2,22y a t t t dx a tdt dy a tdt ds adt ππ⎡⎤=∈-=-==⎢⎥⎣⎦222222222d 2cos 2sin 2Lx y s a tdt a ta ππππ-+====⎰⎰⎰6.计算22ed x y Ls +⎰,其中L 为圆周222a y x =+,直线x y =及x 轴在第一象限内所围成的扇形的整个边界.解:边界曲线需要分段表达,从而需要分段积分[]12:0,0,,;:sin,cos ,0,,;4L y x a ds dx L x a t y a t t ds adt π⎡⎤=∈===∈=⎢⎥⎣⎦2123:,,;L y xx ds L L LL ⎡=∈==++⎢⎣⎦从而22400ed 4aax yxax aLa s e dx e adt e e ππ+=+⋅+=++⎰⎰⎰112244a a a a aa a e e e e e ππ=-++-=+-作业14 对坐标的曲线积分1.计算下列第二型曲线积分:(1) ()()d d L x y x x y y ++-⎰,其中L 为按逆时针方向绕椭圆22221x y a b+=一周;解:L 为cos ,sin ,:02x a t y b t t π==→原式()()20sin cos sin cos cos sin a t a t b t b t a t b t dt π=-++-⎡⎤⎣⎦⎰ 22222200sin 2cos 2sin 2cos 20224a b ab t a b ab t t dt t ππ⎛⎫⎛⎫++=-=+= ⎪ ⎪⎝⎭⎝⎭⎰(2)()d d 1d x x y y x y z Γ+++-⎰,其中Γ是从点()1,1,1到点()2,3,4的一段直线;解:Γ是111,1,12,13,:01213141x y z x t y t z t t ---===+=+=+→--- 原式()()()1121231121t t t t dt =+++++++-⎡⎤⎣⎦⎰()()1126146713t dt t t=+=+=⎰(3)d d d y x x y z Γ-+⎰,其中Γ是圆柱螺线2cos ,2sin , 3 x t y t z t ===从0t =到2πt =的一段弧;解:Γ是2cos ,2sin , 3 ,:02x t y t z t t π===→原式()()202sin 2sin 2cos 2cos 3t t t t dt π=--+⎡⎤⎣⎦⎰ ()()2200432dt t πππ=-+=-=-⎰(4) 计算曲线积分(12e )d (cos e )d y y Lxy x y x y +--⎰,其中L 为由点A (-1, 1)沿抛物线2y x =到点O (0, 0), 再沿x 轴到点B (2, 0)的弧段.解:由于积分曲线是分段表达的,需要分段积分2:,:10AO y x x =-→;:0,:02OB y x =→原式222221(12e )d (cos e )2dx (e )d x x xx x x x x x -=+--+⎰⎰2223221(12e 2cos 2e )d d x x x x x x x x -=+-++⎰⎰()222004211113sin e d de 21sin1sin11xx x x xx x xee ----=-+++=-++=+-⎰⎰2. 设力F 的大小等于作用点的横坐标的平方,而方向依y 轴的负方向,求质量为m 的质点沿抛物线21x y -=从点()1,0移动到点()0,1时,力F 所作的功.解:{}{}{}2220,10,,,,:1,:01F x x ds dx dy L x y y =-=-==-→()()11352240028123515L L y y W Fds x dy y y dy y ⎛⎫==-=--+=--+=- ⎪⎝⎭⎰⎰⎰3.把对坐标的曲线积分()(),d ,d LP x y x Q x y y +⎰化成对弧长的曲线积分,其中L为:(1) 在xOy 平面内沿直线从点()0,0到点()1,1; (2) 沿抛物线2y x =从点()0,0到点()1,1.解:(1):,:01,0;L y x x dx ds =→>==()()()(),,,d ,d ,,d L L P x x Q x x P x y x Q x y y P x x Q x x x +⎡⎤+=+=⎡⎤⎣⎦⎰⎰⎰(2)2:,:01,0;L y x x dx ds =→>=()()()()22,2,,d ,d ,2,d L L P x x xQ x x P x y x Q x y y P x x xQ x x x +⎡⎤⎡⎤+=+=⎣⎦⎰⎰⎰作业15 格林公式及其应用1.填空题(1) 设L 是三顶点(0, 0), (3, 0), (3, 2)的三角形正向边界,(24)d (536)d Lx y x y x y -+++-=⎰12 .(2) 设曲线L 是以)1,0(),0,1(),1,0(),0,1(--D C B A 为顶点的正方形边界,d d L x yx y ++⎰不能直接用格林公式的理由是_所围区域内部有不可导的点_.(3)相应于曲线积分(,,)d (,,)d (,,)d LP x y z x Q x y z y R x y z z++⎰的第一型的曲线积分是⎰. 其中L 为从点(1, 1 ,1)到点(1, 2, 3)的直线段. 2.计算33(e sin )d (ecos )d x xLI y y x y x y =-++⎰,其中L 是沿半圆周x =从点),0(a A -到点),0(a B 的弧.解:L 加上:0,:BA x x a a =→-构成区域边界的负向()3322(e sin )d (e cos )d 3cos axxLDaI y y x y x y x y d ydy σ-=-++=-+-⎰⎰⎰⎰34230233cos 2sin 4a aaa d r dr ydy a πππθ-=-+=-+⎰⎰⎰v3.计算e 31d e 33d xy xy Ly x y x x x y y ⎡⎤⎡⎤+-+++-+⎣⎦⎣⎦⎰,其中L 为椭圆 22221x y a b+=正向一周. 解:原式()()e 33e 31xy xyD x x y y x y dxdy x y ⎡⎤∂∂=+-+-+-+⎢⎥∂∂⎣⎦⎰⎰ 44Ddxdy ab π==⎰⎰4.计算曲线积分[]()sin d ()cos πd ,LI f x y x f x y x y '=+-⎰其中)(x f '为连续函数,L 是沿圆周222(1)(π)1πx y -+-=+按逆时针方向由点(2,2π)A 到点)0,0(O 的一段弧.解:令1:,:02L y x x π=→ 则,原式()[]111π()sin d ()cos πd L L L L DI dxdy f x y x f x y x y +'=-=--+-⎰⎰⎰⎰⎰()222π1()sin ()cos ππd 2f x x f x x x x ππππ'⎡⎤=-⋅+-+-⎣⎦⎰ ()()222422223π1()sin ππ1222222x f x x ππππππππ⎡⎤=-⋅+--=-⋅++=-⎢⎥⎣⎦5.计算22d d L x y y xx y -+⎰,其中L 为(1)圆周()()22111x y -+-=(按反时针方向);解:()()222222222222222x x y x x y x y x x y y x y x y x y ⎛⎫⎛⎫∂+-⋅-∂-=== ⎪ ⎪∂+∂+⎝⎭⎝⎭++,而且原点不在该圆域内部,从而由格林公式,原式0= (2)闭曲线1x y +=(按反时针方向).解:()()222222222222222x x y x x y x y x x y y x y x y x y ⎛⎫⎛⎫∂+-⋅-∂-=== ⎪ ⎪∂+∂+⎝⎭⎝⎭++,但所围区域内部的原点且仅有该点不满足格林公式条件,从而可作一很小的圆周220.01x y +=(1L 也按反时针方向),在圆环域上用格林公式得, 原式()1122d d d d 1001120.01L L Dx y y xx y y xdxdy x y π--===+=+⎰⎰⎰⎰ 6.证明下列曲线积分在xOy 平面内与路径无关,并计算积分值: (1)()()(),0,0e cos d sin d a b x y x y y -⎰;解:由于()()e sin e sin e cos x xx y y y x y∂∂-=-=∂∂在全平面连续,从而该曲线积分在xOy 平面内与路径无关,沿折线()()()0,00,,b a b →→积分即可, 原式()()0sin e cos d cos 11cos cos 1bax a ay dy b x b e b e b =-+=-+-=-⎰⎰ (2)()()()()2,14231,023d 4d xy yx x xy y -++-⎰;解:由于()()233442423x xy x y xy y x y∂∂-=-=-+∂∂在全平面连续,从而该曲线积分在xOy 平面内与路径无关,沿直线10,1,:122110x y y x x --==-→--积分也可, 原式=()()()24321211341d x x x x x x x ⎡⎤---++--⎣⎦⎰()()243213235141d x x x x x ⎡⎤=-+----⎣⎦⎰()()2543213115x x x x x ⎡⎤=-+----=⎣⎦ (3)()()()()π,20,0ecos d e sin d yy x m x x my y -+-⎰.解:由于()()e sin e cos e cos y y y x my x x m x y∂∂-==-∂∂在全平面连续,从而该曲线积分在xOy 平面内与路径无关,沿折线()()()0,0,0,2ππ→→积分即可,原式()()20cos e sin d y ex m dx my y ππ=-+-⎰⎰()2200sin 2my x mx π⎛⎫=-+- ⎪⎝⎭2m m π=--7.设()f x 在(),-∞+∞上具有连续导数,计算()()2221d 1d L y f xy x x y f xy y y y +⎡⎤+-⎣⎦⎰, 其中L 为从点23,3⎛⎫ ⎪⎝⎭到点()1,2的直线段.解:由于()()()()2222111y f xy x y f xy f xy xyf xy x y y y y ⎡⎤+⎧⎫∂∂'⎡⎤-=+-=⎨⎬⎢⎥⎣⎦∂∂⎩⎭⎣⎦在右半平面连续,从而该曲线积分右半平面内与路径无关,沿曲线12:2,,:31L xy y x x==→积分即可,原式()()()()2122232421122d d 22x f f x x x x x x x⎡⎤-+⎢⎥-⎣⎦+⎰13xdx =⎰1232x ⎛⎫= ⎪⎝⎭1942-==- 8.验证下列()(),d ,d P x y x Q x y y +在整个xOy 平面内是某一函数的全微分,并求出它的一个原函数:(1)()()e e d e 1e d x y x yx y x x y ⎡⎤⎡⎤+-+-+⎣⎦⎣⎦;解:由于()()e 1e e e x y x yx y x e e x y x y∂∂⎡⎤⎡⎤-+=-=+-⎣⎦⎣⎦∂∂在全平面连续,从而该曲线积分在xOy 平面内是某一函数的全微分,设这个函数为(),u x y , 则()(),e 1e ,e e x y x y u u u u du dx dy x x y x y y x∂∂∂∂=+=-+=+-∂∂∂∂ 从而()()()e 1e e 1e x y x yu x dy y x g x ⎡⎤=-+=-++⎣⎦⎰()()()e e e e =e x y x y x ux y y g x g x x x∂''=+-=-+⇒∂ ()=e x x x x x g x xd xe e dx xe e c =-=-+⎰⎰,()()1e 1e x y u x y x c =+--++(2)()()223238d 812e d yx y xy x x x y y y ++++;解:由于()()32222812e 31638y x x y y x xy x y xy x y∂∂++=+=+∂∂在全平面连续,从而该曲线积分在xOy 平面内是某一函数的全微分,设这个函数为(),u x y , 则原式3223224d 412e d yydx y x x dy x dy y y =++++()3322224d 412de yydx x dy y x x dy d y =++++⎰()()()32241212e d yyd yx d x y d ye y =++-⎰()32241212e y y d yxx y ye =++-可取32241212e yyu yx x y ye =++-(3)()()222cos cos d 2sin sin d x y y x x y x x y y ++-解:可取折线()()()0,0,0,x x y →→作曲线积分()()22202d 2sin sin d sin cos yx u x x y x x y y y x x y =+-=+⎰⎰9.设有一变力在坐标轴上的投影为2,28X x y Y xy =+=-,这变力确定了一个力场,证明质点在此场内移动时,场力所作的功与路径无关.证:{}2,28F x y xy =+-,质点在此场内任意曲线L 移动时,场力所作的功为()()228Lw x y dx xy dy =++-⎰由于()2282xy y x y x y∂∂⎡⎤-==+⎣⎦∂∂在全平面连续,从而质点在此场内移动时,场力所作的功与路径无关.作业16 对面积的曲面积分1.计算下列对面积的曲面积分: (1)()d xy yz zx S ∑++⎰⎰,其中∑为锥面z =被柱面222x y ax +=所截得的有限部分; 解:∑为x y z z z ===dS ==,:02cos ,22D r a ππθθ≤≤-≤≤原式2cos 2302d d cos a Dzx S x y d r dr πθπθθ∑-==⎰⎰⎰⎰⎰⎰()()42242422cos cos 12sin sin sin 4a d d πππθθθθθθ--+=⎰⎰ (2)()222d xy z S ∑++⎰⎰,其中∑为球面2222x y z ax ++=.解:∑为两块y y x a x x =±==dS ==,:0,02D r a θπ≤≤≤≤原式12222d 2d Da a ax S ax S ∑∑+=+=⎰⎰⎰⎰22Da a +2334aDaad πθ=⎰223340=888a d a r aa a πππ--=-=2.计算d y S ∑⎰⎰,∑是平面4=++z y x 被圆柱面122=+y x截出的有限部分.解:∑为两块4,1,1x y z x y z z =--=-=-,dS =,:01,02D r θπ≤≤≤≤原式D=13220sin 03ar d r dr ππθθθ==⋅=⎰ (或由()(),,,,x y z x y z ∈∑⇒-∈∑,而积分微元反号推出)3.求球面2222a z y x =++含在圆柱面ax y x =+22内部的那部分面积. 解:∑为两块x y z z z ===dS ==,:0,02D r a θπ≤≤≤≤原式12d 2DS dS ∑∑=+=⎰⎰⎰⎰cos 22=2a ad πθπθ-⎰⎰()()cos 222202=2sin 41242a ad a a a d a a ππθππθθθπ-⎛⎫-=-=- ⎪⎝⎭⎰⎰⎰4.设圆锥面z =()a h 为圆锥面的底面半径,为高,其质量均匀分布,求它的重心位置.解:设密度为单位1,由对称性可设重点坐标为()00,0,zDDzdS ∑==⎰⎰200ad r dr πθ==⎰⎰DDdS dxdy ∑==⎰⎰ad rdr πθπ==⎰⎰023h z ==,故重点坐标为20,0,3h ⎛⎫ ⎪⎝⎭5.求抛物面壳()2212z x y =+()01z ≤≤的质量,此壳的密度按规律z ρ=而变更. 解:(2212Dm dS x y ρ∑==+=⎰⎰⎰⎰2012d r π=⎰()()22532200222(1112253515t t t πππ⎛⎫⎡⎤=+-=+-+=- ⎪⎢⎥ ⎪⎣⎦⎝⎭⎰作业17 对坐标的曲面积分1.d d d d d d z x y x y z y z x ∑++⎰⎰,其中∑是柱面221x y +=被平面0z =及3z =所截得的在第一卦限内的部分前侧.解::01,03,cos 0,0yz y z x D y z x x α=≤≤≤≤>==原式=d d d d d d 0d d yzzxD D z x y x y z y z x y z z x ∑∑∑++=++⎰⎰⎰⎰⎰⎰⎰⎰13100032d 262yz D y z dy π====⎰2.计算曲面积分2()d d d d z x y z z x y ∑+-⎰⎰,其中∑为旋转抛物面221()2z x y =+下侧介于平面0z =及2z =之间的部分. 解:22221(),,,:4;2x y xy z x y z x z y D x y =+==+≤:02,yz x D z y =≤≤≤原式=1122()d d ()d d d d zx y z z x y z z x y ∑∑∑+++-⎰⎰⎰⎰⎰⎰((22221d d d d ()d d 2yz yz zxD D D z y z z y z x y z x =-++⎰⎰⎰⎰⎰⎰22222300112d ()d d 222yzzx D D y z x y z x dz d r dr πθ=++=+⎰⎰⎰⎰⎰224232000222824z dz r dr z πππππ=+=+⋅=⎰⎰3.计算d d d d d d xy y z yz z x xz x y ∑++⎰⎰其中∑是平面1,0,0,0=++===z y x z y x 所围成的空间区域的整个边界曲面的外侧.解:分片积分。
2018年大学高等数学高数期末考试试卷及答案 (8)

华南理工大学高等数学统考试卷2000上一、选择题(每小题3分,共18分) 1、下列极限的等式中,正确的是( )(A )e x xx =-→10)1(lim (B )31arcsin 11lim 320=--→x x x x (C )()211lim22=+-+-∞→x x x x (D )11212lim 2230=⎪⎪⎭⎫⎝⎛+--→x x x x x 2、设⎪⎩⎪⎨⎧≤>-+-+=0,0,1111)(3x A x x x x f 在0=x 点连续,则=A ( ) (A )23 (B )1 (C )32 (D ) 0 3、已知=+=dy x y ,1cos ln 2( ) (A )1cos 2+x dx (B )dx x 1tan 2+-(C )dx x x 121tan 22++-(D )dx x x x 11tan 22++-4、函数336x xx y -+=在1=x 处有(A )极小值(B )极大值(C )拐点(D )既无极值又无拐点 5、⎰+∞=111dx exx x( )(A ))1(2-e (B ))1(2e -(C )e -1(D )1-e 6、曲线)0(cos 2>=a a r ϑ所围图形的面积等于( )(A )⎰202)cos 2(21πϑϑd a (B )⎰-ππϑϑd a 2)cos 2(21 (C )⎰πϑϑ202)cos 2(21d a (D )⎰202)cos 2(212πϑϑd a二、(每小题5分,共20分)1、求极限;2cot )cos 3(cos lim2x x x x -→π2、设3311,12t t y t t x ++=+=,求;1=t dx dy3、求积分⎰+dx x x )cos (sin 234、求积分⎰-+22cos 11ππdx x 三、(每小题6分,共18分) 1、 设函数)(x y y =由方程y x e xy+=2所确定,求;022=x dxyd2、 求积分⎰+dx xx 1ln 3、求积分⎰-πsin 1dx x四、(8分)设⎪⎩⎪⎨⎧≤+>=0,0,1sin )(x e x xx x f x βα,试根据α和β取值的不同情况,讨论)(x f 在0=x 的连续性。
华南理工大学高数习题册答案汇总

第七章 多元函数微分学作业1 多元函数1.填空题(1)已知函数22,y f x y x y x ⎛⎫+=- ⎪⎝⎭,则(),f x y =()()22211x y y -+; (2)49arcsin2222-+++=y x y x z 的定义域是(){}22,49x y x y ≤+≤; (3))]ln(ln[x y x z -=的定义域是(){}(){},,0,1,0,1x y x y x x y x x y x >>+⋃<<≤+;(4)函数⎪⎩⎪⎨⎧=≠=0,0,sin ),(x y x x xyy x f 的连续范围是 全平面 ;(5)函数2222y x z y x+=-在22y x =处间断.2.求下列极限(1)00x y →→;解:000016x t t y →→→→===-(2)22()lim (ex y x y x y -+→+∞→+∞+).解:3y x =22()2()lim (e lim (e 2x y x y x y x x y y x y x y xe ye -+-+--→+∞→+∞→+∞→+∞⎡⎤+=+-⎣⎦)) 由于1lim e lim lim 0tt t t t t t t e e-→+∞→+∞→+∞===,2222lim e lim lim lim 0tt t t t t t t t t t e e e -→+∞→+∞→+∞→+∞====,故22()2()lim (elim (e 20x y x y x yx x y y x y x y xe ye -+-+--→+∞→+∞→+∞→+∞⎡⎤+=+-=⎣⎦)) 3.讨论极限26300lim y x yx y x +→→是否存在.解:沿着曲线()()3,,0,0y kx x y =→,有336626262000lim lim 1x x y kx x y kx kx y x k x k →→=→==+++因k 而异,从而极限26300lim y x yx y x +→→不存在4.证明⎪⎩⎪⎨⎧=+≠++=0,00,2),(222222y x y x y x xyy x f 在点)0,0(分别对于每个自变量x 或y都连续,但作为二元函数在点)0,0(却不连续.解:由于(,0)0,(0,)0,f x f y ≡≡从而可知在点)0,0(分别对于每个自变量x 或y 都连续,但沿着曲线()(),,0,0y kx x y =→,有2222222000222lim lim 1x x y kx xy kx kx y x k x k →→=→==+++因k 而异, 从而极限()0lim ,x y f x y →→不存在,故作为二元函数在点)0,0(却不连续.作业2 偏导数1.填空题(1)设22),(y x y x y x f +-+=,则=)4,3(x f 25; (2)(3)设(),ln 2y f x y x x ⎛⎫=+⎪⎝⎭,则1x y f y==∂=∂12; (3)设2sin x u xz y =+,则42ux y z∂=∂∂∂ 0 ;(4)曲线22:44x y z y ⎧+=⎪Γ⎨⎪=⎩在点()2,4,5处的切线与Ox 轴正向的倾角是4π. 2.设2e xyu =, 证明 02=∂∂+∂∂yu y x u x. 证:因为222312,xxy yu ux e e x y y y∂∂-==∂∂ 所以222223221222220x x x xy y y y u u x x x x y xe ye e e x y y y y y ∂∂--+=+=+=∂∂3. 设xyz ln =,求22x z ∂∂,yx z∂∂∂2.解:ln ln x yz e⋅=,从而222ln ln ln ln ln ln ln 222ln ln ln ln ln ,,x y x y x y x z y z y y y y e e e y x x x x x x ⋅⋅⋅∂∂--⎛⎫=⋅=⋅+⋅= ⎪∂∂⎝⎭2ln ln ln ln ln ln ln 11ln ln 1x y x y x z y x y x e e y x y x y x y xy⋅⋅∂⋅+=⋅⋅+⋅⋅=∂∂4.设y x z u arctan =, 证明 0222222=∂∂+∂∂+∂∂zuy u x u . 解:因为()()2222222222211022,1uyz u yz x xyzz xy x y x x x y x y y ∂∂-⋅-=⋅⋅===∂+∂⎛⎫+++ ⎪⎝⎭()()2222222222221022,1u x xz u xz y xyzz yy x y y x x y x y y ∂--∂-⋅=⋅⋅==-=∂+∂⎛⎫+++ ⎪⎝⎭22arctan ,0,u x uz y x∂∂==∂∂ 所以()()2222222222222200u u u xyz xyzx y z x y x y ∂∂∂-++=++=∂∂∂++ 5.设函数()()2221sin ,0,0,x x y x f x y xx ⎧+≠⎪=⎨⎪=⎩.(1)试求(),f x y 的偏导函数; 解:当()()()3222221110,,42sin cos x x f x y x xyx x y xx x-≠=+++⋅()21,2sin y f x y x y x =,()()()322211,42sin cos x f x y x xy x y x x=+-+当()()()()222001sin 0,0,0,0,lim lim 00x x x x x y f x y f y x x f y x x→→+--≠===-()()()000,0,000,lim lim 0y y y f y y f y f y y y ∆→→+∆--===∆-∆,()()()322211,42sin cos x f x y x xy x y x x=+-+(2)考察偏导函数在()0,3点处是否连续.()()200331lim ,lim 2sin00,3y y x x y y f x y x y f x→→→→===,故(),y f x y 在()0,3点处连续, ()()()3222003311lim ,lim 42sin cos x x x y y f x y x xy x y x x →→→→⎡⎤=+-+⎢⎥⎣⎦不存在,从而(),x f x y 在()0,3点处不连续作业3 全微分及其应用1.填空题(1)),(y x f z =在点),(00y x 处偏导数存在是),(y x f z =在该点可微的必要 条件;(2)函数23z x y =在点()2,1-处,当0.02,0.01x y ∆=∆=-时有全增量z ∆=0.2040402004-,全微分d z =0.20-;(3)设),(y x f z =在点),(00y x 处的全增量为z ∆,全微分为dz ,则),(y x f 在点),(00y x 处的全增量与全微分的关系式是()z dz o dz ∆=+;(4)22yx x u +=在点)1,0(处的d u =dx ;(5)xy u cos )(ln =,则d u =cos cos (ln )ln ln sin ln x x y y xdx dy y y ⎡⎤-⋅+⎢⎥⎣⎦; (6)zyx u )(=,则d u =()ln zx z z x dx dy dz y x y y ⎛⎫-+⎪⎝⎭;(7)2221zy x u ++=,则d u = ()()3222212x y z -++ .2.证明:(),f x y =在点()0,0处连续,()0,0x f 与()0,0y f 存在,但在()0,0处不可微.证:由于(0,)0,(,0)0,f y f x ==从而(0,0)0,(0,0)0.y x f f ==但是limlimx x y y ∆→∆→∆→∆→=不存在,从而在()0,0处不可微.3.设函数()()222222221sin ,0,0,0x y x y x y f x y x y ⎧++≠⎪+=⎨⎪+=⎩试证:(1)函数(),f x y 在点()0,0处是可微的;证:因为 ()()()()22001sin0,00,00,0limlim 0,0,000x y x x x f x f x f f x x →→--====-- 又()()()()()22221sinlimlim0x x y y x y x y ∆→∆→∆→∆→∆+∆∆+∆==所以函数(),f x y 在点()0,0处是可微的(2)函数(),x f x y 在点()0,0处不连续.证:当()222222221210,,2sincos x x x y f x y x x y x y x y+≠=-+++ ()2222220000121lim ,lim 2sin cos x x x y y x f x y x x y x y x y ∆→∆→∆→∆→⎛⎫=- ⎪+++⎝⎭不存在, 故(),x f x y 在点()0,0处不连续作业4 多元复合函数的求导法则1.填空题(1)设2ln ,,32yz u v u v y x x===-,则 z x ∂=∂()()223222ln 3232y y y x x x y x ----; (2)设22,cos ,sin z x y xy x u v y u v =-==,则zv∂=∂()333sin cos sin 2sin sin 2cos u v v v v v v +--; (3)设()22,zu x y z x y =-=+,则u x ∂=∂()()222ln z x y x y x x y x y ⎡⎤+--+⎢⎥-⎣⎦;(4)设2sin z x y x ==,则dd zx =2x . 2.求下列函数的偏导数(1)设,,x y u f y z ⎛⎫=⎪⎝⎭其中f 具有一阶连续偏导数,求,u x ∂∂u y ∂∂和uz ∂∂; 解:111,f u f x y y ∂=⋅=∂121222222211,u x x u y yf f f f f f y y z y z z z z∂--∂--=⋅+⋅=+=⋅=∂∂ (2)设(),,,u f x y z =()(),,,z y t t y x ϕψ==,其中,,f ϕψ均可微,求u x ∂∂和uy∂∂. 解:因为1231212,,du f dx f dy f dz dz dy dt dt dy dx ϕϕψψ=++=+=+ 从而()1231212du f dx f dy f dy dy dx ϕϕψψ=++++⎡⎤⎣⎦()()1322231321f f dx f f f ϕψϕϕψ=+++++所以1322231321,u u f f f f f x yϕψϕϕψ∂∂=+=++∂∂ 3.验证下列各式(1)设()22yz f x y =-,其中()f u 可微,则211z z z x x y y y ∂∂+=∂∂; 证:因为222212,z xyf z y f x f y f f ''∂-∂==+∂∂ 所以222211121121z z z xyf y f zx x y y x x f y f f yf y ''⎛⎫∂∂∂-+=++== ⎪∂∂∂⎝⎭ (2)设()23y z xy x ϕ=+,其中ϕ可微,则220z zx xy y x y ∂∂-+=∂∂. 证:因为()()222,33z y z y y xy x xy x x y xϕϕ∂∂''=-+=+∂∂ 所以22z z x xy y x y ∂∂-+=∂∂()()2222233y y x y xy xy x xy y x x ϕϕ⎛⎫⎛⎫''-+-++ ⎪ ⎪⎝⎭⎝⎭()()22222033y y x y xy y x y xy y ϕϕ''=-+--+=4.设22,,y z xf x x ⎛⎫= ⎪⎝⎭其中函数f 具有二阶连续偏导数,求2z x y ∂∂∂. 解:因为221212222,z y y f x f f f xf f x x x ⎛⎫∂-=++⋅=+- ⎪∂⎝⎭所以22212212222222222z y y y y y y f xf f f xf f f x y y x x x x x x⎡⎤∂∂=+-=+⋅--⋅⎢⎥∂∂∂⎣⎦ 31222224y yf f x=-4.设)()(xy x x y u ψϕ+=其中函数ψϕ,具有二阶连续偏导数,试证:022222222=∂∂+∂∂∂+∂∂y u y y x u xy x u x . 证:因为222223432,u y y u y y y x x x x x x x ϕψψϕϕψ∂-∂'''''''=+-=++∂∂222322211,,u y y u u x y x x x y x y x xϕψϕϕψϕψ''''∂∂∂'''''''=---=+=+∂∂∂∂ 从而左边222234323222120y y y y y x xy y x x x x x x x x ϕψϕϕψϕϕψ''''⎛⎫⎛⎫⎛⎫''''''''''=+++---++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭作业5 隐函数求导法1.填空题(1)已知3330x y xy +-=,则d d y x =22x yx y--; (2)已知20x y z ++-=,则x y ∂=∂(3)已知xzz y =,则d z =2ln ln z dy yz zdxxy yz y--;(4)已知222cos cos cos 1x y z ++=,则d z =sin 2sin 2sin 2xdx ydyz+-;(5)已知(),z f xz z y =-,其中f 具有一阶连续偏导数,则d z =12121zf dx f dyxf f ---.2.设(),0,F y z xy yz ++=其中F 具有二阶连续偏导数,求22zx∂∂.解:212120,yF z z z F F y y x x x F yF -∂∂∂⎛⎫+⋅+=⇒= ⎪∂∂∂+⎝⎭ ()()[]()22122122122221212x x x F z F y yz F yF F F yF F z y y x x F yF F yF '⋅+++-+⎡⎤⎛⎫∂∂⎣⎦=-=- ⎪∂∂++⎝⎭()()()()()2222112111222212221231212y F F F yF F F yF y F F F F F yF F yF -+++⎡⎤-⎣⎦=+++3.求由方程组222222320z x yx y z ⎧=+⎪⎨++=⎪⎩所确定的()y x 及()z x 的导数d d y x 及d d z x .解:由已知()2222222602460dz xdx ydydz xdx ydy xdx dz xdx zdz xdx ydy zdz -=⎧=+⎧⎪⇒⎨⎨+-+=++=⎪⎩⎩()()22606,132623220xdx z dz dz x dy x xy dx z dx y yz xdx ydy z xdx ydy -++=⎧+⎪⇒⇒==-⎨+++++=⎪⎩4.设函数()z f u =,又方程()()d xy u u P t t ϕ=+⎰确定u 是,x y 的函数,其中()f u 与()u ϕ均可微;()(),P t u ϕ'连续,且()1u ϕ'≠. 试证:()()0z zP y P x x y∂∂+=∂∂. 证:因为()(),z u z uf u f u x x y y∂∂∂∂''=⋅=⋅∂∂∂∂, ()()()(),1P x u u uu P x x x x u ϕϕ∂∂∂'=⋅+='∂∂∂- ()()()(),1P y u u uu P y y y y u ϕϕ-∂∂∂'=⋅-='∂∂∂- ()()()()()()()()()()011P x P y z zP y P x P y f u P x f u x y u u ϕϕ-∂∂''+=+=''∂∂-- 5.设函数()f u 具有二阶连续偏导数,而()e sin xz f y =满足方程22222e xz z z x y∂∂+=∂∂,求()f u . 解:因为()()()()222sin ,sin sin x xx z z f u e y f u e y f u e y x x∂∂''''==+∂∂ ()()()()222cos ,cos (sin )x x x z z f u e y f u e y f u e y y y∂∂''''==+-∂∂()()222222()e ,()0x x z zf u e f u f u f u x y∂∂''''+==⇒-=∂∂ 特征方程为()2121210,1,1,u u r r r f u c e c e --===-=+作业6 方向导数与梯度1.填空题(1)在梯度向量的方向上,函数的变化率 最大 ; (2)函数在给定点的方向导数的最大值就是梯度的 模 ; (3)函数2249z x y =+在点()2,1的梯度为grad z ={16,18};(4)函数xyz u =在点)1,1,1(处沿方向}cos ,cos ,{cos γβα=l的方向导数是cos cos cos αβγ++,且函数u 在该点的梯度是{1,1,1};(5)函数e cos()xu yz =在点)0,0,0(处沿方向}2,1,2{-=l的方向导数是23; (6)函数)ln(22z y x u ++=在点)1,0,1(A 处沿A 指向点)2,2,3(-B 方向的方向导数是12. 2.求222z y x u -+=在点)0,0,(a A 及点)0,,0(a B 处的梯度间的夹角.解:{}2,2,2{2,0,0}AAgradux y z a =-={}2,2,2{0,2,0}B Bgradu x y z a =-=夹角余弦为cos 02A B A Bgradu gradu gradu gradu πϕϕ⋅==⇒=⋅3.求二元函数22z x xy y =-+在点()1,1-沿方向{}2,1l =的方向导数及梯度,并指出z 在该点沿那个方向减少得最快沿那个方向z 的值不变 解:(){}(){}1,11,12,23,3gradz x y y x --=--=-25l ⎧=⎨⎩,{3,3}5zl ∂=-⋅=-∂z 在该点沿梯度相反方向,即方向减少得最快;沿与梯度垂直的那个方向,即±方向z 的值不变 4.设x轴正向到l 得转角为α,求函数()22220,0,x y f x y x y +>=+=⎩在点()0,0处沿着方向l 的方向导数.解:{}cos ,sin ,cos l αααα===由于该函数在点()0,0处不可微,从而不能用公式,只能由定义得出沿着方向l 的方向导数:()()00,0,0lim x y f x y f fl ρρρ→→→→-∂===∂1cos sin sin 22ααα==作业7 偏导数的几何应用1.填空题(1)已知曲面224z x y =--上点P 的切平面平行于平面221x y z ++=,则点P的坐标是(1,1,2);(2)曲面e 23zz xy -+=在点()1,2,0处的切平面方程是24x y +=;(3)由曲线223212x y z ⎧+=⎨=⎩绕y轴旋转一周所得到的旋转曲面在点(M处的指向内侧的单位法向量为0,⎧⎪⎨⎪⎩; (4)曲面2222321x y z ++=在点()1,2,2-处的法线方程是122146x y y -+-==-; (5)已知曲线23,,x t y t z t ===上点P 的切线平行于平面24x y z ++=,则点P的坐标是()1,1,1--或111,,3927⎛⎫--⎪⎝⎭. 2.求曲线22sin ,sin cos ,cos x t y t t z t ===在对应于的点π4t =处的切线和法平面方程.解:切点为{}224111,,,2sin cos ,cos sin ,2cos sin {1,0,1}222T t t t t t tπ⎛⎫=--=- ⎪⎝⎭,从而切线为11110222,11012x z x y z y +-=⎧---⎪==⎨-=⎪⎩, 法平面为110,022x z x z ⎛⎫---=-= ⎪⎝⎭3.求两个圆柱面的交线22221:1x y x z ⎧+=⎪Γ⎨+=⎪⎩在点M 处的切线和法平面的方程.解:1{2,2,0}|//{1,1,0}M n x y =,2{2,0,2}|//{1,0,1}M n x z ={}{}1,1,01,0,1{1,1,1}T =⨯=--==,法平面为0x y z --+= 4.求曲面()22210ax by cz abc ++=≠在点()000,,x y z 处的切平面及法线的方程. 解:000000{2,2,2}//{,,}n ax by cz ax by cz =切平面为0001ax x by y cz z ++=,法线为000000x x y y z z ax by cz ---== 5.求函数22221x y z a b ⎛⎫=-+ ⎪⎝⎭在点M 处沿曲线22221x y a b +=在此点的外法线方向的方向导数.解:2222,,MM x y gradza b a b ⎧⎪⎧⎫=--=--⎨⎬⎨⎩⎭⎪⎪⎩⎭2222,M x y n a b a b ⎧⎫==⎨⎬⎩⎭⎪⎪⎩⎭指向外侧为此点的外法线方向,方向导数为(2a z n gradz n n∂=⋅=-∂6.证明:曲面y z xf x ⎛⎫=⎪⎝⎭在任意点处的切平面都通过原点,其中f 具有连续导数. 证:设切点为()000,,x y z ,则000000000000,,1,y y y y y n f f f z x f x x x x x ⎧⎫⎛⎫⎛⎫⎛⎫⎛⎫⎪⎪''=--=⎨⎬⎪ ⎪ ⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎩⎭ 切平面为()()()000000000000y y y y f f x x f y y z z x x x x ⎡⎤⎛⎫⎛⎫⎛⎫''--+---=⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎣⎦令0x y z ===,得左边等于右边,从而原点在任意点处的切平面上,也即任意点处的切平面都通过原点。
数学分析(二)期末考试解答及评分标准

座位号
专业
学院
_____________ ________
华南理工大学期末考试
《数学分析(二)》试卷 A 参考答案
注意事项:1. 考前请将密封线内填写清楚;
⎝a ⎠ a
a
所以,综上所得
∫ e ax
cos bxdx
=
⎧ b sin bx
⎪ ⎨
a2
+ a cos bx + b2
e ax
+
C,
当a 2
+
b2
≠
0时
⎪⎩C , 当a 2 + b2 = 0时
其中 C 为任意常数。…………………7 分
2
2
2
2、计算星形线 x 3 + y 3 = a 3 (a > 0) 的弧长。(第 2 小题 8 分)
a
i =1 ui −1
∑ ∫ ∑ ∫ =
n i =1
ui [ψ (u) −
ui −1
mi ]sin
pudu +
n i =1
ui ui −1
mi
sin
pudu
∑ ∫ ∑ ∫ n
≤
i =1
ui ψ (u) −
ui −1
mi
n
du +
i =1
mi
ui sin pudu
ui −1
∑ ∑ ≤
n
ωi ∆ui
i =1
⎬⎫,当q ⎭
>
1时, ,
⎪ ⎪
华南理工大学数分(二)期末考卷

《数学分析(二)》试卷(A )一、 写出以下定义1、函数f(x)在[a,b]上可积;(5分)2、函数序列f n (x)在(0,1)上内闭一致收敛于f(x);(5分)二、求不定积分∫x 2+1x +1dx (5分)三、令I n =∫(sin x)n dx π0,求I n 与I n−2之间的递推公式。
(10分)四、 平面上的心脏线参数表达式为r (θ)=a (1+cos (θ)),(0≤θ≤2π),求该曲线所谓区域面积。
(10分)五、 旋轮线的参数表达式由x (t )=r (t −sin (t )),y (t )=r (1−cos (t )),(0≤t ≤2π)给出,把该曲线绕x 轴旋转一周,求所得旋转体体积。
(10分)六、 对不同的值a ,判断反常积分∫ln(1+x)x +∞0dx 的收敛性(条件收敛、绝对收敛)。
(10分)七、 令S =∑k 2+12∞k=11、判断该数项级数收敛性(条件收敛、绝对收敛);(10分)2、求幂级数∑n 2x n ∞k=1的收敛区域;(10分)3、求S 的值;(5分)八、周期函数f(x)={1,(x∈(2kπ,2kπ+π])−1,(x∈(2kπ−π,2kπ])1.求f(x)的傅里叶级数展开a02+∑[a k cos(kx)∞k=1+b k sin(kx)];(10分)2.求部分和函数a02+∑[a k cos(kx)∞k=1+b k sin(kx)]的极限函数f̃(x);(5分)3.判断函数序列{f n(x)}是否一致收敛于f̃(x),并说明理由。
(5分)《数学分析(二)》试卷(B)一、写出以下定义1、函数序列f n(x)一致收敛于函数f(x);(5分)2、数列{a n}的上极限为A;(5分)二、求不定积分∫ln(x 2+1)xdx。
(10分)三、计算定积分∫x sin x1+(cos x)2dxπ。
(5分)四、求椭圆x 24+y2=1内部区域面积。
(10分)五、平面上的心脏线参数表达式为r(θ)=a(1+cos(θ)),(0≤θ≤2π),ba该曲线在x轴以上的部分绕x轴旋转一周,求所得旋转体的体积(5分)六、对反常积分∫[ln(x)]8x a dx+∞1,1、在a取不同的值时判断它的收敛性(条件收敛、绝对收敛);(10分)2、在a=2时计算该反常积分的值(5分)七、令S=1−12+13−14+⋯+(−1)n−11n+⋯=∑[∞n=1(−1)n−11n],1、判断该数项级数收敛性(条件收敛、绝对收敛);(10分)2、写出函数ln(1+x)及11+x在x=0处的幂级数展开,并判断收敛性;(10分)3、求S的值;(5分)八、定义在全部实数上的周期函数f(x)=x,x∈[2kπ−π,2kπ+π),1、求f(x)的傅里叶级数展开a02+∑[a k cos(kx)∞k=1+b k sin(kx)];(10分)2、求部分和函数a02+∑[a k cos(kx)∞k=1+b k sin(kx)]的极限函数f̃(x);(5分)3、判断函数序列{f n(x)}是否一致收敛于f̃(x),并说明理由。
大学数学(08)试卷A答案

华南理工大学期末考试《 解析几何》试卷A 答案与评分标准一. 解:(1) 又直线的坐标式参数方程为: ⎪⎩⎪⎨⎧+=+=-=tz t y t x 211 设交点处对应的参数为0t ,∴03)21()1()(2000=-+-++-⨯t t t ∴10-=t ,从而交点为(1,0,-1)。
(2) 设切点为()00,x y ,因为切线的方向数X Y :为1:0或0:1,()()0220000101:023,1212y X Y x x y y ⎧+=⎪=⎨⎪++=⎩--0x 当:时,由方程组解得切点为,或,,∴ 平行于x 轴的切线方程为y=2与y=-2.(3) x 2+y 2=2z(4) (-1):1, 抛物型.(5) 30162=-'+'y x , 053=--y x .(6) (-12,-26,8)(7) 二次曲线的矩阵为12012321002⎡⎤⎢⎥-⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥-⎣⎦且{}{}()()00,,1,,1,v X Y k x y k ===()()()()()21211002002100200430,1,3,11).1,,10,2132).3,,,150,21,3,k k k k k F x y X F x y Y k F x y X F x y Y k φ=-+====+=-+≠=+=-+≠∴=k,1则当时当时时原直线与二次曲线交于一个实点.(8) 设所求的平面为:0)25()134(=+-++-+-z y x z y x λ欲使平面通过原点,则须:021=+-λ,即21=λ,故所求的平面方程为: 0)25()134(2=+-++-+-z y x z y x即:0539=++z y x .二.用向量法证明三角形的余弦定理 a 2=b 2+c 2-2bc cos A .证明: 证明:(1)如图1,△ABC 中,设=b,=,=a ,且|a|=a ,|b |=b ,|c |=c . 则a =b -c , (5分)2=(b -c )2=b 2+2-2b ⋅=b 2+2-2|b|||cos A . 此即 a 2=b 2+c 2-2bc cos A. (10分)三. 给定两异面直线:01123-==-z y x 与10211zy x =-=+,试求它们的公垂线方程。
华南理工大学高等数学统考试卷下

,考试作弊将带来严重后果!华南理工大学期末考试《高等数学(下)》试卷A15分,每小题3分)若(),z f x y =在点()00,x y 处可微,则下列结论错误的是 () )(),z f x y =在点()00,x y 处连续; ()(),,,x y f x y f x y 在点()00,x y 处连续; ()(),,,x y f x y f x y 在点()00,x y 处存在;曲面(),z f x y =在点()()0000,,,x y f x y 处有切平面二重极限22400lim x y xy x y →→+值为( ))0; (B) 1; (C)12; (D)不存在 已知曲面()22:10z x yz ∑=--≥,则222dS ∑=())2π; (B) π; (C) 1; (D)12π 已知直线34:273x y zL ++==--和平面:4223x y z ∏--=,则( ) )L 在∏内; (B) L 与∏平行,但L 不在∏内;L 与∏垂直; (D) L 与∏不垂直,L 与∏不平行(斜交)、 用待定系数法求微分方程232y y y x '''++=的一个特解时,应设特解的形式y = ( ) (A) 2ax ;(B )2ax bx c ++;(C )2()x ax bx c ++;(D )22()x ax bx c ++(本大题共15分,每小题3本分). arctanxz y=,则dz = . 曲线L 为从原点到点(1,1)的直线段,则曲线积分L⎰的值等于3. 交换积分次序后,ln 1(,)e x dx f x y dy =⎰⎰4. 函数22z x xy y =-+在点(1,1)-沿方向{}2,1l =的方向导数为 5. 曲面23z z e xy -+=在点(1,2,0)处的法线方程是三、(本题7分)计算二重积分Dxyd σ⎰⎰,其中D 是由抛物线2y x =及直线2y x =-所围成的闭区域四、(本题7分)计算三重积分zdv Ω⎰⎰⎰,其中Ω是由柱面221x y +=及平面0,1z z ==所围成的闭区域五、(本题7分)计算xdydz ydzdx zdxdy ∑++⎰⎰,其中∑为旋转抛物面()221z x y z =+≤的上侧六、(本题7分)计算()()3133xy xy Lye x y dx xe x y dy +-+++-+⎰,其中L 为从点(),0a -沿椭圆y =-(),0a 的一段曲线七、(本题6分)设函数()22220,0,0x y f x y x y +≠=+=⎩,证明:1、(),f x y 在点()0,0处偏导数存在,2、(),f x y 在点()0,0处不可微八、(本题7分)设,,y z xf xy f x ⎛⎫= ⎪⎝⎭具有连续二阶偏导数,求2,z z y y x ∂∂∂∂∂九、(本题7分)设x y e =是微分方程()xy p x y x '+=的一个解,求此微分方程的通解十、(本题8分)在第一卦限内作椭球面2222221x y z a b c++=的切平面,使该切平面与三个坐标平面围成的四面体的体积最小,求切点的坐标十一、(非化工类做,本题7分)求幂级数()321111321nn x x x n +-++-++的收敛域及其和函数解:收敛域[1,1]-上()()321111321nn S x x x x n +=-++-++()()()21,00,arctan 1S x S S x x x '===+ 十二、(非化工类做,本题7分)设函数()f x 以2π为周期,它在[,]ππ-上的表达式为()1,00,0,,1,0x f x x x πππ<<⎧⎪=±⎨⎪--<<⎩求()f x 的Fourier 级数及其和函数在x π=-处的值解:()021120,sin n n n a b nxdx n πππ⎡⎤--⎣⎦===⎰ ()f x 的Fourier 级数为411sin sin 3sin 535x x x π⎡⎤+++⎢⎥⎣⎦和函数在x π=-处的值为0十一、(化工类做,本题7分)已知直线1210:320x y L x z +-=⎧⎨+-=⎩和212:123y z L x +--== 证明:12//L L ,并求由1L 和2L 所确定的平面方程十二、(化工类做,本题7分)设曲线积分()2Lxy dx y x dy ϕ+⎰与路径无关,其中()x ϕ连续可导,且()00ϕ=,计算()()()1,120,0xy dx y x dy ϕ+⎰一1B 2D3B 4B5B二122ydx xdyx y-+21e - 310(,)ye e dyf x y dx ⎰4 5-512,021x y z --== 三解:2221458y y I dy xydx +-==⎰⎰四、解:11201,.22DI z dz or d zdz πππσ===⎰⎰⎰⎰五、解:32xyD I dv dxdy πΩ=-+=-⎰⎰⎰⎰⎰六、解:4(31)22aaDI dxdy x dx ab a π-=++=+⎰⎰⎰七、解:()()()0,00,00,0lim0x x f x f f x →-==,()()()00,0,00,0lim 0y y f y f f y→-==,0,00,0limx y f x y f x f y∆→∆→∆∆-∆-∆22200lim()x y x yx y ∆→∆→∆∆=∆+∆极限不存在故不可微八解:22212111222,2z z y x f f xf x yf f y y x x ∂∂'''''''=+=+-∂∂∂ 九、解:()()1x xx e p x e -=,求10xx e y y e-'+=得x x e y ce -+=从而通解为xx e x y ce e -+=+十解:设切点()000,,x y z ,切平面方程为0002221xx yy zz a b c++=,四面体体积为2220006a b c V x y z =令2222221x y z F xyz a b c λ⎛⎫=+++- ⎪⎝⎭2200x y z x F yz a F F F λλ⎧=+=⎪⎨⎪===⎩()000,,x y z =⎝⎭ 十一、证:{}{}121,2,3,1,2,3s s =--=-,故12//L L由这两条直线所确定的平面方程为210x y +-=十二解:()()22,,xy y x x x ϕϕ'==()()()1,120,012xy dx y x dy ϕ+=⎰1.产品成本是指为制造一定数量、一定种类的产品而发生的以货币表现的()。
2018年大学高等数学高数期末考试试卷及答案 (7)

华南理工大学高等数学统考试卷1999上一、(共8分,每小题4分)1、求x x x x x -+∞→11sin lim ,2、求;23lim sin 10x x x x e ⎪⎪⎭⎫ ⎝⎛+-→二、(共10分,每小题5分)1、 设⎰=+-→x x dt t a x bx t 02201)sin (lim ,求b a ,的值。
2、 设⎪⎪⎪⎩⎪⎪⎪⎨⎧==≠≠-=-0,22,02,0,1)(2x x x x e x x f x x ,讨论)(x f 在2,0==x x 处的连续性;若不连续,指出间断点的类型。
三、(共8分,每小题4分)1、设12arcsin 232-+⎪⎭⎫ ⎝⎛=x y x ,求y '。
2、确定A 的值,使两曲线2Ax y =与x y ln =相切,并求出此公切线的方程。
四、(共12分,每小题6分)1、设⎰+==tt y udu u x 0)1ln(,sin ,求22,dx y d dx dy 2、设方程04ln 22=++x y x y 确定了函数)(x y y =,求dy五、(8分)当0>x 时,证明:x x e x cos 11->--六、(共12分,每小题6分)1、设2ln )1(222-=-x x x f ,且x x g f ln )]([=,求⎰dx x g )(2、求⎰-dx e xe x x2七、(共12分,每小题6分)1、 计算⎰-+222)cos (ππdx x x 2、 证明⎰⎰--=4020)4()4(2dx e dx e x x x x 八、(9分)已知曲线1=xy 在第一象限中分枝上有一定点)1,(aa P ,在给定曲线的第三象限中的分支上有一动点Q ,试求使线段PQ 长度最短的Q 点的坐标。
九、(8分)过点)0,2(a 向椭圆)0,0(12222>>=+b a b y a x 作两切线,求椭圆与两切线所围成的区域(y 轴右边部分)绕y 轴旋转所得旋转体的体积。
广东高数期末考试题及答案

广东高数期末考试题及答案一、选择题(每题2分,共20分)1. 函数f(x)=x^3-3x^2+2x-1的导数是:A. 3x^2-6x+2B. x^3-3x^2+2C. 3x^2-6x+1D. 3x^2-6x+32. 曲线y=x^2在点(1,1)处的切线斜率是:A. 0B. 1C. 2D. -13. 函数y=sin(x)+cos(x)的最小正周期是:A. πB. 2πC. π/2D. π/44. 定积分∫[0,1] x^2 dx的值是:A. 1/3B. 1/2C. 2/3D. 15. 级数∑[1,∞] (1/n^2)的和是:A. 1C. eD. 26. 函数f(x)=e^x在点x=0处的泰勒展开式是:A. 1+xB. 1+x+x^2/2C. 1+x+x^2+x^3D. 1+x+x^2/2+x^3/67. 微分方程dy/dx+2y=x^2的解是:A. y=x^2-x+CB. y=x^2+CC. y=x^2-x^2+CD. y=x^2+x+C8. 函数f(x)=x^4-2x^2+1在x=1处的极值是:A. 最大值B. 最小值C. 无极值D. 不确定9. 函数y=ln(x)的原函数是:A. xB. x^2C. e^xD. xln(x)-x10. 函数y=x^3-6x^2+11x-6的拐点是:A. (1,-4)B. (2,-2)D. (4,-1)答案:1-5 CADBA 6-10 BDACB二、填空题(每题2分,共10分)1. 函数f(x)=x^2-4x+3的极小值点是________。
2. 定积分∫[1,e] e^x dx的值是________。
3. 函数y=x^3-2x^2+x的拐点是________。
4. 函数y=cos(x)的泰勒展开式在x=0处是________。
5. 微分方程dy/dx-y=0的通解是________。
答案:1. x=2 2. e^e-e 3. x=1 4. 1 5. Ce^x三、计算题(每题10分,共30分)1. 求函数f(x)=x^3-6x^2+11x-6的一阶导数和二阶导数,并找出其极值点。
2019年华南理工大学高数下答案.doc

对弧长的曲线积分22,其中曲线C 是y2ax x 2在 0x2a 的一段弧a0、计算x y ds。
1C解: C 的参数方程为x2a cos2y2a cos sin202 2a cos222 4a2 cos4a2原式2a sin 22a cos2d442、计算x 3y3ds ,其中 L 星形线x a cos3 t, y a sin3 t 在第一象限的弧L0t。
24cos4 t sin4 t 7sin6 t cos6 t27解:原式 2 a33a cost sin tdt3a 3a3 063、计算xyzds,其中为折线 ABC ,这里 A , B , C 依次为点0,0,0 , 1,2,3 , 1,4,3 。
x t x1解: AB 段参数方程y2t0t 1, BC 段参数方程y22t0t 1z3t z3xyzds xyzds 1614t 3dt112t dt原式012AB BC311314t 412t6t214182024、计算x2y2 ds ,其中为螺旋线x t cost , y t sin t , z t 上相应于t从 0 到1的弧。
解:方法一1221原式t2sin t t cost t 2 2 t 2 dtcost t sin t1dt001122121 t 2 t 2 t dt t 2 t 2 t2 2020121t222 t 2 dt2 t2t 233 1 2 2 t 2dt1 2 t 2dt2t3 3113 31 11原式2 t2 dt2ln t2 t2 4242 t 2 t231ln 1 2 32 2方法二、原式1 2 cost 2sin t t cost21 2 2 t 2dttt sin t 1dtt11t2 2 t 211 122t dtu 2 u du2 021u 211 120 2duu1112u1 1du11u 12u 112121 21u 11du21 01du2u 111 121213 u 1du ln u 1u 1 112 02 03 1 1u 21du1ln 2312 02原式 31232ln4方法三、1221原式t2sin t1dtt 2 2 t 2dtcost t sin tt cost因为t 32 t 23 t 2 2 t 2 t4 4 2t 2 2t 2t 2 2 t 2 1 t 244 2 t 22 2 t 2 t 2 t 2t 2 t 22 t 22t 2 t 22 t 2222ln t2 t 2t1 t2 1 2 t1 t 22t 22所以t 3 2 t 21 21ln t2 t 2t2 2 t24t 2 t24t 31t 2 t 21ln t13 1ln 11ln 2原式2 t 22 t 2344 22 225、计算x2y 2 ds ,其中 L : x 2 y 2 ax aL解: x 2y 2 axra cos ,曲线 L 的参数方程为x a cos 2 cos 22y a sin原式2a cosa 2 sin 2 2a 2 cos 2 2 d2a 2 2 cos d2a 226ey 2ds ,xy a,直线y x , y 0在第一象限内所围成的、计算x 2其中 L 为圆周2 2 2L扇形的边界。
华南理工大学网络教育专科-高等数学B(下)第二学期

华南理工大学网络教育专科高等数学B〔下〕第二学期(单项选择题) 函数定义域为〔〕〔A〕〔B〕〔C〕〔D〕答题: A. B. C. D. 〔已提交〕参考答案:D问题解析:2.(单项选择题) 函数定义域为〔〕〔A〕〔B〕〔C〕〔D〕答题: A. B. C. D. 〔已提交〕参考答案:B问题解析:3.(单项选择题)〔A〕〔B〕〔C〕〔D〕答题: A. B. C. D. 〔已提交〕参考答案:A问题解析:4.(单项选择题)〔A〕〔B〕〔C〕〔D〕答题: A. B. C. D. 〔已提交〕参考答案:C问题解析:5.(单项选择题)〔A〕〔B〕〔C〕〔D〕答题: A. B. C. D. 〔已提交〕参考答案:A问题解析:6.(单项选择题)〔A〕〔B〕0 〔C〕〔D〕答题: A. B. C. D. 〔已提交〕参考答案:C问题解析:7.(单项选择题)〔A〕〔B〕〔C〕〔D〕答题: A. B. C. D. 〔已提交〕参考答案:A问题解析:8.(单项选择题)〔A〕〔B〕〔C〕〔D〕答题: A. B. C. D. 〔已提交〕参考答案:C问题解析:9.(单项选择题) , 则〔A〕〔B〕〔C〕〔D〕答题: A. B. C. D. 〔已提交〕参考答案:B问题解析:10.(单项选择题) 假设,则〔A〕〔B〕〔C〕〔D〕答题: A. B. C. D. 〔已提交〕参考答案:A问题解析:11.(单项选择题) 假设,则〔A〕〔B〕〔C〕〔D〕答题: A. B. C. D. 〔已提交〕参考答案:B问题解析:12.(单项选择题) 假设,则〔A〕〔B〕〔C〕〔D〕答题: A. B. C. D. 〔已提交〕参考答案:C问题解析:13.(单项选择题) 假设,则〔A〕〔B〕〔C〕〔D〕答题: A. B. C. D. 〔已提交〕参考答案:B问题解析:14.(单项选择题) 假设,则〔A〕〔B〕〔C〕〔D〕答题: A. B. C. D. 〔已提交〕参考答案:A问题解析:15.(单项选择题) 假设则dz=〔〕〔A〕〔B〕〔C〕〔D〕答题: A. B. C. D. 〔已提交〕参考答案:B问题解析:16.(单项选择题) 假设,则dz=〔〕〔A〕〔B〕〔C〕〔D〕答题: A. B. C. D. 〔已提交〕参考答案:B问题解析:17.(单项选择题) 假设,则dz=〔〕〔A〕〔B〕〔C〕〔D〕答题: A. B. C. D. 〔已提交〕参考答案:C问题解析:18.(单项选择题) 假设,则dz=〔〕〔A〕〔B〕〔C〕〔D〕答题: A. B. C. D. 〔已提交〕参考答案:D问题解析:19.(单项选择题) 假设,则〔〕〔A〕〔B〕〔C〕〔D〕答题: A. B. C. D. 〔已提交〕参考答案:C问题解析:20.(单项选择题) 假设,则〔〕〔A〕〔B〕〔C〕〔D〕答题: A. B. C. D. 〔已提交〕参考答案:D问题解析:21.(单项选择题) 假设,则〔〕〔A〕〔B〕〔C〕〔D〕答题: A. B. C. D. 〔已提交〕参考答案:A问题解析:22.(单项选择题) 假设,则〔〕〔A〕〔B〕〔C〕〔D〕答题: A. B. C. D. 〔已提交〕参考答案:A问题解析:23.(单项选择题) 假设,则〔〕〔A〕〔B〕〔C〕〔D〕答题: A. B. C. D. 〔已提交〕参考答案:A问题解析:24.(单项选择题)〔A〕〔B〕〔C〕〔D〕答题: A. B. C. D. 〔已提交〕参考答案:B问题解析:25.(单项选择题)〔A〕〔B〕〔C〕〔D〕答题: A. B. C. D. 〔已提交〕参考答案:C问题解析:26.(单项选择题)〔A〕〔B〕〔C〕〔D〕答题: A. B. C. D. 〔已提交〕参考答案:A问题解析:27.(单项选择题) 设函数在点的偏导数存在,则在点〔〕〔A〕连续〔B〕可微〔C〕偏导数连续〔D〕以上结论都不对答题: A. B. C. D. 〔已提交〕参考答案:D问题解析:28.(单项选择题) 设, 则既是的驻点,也是的极小值点.答题: A. B. C.问题解析:29.(单项选择题) 〔〕〔A〕〔B〕 2 〔C〕 4 〔D〕答题: A. B. C. D. 〔已提交〕参考答案:B问题解析:30.(单项选择题) 假设〔〕〔A〕〔B〕〔C〕〔D〕答题: A. B. C. D. 〔已提交〕参考答案:C问题解析:31.(单项选择题) 等于〔〕〔A〕〔B〕〔C〕〔D〕答题: A. B. C. D. 〔已提交〕参考答案:C问题解析:32.(单项选择题)〔〕〔A〕〔B〕〔C〕〔D〕答题: A. B. C. D. 〔已提交〕参考答案:B问题解析:33.(单项选择题) 〔〕〔A〕〔B〕〔C〕〔D〕答题: A. B. C. D. 〔已提交〕参考答案:A问题解析:34.(单项选择题)〔〕〔A〕〔B〕〔C〕〔D〕答题: A. B. C. D. 〔已提交〕参考答案:D问题解析:35.(单项选择题)〔〕〔A〕〔B〕〔C〕〔D〕答题: A. B. C. D. 〔已提交〕参考答案:B问题解析:36.(单项选择题) 〔〕〔A〕〔B〕〔C〕〔D〕答题: A. B. C. D. 〔已提交〕参考答案:C问题解析:37.(单项选择题) 设〔〕〔A〕〔B〕〔C〕〔D〕答题: A. B. C. D. 〔已提交〕参考答案:B问题解析:38.(单项选择题) 设〔〕〔A〕〔B〕〔C〕〔D〕A. B. C.39.(单项选择题) 设〔〕〔A〕〔B〕〔C〕〔D〕答题: A. B. C. D. 〔已提交〕参考答案:B问题解析:40.(单项选择题) 设〔〕〔A〕〔B〕〔C〕〔D〕答题: A. B. C. D. 〔已提交〕参考答案:B问题解析:41.(单项选择题) 应等于〔〕〔A〕〔B〕〔C〕〔D〕答题: A. B. C. D. 〔已提交〕参考答案:C问题解析:42.(单项选择题) 应等于〔〕〔A〕〔B〕〔C〕〔D〕答题: A. B. C. D. 〔已提交〕参考答案:A问题解析:43.(单项选择题) 等于〔〕〔A〕〔B〕〔C〕〔D〕答题: A. B. C. D. 〔已提交〕参考答案:A问题解析:44.(单项选择题) 等于〔〕〔A〕〔B〕〔C〕〔D〕答题: A. B. C. D. 〔已提交〕参考答案:B问题解析:45.(单项选择题) 交换二次积分等于〔〕〔A〕〔B〕〔C〕〔D〕答题: A. B. C. D. 〔已提交〕参考答案:B问题解析:46.(单项选择题) 交换二次积分等于〔〕〔A〕〔B〕〔C〕〔D〕答题: A. B. C. D. 〔已提交〕参考答案:C问题解析:47.(单项选择题) 交换二次积分等于〔〕〔A〕〔B〕〔C〕〔D〕答题: A. B. C. D. 〔已提交〕参考答案:A问题解析:48.(单项选择题) 交换二次积分等于〔〕〔A〕〔B〕〔C〕〔D〕答题: A. B. C. D. 〔已提交〕参考答案:A问题解析:49.(单项选择题) 〔〕〔A〕〔B〕〔C〕〔D〕答题: A. B. C. D. 〔已提交〕参考答案:A问题解析:50.(单项选择题) 〔〕〔A〕1 〔B〕2 〔C〕3 〔D〕4答题: A. B. C. D. 〔已提交〕参考答案:B问题解析:51.(单项选择题) 以下方程为二阶方程的是〔〕〔A〕〔B〕〔C〕〔D〕答题: A. B. C. D. 〔已提交〕参考答案:B问题解析:52.(单项选择题) 〔〕〔A〕〔B〕〔C〕〔D〕答题: A. B. C. D. 〔已提交〕参考答案:D问题解析:53.(单项选择题) 以下属变量可别离的微分方程的是〔〕〔A〕〔B〕〔C〕〔D〕答题: A. B. C. D. 〔已提交〕参考答案:C问题解析:54.(单项选择题) 以下方程为一阶线性方程的是〔〕〔A〕〔B〕〔C〕〔D〕答题: A. B. C. D. 〔已提交〕参考答案:B问题解析:55.(单项选择题) 方程〔〕〔A〕变量可别离方程〔B〕齐次方程〔C〕一阶线性方程〔D〕不属于以上三类方程答题: A. B. C. D. 〔已提交〕参考答案:C问题解析:56.(单项选择题) 以下微分方程中属于一阶齐次方程的是〔〕〔A〕〔B〕〔C〕〔D〕答题: A. B. C. D. 〔已提交〕参考答案:B问题解析:57.(单项选择题) 微分方程的通解为〔〕〔A〕〔B〕〔C〕〔D〕答题: A. B. C. D. 〔已提交〕参考答案:B问题解析:58.(单项选择题) ( )〔A〕〔B〕〔C〕〔D〕答题: A. B. C. D. 〔已提交〕参考答案:B问题解析:59.(单项选择题) 〔〕〔A〕〔B〕〔C〕〔D〕答题: A. B. C. D. 〔已提交〕参考答案:B问题解析:60.(单项选择题) 〔〕〔A〕〔B〕〔C〕〔D〕答题: A. B. C. D. 〔已提交〕参考答案:A问题解析:61.(单项选择题) 微分方程的通解为〔〕〔A〕〔B〕〔C〕〔D〕答题: A. B. C. D. 〔已提交〕参考答案:B问题解析:62.(单项选择题) 〔〕〔A〕〔B〕〔C〕〔D〕答题: A. B. C. D. 〔已提交〕问题解析:63.(单项选择题) 的通解为〔〕〔A〕〔B〕〔C〕〔D〕答题: A. B. C. D. 〔已提交〕参考答案:D问题解析:64.(单项选择题) 的特解为〔〕〔A〕〔B〕〔C〕〔D〕答题: A. B. C. D. 〔已提交〕参考答案:B问题解析:65.(多项选择题) 则以下求偏导数的四个步骤中计算正确的有〔〕答题: A. B. C. D. 〔已提交〕参考答案:ABCD问题解析:66.(多项选择题) 已知,则以下求全微分的四个步骤中计算正确的有〔〕答题: A. B. C. D. 〔已提交〕参考答案:ABC问题解析:67.(多项选择题) 所确定,其中具有连续的偏导数.试证明:则下面证明过程正确的步骤有〔〕〔A〕第一步:设,则〔B〕第二步:〔C〕第三步:〔D〕第四步:答题: A. B. C. D. 〔已提交〕问题解析:68.(多项选择题) ,则以下计算正确的步骤有〔〕答题: A. B. C. D. 〔已提交〕参考答案:ABCD问题解析:69.(多项选择题) ,则以下计算正确的步骤有〔〕答题: A. B. C. D. 〔已提交〕参考答案:ACD问题解析:70.(多项选择题)〔〕答题: A. B. C. D. 〔已提交〕参考答案:ACD问题解析:71.(多项选择题) 计算正确的步骤有〔〕答题: A. B. C. D. 〔已提交〕参考答案:ABCD问题解析:72.(多项选择题) 已知步骤正确的有〔〕答题: A. B. C. D. 〔已提交〕参考答案:AB问题解析:73.(多项选择题) 〔〕答题: A. B. C. D. 〔已提交〕参考答案:ABCD问题解析:74.(多项选择题) 〔〕答题: A. B. C. D. 〔已提交〕参考答案:ABC问题解析:75.(多项选择题) 〔〕答题: A. B. C.问题解析:76.(多项选择题) 已知〔〕答题: A. B. C. D. 〔已提交〕参考答案:ABCD问题解析:77.(多项选择题) 〔〕答题: A. B. C. D. 〔已提交〕参考答案:ABCD问题解析:78.(多项选择题) 〔〕答题: A. B. C. D. 〔已提交〕参考答案:AB问题解析:79.(多项选择题) 求微分方程的通解的正确步骤有〔〕答题: A. B. C. D. 〔已提交〕参考答案:ABCD问题解析:80.(多项选择题) 求微分方程通解的正确步骤有〔〕答题: A. B. C.问题解析:81.(判断题) 假设的偏导数存在, 则可微. 答题:对. 错. 〔已提交〕参考答案:×问题解析:82.(判断题) 假设的偏导数存在, 则连续. 答题:对. 错. 〔已提交〕参考答案:×问题解析:83.(判断题) 假设的偏导数连续,则可微. 答题:对. 错. 〔已提交〕参考答案:√问题解析:84.(判断题) 假设可微,则存在.答题:对. 错. 〔已提交〕参考答案:√问题解析:85.(判断题) 假设可微,则连续.答题:对. 错. 〔已提交〕参考答案:√问题解析:86.(判断题) 假设连续,则可微.答题:对. 错. 〔已提交〕参考答案:×问题解析:87.(判断题) 假设连续,则偏导数存在.答题:对. 错. 〔已提交〕参考答案:×问题解析:88.(判断题) 假设是的极值点,则是的驻点.答题:对. 错. 〔已提交〕参考答案:×问题解析:89.(判断题) 假设是的极值点,且函数在点的偏导数存在,则是的驻点.答题:对. 错. 〔已提交〕参考答案:√问题解析:90.(判断题) 当时,二重积分表示以曲面为顶,以区域为底的曲顶柱体的体积.答题:对. 错. 〔已提交〕参考答案:√问题解析:91.(判断题) 在有界闭区域D上的两曲面围成的体积可表示为.答题:对. 错. 〔已提交〕参考答案:×问题解析:92.(判断题) 假设积分区域关于轴对称,关于是奇函数,则答题:对. 错. 〔已提交〕参考答案:√问题解析:93.(判断题) 假设积分区域关于轴对称,则答题:对. 错. 〔已提交〕参考答案:√问题解析:94.(判断题) 假设积分区域关于轴对称,则答题:对. 错. 〔已提交〕参考答案:√问题解析:95.(判断题) 假设积分区域关于轴对称,则答题:对. 错. 〔已提交〕参考答案:×问题解析:96.(判断题) 假设函数关于是奇函数,则答题:对. 错. 〔已提交〕参考答案:×问题解析:97.(判断题)答题:对. 错. 〔已提交〕参考答案:√问题解析:98.(判断题)答题:对. 错. 〔已提交〕参考答案:√问题解析:99.(判断题)答题:对. 错. 〔已提交〕参考答案:√问题解析:100.(判断题) 微分方程阶数为3. 答题:对. 错. 〔已提交〕参考答案:×问题解析:101.(判断题) 微分方程阶数为2 答题:对. 错. 〔已提交〕参考答案:√问题解析:102.(判断题) 函数答题:对. 错. 〔已提交〕参考答案:√问题解析:103.(判断题) 函数答题:对. 错. 〔已提交〕参考答案:×问题解析:104.(判断题)答题:对. 错. 〔已提交〕参考答案:√问题解析:105.(判断题)答题:对. 错. 〔已提交〕问题解析:106.(判断题) 微分方程是变量可别离微分方程.答题:对. 错. 〔已提交〕参考答案:√问题解析:107.(判断题) 微分方程是一阶线性微分方程. 答题:对. 错. 〔已提交〕参考答案:×问题解析:108.(判断题) 微分答题:对. 错. 〔已提交〕参考答案:√问题解析:End。
华南理工大学大一公共课概率论与数理统计期末考试卷及答案3

,考试作弊将带来严重后果!华南理工大学期末考试《概率论与数理统计》试卷(A )1. 考前请将密封线内填写清楚;允许使用计算器,所有答案请直接答在试卷上; .考试形式:闭卷;14.412,732.13==99.0)33.2(,975.0)96.1(,95.0)645.1(,9.0)285.1(,8413.0)1(=Φ=Φ=Φ=Φ=0.0250.0250.050.05(6) 2.45,(7) 2.36,(6) 1.943,(7) 1.895t t t t ====(本大题15分)一个去掉大小王的扑克共52张牌,洗匀后从中随机抽牌。
(1)随机抽取6张, 求所抽的牌中含有红桃A 的概率。
(2)随机抽取6张,求所抽的6张牌中含有红桃A 、且至少含有一张K 的概率。
(3)随机抽取n 张,为使所抽的牌中至少有一个“对子”的概率大于1/2,试列出n 应满足的条件。
)解答:(1)565152/6/523/260.1154C C ==≈(2)A={抽取6张牌中含有红桃A}, B={抽取6张牌中至少含有一张K},()()(|)()[1(|)]P AB P A P B A P A P B A ==- 555565147514752655251[1]()/C C C C C C C =-=- 0.1154(10.6530)0.04=-=(3)2/1/)(1521413>-nn n C C C二.(本大题12分)一个盒子中装有红、黑两色共25个球,其中红球有13个。
现甲先在暗处从盒中随机抽一个球a 并收藏起来,然后让你从盒子中任抽两个球。
(1)求你抽出两个红球的概率。
(2)如果你现场随机抽到的两个球都是红球,求甲收藏的球a 是红色的概率。
如果让你猜测甲收藏的球a 的颜色,为使猜中的可能性最大,你会猜甲收藏的球是什么颜色的? 解答:分别记B A 、为事件{甲抽出的是红球}、{乙抽出的两个都是红球}。
(1)221213222424()()(|)()(|)1312131211121312130.26252525242325242350P B P A P B A P A P B A C C C C =+⨯⨯=⨯+⨯=⨯+⨯==⨯⨯ (2)2123115013232411122513)()|()()|(<=÷⨯⨯⨯==B P A B P A P B A P故a 的颜色为红色的概率比a 的颜色为黑色的概率小,选择判 a 为黑色。
华南理工网络教育高等数学B(下)参考答案

+ C ,其中 C为任意常数
(? ) .
2. 函数 f (x, y)
1ห้องสมุดไป่ตู้
定义域为 {x,y| + > 16 } .
x 2 y 2 16
3. 若D是由x y=2、x轴、y轴围成的闭区域,则在计算 f (x, y)d 等于
D
() .
4. 级数 (2 3n)收敛性为 发散 (填“收敛”、“发散”或“无法判断敛散性” ).
一、判断题
1. y y
y4
y
4
+xy
0 是三阶微分方程 .
2. y y
y4
y
4
+xy
0 是四阶微分方程 .
(? ) (? )
3. 设函数 f ( x, y) 在 ( x0, y0) 点的偏导数存在,则 f ( x, y) 在 (x0, y0) 点可微 .
4. 设函数 f ( x, y) 在 ( x0, y0) 点的可微,则 f ( x, y) 在 ( x0 , y0) 点偏导数存在 .
D
解: D区域为如右图所示的阴影部分
原式 =
=
=
=
∴二重积分
=
6. 计算二重积分 x2d , 其中 D 是由圆 x2 y2 4 和 x2 y2 16 之间的环形区域 .
D
解: D区域为右图所示的阴影部分
由于是环形区域,所以可以用极坐标来表示
即 2 ≤r ≤4 ,0≤ ≤2 ,而被积函数则可
写成 f(r
由公式 y =
(C+
) 可得该方程的通解
y=
( C+
)
=
(C+ )
∴ 该微分方程的通解是 y =
(完整版)华南理工大学《高等数学》(下册)期末试题及答案三

《高等数学》(下册)测试题三一、填空题1.若函数22(,)22f x y x ax xy y =+++在点(1,1)-处取得极值,则常数a =5-. 2.设1()e d x yxf x y =⎰,则1()f x dx =⎰12e -. 3.设S 是立方体1,,0≤≤z y x 的边界外侧,则曲面积分567d d d d d d sx y z y z x z x y ++=⎰⎰Ò 3 . 4.设幂级数nnn a x ∞=∑的收敛半径为3,则幂级数11(1)n n n na x ∞+=-∑的收敛区间为()2,4-.5.微分方程2434exy y y x -'''+-=用待定系数法确定的特解(系数值不求)的形式为()24e x y x ax bx c -=++.二、选择题1.函数22222222sin 2(),0,(,)0,2,x y x y f x y x yx y ⎧++≠⎪=+⎨⎪+=⎩在点(0,0)处( D ).(A )无定义; (B )无极限;(C )有极限但不连续; (D )连续. 2.设sec(1)z xy =-,则zx∂=∂( B ). (A )sec(1)tan(1)xy xy --; (B )sec(1)tan(1)y xy xy --; (C )2tan (1)y xy -; (D )2tan (1)y xy --.3.两个圆柱体222x y R +≤,222x z R +≤公共部分的体积V 为( B ).(A)02d Rx y ⎰; (B)08d Rx y ⎰;(C)d RRx y -⎰; (D)4d R Rx y -⎰.4.若0n a ≥,1nn kk S a==∑,则数列{}n S 有界是级数收敛的( A ).(A )充分必要条件; (B )充分条件,但非必要条件; (C )必要条件,但非充分条件; (D )既非充分条件,又非必要条件.5.函数sin y C x =-(C 为任意常数)是微分方程22d sin d yx x=的( C ).(A )通解; (B )特解; (C )是解,但既非通解也非特解; (D )不是解. 三、求曲面e e4x y zz+=上点0(ln 2,ln 2,1)M 处的切平面和法线方程.解:{}{}022M 11e ,e ,e e 2,2,4ln 2//1,1,2ln 2xy x y z z z zx y n z z z z ⎧⎫=--=--⎨⎬⎩⎭r 切平面为()ln 2ln 22ln 212ln 20x y z x y z -+---=+-= 法线为1ln 2ln 22ln 2z x y --=-=-四、求通过直线 0:20x y L x y z +=⎧⎨-+-=⎩的两个互相垂直的平面,其中一个平面平行于直线1:L x y z ==.解:设过直线L 的平面束为()20,x y z x y λ-+-++= 即()(){}1120,1,1,1x y z n λλλλ+--+-==+-r第一个平面平行于直线1:L x y z ==,即有{}{}111,1,11,1,1210,2n s λλλλ⋅=+-⋅=+==-r r从而第一个平面为{}1111120,324,1,3,223x y z x y z n ⎛⎫⎛⎫--++-=-+==- ⎪ ⎪⎝⎭⎝⎭r 第二个平面要与第一个平面垂直,也即{}{}11,3,21,1,11332260,3n n λλλλλλ⋅=-⋅+-=+-++=-+==r r从而第二个平面为4220x y z ++-=五、求微分方程430y y y '''-+=的解,使得该解所表示的曲线在点(0,2)处与直线2240x y -+=相切.解:直线2240x y -+=为2,1y x k =+=,从而有定解条件()()01,02y y '==, 特征方程为()()212430,310,3,1r r r r r r -+=--===方程通解为312xx y c ec e =+,由定解的初值条件122c c +=3123x x y c e c e '=+,由定解的初值条件1231c c +=从而1215,22c c =-=,特解为31522x x y e e =-+ 六、设函数()f u 有二阶连续导数,而函数(e sin )xz f y =满足方程22222e xz z z x y∂∂+=∂∂ 试求出函数()f u .解:因为()()()()222sin ,sin sin xx x z z f u e y f u e y f u e y x x∂∂''''==+∂∂ ()()()()222cos ,cos (sin )xx x z z f u e y f u e y f u e y y y∂∂''''==+-∂∂ ()()222222()e ,()0x x z zf u e f u f u f u x y∂∂''''+==⇒-=∂∂ 特征方程为()2121210,1,1,uur r r f u c e c e --===-=+ 七、计算曲面积分222(cos cos cos )dS xy yx z αβγ∑++⎰⎰Ò, 其中∑是球体2222x y z z ++≤与锥体z ≥Ω的表面,cos α,cos β,cos γ是其外法线方向的方向余弦.解:两表面的交线为222222122122,0,1,1x y z z x y z z z z z z ⎧++=⎧+=⎪⇒===⇒⎨⎨==⎩⎪⎩原式()222xy z dv Ω=++⎰⎰⎰,投影域为22:1D x y +≤,用柱坐标:02,01,1r r z θπΩ≤≤≤≤≤≤原式)()2111122222rrd rdr rz dz r r z zπθπ=+=+⎰⎰⎰()(12220211r r r r dr π⎡⎤=+-⎢⎥⎣⎦⎰()()()113134220013122t t dt r r r dr ππ⎡⎤=--+-+--⎢⎥⎣⎦⎰⎰()()11532452200221113125345t t r r r ππ⎡⎤⎛⎫=--⋅-+-- ⎪⎢⎥⎝⎭⎣⎦21181127022154551010πππππ⎡⎤⎛⎫=--+--=+= ⎪⎢⎥⎣⎦⎝⎭另解:用球坐标:02,0,02cos 4πθπϕρϕΩ≤≤≤≤≤≤原式()2cos 24222000sin 2cos sin d d d πϕπθϕρϕρϕρϕρ=+⎰⎰⎰()2cos 443302sin 2cos sin d d πϕπϕρϕρϕϕρ=+⎰⎰()545735022cos cos 2cos cos 5d ππϕϕϕϕ⎛⎫=--+ ⎪⎝⎭⎰1684579494216555658t t t t dt ππ⎛⎛⎫=-=⋅-⋅ ⎪⎭⎝6831161010t t π⎛=- ⎝2710π=八、试将函数2()e d xt f x t -=⎰展成x 的幂级数(要求写出该幂级数的一般项并指出其收敛区间). 解:()220n=01()e d d n!n xxt n f x t t t ∞-⎛⎫-==⎪ ⎪⎝⎭∑⎰⎰()()()21n=01,,!21nn x x n n ∞+-=∈-∞+∞+∑九、判断级数)0,0(1>>∑∞=βαβαn nn 的敛散性.解:()11lim lim 1n n n n n nu n u n ααβρββ++→∞→∞==⋅=+ 当01,1βρ<<<,级数收敛;当1,1βρ>>,级数发散; 当1,1βα=>时级数收敛;当1,01βα=<≤时级数发散十、计算曲线积分222(1e )d (e 1)d y y Lx x x y ++-⎰,其中L 为22(2)4x y -+=在第一象限内逆时针方向的半圆弧.解:再取1:0,:04L y x =→,围成半圆的正向边界 则 原式11222(1e )d (e 1)d y y L L L x x x y +=-++-⎰⎰()44200101122D dxdy x dx x x ⎛⎫=-+=-+=- ⎪⎝⎭⎰⎰⎰十一、求曲面S :222124x z y ++=到平面π:2250x y z +++=的最短距离.解:问题即求d =在约束222124x z y ++=下的最小值 可先求()()22,,9225f x y z d x y z ==+++在约束222124x z y ++=下的最小值点 取()()2222,,225124x z L x y z x y z y λ⎛⎫=++++++- ⎪⎝⎭()()42250,422520,x y L x y z x L x y z y λλ=++++==++++=()22222250,1224z z x z L x y z y λ=++++=++=0λ≠时212,41,,12x y z y y x z ====±==±,211521151111,,13,1,,123233d d +++---+⎛⎫⎛⎫==---== ⎪ ⎪⎝⎭⎝⎭这也说明了0λ=是不可能的,因为平面与曲面最小距离为13。
(整理)华工-2011高数下期末试卷.

华工2010-2011高数下期末试卷一、填空题1、函数z=4x2+9y2在点(2,1)的梯度为gradz= ;2、函数z=x4+y4-x2-2xy-y2的极值点是;3、假设L为圆x2+y2=a2的右半部分,则∫; 4、设A=e x siny i+(2xy2+z)j+xzy2k,L ds=则divA|(1,0,1)= ;5、设y1=3,y2=3+x2,y3=3+x2+e x都是方程(x2-2x)y‘‘(x2-2)y’+(2x-2)y=6x-6的解,则方程的通解为。
二、计算三重积分(),其中Ω是由x2+y2+z2=1所围成的闭球体。
三、证明:f(x,y)=︱︱在点(0,0)处连续,f x(0,0)与f y(0,0)存在,但在(0,0)处不可微。
四、设函数u(x,y)有连续偏导数,试用极坐标与直角坐标的转化公式x=rcosθ,y=rsinθ,将x- y变换为r,θ下的表达式。
,其中L为:五、计算²²(1)圆周(x-1)²+(y-1)²=1(按反时针方向);(2)闭曲线︱x︱+︱y︱=1(按反时针方向)。
六、计算,∑是平面x+y+z=4被圆柱面x2+y2=1截出的有限部分。
七、计算曲面面积分I=,其中∑为上半球面z=²²的上侧。
八、求微分方程+ = 的通解。
九、求微分方程2y‘’+y‘-y=2e x的通解。
十、(非化工类做)求幂级数()121141-∞=-∑⋅-nnnnxn的收敛域。
十一、(非化工类做)将函数f(x)=展开成麦克劳林级数,并确²定其成立区间。
十二、(非化工类做)设函数f(x)是以2为周期的周期函数,它在-上的表达式为f(x)=,将其展成傅里叶级数,并确定其成立范围。
十(化工类做)求微分方程(3x2+6xy2)dx+(6x2y+4y3)dy=0的通解。
十一(化工类做)计算,其中L为直线y=x及抛物线y=x2所围成的区域的整个边界。
华南理工大学网络教育专科-高等数学B(下)第二学期

华南理工大学网络教育专科高等数学B(下)第二学期(单选题)函数定义域为()(A) (B)(C)(D)答题: A. B。
C. D。
(已提交)参考答案:D问题解析:2.(单选题) 函数定义域为()(A)(B)(C)(D)答题: A. B. C. D。
(已提交)参考答案:B问题解析:3。
(单选题)(A)(B)(C)(D)答题: A。
B. C。
D. (已提交)参考答案:A问题解析:4。
(单选题)(A)(B)(C)(D)答题: A。
B。
C. D。
(已提交)参考答案:C问题解析:5。
(单选题)(A) (B) (C)(D)答题: A. B。
C。
D. (已提交)参考答案:A问题解析:6。
(单选题)(A)(B)0 (C)(D)答题: A. B. C. D. (已提交)参考答案:C问题解析:7.(单选题)(A) (B)(C)(D)答题: A。
B. C。
D。
(已提交)参考答案:A问题解析:8.(单选题)(A)(B)(C)(D)答题: A。
B. C. D. (已提交)参考答案:C问题解析:9.(单选题) , 则(A)(B) (C)(D)答题: A. B。
C. D. (已提交)参考答案:B问题解析:10.(单选题) 若,则(A)(B) (C)(D)答题: A. B。
C. D。
(已提交)参考答案:A问题解析:11.(单选题)若, 则(A)(B) (C)(D)答题: A。
B. C。
D。
(已提交)参考答案:B问题解析:12。
(单选题)若,则(A)(B) (C)(D)答题: A。
B. C。
D. (已提交)参考答案:C问题解析:13。
(单选题)若,则(A) (B)(C)(D)答题: A. B. C。
D。
(已提交)参考答案:B问题解析:14。
(单选题) 若,则(A)(B)(C)(D)答题: A. B。
C。
D. (已提交)参考答案:A问题解析:15.(单选题)若则dz=()(A)(B)(C)(D)答题: A。
高数期末试题 及答案

高数期末试题及答案1. 选择题(每题2分,共40分)
1.1 选择题题干
答案:选项A
解析:解析内容
1.2 选择题题干
答案:选项B
解析:解析内容
......
2. 填空题(每题4分,共40分)
2.1 填空题题干
答案:填空答案
解析:解析内容
2.2 填空题题干
答案:填空答案
解析:解析内容
......
3. 计算题(每题10分,共80分)3.1 计算题题干
解答:
计算过程
3.2 计算题题干
解答:
计算过程
......
4. 证明题(每题20分,共80分)4.1 证明题题干
解答:
证明过程
4.2 证明题题干
解答:
证明过程
......
5. 应用题(每题15分,共60分)5.1 应用题题干
解答:
解题思路和步骤
5.2 应用题题干
解答:
解题思路和步骤
......
综上所述,这是一份高数期末试题及答案,包括选择题、填空题、计算题、证明题和应用题。
每道题目都提供了准确的答案和解析,以帮助同学们检验和巩固他们的数学知识。
请同学们认真阅读每道题目并按照正确的解题思路和步骤进行答题。
祝大家期末考试顺利!
(文章结束,共计xxx字)。
高等数学期末试卷试题

诚信应考,考试作弊将带来严重后果!华南理工大学期末考试2010-2011学年第二学期《高等数学(下)》试卷(A 卷)注意事项:1. 考前请将密封线内填写清楚;2. 所有答案请直接答在试卷上; 3.考试形式:闭卷;4. 本试卷共十二大题,满分100分,考试时间120分钟。
题号 一 二 三 四 五 六 七 得分评卷人题号 八 九 十 十一 十二 十三 总分 得分评卷人一.填空题(每小题4分,共20分) 1. 03sin()limx y xy x →→= ;2.(,)44sin(),d z x x y zππ=+= ;3.曲面e 23z z xy -+=在点()1,2,0处的切平面方程是 ; 4. 假设:01,01D x x ≤≤≤≤,则e d xy Dx σ⎰⎰= ;5 设L 为2y x =上点(0,0)与(1,1)之间的弧段,则d Lx s ⎰= .二.(本题8分)设函数f 具有二阶连续偏导数,求函数,x u f x y ⎛⎫= ⎪⎝⎭的混合二阶偏导数.三.(本题8分)求二元函数22z x xy y =-+在点()1,1-沿方向{}2,1l =的方向导数及_____________ ________学号学院 专业 座位号( 密 封 线 内 不 答 题 ) ……………………密………………………………………………封………………………………………线……………………………………梯度,并指出z 在该点沿哪个方向减少得最快?沿哪个方向z 的值不变. 四. (本题4分)对于任何不自交的光滑闭曲面∑,设n 是∑上的单位外法向量,Ω是∑所围成的区域,证明:div d n v Ω=⎰⎰⎰∑的面积.五.(本题8分)计算2222d [ln()]d Lx y x y xy x x y y +++++⎰,其中L 是一段正弦曲线s i n (2)y x x ππ=≤≤按x 增大的方向. 六.(本题8分)计算1d S z ∑⎰⎰的值,其中∑是球面2222x y z a ++=在平面(0)z h h a =<<之上的部分.七. (本题8分)计算曲面积分2()d d d d I z x y z z x y ∑=+-⎰⎰,其中∑为221()2z x y =+介于0z =与2z =之间的部分的下侧.八. (本题6分)求微分方程2''(')0yy y +=的通解.九.(本题6分)求微分方程222e x y y y '''-+=的通解.十、(非化工类做)1.(本题4分)已知级数1(1)2nnn n a ∞=-∑收敛,证明级数1n n a ∞=∑绝对收敛.十一. (非化工类做)(本题6分)求幂级数()211(32)(31)nn n x n n ∞=--+∑的收敛域.十二. (非化工类做)(本题7分)将函数2()cos f x x =展开成麦克劳林级数,并确定其成立区间十三. (非化工类做)(本题7分)将函数()1,0f x x x π=+≤≤展开为正弦级数.十. (化工类做) (本题4分)设11y =,2y x =都是二阶线性齐次微分方程的解,求此方程满足初值条件111,'2x x yy ====的特解.十一. (化工类做) (本题6分))求微分方程'e 0x xy y +-=的通解.十二. (化工类做)(本题7分)求函数221z x xy y x y =+++-+的极值.十三. (化工类做)(本题7分)验证()()222cos cos d 2sin sin d x y y x x y x x y y ++-在整个xOy 平面内是某一函数的全微分,并求出它的一个原函数.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(完整word版)华南理工大学高数(上)期末考题参考答案亲爱的读者:本文内容由我和我的同事精心收集整理后编辑发布到文库,发布之前我们对文中内容进行详细的校对,但难免会有错误的地方,如果有错误的地方请您评论区留言,我们予以纠正,如果本文档对您有帮助,请您下载收藏以便随时调用。
下面是本文详细内容。
最后最您生活愉快 ~O(∩_∩)O ~华南理工大学高数(上)期末考题参考答案一、填空题(每小题3分,共15分)1.设x y +=1arctan ,则==0x dy dx 41. 2.=+→xx x 10)sin 1(lim e .3.已知△ABC 的三个顶点的坐标为)1,1,0(),0,1,2(),1,0,1(C B A ,则∠=BAC 26 . 4.曲线)1(ln 21412e x x x y ≤≤-=的弧长等于)1(412+e .5.⎰+∞-=2dx xe x 21. 二、选择题(每小题3分,共15分) 1. 设,)(),()(2x x h x g x f dxd ==则)()]([D x h f dx d =.(A ))(2x g ; (B ))(2x xg ; (C ))(22x g x ; (D ))(22x xg . 2.设,275)(-+=x x x f 则0→x 时,( B ).(A ))(x f 与x 是等价无穷小量; (B ))(x f 与x 是同阶但非等价无穷小量; (C ))(x f 是比x 高阶的无穷小量; (D ))(x f 是比x 低阶的无穷小量. 3.设)(x g 在),(∞+-∞上严格单调减少,)(x f 在0x x =处有极大值,则(A ). (A ))]([x f g 在0x x =处有极小值;(B ))]([x f g 在0x x =处有极大值;(C ))]([x f g 在0x x =处有最小值;(D ))]([x f g 在0x x =处有既无极值也无最值; 4.下列函数中,在定义域上连续的函数是( B )(A )⎪⎩⎪⎨⎧=≠=;0,0,0,sin )(x x x x x f (B )⎪⎩⎪⎨⎧=≠=;0,0,0,1sin )(x x xx x f (C )⎪⎩⎪⎨⎧=≠-+=;0,0,0,11)(x x x x x f (D )⎪⎩⎪⎨⎧=≠-=.0,0,0,1)(x x x e x f x5.若连续曲线)(1x f y =与)(2x f y =在],[b a 上关于x 轴对称,则积分dx x f dx x f baba)()(21⎰⎰+的值为( D )(A )dx x f ba)(21⎰; (B )dx x f ba)(22⎰; (C )dx x f x f ba)]()([221-⎰; (D )0三、解答下列各题(每小题7分,共28分)1. 设参数方程⎪⎩⎪⎨⎧+=+=⎰t du u u y t x 0222,1),1ln(,求22dx y d . 解 因为 2121222tt t t t dt dx dt dy dx dy =++==所以 t t dt tt dt t d t d dx dx dy d dx y d 411221)]1[ln()2()(22222+=+=+== 2. 求曲线xxey -=在拐点处的切线方程.解 因为 x x xe e y ---=',)2(-=+--=''----x e xe e e y x x x x ,令0=''y 得2=x 当)2,(-∞∈x 时,0<''y ,当),2(∞+∈x 时,0>''y ,且22)2(-=e y ,则点)2,2(2-e 是曲线x xe y -=的拐点;又22)]1([)2(-=--=-='e x e y x x ,所以曲线x xe y -=在拐点处的切线方程是: )2(222--=---x e e y3. 计算积分⎰edx x x 12ln .解 ee e e e x e dx x x x dx x x e e e e 221)11(1]1[11]ln [ln 112112-=-=+-+-=-+-=+-=⎰⎰ 4.dx xx ⎰-221.解 解法一dx x dx x dx x x dx x x ⎰⎰⎰⎰---=----=-2222221111111 C x x x x +-+-=)121arcsin 21(arcsin 2 (参看p201例21)C x x x +--=2121arcsin 21解法二 设 t x sin =,则xdt dx cos =,代入得C t t dt t tdt t t dx x x +-=-==-⎰⎰⎰2sin 412122cos 1cos cos sin 1222C x x x C t t t +--=+-=2121arcsin 21cos sin 2121 四、(8分)确定常数b a ,的值,使函数⎩⎨⎧>≤+=0),arcsin(0,)(x ax x b e x f x 在0=x 处连续且可导.解 由于)(x f 在0=x 处连续)00()00()(lim 0+=-=⇒→f f x f x ,且b b e f x x +=+=--→1)(lim )00(00, 0)][arcsin(lim )00(00==++→ax f x所以 01=+b即 1-=b 由于)(x f 在0=x 处可导)0()0(+-'='⇒f f ,且1)1(lim )0()(lim)0(0000=+-+=-='-→-→-xb b e x f x f f x x x a xax x b ax x f x f f x x x ==+-=-='+→+→+→+)arcsin(lim )1()arcsin(lim )0()(lim)0(000000所以 1=a即1=a ,1-=b 时)(x f 在0=x 处连续且可导.五、(8分)已知)(x f 的一个原函数是2x e -,求⎰'dx x f x )(. 解 C e e x dx x f x xf dx x f x x x +-'=-='--⎰⎰22][)()()( C x e C e e x x x x ++-=+--=---)12(222222六、(8分)设)(x f 在]1,0[上可导,且dx xx f f ⎰+=12121)(2)0(.试证:存在)1,0(∈ξ,使 0)(2)()1(2=-'+ξξξξf f .证 由积分中值定理有 2212121)()211(1)(21)(2)0(ηηηη+=-+=+=⎰f f dx x x f f ]1,21[∈η; 设 21)()(x x f x F +=则)(x F 满足:①在],0[η上连续;②在),0(η内可导;③21)()()0()0(ηηη+===f F f F ;由洛尔定理,则至少存在一点),0(ηξ∈,使0)(='ξF ,即)1,0(),0(0)1()(2)()1(222⊂∈=+-'+ηξξξξξξf f , 即证 0)(2)()1(2=-'+ξξξξf f )1,0(∈ξ七、(8分)证明方程1011022=+⎰dt t xt x在)1,0(内有且仅有一个实根. 证 设 =)(x f 1011022-+⎰dt t xt x则)(x f 在]1,0[上连续,在)1,0(内可导,且)0(0)11(1)(23022022>>+++='⎪⎪⎭⎫ ⎝⎛+='⎰⎰x x x dt t t dt t t x x f x x即)(x f 在]1,0[上单调递增;又0101010110)0(0022<-=-+⋅=⎰dt t t f 101)111(10111)1(1021022-+-=-+⋅=⎰⎰dt t dt t t f []0115.04109101arctan 110>≈-=--=πx 由零点定理知,方程在)1,0(内有且仅有一个实根.八、(10分)已知曲线)0(>=a x a y 与曲线x y ln =在点),(00y x 有公共切线,求(1)常数a 的值及切点;(2)两曲线与x 轴围成的平面图形绕x 轴旋转所得旋转体的体积. 解 (1)由条件知)0(00>x x 满足⎪⎩⎪⎨⎧==0000212ln x x a x x a , 解之得ea 1=. (2)由(1)知20e x =,则两曲线与x 轴围成的平面图形绕x 轴旋转所得旋转体的体积dx x dx e x V e e ⎰⎰-=22122)2ln ()(ππ由于 2][2120220222e x e dx e x e e ==⎰,[]⎰⎰-=22211212ln 2)(ln )(ln e e e xdx x x dx x)1(2]ln [242122-=--=e x x x e e,所以2)]1(2412[22ππ=-⋅-=e e V结尾处,小编送给大家一段话。
米南德曾说过,“学会学习的人,是非常幸福的人”。
在每个精彩的人生中,学习都是永恒的主题。
作为一名专业文员教职,我更加懂得不断学习的重要性,“人生在勤,不索何获”,只有不断学习才能成就更好的自己。
各行各业从业人员只有不断的学习,掌握最新的相关知识,才能跟上企业发展的步伐,才能开拓创新适应市场的需求。
本文档也是由我工作室专业人员编辑,文档中可能会有错误,如有错误请您纠正,不胜感激!At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand theimportance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。