最新浙教版初中数学八年级上册《样本与数据分析初步》专项测试 (含答案) (745)
最新浙教版初中数学八年级上册《样本与数据分析初步》专项测试 (含答案) (1008)
29.(7 分)机关作风整顿领导小组为了了解某单位早上 8 点准时上班情况,随机调取了该单 位某天早上 10 人的上班时间,得到如下数据: 7∶50 8∶00 8∶00 8∶02 8∶04 7∶56 8∶00 8∶02 8∶03 8∶03 请回答下列问题 (1)该抽样调查的样本容量是_______. (2)这 10 人的平均上班时间是________. (3)这组数据的中位数是_________.
∴在每班参加复赛的选手中分别选出 2 人参加决赛,初三(2)班的实力更强一些. 29.(1)10;(2)8:00;(3)8:01;(4)10. 30.略
浙教版初中数学试卷
2019-2020 年八年级数学上册《样本与数据分析初
步》测试卷
学校:__________ 姓名:__________ 班级:__________ 考号:__________
题号 一
二
三 总分
得分
评卷人 得分
一、选择题
1.(2 分)某校八年级有六个班.一次测试后,分别求得各个班级学生成绩的平均数,它们
C.100 名学生的数学成绩是一个样本
D.800 名学生是样本容量
9.(2 分)下列调查方式合适的是( )
A.为了了解炮弹的杀伤力,采用普查的方式
B.为了了解全国中学生的睡眠状况,采用普查的方式
C 为了了解人们保护水资源的意识,采用抽样调查方式
D.对载人航天器“神舟六号”零部件的检查,采用抽样调查的方式
车辆数,结果如下:167、183、209、195、178、204、215、191、208、197,试用计算器
求出平均每 天车辆数为(精确到 1 辆) 辆.
评卷人 得分
三、解答题
25.(7 分)某校要从小王和小李两名同学中挑选一人参加全国数学竞赛,在最近的五次选拔
最新浙教版初中数学八年级上册《样本与数据分析初步》专项测试 (含答案) (1069)
的测试成绩,那么此时谁将被录用?
【参考答案】***试卷处理标记,请不要删除
评卷人 得分
一、选择题
1.A 2.D 3.D 4.C 5.C 6.B 7.B 8.A 9.C 10.C 11.C 12.B 13.C 14.D 15.D
评卷人
得分
二、填空题
16. 25 千米/小时 3
17. 2
18.3.5 19.20 20.9.5
l 户,年消费 1.5 万元的有 6 户,年消费 7 千元的有 1 户.可估计该地区每户年消费金额
的一般水平为( )
A.1.5 万元 B.5 万元 C.10 万元 D.3.47 万元 2.(2 分)某校要了解八年级女生的体重以掌握她们的身体发育情况,从八年级 500 名女生 中抽出 50 名进行检测.就这个问题,下面说法中.正确的是( ).
30.(7 分)某广告公司欲招聘广告策划人员一名,对 A、B、C 三名候选人进行了三项素质 测试,他们的各项测试如下表所示:
测试项目
测试成绩
(1)根据三
A
B
C
创新
72
85
67
平均成绩
综合知识
50
74
70
人选,那 语言
88
45
67
录用?
次测试的 确定录用 么谁将被
(2)根据实际需要,公司将创新、综合知识、语言三项测试得分按 4:3:1 的比例确定各人
−
x )2
+
(x2
−
x )2
+
+ (xn − x)2 ] 求方差比较麻烦,善于动脑的小语发现求方差的简
化公式 S 2
=
1 n
[(
x12
最新浙教版初中数学八年级上册《样本与数据分析初步》专项测试 (含答案) (947)
浙教版初中数学试卷2019-2020年八年级数学上册《样本与数据分析初步》测试卷学校:__________一、选择题1.(2分)为了参加市中学生篮球运动会.校篮球队准备购买10双运动鞋,各种尺码的统计如表所示.则这10双运动鞋尺码的众数和中位数分别为()A. 25.5厘米,26厘米 B.26厘米,25.5厘米C.26厘米.26厘米D.25.5厘米.25.5厘米2.(2分)某校要了解八年级女生的体重以掌握她们的身体发育情况,从八年级500名女生中抽出50名进行检测.就这个问题,下面说法中.正确的是().A.500名女生是总体B.500名女生是个体C.500名女生是总体的一个样本D.50是样本容量3.(2分)为了了解八年级400名学生的视力情况,从中抽取40名学生进行测试,这40名学生的视力是()A.个体B.总体C.总体的一个样本D.样本容量4.(2分)如图是小敏同学6次数学测验的成绩统计表,则该同学6次成绩的中位数是()A. 60分B. 70分C.75分D. 80分5.(2分)869,74,78,x,81,这组成绩的平均数是A.76 D.73 6.(2分)测验1测验2测验3测验4测验5测验6A.了解2008年5月18日晚中央也视台“爱的奉献”抗震救灾文艺晚会的收视率,采用抽查的方式B.了解某渔场中青鱼的平均重量,采用抽查的方式C.了解某型号联想电脑的使用寿命,采用普查的方式D.了解一批汽车的刹车性能,采用普查的方式7.(2分)下列调查方式合适的是()A.为了了解炮弹的杀伤力,采用普查的方式B.为了了解全国中学生的睡眠状况,采用普查的方式C为了了解人们保护水资源的意识,采用抽样调查方式D.对载人航天器“神舟六号”零部件的检查,采用抽样调查的方式8.(2分)有七个数由小到大依次排列,其平均数是38,如果这组数中前四个数的平均数是33,后四个数的平均数是42,那么这七个数的中位数是()A. 16 B.20 C.34 D.389.(2分)小勇投镖训练的结果如图所示,他利用所学的统计知识对自己10次投镖的成绩进行了评价,①平均数是(10+8×4+7×2+6×2+5)÷10=7.3(环),②众数是8环,打8环的次数占40%,③中位数是8环,比平均数高0.7环.上述说法中,正确的个数有()A. 0个B.l个C.2个D.3个10.(2分)在一组50个数据的数组中,平均数是42,将其中两个数l30和50舍去,则余下的数的平均数为()A.38 B.39 C. 40 D.41评卷人得分二、填空题11.(2分)洋洋有5位好朋友,他们的年龄(单位:岁)分别为15,l5,16,l7,17,其方差为0.8,则三年后,这五位好朋友年龄的方差为 .12.(2分)有6个数.它们的平均数是l2,若再添一个数5,则这7个数的平均数是 . 13.(2分)已知一组数据:-2,-2,3,-2,x,-l,若这组数据的平均数是0.5,则这组数据中位数是.14.(2分)10位学生分别购买如下尺码的鞋子:2O、20、2l、22、22、22、22、23、23、24(单位:cm).这组数据的平均数、中位数、众数三个指标中鞋店老板最不喜欢的是,最喜欢的是.15.(2分)如果已知甲、乙两种植物株高的方差分别为222.3S=甲cm2,215.67S=乙cm2,那么可以估计种植物比种植物长得整齐.16.(2分)从甲、乙两块棉花新品种对比试验地中,各随机抽取8株棉苗,量得高度的数据如下(单位:cm):甲:l0.2,9.5,10,10.5,10.3,9.8,9.6,10.1;乙:l0.3,9.9,10.1,9.8,10,10.4,9.7,9.8.经统计计算得2S甲= ,2S乙= .这说明甲块试验地的棉苗比乙块试验地的棉苗长得.解答题17.(2分)为了了解某小区居民的用水情况,随机抽查了l0户家庭的用水量,结果如下表所示则关于这l0户家庭的用水量的众数是.18.(2分)在一个班的40名学生中,14岁的有15人,15岁的有14人,l6岁的有7人,l7岁的有4人,则这个班的学生年龄的中位数是岁,众数是岁.19.(2分)某批零件的质量如下(单位:千克):201, 207,199,204,201,191,206,205,184,214,192,206,199,217,209,200,213,217,186,214,194,208,219,226,215.求这批零件的平均质量是 (结果精确到个位).20.(2分)在一次“保护地球、珍惜每一滴水”的环保活动中,王亮同学在所住的小区5月份随机抽查了本小区6天的用水量(单位:吨),结果分别是30,34,32,37,28,31,那么,请你帮他估计该小区6月份(30天)的总用水量约是吨.21.(2分)①为了解班级同学完成作业所需的时间,老师对全班每位学生完成作业所需的时间作了调查;②为了解班级同学的视力情况,老师对全班每位学生的视力作了检查;③为了解班级同学的睡眠情况,老师对第一组全体学生的睡眠情况作了调查;④为了解班级同学的营养情况,老师对学号为1~10号的全体学生作了调查.以上调查中,是普查,是抽样调查(填序号).22.(2分)八年级学生小方的数学平时成绩为84分,期中成绩为80分,学校按平时、期中、期末之比为3:3:4的比例计算学期的总评成绩,他计划总评成绩要达到85分,则期末考试他应得分.23.(2分)若数据3,4,5,6,x的平均数为4,则x= .24.(2分)某人到菜市场买鸡蛋,她对所要购买的鸡蛋逐一进行检查,最后她买到了自己满意的鸡蛋.在这个事件中用的是哪种数学方法?25.(2分)请指出下列问题哪些是普查,哪些是抽样调查.(1)为了解你所在学校的八年级所有学生完成作业的情况,对你全班所有学生进行调查;(2)为了解你所在班级学生的家庭收入情况,对你全班所有女生进行调查;(3)为了解你所在班级学生的体重情况,对你全班所有学生进行调查.三、解答题26.(7分) 某校规定:学生的平时作业、期中练习、期未考试三项成绩分别按 40%、20%、40%的比例计入学期总评成绩,小明的平时作业、期中练习、期末考试的数学成绩依次为90分、92分、85分,则小明这学期的总评成绩是多少分?这样计算总评成绩的方法有什么好处(结果保留整数)?27.(7分)第一组数据8,8,8,第二组数据8,9,9,10,第三组数据l5,20,25.(1)每一组数据的平均数分别是多少?(2)如果将这三组数组成一组新数,新数的平均数是多少?中位数与众数是多少?28.(7分)机关作风整顿领导小组为了了解某单位早上8点准时上班情况,随机调取了该单位某天早上10人的上班时间,得到如下数据:7∶508∶008∶008∶028∶047∶568∶008∶028∶038∶03请回答下列问题(1)该抽样调查的样本容量是_______.(2)这10人的平均上班时间是________.(3)这组数据的中位数是_________.(4)如果该单位共有50人,请你估计有________人上班迟到.29.(7分)一次科技知识竞赛,两组学生成绩统计如下:分数(分)5060708090100人数甲组251013146(人)乙组441621212已算得两个组学生的平均分都是80分,请你根据你所学过的统计知识,进一步判断这两个组这次竞赛中成绩谁优谁次,并说明理由.30.(7分)“3·15”消费者权益日的活动中,对甲、乙两家商场售后服务的满意度进行了抽查.图2反映了被抽查用户对两家商场售后服务的满意程度(以下称:用户满意度),分为很不满意、不满意、较满意、很满意四个等级,并依次记为1分、2分、3分、4分.(1)请问:甲商场的用户满意度分数的众数为,乙商场的用户满意度分数的众数为 .(2)分别求出甲、乙两商场的用户满意度分数的平均值(计算结果精确到0.Ol):(3)请你根据所学的统计知识,判断哪家商场的用户满意度较高。
最新浙教版初中数学八年级上册《样本与数据分析初步》专项测试 (含答案) (936)
8.(2 分)某校把学生的纸笔测试、实践能力、成长记录三项成绩分别按 50%、20%、30%
的比例计入学期总评成绩,90 分以上为优秀. 纸笔测试 实践能力 成长记录
甲 90
83
95
乙 88
90
95
丙 90
88
90
甲、乙、丙三人的成绩如上表(单位:分),学期总评成绩优秀的是( )
A.甲
B.乙和丙
C.甲和乙
水中分别随机抽取了
30
瓶,测算得它们实际质量的方差是
S
2 甲
=
4.8
g2,
S
2 乙
= 3.6
g2,那么
(填“甲”或“乙”)机器灌装的矿泉水质量比较稳定.
21.(2
分)如果已知甲、乙两种植物株高的方差分别为
S
2 甲
=
22.3
cm2,
S
2 乙
= 15.67
cm2,那么
可以估计 种植物比 种植物长得整齐. 22.(2 分)从甲、乙两块棉花新品种对比试验地中,各随机抽取 8 株棉苗,量得高度的数据 如下(单位:cm):
如下表所示: 所测得的旗杆 高度(单位:m)
12.O 12.O 11.90 11.95
05
甲组测得的次数 1 O 2 2
乙组测得的次数 0 2 1 2
现已算得乙组所测得数据的平均数为
x乙
= 12.00
,,方差
S
2 乙
=
0.002 .
(1)求甲组所测得数据的平均数; (2)问哪一组学生所测得的旗杆高度比较一致?
C.500 名学生是抽取的一个样本
D.每个学生的身高是个体
6.(2 分)一组数据 −2 , −1, 0 ,1, 2 的方差是( )
最新浙教版初中数学八年级上册《样本与数据分析初步》专项测试 (含答案) (660)
甲:2 4 6 8 10 乙:l 3 5 7 9
用
S
2 甲
和
S
2 乙
分别表示这两个样本的方差,那么
(
)
A.
S
2 甲
>
S
2 乙
B.
S
2 甲
<
S
2 乙
C.
S
2 甲
=
S
2 乙
D.
S
2 甲
与
S
2 乙
的关系不能确定
8.(2 分)某市 2008 年 4 月 1 日至 7 日每天的降水概率如下表:
日期(日) 1
2
(1)班 50 名学生的身高;③了解一本 300 页的书稿的错别字个数.其中不适合采用普查
而适合采用抽样调查方式的有( )
A.3 个
B.2 个
C.1 个
D.0 个
评卷人 得分
二、填空题
15.(2 分)已知三个不相的正整数的平均数、中位数都是 3,则这三个数分别为 .
16.(2 分)在某校举行的艺术节的文艺演出比赛中,九位评委给其中一个表演节目现场打出
=
3.4 ,由此可以估计(
)
A.甲比乙长势整齐
B.乙比甲长势整齐
C.甲、乙整齐程度相同 D.甲、乙两种整齐程度不能比
10.(2 分)下列统计量中不能反映一组数据集中程度的是( )
A.平均数
B.中位数
C.众数
D.方差
11.(2 分)在一组 50 个数据的数组中,平均数是 42,将其中两个数 l30 和 50 舍去,则余下
的数的平均数为( )
A.38
B.39
C. 40
D.41
12.(2 分)某居民楼的一个单元一共有 l0 户人家,每两个月对住户的用水进行统计,8 月底
最新浙教版初中数学八年级上册《样本与数据分析初步》专项测试 (含答案) (307)
浙教版初中数学试卷2019-2020年八年级数学上册《样本与数据分析初步》测试卷学校:__________一、选择题1.(2分)下列调查方式中,不合适的是()A.了解2008年5月18日晚中央也视台“爱的奉献”抗震救灾文艺晚会的收视率,采用抽查的方式B.了解某渔场中青鱼的平均重量,采用抽查的方式C.了解某型号联想电脑的使用寿命,采用普查的方式D.了解一批汽车的刹车性能,采用普查的方式2.(2分)有甲、乙两种小麦,测得每种小麦各10株的高度后,计算出样本方差分别为211 S=甲,2 3.4S=乙,由此可以估计()A.甲比乙长势整齐B.乙比甲长势整齐C.甲、乙整齐程度相同D.甲、乙两种整齐程度不能比3.(2分)某射击运动员连续射靶10次,其中2次命中10.2环,2次命中10.1环,6次命中10环,则下列说法中,正确的是()A.命中环数的平均数是l0.1环B.命中环数的中位数是l0.1环C.命中环数的众数是l0.1环D.命中环数的中位数和众数都是l0环4.(2分)甲、乙两个学生在一年里学科平均分相等,但他们的方差不相等,正确评价他们的学习情况是()A.因为他们的平均分相等,所以学习水平一样B.成绩虽然一样,方差较大的,说明潜力大,学习态度踏实C.表面上看这两个学生平均成绩一样,但方差小的学习成绩稳定D .平均分相等,方差不等,说明学习水平不一样,方差较小的同学,学习成绩不稳定,忽高忽低5.(2分)金华火腿闻名遐迩.某火腿公司有甲、乙、丙三台切割包装机,同时分装质量为500克的火腿心片.现从它们分装的火腿心片中各随机抽取10盒,经称量并计算得到质量的方差如表所示,你认为包装质量最稳定的切割包装机是( ) A .甲 B .乙C .丙D .不能确定6.(2分)学校快餐店有2元,3元,4元三种价格的饭菜供师生选择(每人限购一份).右图是某月的销售情况统计图,则该校师生购买饭菜费用的平均数和众数是( )A .2.95元,3元B .3元,3元C .3元,4元D .2.95元,4元7.(2分)数据0,-1,6,1,x 的众数为-l ,则这组数据的方差是( ) A.2 B .345 C 2.2658.(2分)为了了解八年级400名学生的视力情况,从中抽取40名学生进行测试,这40名学生的 视力是( ) A .个体B .总体C .总体的一个样本D .样本容量9.(2分)如果1x 与2x 的平均数是6,那么11x +与23x +的平均数是( ) A .4B .5C .6D .810.(2分)样本3、6、4、4、7、6的方差是( ) A .12B .3C .2D 211.(2分)某烟花爆竹厂从20万件同类产品中随机抽取了100件进行质检.发现其中有5件不合格.那么你估计该厂这20万件产品中合格品约为( ) A . 1万件B .9万件C .15万件D . 20万件12.(2分)已知一组数据5,7,3,9,则它们的方差是( ) A . 3B . 4C . 5D . 613.(2分)要了解一批电视机的使用寿命,从中任意抽取40台电视机进行试验,在这个问题中,40是( )A.个体B.总体 C .样本容量 D .总体的一个样本14.(2分)数学老师对小明在参加中考前的5次数学模拟考试进行统计分析,判断小明的数包装机甲乙 丙 方差(克2) 1.702.297.22学成绩是否稳定,于是老师需要知道小明这5次数学成绩的()A.平均数或中位数B.方差或标准差C.众数或平均数D.众数或中位数15.(2分)要了解一批种子的发芽天数,抽取了l00粒种子,考查其发芽天数,其中的100是()A.总体B.个体C.总体的一个样本D.样本容量16.(2分)为了了解全世界每天婴儿出生的情况,应选择的调查方式是()A.普查B.抽样调查C.普查,抽样调查都可以D.普查,抽样调查都不可以二、填空题17.(2分)李师傅随机抽查了某单位2009年4月份里6天的日用水量(单位:吨),结果如下:7,8,8,7,6,6.根据这些数据.估计4月份该单位的用水总量为 .18.(2分)汽车以每小时60 km的速度行驶5h,中途停驶2h,后又以每小时80 km行驶3 h,则汽车平均每小时行驶 km.19.(2分)某机构要调查某厂家生产的手机质量,从中抽取了20只手机进行试验检查,其中样本容量是.20.(2分)已知一组数据为5,6,8,6,8,8,8,则这组数据的众数是_________,平均数是_________. 21.(2分)随机抽取某城市一年(以365天计)中的30天的日平均气温状况,统计如下:请根据上述数据填空:(1)该组数据的中位数是℃;(2)该城市一年中日平均气温为26℃的约有天;(3)若日平均气温在17℃~23℃为市民“满意温度”,则该城市一年中达到市民“满意温度”的约有天.22.(2分)从某鱼塘里捕上l50条鱼做上标记,然后放回鱼塘里去,经过一段时间,待带标记的鱼完全混合于鱼群中后,再捕第二次样品鱼200条,若其中带标记的鱼有10条,可估计鱼塘里有条鱼.23.(2分)在某次数学测验中,为了解某班学生的数学成绩情况,从该班测试试卷中随机抽取了10份试卷,其成绩如下:85,81,89,81,72,82,77,81,79,83在这个问题中,总体是,样本是,样本平均数是分,估计该班的平均成绩是分.评卷人得分三、解答题24.(7分) 某校规定:学生的平时作业、期中练习、期未考试三项成绩分别按 40%、20%、40%的比例计入学期总评成绩,小明的平时作业、期中练习、期末考试的数学成绩依次为90分、92分、85分,则小明这学期的总评成绩是多少分?这样计算总评成绩的方法有什么好处(结果保留整数)?25.(7分)某班组织一次数学测试,全班学生分为两组,这两组成绩(单位:分)的分布情况如下图所示.(1)全班学生数学成绩的众数是分.全班学生数学成绩为众数的有人,全班学生数学成绩的中位数是分;(2)分别计算这两个小组超过全班数学成绩中位数的人数占全班人数的百分比.26.(7分)汶川地震牵动着全国亿万人民的心,某校为地震灾区开展了“献出我们的爱” 赈灾捐款活动.八年级(1)班50名同学积极参加了这次赈灾捐款活动,下表是小明对全班捐款情况的统计表:捐款(元)1015305060人数3611136因不慎两处被墨水污染,已无法看清,但已知全班平均每人捐款38元.(1)根据以上信息请帮助小明计算出被污染处的数据,并写出解答过程.(2)该班捐款金额的众数、中位数分别是多少?27.(7分)某市有人口l00万,在环境保护日,该市第一中学八年级学生调查了10户居民一天产生的生活垃圾,情况如下表:(1)在这一天中,这10户居民平均每户产生多少kg垃圾?(结果精确到0.1 kg)(2)在这一天中,这10户居民平均每人产生多少kg垃圾?(结果精确到0.1 kg)28.(7分)有两个代表队各四人进行答题竞赛,现把数据统计如下:第一组第二组现要发两个奖项,一个是个人金牌,另一个是团体金牌,请问该把两块金牌怎样发放?说说你的理由.29.(7分)甲、乙两战士各打靶5次,命中环数如下:甲:5,9,8,10,8;乙:6,10,5,10,9.求:(1)两战士平均每枪分别命多少环?(2)你认为哪一个战士发挥比较稳定.30.(7分)甲、乙两人参加某体育训练项目,近期的五次测试成绩得分情况如图.(1)分别求出两人得分的平均数与方差;(2)根据图和上面算得的结果,对两人的训练成绩作出评价.【参考答案】***试卷处理标记,请不要删除评卷人得分一、选择题1.C2.B3.D4.C5.A6.A7.B8.C9.D10.C11.B12.C13.C14.B15.D16.B二、填空题17.210 18.54 19.20 20.8,721.(1)22;(2)73;(3)146 22.300023.该班学生的数学成绩,10名学生的数学成绩,81,81三、解答题24.小明这学期的总评成绩是90×40%+92×20%+85×40%=88(分).这样计算学生的总评成绩有利于学校全面衡量学生的学习状况,促使学生注重平时的学习.25.(1)95,20,92.5;(2)第一组超过全班数学成绩中位数的人数占全班人数的百分比为111100%24%50+⨯=,第二组超过全班数学成绩中位数的人数占全班人数的百分比为94100%26%50+⨯=. 26.解:(1) 被污染处的人数为11人.设被污染处的捐款数为x 元,则 11x +1460=50×38 ,解得 x =40 答:(1)被污染处的人数为11人,被污染处的捐款数为40元. (2)捐款金额的中位数是40元,捐款金额的众数是50元. 27.(1)4.2 kg ;(2)1:4 kg28.个人金牌给2号,团体金牌给第一组 29.(1)8x x ==乙甲环;(2)甲发挥稳定30.(1)13.5x =甲,21S =甲;13.5x =乙,20S =乙.2;(2)乙较为稳定。
最新浙教版初中数学八年级上册《样本与数据分析初步》专项测试 (含答案) (300)
浙教版初中数学试卷2019-2020年八年级数学上册《样本与数据分析初步》测试卷学校:__________一、选择题1.(2分)小明记录某社区七次参加“防甲型H1N1流感活动”的人数分别如下:33,32,32,31,32,28,26.这组数的众数是( ) A. 28 B .31 C .32 D .332.(2分)要了解一批电视机的使用寿命,从中任意抽取40台电视机进行试验,在这个问题中,40是( )A.个体B.总体 C .样本容量 D .总体的一个样本3.(2分)有两组数据,第一组有4个数据,它们的平均数为x ,第二组有6个数据,他们的平均数为y ,则这两组数据的平均数为( ) A .2x y+ B .46x y + C .235x y+ D .10x y+ 4.(2分)某青年排球队12名队员的年龄情况如下表:下列结论正确的是( ) A .众数是20岁,中位数是19岁 B .众数是19岁,中位数是20岁 C .众数是20岁,中位数是19.5岁D .众数是19岁,中位数是19岁5.(2分)为了估计湖中有多少条鱼,先从湖中捕捉50条鱼做记号,然后放回湖里,经过一段时间,等带记号的鱼完全混于鱼群中之后,再捕捞第二次,鱼共200条,有10条做了记号,则估计湖里有( )条鱼A .400条B .500条C .800条D .1000条6.(2分)若干名工人某天生产同一种零件,生产的零件数整理成条形图(如图所示).设他们生产零件的平均数为a,中位数为b,众数为c,则有()A.b>a>c B.c>a>b C.a>b>c D.b>c>a7.(2分)一组数据2-,1-,0,1,2的方差是()A.1B.2C.3D.48.(2分)某班50名学生右眼视力的检查结果如下表所示:视力4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.0人数102434679104那么该班学生右眼视力的众数和中位数分别是()A.4.9和4.8 B. 4.9和4.7 C.4.9和4.6 D.4.8和4.7 9.(2分)甲、乙两个学生在一年里学科平均分相等,但他们的方差不相等,正确评价他们的学习情况是()A.因为他们的平均分相等,所以学习水平一样B.成绩虽然一样,方差较大的,说明潜力大,学习态度踏实C.表面上看这两个学生平均成绩一样,但方差小的学习成绩稳定D.平均分相等,方差不等,说明学习水平不一样,方差较小的同学,学习成绩不稳定,忽高忽低10.(2分)10名工人某天生产同一种零件,生产的件数分别是:15,17,14,10,15,17,17,16,14,12.若其平均数为a,中位数为 b,众数为c,则有()A.a>b>c B.b>c>a C. c>a>b D.c>b>a11.(2分)在一组50个数据的数组中,平均数是42,将其中两个数l30和50舍去,则余下的数的平均数为()A.38 B.39 C. 40 D.41评卷人得分二、填空题12.(2分)已知一组数据:11,15.13,12.15,15.16.15.令这组数据的众数为a,中位数为b,则a b(填“>”、“<”或“=”).13.(2分)已知三个不相的正整数的平均数、中位数都是3,则这三个数分别为 . 14.(2分)在某校举行的艺术节的文艺演出比赛中,九位评委给其中一个表演节目现场打出的成绩(单位:分)如下:9.3,8.9,9.3,9.1,8.9,8.8,9.3.9.5,9.3.则这组数据的众数是 .15.(2分)2007年10月1日是中华人民共和国成立58周年纪念日,要在某校选择256名身高基本相同的女同学组成表演方体,在这个问题中我们最值的关注的是该校所有女生身高的(填“平均数”或“中位数”或“众数”).16.(2分)甲、乙两台机器分别灌装每瓶标准质量为500g的矿泉水,从甲、乙灌装的矿泉水中分别随机抽取了30瓶,测算得它们实际质量的方差是2 4.8S=甲g2,2 3.6S=乙g2,那么(填“甲”或“乙”)机器灌装的矿泉水质量比较稳定.17.(2分)某市体委从甲、乙两名射击运动员中选择一人参加全运会,每人各打靶5次,打中环数如下:甲:7,8,9,8,8;乙:5,10,6,9,10.那么仅考虑发挥稳定性这一因素,应选运动员参加全运会.18.(2分)学校篮球队五名队员的年龄分别为l7,15,17,l6,15,其方差为0.8,则四年后这五名队员年龄的方差为.19.(2分)一组数据1,2,3,x的平均数是4,则这组数据的中位数是.20.(2分)甲种糖果每千克l0元,乙种糖果每千克8元,现把甲、乙两种糖果混合制成什锦糖,若要使什锦糖的单价为每千克9元,则100元的甲种糖果应与元的乙种糖果混合.21.(2分)某批零件的质量如下(单位:千克):201, 207,199,204,201,191,206,205,184,214,192,206,199,217,209,200,213,217,186,214,194,208,219,226,215.求这批零件的平均质量是 (结果精确到个位).22.(2分)某市为一个景区改造的多种方案公开向市民征求意见,在考虑选择哪一种方案时,有关部门统计了各方案投案结果的平均数,中位数和众数,主要参考的应是.23.(2分)(1)要了解我国八年级学生的视力情况,你认为合适的调查方式是.(2)为了了解一个有1名员工的集团公司所有人的平均工资,到5个分厂各抽查10名干部的工资进行统计,这种抽样办法是否合适?.理由是.三、解答题24.(7分)某中学开展“八荣八耻”演讲比赛活动,九(1)、九(2)班根据初赛成绩各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩(满分为100分)如下图所示.(1)根据左图填写下表平均分(分)中位数(分)众数(分)九(1)班8585九(2班8580(2)结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩较好?(3)如果在每班参加复赛的选手中分别选出2人参加决赛,你认为哪个班的实力更强一些,说明理由.25.(7分)为了比较甲、乙两种水稻秧苗是否出苗整齐,每种秧苗各取5株并量出每株的长度如下表所示(单位:厘米) .编号12345甲1213151510乙1314161210通过计算平均数和方差,评价哪个品种出苗整齐.26.(7分)在种植西红柿的实验田中,随机抽取10株,有关统计数据如下表:株序号12345678910成熟西红柿的个数2528625794(1)这组数据的平均数为_________个,众数为_________个,中位数为_________个;(2)若实验田中西红柿的总株数为200,则可以估计成熟西红柿的个数为_________.27.(7分)某学生在一学年的6次测试中的数学、语文两科的成绩分别如下(单位:分):数学:80,75,90,64,88,95;语文:84,80,88,76,79,85.试估计该学生是数学成绩较稳定还是语文成绩较稳定.28.(7分)某公司销售部有营销人员l5人,销售部为了制定某种商品的月销售定额,统计这15人某月的销售量如下:(1)求这l5位营销人员该月销售量的平均数,众数,中位数;(2)假设销售部负责人把每位营销人员的月销售额定为320件,你认为是否合理,为什么?如果不合理,请你制定一个合理的销售定额,并说明理由.29.(7分)某食品店购进2000箱苹果,从中任取10箱,称得重量分别为(单位:千克): 16 16.5 14.5 13.5 1516.5 15.5 14 14 14.5若每千克苹果售价为2.8元,则利用样本平均数估计这批苹果的销售额为多少元?30.(7分)请指出下面问题哪些适合普查,哪些适合抽样调查:(1)某地区发现了一种传染病,为防止传染病的传播扩散,对该地区的调查;(2)某种商品价值5000元,某人购买该商品时递上一叠百元大钞,店主为了防止这叠钞票中存在假币,对这叠钱的检查;(3)某厂家为了解某种产品的市场销售情况,对销售情况的调查.【参考答案】***试卷处理标记,请不要删除一、选择题1.C2.C3.C4.B5.D6.A7.B8.B9.C10.D11.C二、填空题12.=13.1,3,5或2,3,414.9.3分15.众数16.乙17.甲18.0.819.2.520.8021.20522.众数23.(1)抽样调查;(2)不合适,样本不具有代表性三、解答题24.(1)85;100.(2)解:∵两班的平均数相同,初三(1)班的中位数高,初三(1)班的复赛成绩好些. (3)解:∵初三(1)班、初三(2)班前两名选手的平均分分别为92.5,100分, ∴在每班参加复赛的选手中分别选出2人参加决赛,初三(2)班的实力更强一些. 25.13==乙甲x x ,2 3.6S =甲,24S =乙,∴甲品种出苗整齐. 26.(1)5,2,5. (2)1000. 27.语文成绩稳定28.(1)平均数:320件,众数:210件,中位数:210件;(2)不合理,理同略 29.84 000元30.(1)(2)普查,(3)抽样调查。
最新浙教版初中数学八年级上册《样本与数据分析初步》专项测试 (含答案) (632)
500 克的火腿心片.现从它们分装的火腿心片中各随机抽取 10 盒,经称量并计算得到质量的
方差如表所示,你认为包装质量最稳定的切割包装机是( )
包装机
甲
乙
丙
方差(克 2) 1.70
2.29
7.22
A.甲 B.乙
C.丙
9.(2 分)要了解一批种子的发芽天数,
抽取了 l00 粒种子,考查其发芽天数,
其中的 100 是( )
这组数据只有一个众数且众数等于中位数,那么这组数据的平均数是 .
23.(2 分)已知, n 个数据的和为 l28,它的平均数为 l6,则 n = .
24.(2 分)一组数据 1,2,3, x 的平均数是 4,则这组数据的中位数是 .
25.(2 分)(1)要了解我国八年级学生的视力情况,你认为合适的调查方式是 .
(2)为了了解一个有 1 名员工的集团公司所有人的平均工资,到 5 个分厂各抽查 10 名干部
的工资进行统计,这种抽样办法是否合适?
.理由是
.பைடு நூலகம்
26.(2 分)一射击运动员连续射靶 10 次,其中 2 次命中 10 环,3 次命中 9 环,5 次命中 8
环,则他 平均每次命中 环.
评卷人 得分
三、解答题
或“乙班”). 18.(2 分)如右统计图显示的是绵阳某商场日用品柜台 10 名售货员 4 月份完成销售额(• 单 位:千元)的情况,根据统计图,我们可以计算出该柜台的人均销售额为________千元.
19.(2 分)林城是一个美丽的城市,为增强市民的环保意识,配合 6 月 5 日的“世界环境
日”活动,某校初三(1)班 50 名学生调查了各自家庭一天丢弃塑料袋的情况,统计结果
最新浙教版初中数学八年级上册《样本与数据分析初步》专项测试 (含答案) (866)
时,轮到小明统计,小明对每户人家的水表进行了“抄表”,从而得到每个住户的用水量,
结果有 3 户家庭用水 39 吨,4 户家庭用水 42 吨,3 户家庭用水 45 吨,则此单位住户的月
平均用水量是( )
A.21 吨
B.39 吨
C.42 吨
D.45 吨
14.(2 分)为了考查某城市老年人参加体育锻炼的情况,调查了其中 100 名老年人每天参加
污染指数( w ) 40 60 80 100 120 140
天数(天)
3 5 10 6 5 1
其中 w <50 时空气质量为优, 50≤ w ≤100 时空气质量为良,100< w ≤150 时空气质量为
轻度污染,若 1 年按 365 天计算,请你估计该城市在一年中空气质量达到良以上(含良)
的天数为 天.
体育锻炼的时间,其中 100 是这个问题的( )
A.一个样本 评卷人 得分
B.样本容量 二、填空题
C.总体
D.个体
15.(2 分)为美化校园,某班三个劳动小组在劳动课上栽花的株数分别为:10、x,8. 已知 这组数据只有一个众数且众数等于中位数,那么这组数据的平均数是 . 16.(2 分)甲、乙两个城市,2008 年 4 月中旬每天的最高气温统计图如图所示.这 9 天里, 气温比较稳定的城市是 .
甲生产零件的尺寸:9.98,10.00,10.02,10.00. 乙生产零件的尺寸:10.00,9.97,10.03,10.00. (1)分别计算甲、乙两个样本的平均数; (2)分别求出它们的方差,并说明在使零件的尺寸符合规定方面谁做得较好?
【参考答案】***试卷处理标记,请不要删除
评卷人 得分
一、选择题
人数 1 0 2 4 3 4 6 7 9 10 4
最新浙教版初中数学八年级上册《样本与数据分析初步》专项测试 (含答案) (827)
,
S
2 乙
=
0.00045
mm2,甲做
得较好 30.(1)不及格、及格;(2)及格有 160 人,优秀 80 人
年龄(岁) 18
19
20
21
22
人数(个) 1
4
3
2
2
下列结论正确的是( )
A.众数是 20 岁,中位数是 19 岁
B.众数是 19 岁,中位数是 20 岁
C.众数是 20 岁,中位数是 19.5 岁
D.众数是 19 岁,中位数是 19 岁
5.(2 分)如果 x1 与 x2 的平均数是 6,那么 x1 +1与 x2 + 3 的平均数是( )
30.(7 分)某校八年级 320 名学生在电脑培训前后各参加了一次水平相同的考试,考试成绩 都以同一标准划分成“不及格”、“及格”和“优秀”三个等级.为了了解电脑培训的效 果,用抽签方式得到其中 32 名学生培训前后两次考试成绩的等级,并绘制成如图的统计 图,试结合图形信息回答下列问题:
人数
培训前
A.4
B.5
C.6
D.8
6.(2 分)8 名学生在一次数学测试中的成绩为 80,82,79,69,74,78, x ,81,这组成
绩的平均数是 77,则 x 的值为( )
A.76
B.75
C.74
D.73
7.(2 分)能够刻画一组数据离散程度的统计量是( )
A.平均数
B.众数
C.中位数
D.方差
8.(2 分)下列调查中,适合用全面调查方式的是( )
+(40 − 31)2]=128.8 ;∴ S甲2 S乙2 ,∴甲种玉米苗长得整
齐.
最新浙教版初中数学八年级上册《样本与数据分析初步》专项测试 (含答案) (943)
浙教版初中数学试卷2019-2020年八年级数学上册《样本与数据分析初步》测试卷学校:__________题号一二三总分得分评卷人得分一、选择题1.(2分)为了估计湖中有多少条鱼,先从湖中捕捉50条鱼做记号,然后放回湖里,经过一段时间,等带记号的鱼完全混于鱼群中之后,再捕捞第二次,鱼共200条,有10条做了记号,则估计湖里有()条鱼A.400条 B.500条 C.800条 D.1000条2.(2分)已知一组数据5,15,75,45,25,75,45,35,45,35,那么40是这一组数据的()A.平均数但不是中位数B.平均数也是中位数C.众数D.中位数但不是平均数3.(2分)小勇投镖训练的结果如图所示,他利用所学的统计知识对自己10次投镖的成绩进行了评价,①平均数是(10+8×4+7×2+6×2+5)÷10=7.3(环),②众数是8环,打8环的次数占40%,③中位数是8环,比平均数高0.7环.上述说法中,正确的个数有()A. 0个B.l个C.2个D.3个4.(2分)某射击运动员连续射靶10次,其中2次命中10.2环,2次命中10.1环,6次命中10环,则下列说法中,正确的是()A.命中环数的平均数是l0.1环B .命中环数的中位数是l0.1环C .命中环数的众数是l0.1环D .命中环数的中位数和众数都是l0环5.(2分)今年某市有800名八年级学生参加了省数学竞赛,为了了解这800名学生的成绩,从中抽取了100名学生的考试成绩进行分析,以下说法中,正确的是( ) A .800名学生是总体 B .每个学生是个体C .100名学生的数学成绩是一个样本D .800名学生是样本容量6.(2分)要比较两位同学在上次数学测验中谁的成绩比较稳定,应选用的统计量是( ) A .平均数B .中位数C .众数D .方差7.(2分)要了解一批电视机的使用寿命,从中任意抽取30台电视机进行试验,在这个问题中,30是( ) A .个体B .总体C .样本容量D .总体的一个样本8.(2分)若干名工人某天生产同一种零件,生产的零件数整理成条形图(如图所示).设他们生 产零件的平均数为a ,中位数为b ,众数为c ,则a ,b ,c的大小关系为 .9.(2分)8名学生在一次数学测试中的成绩为80,82,79,69,74,78,x ,81,这组成绩的平均数是77,则x 的值为( ) A .76B .75C .74D .7310.(2分)如图是小敏同学6次数学测验的成绩统计表,则该同学6次成绩的中位数是( ) A . 60分B . 70分C .75分D . 80分11.(2分)甲、乙、丙、丁四支足球队在世界杯预选赛中进球数分别为9,9,x ,7,若这组数据的众数与平均数恰好相等,则这组数据的中位数是( ) A .11 B .9 C .8 D .7 12.(2分)下列调查工作需采用普查方式的是( ) A .环保部门对淮河某段水域的水污染情况的调查B .电视台对正在播出的某电视节目收视率的调查C .质检部门对各厂家生产的电池使用寿命的调查9085 80 75 70 65 6055 分数测验1 测验2 测验3 测验4 测验5 测验6D.企业在给职工做工作服前进行的尺寸大小的调查13.(2分)某校要了解八年级女生的体重以掌握她们的身体发育情况,从八年级500名女生中抽出50名进行检测.就这个问题,下面说法中.正确的是().A.500名女生是总体B.500名女生是个体C.500名女生是总体的一个样本D.50是样本容量14.(2分)小明记录某社区七次参加“防甲型H1N1流感活动”的人数分别如下:33,32,32,31,32,28,26.这组数的众数是()A. 28 B.31 C.32 D.3315.(2分)若一组数据l,2,x,3,4的平均数是3,则这组数据的方差是()A.2 B.2C.10 D.1016.(2分)有下列三个调查:①了解杭州市今年夏季冷饮市场冰琪淋的质量;②调查八年级(1)班50名学生的身高;③了解一本300页的书稿的错别字个数.其中不适合采用普查而适合采用抽样调查方式的有()A.3个B.2个C.1个D.0个评卷人得分二、填空题17.(2分)如图是第29届北京奥运会上获得金牌总数前六名国家的统计图:则这组金牌数的中位数是枚.奥运金牌榜前六名国家18.(2分)有6个数.它们的平均数是l2,若再添一个数5,则这7个数的平均数是 .19.(2分)如果已知甲、乙两种植物株高的方差分别为222.3S=甲cm2,215.67S=乙cm2,那么可以估计种植物比种植物长得整齐.20.(2分)某校男子足球队22名队员的年龄如下表所示,则这些队员的平均年龄为岁(精确到1岁).21.(2分)某人到菜市场买鸡蛋,她对所要购买的鸡蛋逐一进行检查,最后她买到了自己满意的鸡蛋.在这个事件中用的是哪种数学方法?22.(2分)(1)要了解我国八年级学生的视力情况,你认为合适的调查方式是.(2)为了了解一个有1名员工的集团公司所有人的平均工资,到5个分厂各抽查10名干部的工资进行统计,这种抽样办法是否合适?.理由是.三、解答题23.(7分) 某校规定:学生的平时作业、期中练习、期未考试三项成绩分别按 40%、20%、40%的比例计入学期总评成绩,小明的平时作业、期中练习、期末考试的数学成绩依次为90分、92分、85分,则小明这学期的总评成绩是多少分?这样计算总评成绩的方法有什么好处(结果保留整数)?24.(7分)某乡镇企业生产部有技术工人15人,生产部为了合理制定产品的每月生产定额,统计了这15人某月的加工零件个数:(1)写出这15人该月加工零件数的平均数、中位数和众数.(2)假如生产部负责人把每位工人的月加工零件数定为260(件),你认为这个定额是否合理,为什么?25.(7分)某校为了了解全校2000名学生的课外阅读情况,在全校范围内随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,将结果绘制成频数分布直方图(如图所示)。
最新浙教版初中数学八年级上册《样本与数据分析初步》专项测试 (含答案) (823)
中、期末 之比为 3:3:4 的比例计算学期的总评成绩,他计划总评成绩要达到 85 分,则
期末考试他应得 分.
23.(2 分)某人到菜市场买鸡蛋,她对所要购买的鸡蛋逐一进行检查,最后她买到了自己满
意的鸡蛋.在这个事件中用的是哪种数学方法?
评卷人 得分
三、解答题
24.(7 分)为了比较甲、乙两种水稻秧苗是否出苗整齐,每种秧苗各取 5 株并量出每株的长
他们生产零件的平均数为 a,中位数为 b,众数为 c,则有( ) A.b>a>c B.c>a>b C.a>b>c D.b>c>a
7.(2 分)刘翔在今年五月结束的“好运北京”田径测试赛中获得了 110m 栏的冠军.赛前
他进行了刻苦训练,如果对他 10 次训练成绩进行统计分析,判断他的成绩是否稳定,则需
21.88
22.89.5
23.普查
评卷人 得分
三、解答题
24. x甲 = x乙 = 13 , S甲2 = 3.6 , S乙2 = 4 ,∴甲品种出苗整齐.
25.解:(1)16; (2)1700;1600; (3)这个经理的介绍不能反映该公司员工的月工资实际水平.
用 1700 元或 1600 元来介绍更合理些. (4) y = 2500 50 − 21000 − 8400 3 ≈1713(元), y 能反映.
D.33
3.(2 分)如果 x1 与 x2 的平均数是 6,那么 x1 +1与 x2 + 3 的平均数是( )
A.4
B.5
C.6
D.8
4.(2 分)如图是小敏同学 6 次数学测验的成绩统计表,则该同学 6 次成绩的中位数是
()
A. 60 分
B. 70 分
C.75 分
最新浙教版初中数学八年级上册《样本与数据分析初步》专项测试 (含答案) (828)
浙教版初中数学试卷2019-2020年八年级数学上册《样本与数据分析初步》测试卷学校:__________一、选择题1.(2分)已知一组数据5,7,3,9,则它们的方差是()A. 3 B. 4 C. 5 D. 62.(2分)某校要了解八年级女生的体重以掌握她们的身体发育情况,从八年级500名女生中抽出50名进行检测.就这个问题,下面说法中.正确的是().A.500名女生是总体B.500名女生是个体C.500名女生是总体的一个样本D.50是样本容量3.(2分)下列调查工作需采用普查方式的是()A.环保部门对淮河某段水域的水污染情况的调查B.电视台对正在播出的某电视节目收视率的调查C.质检部门对各厂家生产的电池使用寿命的调查D.企业在给职工做工作服前进行的尺寸大小的调查4.(2分)某青年排球队12名队员的年龄情况如下表:下列结论正确的是()A.众数是20岁,中位数是19岁B.众数是19岁,中位数是20岁C.众数是20岁,中位数是19.5岁D.众数是19岁,中位数是19岁5.(2分)老师对某班同学中出现的错别字情况进行抽样调查,一个小组10位同学在一篇作文中出现的错别字个数统计如下(单位:个):0,2,0,2,3,0,2,3,1,2.有关这组数据的下列说法中,正确的是()A.平均数是2 B.众数是3 C.中位数是1.5 D.方差是1.25 6.(2分)若干名工人某天生产同一种零件,生产的零件数整理成条形图(如图所示).设他们生产零件的平均数为a,中位数为b,众数为c,则有()A.b>a>c B.c>a>b C.a>b>c D.b>c>a7.(2分)某住宅小区六月份中1日至6日每天用水量变化情况如折线图所示,那么这6天的平均用水量是()A. 30吨B. 31 吨C. 32吨D. 33吨8.(2分)刘翔在今年五月结束的“好运北京”田径测试赛中获得了110m栏的冠军.赛前他进行了刻苦训练,如果对他10次训练成绩进行统计分析,判断他的成绩是否稳定,则需要知道刘翔这10次成绩的()A.众数B.方差C.平均数D.中位数9.(2分)要了解一批电视机的使用寿命,从中任意抽取30台电视机进行试验,在这个问题中,30是()A.个体B.总体 C.样本容量D.总体的一个样本10.(2分)若一组数据l,2,x,3,4的平均数是3,则这组数据的方差是()A.2 B2C.10 D1011.(2分)在下列抽样调查中,样本缺乏代表性的个数有()①在沿海地区的农村调查我国农民的年收入情况;.②在某一城市的一所小学抽查100名学生,调查我国小学生的营养情况;③在公园时监测城市的空气质量情况;④任选l0所本省中学调查本省中学生的视力情况.A.1个B.2个C.3个D.4个12.(2分)有七个数由小到大依次排列,其平均数是38,如果这组数中前四个数的平均数是33,后四个数的平均数是42,那么这七个数的中位数是()A. 16 B.20 C.34 D.3813.(2分)一组数据方差的大小,可以反映这组数据的()A.分布情况B.平均水平C.波动情况D.集中程度评卷人得分二、填空题14.(2分)某中学人数相等的甲、乙两班学生参加了同一次数学测验,两班平均分和方差分别为82x=甲分,82x=乙分,2245S=甲,2190S=乙.那么成绩较为整齐的是 (填“甲班”或“乙班”).15.(2分)为美化校园,某班三个劳动小组在劳动课上栽花的株数分别为:10、x,8. 已知这组数据只有一个众数且众数等于中位数,那么这组数据的平均数是 .16.(2分)妈妈做了一份美味可口的菜品,为了了解菜品的咸淡是否适合.于是妈妈取了一点品尝,这应该属于 (填“普查”或“抽样调查”).17.(2分)在一次体育测试中,10名女生完成仰卧起坐的个数如下:48,52,47,46,50,50,51,50,45,49,则这次体育测试中仰卧起坐个数的众数是.18.(2分)如果已知甲、乙两种植物株高的方差分别为222.3S=甲cm2,215.67S=乙cm2,那么可以估计种植物比种植物长得整齐.19.(2分)为了了解2008年某超市每天上午的顾客人数,抽查了其中30天的每天上午的顾客人数,在这个问题中,样本是.20.(2分)公园里有甲、乙两群游客正在做团体游戏,两群游客的年龄如下(单位:岁):甲群:13,13,14,15,15,15,l5,l6,17,17;乙群:3,4,4,5,5,6,6,6,54,57.解答下列各题:(1)甲群游客的平均年龄是岁,中位数是岁,众数是岁,其中能较好反映甲群游客年龄特征的是;(2)乙群游客的平均年龄是岁,中位数是岁,众数是岁,其中能较好反映甲群游客年龄特征的是.21.(2分)为了了解某所初级中学学生对2008年6月1日起实施的“限塑令”是否知道,从该校全体学生1200名中,随机抽查了80名学生,结果显示有2名学生“不知道”.由此,估计该校全体学生中对“限塑令”约有名学生“不知道”.22.(2分)在某次数学测验中,为了解某班学生的数学成绩情况,从该班测试试卷中随机抽取了10份试卷,其成绩如下:85,81,89,81,72,82,77,81,79,83在这个问题中,总体是,样本是,样本平均数是分,估计该班的平均成绩是分.23.(2分)若数据3,4,5,6,x的平均数为4,则x= .24.(2分)下表列出了某年某地农作物生长季节每月的降雨量(单位:mm):则这六个月的平均降雨量是 mm.25.(2分)请指出下列问题哪些是普查,哪些是抽样调查.(1)为了解你所在学校的八年级所有学生完成作业的情况,对你全班所有学生进行调查;(2)为了解你所在班级学生的家庭收入情况,对你全班所有女生进行调查;(3)为了解你所在班级学生的体重情况,对你全班所有学生进行调查.三、解答题26.(7分) 某校规定:学生的平时作业、期中练习、期未考试三项成绩分别按 40%、20%、40%的比例计入学期总评成绩,小明的平时作业、期中练习、期末考试的数学成绩依次为90分、92分、85分,则小明这学期的总评成绩是多少分?这样计算总评成绩的方法有什么好处(结果保留整数)?27.(7分)王伯伯在一个新开的鱼塘内放养了一批鱼苗,3个月后,他想了解这批鱼的生长情况(成活率、塘内鱼的总量),请你利用所学的调查方法,帮助设计解决问题的方案.28.(7分)甲、乙两工人同时生产一种零件,在10天中,两工人每天生产的次品数分别如下:甲:l;O,0,3,3,0,2,1,0,2;乙:l,2,1,1,1,2,1,1,1,1.(1)分别计算这两个样本的平均数;(2)计算这两个样本的方差;(3)从计算结果看,谁的生产技术比较稳定?29.(7分)甲、乙两人打靶,前三枪甲的成绩分别为9环、8环和7环,乙的成绩为l0环、9环和6环,第四枪甲打了8环.问:(1)乙第四枪要打多少环才能与甲的平均环数相同?(2)在(1)中,如果乙打了这个环数,那么谁发挥得较稳定?30.(7分)从甲、乙两名工人做出的同一种零件中,各抽出4个,量得它们的直径(单位:mm)如下:甲生产零件的尺寸:9.98,10.00,10.02,10.00.乙生产零件的尺寸:10.00,9.97,10.03,10.00.(1)分别计算甲、乙两个样本的平均数;(2)分别求出它们的方差,并说明在使零件的尺寸符合规定方面谁做得较好?【参考答案】***试卷处理标记,请不要删除一、选择题1.C2.D3.D4.B5.D6.A7.C8.B9.C10.A11.C12.C13.C二、填空题14.乙班15.283株或263株16.抽样调查17.5018.乙,甲19.从中抽查的30天每天上午的顾客人数20.(1)15,l5,15,平均数、中位数、众数都可以;(2)15,5.5,6,众数21.3022.该班学生的数学成绩,10名学生的数学成绩,81,8123.224.8325.(1)抽样调查;(2)抽样调查;(3)普查三、解答题26.小明这学期的总评成绩是90×40%+92×20%+85×40%=88(分).这样计算学生的总评成绩有利于学校全面衡量学生的学习状况,促使学生注重平时的学习.27.略28.(1) 1.2x x==乙甲;(2)2136S=甲.,2016S=乙.;(3)乙稳定29.(1)7环;(2)甲稳定30.(1)10.00x=甲mm,10.00x=乙mm;(2)200002S=甲.mm2,2000045S=乙.mm2,甲做得较好。
浙教版初中数学八年级上册第四章《样本与数据分析初步》单元复习试题精选 (862)
浙教版初中数学试卷2019-2020年八年级数学上册《样本与数据分析初步》测试卷学校:__________一、选择题1.(2分)在国家实行一系列“三农”优惠政策后,农民收入大幅度增加.某乡所辖村庄去年年人均收入(单位:元)的情况如下表.该乡去年人均收入的中位数是( )A.3700元 B .3800元C .3850元D .3900元2.(2分)在方差的计算公式222222123451[(10)(10)(10)(10)(10)]5S x x x x x =−+−+−+−+−中,数字5和10分别表示的意义是( )A .数据的个数和方差B .平均数和数据的个数C .数据组的方差和平均数D .数据的个数和平均数3.(2分)某鞋店试销一款女鞋,试销期间对不同颜色鞋的销售情况统计如下表:鞋店经理最关心的是哪种颜色的鞋最畅销,则对鞋店经理最有意义的统计量是 ( ) A .平均数B .众数C .中位数D .方差4.(2分)一组数据2−,1−,0,1,2的方差是( ) A.1B.2C.3D.45.(2分)从甲、乙两工人做的同一种零件中,各抽取4个,量得它们的直径(单位:mm )如下:甲:9.98,10.02,10.00,10.00; 乙:l0.O0,10.03,10.09,9.97. 他们做零件更符合尺寸规定的是( )A.甲B.乙C.二人都一样D.不能确定6.(2分)数学老师对小明在参加中考前的5次数学模拟考试进行统计分析,判断小明的数学成绩是否稳定,于是老师需要知道小明这5次数学成绩的()A.平均数或中位数B.方差或标准差C.众数或平均数D.众数或中位数7.(2分)今年某市有800名八年级学生参加了省数学竞赛,为了了解这800名学生的成绩,从中抽取了100名学生的考试成绩进行分析,以下说法中,正确的是()A.800名学生是总体B.每个学生是个体C.100名学生的数学成绩是一个样本D.800名学生是样本容量8.(2分)一鞋店试销一种新款女鞋,一周内各种型号的鞋卖出的情况如下表所示:对这个鞋店的经理来说,他最关注的是数据的()A.平均数B.众数C.中位数D.方差9.(2分)已知一组数据5,15,75,45,25,75,45,35,45,35,那么40是这一组数据的()A.平均数但不是中位数B.平均数也是中位数C.众数D.中位数但不是平均数10.(2分)10名工人某天生产同一种零件,生产的件数分别是:15,17,14,10,15,17,17,16,14,12.若其平均数为a,中位数为 b,众数为c,则有()A.a>b>c B.b>c>a C. c>a>b D.c>b>a11.(2分)数据5,3,2,1,4的平均数是()A.2 B.3 C.4 D.512.(2分)要了解某班学生一周干家务活的时间,下面四个调查方法最能说明问题的方法是()A.调查所有男子B.调查所有女生C.调查学号是1~4的学生D.分别调查50%的男生和50%的女生13.(2分)下列调查方式合适的是()A.为了了解全国中小学生的睡眠状况,采用普查的方式B.为了对“神舟六号”零部件进行检查,采用抽样调查的方式C.为了了解我市居民的环保意识,采用普查的方式D.为了了解炮弹的杀伤力,采用抽样调查的方式二、填空题14.(2分)在某校举行的艺术节的文艺演出比赛中,九位评委给其中一个表演节目现场打出的成绩(单位:分)如下:9.3,8.9,9.3,9.1,8.9,8.8,9.3.9.5,9.3.则这组数据的众数是 .15.(2分)某机构要调查某厂家生产的手机质量,从中抽取了20只手机进行试验检查,其中样本 容量是 .16.(2分)2007年10月1日是中华人民共和国成立58周年纪念日,要在某校选择256名身高基本相同的女同学组成表演方体,在这个问题中我们最值的关注的是该校所有女生身高的(填“平均数”或“中位数”或“众数”).17.(2分)已知一组数据为5,6,8,6,8,8,8,则这组数据的众数是_________,平均数是_________. 18.(2分)某电视台为满足观众在北京奥运会期间收看不同比赛项目的要求,做了一个随机调查,结果如下表: 如果你是电视台负责人,在现场直播时,将优先考虑转播 比赛.19.(2分)如果一个样本的方差是2.25,则这个样本的标准差是 .20.(2分)甲、乙两台机器分别灌装每瓶标准质量为500g 的矿泉水,从甲、乙灌装的矿泉水中分别随机抽取了30瓶,测算得它们实际质量的方差是2 4.8S =甲g 2,2 3.6S =乙 g 2,那么 (填“甲”或“乙”)机器灌装的矿泉水质量比较稳定.21.(2分)在某市2007年的一次中学生运动会上,参加男子跳高比赛的有l7名运动员,通讯员在将成绩表送组委会时,不慎被墨水污染掉一部分(如下表),但他记得这组运动员的成绩的众数是1.75 m ,表中每个成绩都至少有一名运动员,根据这些信息,可以计算出l7名运动员的平均跳高成绩是x = m(精确到0.Ol m).22.(2分)从某鱼塘里捕上l50条鱼做上标记,然后放回鱼塘里去,经过一段时间,待带标记的鱼完全混合于鱼群中后,再捕第二次样品鱼200条,若其中带标记的鱼有10条,可估计鱼塘里有 条鱼.23.(2分)某批零件的质量如下(单位:千克): 201, 207,199,204,201,191,206,205,184,214,192,206,199,217,209,200,213,217,186,214,194,208,219,226,215.求这批零件的平均质量是 (结果精确到个位).24.(2分)在某次数学测验中,为了解某班学生的数学成绩情况,从该班测试试卷中随机抽取了10份试卷,其成绩如下:85,81,89,81,72,82,77,81,79,83在这个问题中,总体是,样本是,样本平均数是分,估计该班的平均成绩是分.25.(2分)为了解某小区居民的用水情况,随机抽查了该小区10户家庭的月用水量,结果如下:则这个抽样调查的总体是,个体是,样本是.三、解答题26.(7分)经市场调查,某种质量为(50.5±)kg的优质西瓜最为畅销.为了控制西瓜的质量.农科所分别采用A、B两种种植技术进行试验.现从这两种技术种植的西瓜中各随机抽取20个,记录它们的质量(单位:kg)如下:A:4.1,4.8,5.4.4.9,4.7,5.0.4.9,4.8,5.8.5.2,5.0.4.8,5.2,4.9,5.2,5.0,4.8.5.2,5.1,5.O.B:4.5,4.9,4.8,4.5,5.2,5.1.5.0,4.5,4.7,4.9,5.4,5.5,4.6,5.3,4.8,5.0,5.2,5.3,5.0,5.3.(1)若质量为(50.25±)kg的优质西瓜为优等品,根据以上信息完成表3.表3(2)请分别从优等品数量、平均数与方差三方面对A、B两种技术作出评价;从市场销售的角度看,你认为推广哪种种植技术较好?27.(7分)“勤劳”是中华民族的传统美德,学校要求同学们在家里帮助父母做些力所能及的家务.王刚同学对部分同学暑假在家做家务的时问进了抽样调查(时间取整上数),所得数据统计如表2:表2时间分组/时0.5~20.520.5~40.540.5~60.560.5~80.580.5~100.5人数20253015lO(1)抽取样本的容量是;(2)样本的中位数所在时间段的范围是;(3)若该学校有学生1260人,那么大约有多少学生在暑假做家务的时间在40.5~100.5小时之间?28.(7分)作为一项惠农强农应对前国际金触危机、拉动国内消费需求重要措施,“家电下乡”工作已经国务院批准从2008年12月1日起在某市实施. 某市某家电公司营销点自2008 年 12 月份至2009年 5 月份销售两种不同品牌冰箱的数量如下图:(1)完成下表:平均数/台方差甲品牌销售量/台1O乙品牌销售量/台4 3(2)请你依据折线图的变化趋势,对营销点今后的进货情况提出建议.29.(7分)有两个代表队各四人进行答题竞赛,现把数据统计如下:第一组编号1号2号3号4号第二组现要发两个奖项,一个是个人金牌,另一个是团体金牌,请问该把两块金牌怎样发放?说说你的理由.30.(7分)一次科技知识竞赛,两组学生成绩统计如下:已算得两个组学生的平均分都是80分,请你根据你所学过的统计知识,进一步判断这两个组这次竞赛中成绩谁优谁次,并说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.B2.D3.B4.B5.A6.B7.C8.B9.B10.D11.B 12.D 13.D二、填空题14.9.3分 15.20 16.众数 17.8,7 18.乒乓球 19.1.5 20.乙 21.1.69 22.3000 23.20524.该班学生的数学成绩,10名学生的数学成绩,81,8125.该小区居民的月用水情况,每户家庭的月用水情况,该小区l0户家庭的月用水情况三、解答题26.(1)表中所填数据从上到下依次为16,10.(2)从优等品数量的角度看,∵A 种技术种植的西瓜优等品数量较多,∴A 种技术较好; 从平均数的角度看,∵A 种技术种植的西瓜质量的平均数更接近5妇.∴A 种技术较好; 从方差的角度看,∵B 种技术种植的西瓜质量的方差较小,∴曰种技术种植的西瓜 质量更为稳定;从市场销售的角度看,∵优等品更畅销,A 种技术种植的西瓜优等品数量 更多,且平均质量更接近5 kg ,因而更适合推广A 种种植技术. 27.(1)100;(2)40.5~60.5小时; (3)∵3015101260693100++⨯=,∴大约有693名学生在暑假做家务的时间在40.5~100.5小时之间.28.(1)表中从左到右依次填10,133;(2)建议如下:从折线图来看,甲品牌冰箱的月销售量呈上升趋势,因此进货时可多进甲品牌冰箱.29.个人金牌给2号,团体金牌给第一组30.略。
最新浙教版初中数学八年级上册《样本与数据分析初步》专项测试 (含答案) (775)
89 分,则除甲以外的 5 名同学的平均分为 分.
19.(2 分)如果一个样本的方差是 2.25,则这个样本的标准差是 .
20.(2 分)已知一个样本 1,3,2,5, x ,其平均数是 3,则 x = .
21.(2 分)某市为一个景区改造的多种方案公开向市民征求意见,在考虑选择哪一种方案
时,有关部门统计了各方案投案结果的平均数,中位数和众数,主要参考的应是 .
(1)完成下表: 甲品牌销售量/台
平均数/台 方差 1O
乙品牌销售量/台
4
3
(2)请你依据折线图的变化趋势,对营销点今后的进货情况提出建议.
25.(7 分)某校八年级(1)班的一个研究性学习小组的研究课题是“杭州市某高速公路入口的
汽车流量问题”.某天上午,他们在该入口处每隔相等的时间,对 3 分钟内通过的汽车的数
A.4
B.5
C.6
D.8
4.(2 分)8 名学生在一次数学测试中的成绩为 80,82,79,69,74,78, x ,81,这组成
绩的平均数是 77,则 x 的值为( )
A.76
B.75
C.74
D.73
5.(2 分)能够刻画一组数据离散程度的统计量是( )
A.平均数
B.众数
C.中位数
D.方差
6.(2 分)要了解一批电视机的使用寿命,从中任意抽取 30 台电视机进行试验,在这个问题
解答题
15.(2 分)已知一组数据:-2,-2,3,-2, x ,-l,若这组数据的平均数是 0.5,则这组数
据中位数是 .
16.(2 分)2007 年 10 月 1 日是中华人民共和国成立 58 周年纪念日,要在某校选择 256 名身
最新浙教版初中数学八年级上册《样本与数据分析初步》专项测试 (含答案) (827)
浙教版初中数学试卷2019-2020年八年级数学上册《样本与数据分析初步》测试卷学校:__________一、选择题1.(2分)一组数据按从小到大排列为l ,2,4, x, 6,9.如果这组数据的中位数为5.那么这组数据的众数为( )A. 4B.5 C . 5.5 D . 62.(2分)对于数据3,3,2,3,6,3,10,3,6,3,2. 有以下结论:①这组数据的众数是3;②这组数据的众数与中位数的数值不等;③这组数据的中位教与平均数的数值相等;④这组数据的平均数与众数的数值相等.其中正确的有( ) A .1个B . 2个C .3个D .4个3.(2分)某烟花爆竹厂从20万件同类产品中随机抽取了100件进行质检.发现其中有5件不合格.那么你估计该厂这20万件产品中合格品约为( ) A . 1万件 B .9万件C .15万件D . 20万件4.(2分)某青年排球队12名队员的年龄情况如下表:下列结论正确的是( ) A .众数是20岁,中位数是19岁 B .众数是19岁,中位数是20岁 C .众数是20岁,中位数是19.5岁D .众数是19岁,中位数是19岁5.(2分)如果1x 与2x 的平均数是6,那么11x +与23x +的平均数是( ) A .4B .5C .6D .86.(2分)8名学生在一次数学测试中的成绩为80,82,79,69,74,78,x ,81,这组成绩的平均数是77,则x 的值为( ) A .76B .75C .74D .737.(2分)能够刻画一组数据离散程度的统计量是()A.平均数B.众数C.中位数D.方差8.(2分)下列调查中,适合用全面调查方式的是()A.了解某班学生“50米跑”的成绩B.了解一批灯泡的使用寿命C.了解一批炮弹的杀伤半径D.了解一批袋装食品是否含有防腐剂9.(2分)要比较两位同学在上次数学测验中谁的成绩比较稳定,应选用的统计量是()A.平均数B.中位数C.众数D.方差10.(2分)为了考察甲、乙两种小麦,分别从中抽取5株苗,测得苗高(单位:cm)如下:甲:2 4 6 8 10 乙:l 3 5 7 9用2S甲和2S乙分别表示这两个样本的方差,那么()A.2S甲>2S乙B.2S甲<2S乙C.2S甲=2S乙D.2S甲与2S乙的关系不能确定11.(2分)为筹备班级里的晚会,班干部对全班同学爱吃哪几种水果作了民意调查,决定最终买什么水果,最终决定应该根据调查数据的()A.平均数B.中位数C.众数D.以上都可以12.(2分)小勇投镖训练的结果如图所示,他利用所学的统计知识对自己10次投镖的成绩进行了评价,①平均数是(10+8×4+7×2+6×2+5)÷10=7.3(环),②众数是8环,打8环的次数占40%,③中位数是8环,比平均数高0.7环.上述说法中,正确的个数有()A. 0个B.l个C.2个D.3个13.(2分)某青年排球队12名队员的年龄如下表:1年龄(岁)18192021221人数(人)14322则这l2名队员年龄的()A.众数是20岁,中位数是l9岁B.众数是l9岁,中位数是l9岁C.众数是l9岁,中位数是20.5岁D.众数是l9岁,中位数是20岁14.(2分)数据5,7,4,0,5,4,8,8,6,4的中位数和众数分别是()A. 5,4 B.4,5 C.5,5 D.4.5,4二、填空题15.(2分)数据98,l00,101,102,99的标准差是 .16.(2分)已知三个不相的正整数的平均数、中位数都是3,则这三个数分别为 . 17.(2分)有6个数.它们的平均数是l2,若再添一个数5,则这7个数的平均数是 . 18.(2分)妈妈做了一份美味可口的菜品,为了了解菜品的咸淡是否适合.于是妈妈取了一点品尝,这应该属于 (填“普查”或“抽样调查”).19.(2分)为了估计某市空气质量情况,某同学在30天里做了如下记录:其中w<50时空气质量为优, 50≤w≤100时空气质量为良,100<w≤150时空气质量为轻度污染,若1年按365天计算,请你估计该城市在一年中空气质量达到良以上(含良)的天数为天.20.(2分)为了了解2008年某超市每天上午的顾客人数,抽查了其中30天的每天上午的顾客人数,在这个问题中,样本是.21.(2分)为了缓解旱情,某市发射增雨火箭,实施增雨作业.在一场降雨中,某县测得l0个面积相等区域的降雨量如下表:则该县这l0个区域降雨量的众数为 mm,平均降雨量为 mm.22.(2分)若数据3,4,5,6,x的平均数为4,则x= .23.(2分)为了了解某种新药的治疗效果,研究人员从使用该药的患者中抽取了50名进行调查,在这个问题中,总体是,样本是,个体是.三、解答题24.(7分)从甲、乙两种玉米苗中各抽取l0株,分别测得它们的株高(单位:cm)如下:甲:25,41,40.37,22,l4.19,39,21,42.乙:27,l6,44,27,44.16,40,40,16,40.问:(1)哪种玉米苗长得高? (2)哪种玉米苗长得齐?25.(7分)王伯伯在一个新开的鱼塘内放养了一批鱼苗,3个月后,他想了解这批鱼的生长情况(成活率、塘内鱼的总量),请你利用所学的调查方法,帮助设计解决问题的方案.26.(7分)汶川地震牵动着全国亿万人民的心,某校为地震灾区开展了“献出我们的爱” 赈灾捐款活动.八年级(1)班50名同学积极参加了这次赈灾捐款活动,下表是小明对全班捐款情况的统计表:(1)根据以上信息请帮助小明计算出被污染处的数据,并写出解答过程. (2)该班捐款金额的众数、中位数分别是多少?27.(7分)一次实习作业课中,甲、乙两组学生各自对学校旗杆进行了5次测量,所得数据如下表所示:现已算得乙组所测得数据的平均数为12.00x =乙,,方差20.002S =乙. (1)求甲组所测得数据的平均数;(2)问哪一组学生所测得的旗杆高度比较一致?28.(7分)甲、乙两人参加某体育训练项目,近期的五次测试成绩得分情况如图.优秀及格不及格11678824人数培训后培训前(1)分别求出两人得分的平均数与方差;(2)根据图和上面算得的结果,对两人的训练成绩作出评价.29.(7分)从甲、乙两名工人做出的同一种零件中,各抽出4个,量得它们的直径(单位:mm)如下:甲生产零件的尺寸:9.98,10.00,10.02,10.00. 乙生产零件的尺寸:10.00,9.97,10.03,10.00. (1)分别计算甲、乙两个样本的平均数;(2)分别求出它们的方差,并说明在使零件的尺寸符合规定方面谁做得较好?30.(7分)某校八年级320名学生在电脑培训前后各参加了一次水平相同的考试,考试成绩都以同一标准划分成“不及格”、“及格”和“优秀”三个等级.为了了解电脑培训的效果,用抽签方式得到其中32名学生培训前后两次考试成绩的等级,并绘制成如图的统计图,试结合图形信息回答下列问题:(1)这32名学生培训前后考试成绩的中位数所在的等级分别是 、 ;(2)估计该校整个八年级320名学生中,培训后考试成绩的等级为“及格”与“优秀”的学生共有多少名?【参考答案】***试卷处理标记,请不要删除一、选择题1.D2.A3.B4.B5.D6.D7.D8.A9.D10.C11.C12.C13.D14.A二、填空题1516.1,3,5或2,3,417.1118.抽样调查19.29220.从中抽查的30天每天上午的顾客人数21.14,1422.223.该种新药的治疗效果,50名使用该药的患者的治疗效果,每名使用该药的患者的治疗效果三、解答题24.(1)∵125414210x =⨯+++甲()=30(cm),127164010x =⨯+++乙()=31(cm),∴x x <乙甲,∴乙种玉米苗长得高. (2)由方差公式,得22221[25304130423010S =⨯-+-++-甲()()()]=104.222221[2731313110S =⨯-+-++-乙()(16)(40)]=128.8;∴22S S <乙甲,∴甲种玉米苗长得整齐. 25.略26.解:(1) 被污染处的人数为11人.设被污染处的捐款数为x 元,则 11x +1460=50×38 ,解得 x =40 答:(1)被污染处的人数为11人,被污染处的捐款数为40元. (2)捐款金额的中位数是40元,捐款金额的众数是50元.27.(1)12.00x =乙;(2)20003S =乙.,20002S =乙.,乙组测得高度比较一致 28.(1)13.5x =甲,21S =甲;13.5x =乙,20S =乙.2;(2)乙较为稳定29.(1)10.00x =甲mm ,10.00x =乙mm ;(2)200002S =甲.mm 2 ,2000045S =乙.mm 2,甲做得较好30.(1)不及格、及格;(2)及格有160人,优秀80人。
最新浙教版初中数学八年级上册《样本与数据分析初步》专项测试 (含答案) (568)
浙教版初中数学试卷2019-2020年八年级数学上册《样本与数据分析初步》测试卷学校:__________一、选择题1.(2分)对于数据3,3,2,3,6,3,10,3,6,3,2. 有以下结论:①这组数据的众数是3;②这组数据的众数与中位数的数值不等;③这组数据的中位教与平均数的数值相等;④这组数据的平均数与众数的数值相等.其中正确的有()A.1个B. 2个C.3个D.4个2.(2分)下列说法中,正确的个数是()①样本的方差越小,波动性越小,说明样本稳定性越好;②一组数据的方差一定是正数;③一组数据的方差的单位与原数据的单位是一致的;④一组数据的标准差越大,则这组数据的方差一定越大.A.1个B.2个C.3个D.4个3.(2分)某青年排球队12名队员的年龄情况如下表:下列结论正确的是()A.众数是20岁,中位数是19岁B.众数是19岁,中位数是20岁C.众数是20岁,中位数是19.5岁D.众数是19岁,中位数是19岁4.(2分)样本3、6、4、4、7、6的方差是()A.12 B.C.2 D5.(2分)为了解我市七年级20000名学生的身高,从中抽取了500名学生,对其身高进行统计分析,以下说法正确的是()A.20000名学生是总体 B.每个学生是个体C .500名学生是抽取的一个样本D .每个学生的身高是个体6.(2分)某住宅小区六月份中1日至6日每天用水量变化情况如折线图所示,那么这6天的平均用水量是( ) A . 30吨B . 31 吨C . 32吨D . 33吨7.(2分)已知一组数据1x ,2x ,…,n x 的方差为4,则数据132x +,232x +,…,32n x +的方差为( ) A .14B .18C .36D .388.(2分)在下列抽样调查中,样本缺乏代表性的个数有 ( ) ①在沿海地区的农村调查我国农民的年收入情况;.②在某一城市的一所小学抽查100名学生,调查我国小学生的营养情况; ③在公园时监测城市的空气质量情况;④任选l0所本省中学调查本省中学生的视力情况. A .1个B .2个C .3个D .4个9.(2分)已知一组数据5,15,75,45,25,75,45,35,45,35,那么40是这一组数据的( )A .平均数但不是中位数B .平均数也是中位数C .众数D .中位数但不是平均数10.(2分)数据5,7,4,0,5,4,8,8,6,4的中位数和众数分别是( ) A . 5,4B .4,5C .5,5D .4.5,411.(2分)金华火腿闻名遐迩.某火腿公司有甲、乙、丙三台切割包装机,同时分装质量为500克的火腿心片.现从它们分装的火腿心片中各随机抽取10盒,经称量并计算得到质量的方差如表所示,你认为包装质量最稳定的切割包装机是( ) A .甲 B .乙C .丙D .不能确定12.(2分)要了解某班学生一周干家务活的时间,下面四个调查方法最能说明问题的方法是( ) A .调查所有男子B .调查所有女生C .调查学号是1~4的学生D .分别调查50%的男生和50%的女生二、填空题13.(2分)已知一组数据:11,15.13,12.15,15.16.15.令这组数据的众数为a ,中位数为b ,则a b (填“>”、“<”或“=”).14.(2分)一组数据为l ,2,3,4,5,6,则这组数据的中位数是 .包装机甲乙 丙 方差(克2) 1.70 2.297.2215.(2分)小明去超市买了三种糖果,其单价分别是5元/斤,6.5元斤和8元/斤,他分别买了3斤、2斤和l斤,将其混合,则混合后糖果单价是元/斤.16.(2分)已知一组数据为5,6,8,6,8,8,8,则这组数据的众数是_________,平均数是_________. 17.(2分)林城是一个美丽的城市,为增强市民的环保意识,配合6月5日的“世界环境日”活动,某校初三(1)班50名学生调查了各自家庭一天丢弃塑料袋的情况,统计结果如下:这50个同学家一天丢弃废塑料袋的众数是;18.(2分)如右统计图显示的是绵阳某商场日用品柜台10名售货员4月份完成销售额(•单位:千元)的情况,根据统计图,我们可以计算出该柜台的人均销售额为________千元.19.(2分)为了了解某小区居民的用水情况,随机抽查了l0户家庭的用水量,结果如下表所示月用水量(t)4569户数3421则关于这l0户家庭的用水量的众数是.20.(2分)为了解某小区居民的用水情况,随机抽查了该小区10户家庭的月用水量,结果如下:月用水量(t)1013141718户数22321则这个抽样调查的总体是,个体是,样本是.评卷人得分三、解答题21.(7分)经市场调查,某种质量为(50.5)kg的优质西瓜最为畅销.为了控制西瓜的质量.农科所分别采用A、B两种种植技术进行试验.现从这两种技术种植的西瓜中各随机抽取20个,记录它们的质量(单位:kg)如下:A:4.1,4.8,5.4.4.9,4.7,5.0.4.9,4.8,5.8.5.2,5.0.4.8,5.2,4.9,5.2,5.0,4.8.5.2,5.1,5.O.B:4.5,4.9,4.8,4.5,5.2,5.1.5.0,4.5,4.7,4.9,5.4,5.5,4.6,5.3,4.8,5.0,5.2,5.3,5.0,5.3.(1)若质量为(50.25)kg的优质西瓜为优等品,根据以上信息完成表3.表3(2)请分别从优等品数量、平均数与方差三方面对A、B两种技术作出评价;从市场销售的角度看,你认为推广哪种种植技术较好?22.(7分)王伯伯在一个新开的鱼塘内放养了一批鱼苗,3个月后,他想了解这批鱼的生长情况(成活率、塘内鱼的总量),请你利用所学的调查方法,帮助设计解决问题的方案.23.(7分)第一组数据8,8,8,第二组数据8,9,9,10,第三组数据l5,20,25.(1)每一组数据的平均数分别是多少?(2)如果将这三组数组成一组新数,新数的平均数是多少?中位数与众数是多少?24.(7分)机关作风整顿领导小组为了了解某单位早上8点准时上班情况,随机调取了该单位某天早上10人的上班时间,得到如下数据:7∶508∶008∶008∶028∶047∶568∶008∶028∶038∶03请回答下列问题(1)该抽样调查的样本容量是_______.(2)这10人的平均上班时间是________.(3)这组数据的中位数是_________.(4)如果该单位共有50人,请你估计有________人上班迟到.25.(7分)某校要从甲、乙两名跳远运动员中挑选一人参加全市比赛,在最近的l0次选拔赛中,他们的成绩(单位:cm)如下:甲:585,596,610,598, 612, 597,604,600,613,601;乙:613,618,580,574,618,593,585,590,598,604.(1)他们的平均成绩分别是多少?(2)甲、乙两人这l0次比赛成绩的方差分别是多少?(3)这两名运动员的运动成绩各有什么特点?(4)历届比赛表明,成绩达到5.96 m就很可能冠军,你认为为了夺冠应选谁参加这项比赛?如果历届比赛成绩表明,成绩达到6.10 m就能打破记录,那么你认为为了打破记录应选谁参加这项比赛?26.(7分)甲、乙两工人同时生产一种零件,在10天中,两工人每天生产的次品数分别如下:甲:l;O,0,3,3,0,2,1,0,2;乙:l,2,1,1,1,2,1,1,1,1.(1)分别计算这两个样本的平均数;(2)计算这两个样本的方差;(3)从计算结果看,谁的生产技术比较稳定?27.(7分)甲、乙两人打靶,前三枪甲的成绩分别为9环、8环和7环,乙的成绩为l0环、9环和6环,第四枪甲打了8环.问:(1)乙第四枪要打多少环才能与甲的平均环数相同?(2)在(1)中,如果乙打了这个环数,那么谁发挥得较稳定?28.(7分)为了了解用电量的多少,某家庭在6月初连续几天观察电表的读数,显示如下表:请你估计这个家庭六月份的总用电量是多少千瓦时?29.(7分)据资料记载,位于意大利的比萨余塔在1918~1958年这41年间,平均每年倾斜1.1 mm;1959~1969年这ll年间,平均每年倾斜1.26 mm.那么1918~1969年这52年间,比萨斜塔平均每年倾斜约多少mm (精确到0.01mm)?30.(7分)一天,爸爸叫儿子去买一盒火柴,临出门前,爸爸嘱咐儿子要买能划燃的火柴.儿子拿着钱出门了,过了很久,儿子回到了家.“火柴能划燃吗?”爸爸问.“都能划燃.”“你这么肯定?”儿子递过一盒划过的火柴,兴奋地说:“我每根都试过啦.”(1)在这则笑话中,儿子采用的是什么调查方式?这种调查方式好不好?(2)应采用什么方法调查比较合理?(3)请你谈谈什么情况下应进行抽样调查(至少讲出两点以上).【参考答案】***试卷处理标记,请不要删除一、选择题1.A2.B3.B4.C5.D6.C7.C8.C9.B10.A11.A12.D二、填空题13.=14.3.515.616.8,717.218.6.719.5 t20.该小区居民的月用水情况,每户家庭的月用水情况,该小区l0户家庭的月用水情况三、解答题21.(1)表中所填数据从上到下依次为16,10.(2)从优等品数量的角度看,∵A种技术种植的西瓜优等品数量较多,∴A种技术较好;从平均数的角度看,∵A种技术种植的西瓜质量的平均数更接近5妇.∴A种技术较好;从方差的角度看,∵B种技术种植的西瓜质量的方差较小,∴曰种技术种植的西瓜质量更为稳定;从市场销售的角度看,∵优等品更畅销,A种技术种植的西瓜优等品数量更多,且平均质量更接近5 kg,因而更适合推广A种种植技术.22.略23.(1)第一组:8,第二组:9,第三组:20 (2)平均数为12,中位数为9,众数为8 24.(1)10;(2)8:00;(3)8:01;(4)10.25.(1)601.6x=甲cm,597.3x=乙cm;(2)265S=甲.84cm2,2221.41S=乙cm2;(3)略;(4)为了夺冠,应选甲参赛,为了打破纪录,应选乙参赛26.(1) 1.2x x==乙甲;(2)2136S=甲.,2016S=乙.;(3)乙稳定27.(1)7环;(2)甲稳定28.120度29.1.13 mm30.(1)普查,不合适;(2)抽样讽查;(3)不唯一,如:①当调查数量特别大或调查范围特别广时应选用抽样调查;②当调查的事件具有危险性或破坏性时应选用抽样调查。
最新浙教版初中数学八年级上册《样本与数据分析初步》专项测试 (含答案) (853)
28.(1)
x甲
=
601.6
cm,
x乙
=
597.3
cm;(2)
S
2 甲
=
65.84
cm2,
S
2 乙
=
221.41 cm2
;(3)略;
(4)为了夺冠,应选甲参赛,为了打破纪录,应选乙参赛 29.略 30.120 度
27.(7分)下表是15位客年龄的人数分配表,因不小心被墨汁盖住了a、b、c三项人数,已
知这群游客年龄的中位数是5岁.众数是6岁.
年龄/ 岁 3
4
5
6
55 65
人数
3
a
1
b
1
c
(1)试求 a、b、c 的值;
(2)这样游客年龄的平均敦是多少岁?
28.(7 分)某校要从甲、乙两名跳远运动员中挑选一人参加全市比赛,在最近的 l0 次选拔 赛中,他们的成绩(单位:cm)如下:
型号 22 22.5 23 23.5 24 24.5
数量 3 5 10 15 8 4
(双)
对这个鞋店的经理来说,他最关注的是数据的( )
A.平均数
B.众数
C.中位数
D.方差
12.(2
分)已知甲、乙两组数据的平均数都是
5,甲组数据的方差
S
2 甲
=
1 12
,乙组数据的方差
S
2 乙
=
1 10
,则(
)
A.甲组数据比乙组数据的波动大
B.乙班 l0 名学生的成绩比甲班 10 名学生的成绩整齐
C.甲、乙两班 10 名学生的成绩一样整齐
D.不能比较甲、乙两班学生成绩的整齐程度
最新浙教版初中数学八年级上册《样本与数据分析初步》专项测试 (含答案) (456)
三、解答题
22.(1)表中所填数据从上到下依次为 16,10. (2)从优等品数量的角度看,∵A 种技术种植的西瓜优等品数量较多,∴A 种技术较好; 从平均数的角度看,∵A 种技术种植的西瓜质量的平均数更接近 5 妇.∴A 种技术较好; 从方差的角度看,∵B 种技术种植的西瓜质量的方差较小,∴曰种技术种植的西瓜 质量
甲:l0.2,9.5,10,10.5,10.3,9.8,9.6,10.1; 乙:l0.3,9.9,10.1,9.8,10,10.4,9.7,9.8.
经统计计算得
S
2 甲
=
,
S
2 乙
=
.这说明甲块试验
19.(2 分)为了了解某小区居民的用水情况,随机抽查了 l0 户家庭的用水量,结果如下表
二组超过全班数学成绩中位数的人数占全班人数的百分比为 9 + 4 100% = 26% . 50
25.(1)第一组:8,第二组:9,第三组:20 (2)平均数为 12,中位数为 9,众数为 8
26.(1)
x甲
=
x乙
= 1.2
;(2)
S
2 甲
= 1.36
,
S
2 乙
=
0.16 ;(3)乙稳定
27.(1) x甲 = 800 kg, x乙 = 796.5 kg;(2)甲的产量较为稳定;(3)甲种早稻较为优良
所示
月用水量(t) 户数
4
5
6
9
3
4
2
1
则关于这 l0 户家庭的用水量的众数是 .
20.(2 分)在一个班的 40 名学生中,14 岁的有 15 人,15 岁的有 14 人,l6 岁的有 7 人,l7
岁的有 4 人,则这个班的学生年龄的中位数是 岁,众数是 岁.
最新浙教版初中数学八年级上册《样本与数据分析初步》专项测试 (含答案) (702)
14.(2 分)有下列三个调查:①了解杭州市今年夏季冷饮市场冰琪淋的质量;②调查八年级
(1)班 50 名学生的身高;③了解一本 300 页的书稿的错别字个数.其中不适合采用普查
而适合采用抽样调查方式的有( )
A.3 个 评卷人
得分
B.2 个 二、填空题
C.1 个
D.0 个
15.(2 分)如图是第 29 届北京奥运会上获得金牌总数前六名国家的统计图:则这组金牌数 的中位数是 枚.
8.(2 分)某校初三·一班 6 名女生的体重(单位:kg)为:35 36 38 40 42 42
则这组数据的中位数等于( )
A.38
B.39
C.40
D.42
9.(2 分)某校把学生的纸笔测试、实践能力、成长记录三项成绩分别按 50%、20%、30%
的比例计入学期总评成绩,90 分以上为优秀. 纸笔测试 实践能力 成长记录
奥运金牌榜前六名国家
16.(2 分)已知三个不相的正整数的平均数、中位数都是 3,则这三个数分别为 . 17.(2 分)甲、乙两个城市,2008 年 4 月中旬每天的最高气温统计图如图所示.这 9 天里, 气温比较稳定的城市是 .
18.(2 分)为了估计某市空气质量情况,某同学在 30 天里做了如下记录:
2
l
1
A. 25.5 厘米,26 厘米 B.26 厘米,25.5 厘米
C.26 厘米.26 厘米 D.25.5 厘米.25.5 厘米
6.(2
分)在方差的计算公式
S2
=
1 5 [(x1
−10)2
+
( x2
−10)2
+ (x3
−10)2
+
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
评卷人 得分
二、填空题
12.210
13.54
14.2
15.20
16.6.7
17.乙,甲
18.(1)15,l5,15,平均数、中位数、众数都可以;(2)15,5.5,6,众数
19.17
评卷人 得分
三、解答题
20.(1)100; (2)40.5~60.5 小时;
(3)∵ 30 +15 +10 1260 = 693 ,∴大约有 693 名学生在暑假做家务的时间在 40.5~100.5 100
人数
20
25
30
15
lO
(1)抽取样本的容量是 ;
(2)样本的中位数所在时间段的范围是
;
(3)若该学校有学生 1260 人,那么大约有多少学生在暑假做家务的时间在 40.5~100.5
小时之间?
21.(7 分)某养鱼户搞池塘养鱼.放养鳝鱼苗 20000 尾,其成活率为 70%.随意捞出 l0 尾 鱼,称得每尾的重量(单位:千克)如下:
26.(7 分)机关作风整顿领导小组为了了解某单位早上 8 点准时上班情况,随机调取了该单 位某天早上 10 人的上班时间,得到如下数据: 7∶50 8∶00 8∶00 8∶02 8∶04 7∶56 8∶00 8∶02 8∶03 8∶03 请回答下列问题 (1)该抽样调查的样本容量是_______. (2)这 10 人的平均上班时间是________. (3)这组数据的中位数是_________. (4)如果该单位共有 50 人,请你估计有________人上班迟到.
5.(2 分)刘翔在今年五月结束的“好运北京”田径测试赛中获得了 110m 栏的冠军.赛前
他进行了刻苦训练,如果对他 10 次训练成绩进行统计分析,判断他的成绩是否稳定,则需
要知道刘翔这 10 次成绩的( )
A.众数
B.方差
C.平均数
D.中位数
6.(2 分)从甲、乙两工人做的同一种零件中,各抽取 4 个,量得它们的直径(单位:mm)
设被污染处的捐款数为 x 元,则 11 x +1460=50×38 ,解得 x =40
答:(1)被污染处的人数为 11 人,被污染处的捐款数为 40 元.
(2)捐款金额的中位数是 40 元,捐款金额的众数是 50 元.
26.(1)10;(2)8:00;(3)8:01;(4)10. 27.(1)平均数 85.5,众数 80、78,中位数 86;(2)①八年级好一些②七年级好一些;(3) 九年级的实力更强一些 28.甲使用了众数,乙使用了平均数,丙使用了中位数 29.略
24.(7 分)某中学开展“八荣八耻”演讲比赛活动,九(1)、九(2)班根据初赛成绩各选出 5 名选手参加复赛,两个班各选出的 5 名选手的复赛成绩(满分为 100 分)如下图所示. (1)根据左图填写下表
九(1)班 九(2 班
平均分(分) 85 85
中位数(分) 80
众数(分) 85
(2)结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩较好? (3)如果在每班参加复赛的选手中分别选出 2 人参加决赛,你认为哪个班的实力更强一 些,说明理由.
B. 2 3
C.2
D. 2
2.(2 分)能够刻画一组数据离散程度的统计量是( )
A.平均数
B.众数
C.中位数
D.方差
3.(2 分)为了估计湖中有多少条鱼,先从湖中捕捉 50 条鱼做记号,然后放回湖里,经过一
段时间,等带记号的鱼完全混于鱼群中之后,再捕捞第二次,鱼共 200 条,有 10 条做了记
号,则估计湖里有( )条鱼
27.(7 分)为了普及法律知识,增强法律意识,某中学组织了法律知识竞赛活动,初中三个
年级根据初赛成绩分别选出了 10 名同学参加决赛,这些选手的决赛成绩(满分为 100 分)如
下表所示: 决赛成绩(单位:分)
七年级 80 86 88 80 88 99 80 74 91 89 八年级 85 85 87 97 85 76 88 77 87 88 九年级 82 80 78 78 81 96 97 88 89 86
20.(7 分)“勤劳”是中华民族的传统美德,学校要求同学们在家里帮助父母做些力所能及 的家务.王刚同学对部分同学暑假在家做家务的时问进了抽样调查(时间取整上数),所得 数据统计如表 2: 表2 时间分组/时 0.5~20.5 20.5~40.5 40.5~60.5 60.5~80.5 80.5~100.5
30.(7 分)甲、乙两人参加某体育训练项目,近期的五次测试成绩得分情况如图. (1)分别求出两人得分的平均数与方差; (2)根据图和上面算得的结果,对两人的训练成绩作出评价.
【参考答案】***试卷处理标记,请不要删除
评卷人 得分
一、选择题
1.C 2.D 3.D 4.D 5.B 6.A 7.D 8.D 解析:D.
25.(7 分)汶川地震牵动着全国亿万人民的心,某校为地震灾区开展了“献出我们的爱” 赈灾 捐款活动.八年级(1)班 50 名同学积极参加了这次赈灾捐款活动,下表是小明对全班捐 款情况的统计表:
捐款(元)
10
15
30
人数
3
6
11
50
60
13
6
因不慎两处被墨水污染,已无法看清,但已知全班平均每人捐款 38 元. (1)根据以上信息请帮助小明计算出被污染处的数据,并写出解答过程. (2)该班捐款金额的众数、中位数分别是多少?
(2)这群游客年龄的平均数是 l2 岁 23.(1)第一组:8,第二组:9,第三组:20 (2)平均数为 12,中位数为 9,众数为 8 24.(1)85;100. (2)解:∵两班的平均数相同,初三(1)班的中位数高,初三(1)班的复赛成绩好些. (3)解:∵初三(1)班、初三(2)班前两名选手的平均分分别为 92.5,100 分, ∴在每班参加复赛的选手中分别选出 2 人参加决赛,初三(2)班的实力更强一些. 25.解:(1) 被污染处的人数为 11 人.
A.400 条 B.500 条 C.800 条 D.1000 条
4.(2 分)为了解我市七年级 20000 名学生的身高,从中抽取了 500 名学生,对其身高进行
统计分析,以下说法正确的是( )
A.20000 名学生是总体 B.每个学生是个体
C.500 名学生是抽取的一个样本
D.每个学生的身高是个体
D.不能确定 D.方差
A. 2
B. 5 4
C. 5 4
9.(2 分)某青年排球队 12 名队员的年龄如下表:
1年龄
18
19
20
21
(岁)
1人数
1
4
3
2
(人)
D. 5 2
22 2
则这 l2 名队员年龄的( )
A.众数是 20 岁,中位数是 l9 岁
B.众数是 l9 岁,中位数是 l9 岁
C.众数是 l9 岁,中位数是 20.5 岁
年龄/ 岁 3
4
5
6
55 65
人数
3
a
1
1
c
(1)试求 a、b、c 的值;
(2)这样游客年龄的平均敦是多少岁?
23.(7 分)第一组数据 8,8,8,第二组数据 8,9,9,10,第三组数据 l5,20,25. (1)每一组数据的平均数分别是多少?
(2)如果将这三组数组成一组新数,新数的平均数是多少?中位数与众数是多少?
小时之间. 21.∵ x = 0.8+0.9 + + 0.9 =1.0 (千克),
10 ∴1.0×20000×70%=14000(千克). ∴l4000×1.5=21000(元). ∴估计这塘鱼的总产量是 l4 000 千克,预计该养鱼户将获利 21 000 元 22.(1)a=4,b=5,c=1;
D.众数是 l9 岁,中位数是 20 岁
10.(2 分)10 名工人某天生产同一种零件,生产的件数分别是:15,17,14,10,15,
17,17,16,14,12.若其平均数为 a,中位数为 b,众数为 c,则有( )
A.a>b>c
B.b>c>a
C. c>a>b
D.c>b>a
11.(2 分)要了解一批种子的发芽天数,抽取了 l00 粒种子,考查其发芽天数,其中的 100
可以估计 种植物比 种植物长得整齐.
18.(2 分)公园里有甲、乙两群游客正在做团体游戏,两群游客的年龄如下(单位:岁):
甲群:13,13,14,15,15,15,l5,l6,17,17;
乙群:3,4,4,5,5,6,6,6,54,57.
解答下列各题:
(1)甲群游客的平均年龄是 岁,中位数是 岁,众数是 岁,其中能较好反映甲群游
一些?并说明理由.
28.(7 分)从甲、乙、丙三个厂家生产的同一种产品中,各抽出 8 件产品,对其使用寿命进 行跟踪调查,结果如下(单位:年):
甲:3,4,5,6,8,8,8,10; 乙:4,6,6,6,8,9,12,13; 丙:3,3,4,7,9,10,11,12. 三家在广告中都称该种产品的使用寿命是 8 年,请根据调查结果判断厂家在广告中分别运 用了平均数、众数、中位数的的哪一种集中趋势的特征数.
16.(2 分)如右统计图显示的是绵阳某商场日用品柜台 10 名售货员 4 月份完成销售额(• 单 位:千元)的情况,根据统计图,我们可以计算出该柜台的人均销售额为________千元.
17.(2
分)如果已知甲、乙两种植物株高的方差分别为
S
2 甲
=
22.3
cm2,
S
2 乙
= 15.67
cm2,那么
客年龄特征的是 ;