高中四大名校自主招生考试试卷附复习资料中考理科数学
长沙市高中四大名校自主招生考试试卷附答案(中考理科数学竞赛必备)
长郡中学20XX年高一实验班选拔考试试卷注意:(1) 试卷共有三大题16小题,满分120分,考试时间80分钟.(2) 请把解答写在答题卷的对应题次上, 做在试题卷上无效.一、选择题(本题有6小题,每小题5分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母填在答题卷中相应的格子)(A) 直线y = –x上(B) 抛物线y =x2上(C) 直线y = x上(D) 双曲线xy = 1上2.以等速度行驶的城际列车,若将速度提高25%,则相同距离的行车时间可节省k%,那么k的值是( )(A) 35 (B) 30 (C) 25 (D) 203.若-1<a<0,则a,a,a,(A)(C) 1a1a31a一定是( ) 最小,a3最大(B) 最小,a最大(D) a最小,a 最大 1a最小,a最大4.如图,将△ADE绕正方形ABCD的顶点A顺时针旋转90°,得△ABF,连结EF交AB于H,则下列结论错误的是()(A) AE⊥AF (B)EF:AF =2:1(C) AF= FH²FE (D)FB :FC = HB :EC5.在△ABC中,点D,E分别在AB,AC上,且CD与BE相交于点F,已知△BDF的面积为10,△BCF的面积为20,△CEF的面积为16,则四边形区域ADFE的面积等于()(A) 22 (B) 24 (D) 36 (D)446.某医院)(A)30 (B)35 (C)56 (D)448二、填空题(本题有6个小题,每小题5分,共30分)7.若4sinA – 4sinAcosA + cosA = 0, 则tanA. 222 第4题146424296.doc 第1页8.在某海防观测站的正东方向12海浬处有A、B两艘船相会之后,A船以每小时12海浬的速度往南航行,B船则以每小时3海浬的速度向北漂流. 则经过小时后,观测站及A、B两船恰成一个直角三角形.9.如右图,在坐标平面上,沿着两条坐标轴摆着三个相同的长方形,其长、宽分别为4、2,则通过A,B,C三点的拋物线对应的函数关系式是.10.桌面上有大小两颗球,相互靠在一起。
省级重点高中自主招生数学真题8套(含答案)
省重点高中自主招生数学真题8套(含答案)第1套一、选择题(每小题5分,满分30分。
以下每小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的。
请将正确选项的代号填入题后的括号里,不填、多填或错填得0分。
)1、已知实数a 、b 、c 满足0254=-+-+++a b c b a ,那么bc ab +的值为( ) A 、0B 、16C 、-16D 、-32 2、设βα、是方程02322=--x x 的两个实数根,则βααβ+的值是( )A 、-1B 、1C 、32-D 、32 3、a 、b 、c 均不为0,若0<=-=-=-abc cxz b z y a y x ,则),(bc ab p 不可能在( ) A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限4、在ABC ∆中,C B ∠=∠2,下列结论成立的是( ) A 、AB AC 2= B 、AB AC 2< C 、AB AC 2> D 、AC 与AB 2大小关系不确定5、已知关于x 的不等式7<a x 的解也是不等式12572->-aa x 的解,则a 的取值范围 是( )A 、910-≥aB 、910->a C 、0910<≤-a D 、0910<<-a 6、如图,□ DEFG 内接于ABC ∆,已知ADE ∆、EFC ∆、DBG ∆的面积为1、3、1,那么□ DEFG 的面积为( ) A 、32B 、2C 、3D 、4 第6题图二、填空题(每小题5分,共30分)1、已知质数x 、y 、z 满足5719=-yz x ,则z y x ++= 。
2、已知点A (1,3),B (4,-1),在x 轴上找一点P ,使得AP -BP 最大,那么P 点的坐标是 。
3、已知AB 是⊙O 上一点,过点C 作⊙O 的切线交直线AB 于点D ,则当△ACD 为等腰三解形时,∠ACD 的度数为 。
高中自主招生数学试题及答案
高中自主招生数学试题及答案一、选择题(每题3分,共15分)1. 下列哪个数是无理数?A. πB. √2C. 0.33333(无限循环)D. 1/32. 已知函数f(x) = 2x^2 + 3x - 5,求f(-2)的值。
A. -15B. -9C. -3D. 13. 一个圆的半径为5,求其面积。
A. 25πB. 50πC. 75πD. 100π4. 已知等差数列的前三项分别为1,4,7,求第10项的值。
A. 26B. 27C. 28D. 295. 一个三角形的内角和为多少度?A. 180°B. 360°C. 540°D. 720°二、填空题(每题2分,共10分)6. 若a,b,c是三角形的三边长,且满足a^2 + b^2 = c^2,那么这个三角形是_________三角形。
7. 一个函数的导数f'(x) = 3x^2 - 2x,当x=1时,其导数的值为_________。
8. 已知等比数列的首项为2,公比为3,求其第5项的值是_________。
9. 一个正方体的体积为27,它的边长是_________。
10. 圆的周长公式为C = 2πr,若半径r=4,则周长为_________。
三、解答题(共75分)11. 解一元二次方程:x^2 - 5x + 6 = 0。
(10分)12. 证明:若a,b,c是实数,且a + b + c = 0,则(1/a) + (1/b) + (1/c) ≥ 9。
(15分)13. 已知函数f(x) = x^3 - 3x^2 + 2,求其导数并讨论其在x=1处的单调性。
(20分)14. 解不等式:|x - 2| + |x + 3| ≥ 5。
(15分)15. 已知一个圆的圆心在原点,半径为1,求圆上任意一点到直线y = x的距离。
(15分)四、结束语本试题旨在考察学生对高中数学基础知识的掌握情况和解题能力。
希望同学们在解答过程中能够认真思考,仔细作答,展现出自己的数学素养。
省级重点高中自主招生数学真题8套(含答案)
省重点高中自主招生数学真题8套(含答案)第1套一、选择题(每小题5分,满分30分。
以下每小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的。
请将正确选项的代号填入题后的括号里,不填、多填或错填得0分。
)1、已知实数a 、b 、c 满足0254=-+-+++a b c b a ,那么bc ab +的值为( ) A 、0B 、16C 、-16D 、-32 2、设βα、是方程02322=--x x 的两个实数根,则βααβ+的值是( )A 、-1B 、1C 、32-D 、32 3、a 、b 、c 均不为0,若0<=-=-=-abc cxz b z y a y x ,则),(bc ab p 不可能在( ) A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限4、在ABC ∆中,C B ∠=∠2,下列结论成立的是( ) A 、AB AC 2= B 、AB AC 2< C 、AB AC 2> D 、AC 与AB 2大小关系不确定5、已知关于x 的不等式7<a x 的解也是不等式12572->-aa x 的解,则a 的取值范围 是( )A 、910-≥aB 、910->a C 、0910<≤-a D 、0910<<-a 6、如图,□ DEFG 内接于ABC ∆,已知ADE ∆、EFC ∆、DBG ∆的面积为1、3、1,那么□ DEFG 的面积为( ) A 、32B 、2C 、3D 、4 第6题图二、填空题(每小题5分,共30分)1、已知质数x 、y 、z 满足5719=-yz x ,则z y x ++= 。
2、已知点A (1,3),B (4,-1),在x 轴上找一点P ,使得AP -BP 最大,那么P 点的坐标是 。
3、已知AB 是⊙O 上一点,过点C 作⊙O 的切线交直线AB 于点D ,则当△ACD 为等腰三解形时,∠ACD 的度数为 。
中考自主招生真题数学试卷
中考自主招生真题数学试卷一、选择题(共30小题,每小题2分,共60分)1. 下列哪个数是带有无理数的?A. 3.14B. 256C. √7D. -52. 已知函数y = 2x + 3,求y = 4x + 7的解集。
A. {2}B. {-2}C. {-5}D. {-3}3. 在一个等差数列中,首项是4,公差是3。
如果第10项是31,求该等差数列的项数。
A. 10B. 9C. 11D. 124. 甲、乙两条直线相交于点O,已知∠AOB = 60°,则∠COB的度数是多少?A. 30°B. 45°C. 60°D. 90°5. 已知两个圆C1和C2,C1的半径为4 cm,C2的半径为6 cm。
则C1的面积与C2的面积之比为多少?A. 2:3B. 3:2C. 4:5D. 5:46. 如果4x + 3 = 13 - 2x,求x的值。
A. 1B. 2C. 3D. 47. 下列属于正比例函数的是?A. y = 2x - 1B. y = x^2C. y = 3x + 4D. y = 5/x8. 若三个角的度数之和为180°,并且它们互不相等,则它们可能是一个什么样的三角形的三个内角?A. 钝角B. 直角C. 锐角D. 都不是9. 若两个互为倒数的数之和为8,求出这两个数。
A. -4和4B. -2和2C. 3和5D. 4和410. 若a:b = 2:5,且a = 8,求b的值。
A. 3B. 5C. 10D. 2011. 若三角形的三个内角分别为60°、75°和45°,这个三角形是一个什么样的三角形?A. 等腰直角三角形B. 等边三角形C. 锐角三角形D. 钝角三角形12. 若x² + 5 = 16,求x的值。
A. 3B. -3C. 4D. -413. 4x - 9 = 7x + 6,求x的值。
A. -5B. -2C. 3D. 414. 若一辆汽车每小时行驶60公里,则行驶5小时所走的距离是多少?A. 300千米B. 300公里C. 600千米D. 600公里15. 若函数y = f(x)的图像为一条直线,斜率为2,截距为-3,则f(4)的值是多少?A. 5B. 2C. -2D. -5二、填空题(共10小题,每小题1分,共10分)16. 当x + 5 = 10时,x的值是______。
重点高中自主招生数学(含答案)
重点高中自主招生数学试题答案及评分标准一、选择题(本题满分30分,每小题5分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1、已知实数a 满足,则等于 (B )|2|2a a -+=a (A )0 (B )1(C )2(D )32、名同学参加夏令营活动,需要同时搭建可容纳人和人的两种帐篷,则有效搭建方案5032共有A )(A )8种 (B )9种 (C )种3、反比例函数与一次函数 1k y x -=y =B ).是的平分线,∆70,=︒120,BPC ∠=︒BD ABP ∠CE( C )BFC =( (D ) 95︒100︒5、如图,边长为1的正方形绕点逆时针旋转到正方形,图中阴影部ABCD A 30︒AB C D '''分的面积为 ( A )(A )(B1(C )(D )112D C (A)(B)(C)(D)(A)(B)(C)(D)6、四条直线围成正方形。
现掷一个均匀且各面上6,6,6,6+=-=+-=--=x y x y x y x y ABCD 标有1、2、3、4、5、6的立方体,每个面朝上的机会是均等的。
连掷两次,以面朝上的数为点P 的坐标(第一次得到的数为横坐标,第二次得到的数为纵坐标),则点落在正方形面上(含边界)P 的概率是( D )(A ) (B ) (C )(D )214397125二、填空题(本大题满分30分,每小题5分)7、若,则的值为 0 .1,x =-43221x x x ++- 10、如图,双曲线与矩形OABC 的边CB ,BA 分别交于点E ,F 且AF =BF ,连2(0)y x x=>接EF ,则△OEF 的面积为 .2311、如图矩形纸片ABCD ,AB =5cm ,BC =10cm ,CD 上有一点E ,ED =2cm ,AD 上有一点 P ,PD =3cm ,过P 作PF ⊥AD 交BC 于F ,将纸片折叠,使P 点与E 点重合,折痕与PF 交于Q 点,则PQ 的长是_____14/3_______cm .12、对于正数x ,规定,例如。
重点高中自主招生考试必备【数学】
目录页码1. 2010徽合肥168中学宏志班招生试题 (2)2. 2010安徽蚌埠重点高中自主招生试题及答案 (6)3.2010长郡中学理科实验班招生数学试题及答案 (14)4. 2011年北京市四中自主招生数学试题及答案 (19)5. 2011黄冈中学自主招生数学试题及答案 (24)6.2011湖北襄阳市高中优录数学试题及答案 (30)7.2011某师大附中自主招生数学试题及答案 (35)【1】2010安徽合肥168中学宏志班自主招生数学试题【卷首语】亲爱的同学们,欢迎参加一六八中学自主招生考试,希望你们凝神静气,考出水平!开放的一六八中学热忱欢迎你们!本学科满分为120分,共17题;建议用时90分钟。
得分评卷人一、填空题(本大题共12小题,每小题5分,共60分)1、计算28= .2、分解因式:)1()1(y y x x =.3、函数114x xy中,自变量x 的取值范围是.4、已知样本数据x 1,x 2,…,x n 的方差为1,则数据10x 1+5,10x 2+5,…,10x n +5的方差为.5、函数x xy 322的图像与坐标轴的三个交点分别为(a, 0)(b, 0)(0, c),则a+b+c的值等于.6、在同一平面上,⊙1O 、⊙2O 的半径分别为2和1,1O 2O =5,则半径为9且与⊙1O 、⊙2O 都相切的圆有个.7、一个直角三角形斜边上的两个三等分点与直角顶点的两条连线段长分别为3 cm 和4 cm ,则斜边长为cm .8、用黑白两种颜色的正六边形地面砖按如下所示的规律,拼成若干个图案:题号一二总分得分则第10个图案中有白色地面砖块.9、将函数2x y的图像平移,使平移后的图像过C (0,-2),交x 轴于A 、B 两点,并且△ABC的面积等于4,则平移后的图像顶点坐标是.10、如图,平行四边形ABCD 中,P 点是形内一点,且△PAB 的面积等于8 cm 2,△PAD 的面积等于7 cm 2,,△PCB 的面积等于12 cm 2,则△PCD 的面积是cm 2.(第10题图)(第11题图)11、一个由若干个相同大小的小正方体组成的几何组合体,其主视图与左视图均为如图所示的3 × 3的方格,问该几何组合体至少需要的小正方体个数是.12、正△ABC 内接于⊙O ,D 、E 分别是AB 、AC 的中点,延长DE 交⊙O 与F, 连接BF 交AC 于点P,则PAPC .得分评卷人二、解答题(本大题共5小题,每小题12分,共60分)13、已知(a+b )∶(b+c)∶(c+a)=7∶14∶9求:①a ∶b ∶c②bccab a 2214、一辆客车,一辆货车和一辆小轿车在同一条直线上同时同向行驶,客车在前,小轿车在后,货车在客车与小轿车之间,走了1分钟,小轿车追上了货车;又走了6分钟,小轿车追上了客车.再过8分钟,货车追上了客车.设出发时客车与货车的距离为a ,货车与小轿车的距离为b,求a : b 的值15、在Rt △ABC 中,斜边AB =5厘米,BC =a 厘米,AC =b 厘米,a >b ,且a 、b 是方程2(1)40xm x m 的两根,⑴求a 和b 的值;⑵△A'B'C'与△ABC 开始时完全重合,然后让△ABC 固定不动,将△A'B 'C'以1厘米/秒的速度沿BC 所在的直线向左移动.ⅰ)设x 秒时△A 'B 'C'与△ABC 的重叠部分的面积为y 平方厘米(y >0),求y 与x 之间的函数关系式,并写出x 的取值范围;ⅱ)几秒时重叠部分的面积等于38平方厘米?16、已知A (5,0),点B 在第一象限内,并且AB 与直线l :x y43平行,AB 长为8.(1)求点B 的坐标. (2)点P 是直线l:x y43上的动点,求△PAB 内切圆的最大面积. ABCM A'B'C'A(5,0)BxOyl:xy 4317、已知半径为r 的⊙1O 与半径为R 的⊙2O 外离,直线DE 经过1O 切⊙2O 于点E 并交⊙1O 于点A 和点D , 直线CF 经过2O 切⊙1O 于点F 并交⊙2O 于点B 和点C, 连接AB 、CD, (1)[以下ⅰ)、ⅱ)两小题任选一题]ⅰ) 求四边形ABCD 的面积ⅱ) 求证:A 、B 、E 、F 四点在同一个圆上(2)求证:AB //DCF EBADO 2CO 1【2】2010安徽蚌埠是重点高中自主招生(数学)测试题◆注意事项:1. 本卷满分150分,考试时间120分钟;2. 所有题目必须在答题卷上作答,否则不予计分。
重点高中自主招生考试数学试题大全
3、已知: ,x2+3x为( )
A、1 B、-3和1 C、3 D、-1或3
4、四边形ABCD的对角线AC、BD交于点O,且S△AOB=4,S△COD=9,则四边形A B CD面积有( )
A、最小值12 B、最大值12
C、.最小值25 D、最大值25
5、二个天平的盘中,形状相同的物体质尊相等,如图(1)图(2)所示的两个天平处于平街状态,要使第三个天平也保持平衡,则需在它的右盘中放置( )
A.1个 B.2个 C.3个 D.4个
10.已知 为实数,则代数式 的最小值为………………( )
A. B. C. D.
二、填空题(本大题共有6小题,每小题4分,共24分.请将正确的答案直接填写在答题卷中相应的横线上)
11.函数 的自变量 的取值范围是.
12.分解因式: .
13.把 个边长为 的正方形排成如右图所示的
19.将背面相同,正面分别标有数字 、 、 、 的四张卡片洗匀后,背面朝上放在桌面上.
(1)从中随机抽取一张卡片,求该卡片正面上的数字是偶数的概率;
(2)先从中随机抽取一张卡片(不放回),将该卡片正面上的数字作为十位上的数字;再随机抽取一张,将该卡片正面上的数字作为个位上的数字,则组成的两位数恰好是4的倍数的概率是多少?请用树状图或列表法加以说明.
正方体木块的个数为………………( )
A. 个 B. 个
C. 个 D. 个
8.用半径为 、圆心角为 的扇形做成一个圆锥的侧面, 则这个圆锥的底面半径是……………………………………………………………………( )
A. cm B. cm C. cm D. cm
9.若 为整数,则能使 也为整数的 的个数有 ……………………( )
重点高中自主招生考试数学试卷精选全文
可编辑修改精选全文完整版重点高中自主招生考试数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分.).1.(3分)若不等式组的解集是x>3,则m的取值范围是()A.m>3 B.m≥3 C.m≤3 D.m<3解答:解:由x+7<4x﹣2移项整理得:﹣3x<﹣9,∴x>3,∵x>m,又∵不等式组的解集是x>3,∴m≤3.故选C.2.(3分)如图,在△ABC中.∠ACB=90°,∠ABC=15°,BC=1,则AC=()A.B.C.0.3 D.分析:本题中直角三角形的角不是特殊角,故过A作AD交BC于D,使∠BAD=15°,根据三角形内角和定理可求出∠DAC及∠ADC的度数,再由特殊角的三角函数值及勾股定理求解即可.解答:解:过A作AD交BC于D,使∠BAD=15°,∵△ABC中.∠ACB=90°,∠ABC=15°,∴∠BAC=75°,∴∠DAC=∠BAC﹣∠BAD=75°﹣15°=60°,∴∠ADC=90°﹣∠DAC=90°﹣60°=30°,∴AC=AD,又∵∠ABC=∠BAD=15°∴BD=AD,∵BC=1,∴AD+DC=1,设CD=x,则AD=1﹣x,AC=(1﹣x),∴AD2=AC2+CD2,即(1﹣x)2=(1﹣x)2+x2,解得:x=﹣3+2,∴AC=(4﹣2)=2﹣故选B.3.(3分)(2011•南漳县模拟)如图,AB为⊙O的一固定直径,它把⊙O分成上,下两个半圆,自上半圆上一点C作弦CD⊥AB,∠OCD的平分线交⊙O于点P,当点C在上半圆(不包括A,B两点)上移动时,点P()A.到CD的距离保持不变B.位置不变C.D.随C点移动而移动等分分析:连OP,由CP平分∠OCD,得到∠1=∠2,而∠1=∠3,所以有OP∥CD,则OP⊥AB,即可得到OP平分半圆APB.解答:解:连OP,如图,∵CP平分∠OCD,∴∠1=∠2,而OC=OP,有∠1=∠3∴∠2=∠3,∴OP∥CD,又∵弦CD⊥AB,∴OP⊥AB,∴OP平分半圆APB,即点P是半圆的中点.故选B.4.(3分)已知y=+(x,y均为实数),则y的最大值与最小值的差为()A.2﹣1 B.4﹣2C.3﹣2D.2﹣2分析:首先把y=+两边平方,求出定义域,然后利用函数的单调性求出函数的最大值和最小值,最后求差.解答:解:∵y=+,∴y2=4+2=4+2×,∵1≤x≤5,当x=3时,y的最大值为2,当x=1或5时,y的最小值为2,故当x=1或5时,y 取得最小值2,当x取1与5中间值3时,y取得最大值,故y的最大值与最小值的差为2﹣2,故选D.5.(3分)(2010•泸州)已知O为圆锥的顶点,M为圆锥底面上一点,点P在OM上.一只蜗牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过的最短路线的痕迹如图所示.若沿OM将圆锥侧面剪开并展开,所得侧面展开图是()A.B.C.D.考点:线段的性质:两点之间线段最短;几何体的展开图.分析:此题运用圆锥的性质,同时此题为数学知识的应用,由题意蜗牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过的最短,就用到两点间线段最短定理.解答:解:蜗牛绕圆锥侧面爬行的最短路线应该是一条线段,因此选项A和B错误,又因为蜗牛从p点出发,绕圆锥侧面爬行后,又回到起始点P处,那么如果将选项C、D 的圆锥侧面展开图还原成圆锥后,位于母线OM上的点P应该能够与母线OM′上的点(P′)重合,而选项C还原后两个点不能够重合.故选D.点评:本题考核立意相对较新,考核了学生的空间想象能力.6.(3分)已知一正三角形的边长是和它相切的圆的周长的两倍,当这个圆按箭头方向从某一位置沿正三角形的三边做无滑动的旋转,直至回到原出发位置时,则这个圆共转了()A.6圈B.6.5圈C.7圈D.8圈分析:根据直线与圆相切的性质得到圆从一边转到另一边时,圆心要绕其三角形的顶点旋转120°,则圆绕三个顶点共旋转了360°,即它转了一圈,再加上在三边作无滑动滚动时要转6圈,这样得到它回到原出发位置时共转了7圈.解解:圆按箭头方向从某一位置沿正三角形的三边做无滑动的旋转,∵等边三角形的边长是和它相切的圆的周长的两倍,∴圆转了6圈,而圆从一边转到另一边时,圆心绕三角形的一个顶点旋转了三角形的一个外角的度数,圆心要绕其三角形的顶点旋转120°,∴圆绕三个顶点共旋转了360°,即它转了一圈,∴圆回到原出发位置时,共转了6+1=7圈.故选C.点评:本题考查了直线与圆的位置关系,弧长公式:l=(n为圆心角,R为半径);也考查了旋转的性质.7.(3分)二次函数y=ax2+bx+c的图象如下图,则以下结论正确的有:①abc>0;②b <a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1,m为实数)()A.2个B.3个C.4个D.5个解答:解:①由图象可知:a<0,b>0,c>0,abc<0,错误;②当x=﹣1时,y=a﹣b+c <0,即b>a+c,错误;③由对称知,当x=2时,函数值大于0,即y=4a+2b+c>0,正确;④当x=3时函数值小于0,y=9a+3b+c<0,且x=﹣=1,即a=﹣,代入得9(﹣)+3b+c<0,得2c<3b,正确;⑤当x=1时,y的值最大.此时,y=a+b+c,而当x=m 时,y=am2+bm+c,所以a+b+c>am2+bm+c,故a+b >am 2+bm ,即a+b >m (am+b ),正确.③④⑤正确.故选B . 8.(3分)如图,正△ABC 中,P 为正三角形内任意一点,过P 作PD ⊥BC ,PE ⊥AB ,PF ⊥AC 连结AP 、BP 、CP ,如果,那么△ABC 的内切圆半径为( )A . 1B .C . 2D .解答: 解:如图,过P 点作正△ABC 的三边的平行线,则△MPN ,△OPQ ,△RSP 都是正三角形,四边形ASPM ,四边形NCOP ,四边形PQBR 是平行四边形,故可知黑色部分的面积=白色部分的面积,又知S △AFP +S △PCD +S △BPE =,故知S △ABC =3,S △ABC =AB 2sin60°=3,故AB=2,三角形ABC 的高h=3,△ABC 的内切圆半径r=h=1.故选A .二、填空题(本大题共8小题,每小题3分,共24分) 9.(3分)与是相反数,计算=.解答:解:∵与|3﹣a ﹣|互为相反数,∴+|3﹣a ﹣|=0,∴3﹣a ﹣=0,解得a+=3,∴a+2+=3+2,根据题意,a >0,∴(+)2=5,∴+=.答案为:.10.(3分)若[x ]表示不超过x 的最大整数,,则[A ]=﹣2 .分析: 先根据零指数幂和分母有理化得到A=﹣,而≈1.732,然后根据[x ]表示不超过x的最大整数得到,[A ]=﹣2. 解答:解:∵A=++1=++1=+1=+1=﹣1﹣+1=﹣,∴[A ]=[﹣]=﹣2.故答案为﹣2.点本题考查了取整计算:[x ]表示不超过x 的最大整数.也考查了分母有理化和零指数幂.评:11.(3分)如图,M、N分别为△ABC两边AC、BC的中点,AN与BM交于点O,则=.分析:连接MN,设△MON的面积是s,由于M、N分别为△ABC两边AC、BC的中点,易知MN是△ABC的中位线,那么MN∥AB,MN=AB,根据平行线分线段成比例定理可得△MON∽△BOA,于是OM:OB=MN:AB=1:2,易求△BON的面积是2s,进而可知△BMN的面积是3s,再根据中点性质,可求△BCM的面积等于6s,同理可求△ABC的面积是12s,从而可求S△BON:S△ABC.解答:解:连接MN,设△MON的面积是s,∵M、N分别为△ABC两边AC、BC的中点,∴MN是△ABC的中位线,∴MN∥AB,MN=AB,∴△MON∽△BOA,∴OM:OB=MN:AB=1:2,∴△BON的面积=2s,∴△BMN的面积=3s,∵N是BC的中点,∴△BCM的面积=6s,同理可知△ABC的面积=12s,∴S△BON:S△ABC=2s:12s=1:6,故答案是.点评:本题考查了相似三角形的判定和性质、三角形中位线定理,解题的关键是连接MN,构造相似三角形.12.(3分)如图,已知圆O的面积为3π,AB为直径,弧AC的度数为80°,弧BD的度数为20°,点P为直径AB上任一点,则PC+PD的最小值为3.考点:轴对称-最短路线问题;勾股定理;垂径定理;圆心角、弧、弦的关系.专题:探究型.分析:先设圆O的半径为r,由圆O的面积为3π求出R的值,再作点C关于AB的对称点C′,连接OD,OC′,DC′,则DC′的长即为PC+PD的最小值,由圆心角、弧、弦的关系可知==80°,故BC′=100°,由=20°可知=120°,由OC′=OD可求出∠ODC′的度数,进而可得出结论.解答:解:设圆O的半径为r,∵⊙O的面积为3π,∴3π=πR2,即R=.作点C关于AB的对称点C′,连接OD,OC′,DC′,则DC′的长即为PC+PD的最小值,∵的度数为80°,∴==80°,∴=100°,∵=20°,∴=+=100°+20°=120°,∵OC′=OD,∴∠ODC′=30°∴DC′=2OD•cos30°=2×=3,即PC+PD的最小值为3.故答案为:3.13.(3分)从1,2,3,5,7,8中任取两数相加,在不同的和数中,是2的倍数的个数为a,是3的倍数的个数为b,则样本6、a、b、9的中位数是 5.5.分析:首先列举出所有数据的和,进而利用已知求出a,b的值,再利用中位数是一组数据重新排序后之间的一个数或之间两个数的平均数,由此即可求解.解答:解:根据从1,2,3,5,7,8中任取两数相加,可以得出所有可能:1+2=3,1+3=4,1+5=6,1+7=8,1+8=9,2+3=5,2+5=7,2+7=9,2+8=10,3+5=8,3+7=10,3+8=11,5+7=12,5+8=13,7+8=15,它们和中所有不同数据为:3,4,5,6,7,8,9,10,11,12,13,15,故是2的倍数的个数为a=5,是3的倍数的个数为b=5,则样本6、5、5、9按大小排列为:5,5,6,9,则这组数据的中位数是:=5.5,故答案为:5.5.14.(3分)由直线y=kx+2k﹣1和直线y=(k+1)x+2k+1(k是正整数)与x轴及y轴所围成的图形面积为S,则S的最小值是.分析:首先用k表示出两条直线与坐标轴的交点坐标,然后表示出围成的面积S,根据得到的函数的取值范围确定其最值即可.解答:解:y=kx+2k﹣1恒过(﹣2,﹣1),y=(k+1)x+2k+1也恒过(﹣2,﹣1),k为正整数,那么,k≥1,且k∈Z如图,直线y=kx+2k﹣1与X轴的交点是A(,0),与y轴的交点是B (0,2k﹣1)直线y=(k+1)x+2k+1与X轴的交点是C(,0),与y轴的交点是D (0,2k+1),那么,S四边形ABDC=S△COD﹣S△AOB,=(OC•OD﹣OA•OB),=[﹣],=(4﹣),=2﹣又,k≥1,且k∈Z,那么,2﹣在定义域k≥1上是增函数,因此,当k=1时,四边形ABDC的面积最小,最小值S=2﹣=.点评:本题考查了两条指向相交或平行问题,解题的关键是用k表示出直线与坐标轴的交点坐标并用k表示出围成的三角形的面积,从而得到函数关系式,利用函数的知识其最值问题.15.(3分)(2010•随州)如图,在矩形纸片ABCD中,AB=5cm,BC=10cm,CD上有一点E,ED=2cm,AD上有一点P,PD=3cm,过P作PF⊥AD交BC于F,将纸片折叠,使P点与E点重合,折痕与PF交于Q点,则PQ的长是cm.分析:过Q点作QG⊥CD,垂足为G点,连接QE,设PQ=x,根据折叠及矩形的性质,用含x的式子表示Rt△EGQ的三边,再用勾股定理列方程求x即可.解答:解:过Q点作QG⊥CD,垂足为G点,连接QE,设PQ=x,由折叠及矩形的性质可知,EQ=PQ=x,QG=PD=3,EG=x﹣2,在Rt△EGQ中,由勾股定理得EG2+GQ2=EQ2,即:(x﹣2)2+32=x2,解得:x=,即PQ=.16.(3分)(2010•随州)将半径为4cm的半圆围成一个圆锥,在圆锥内接一个圆柱(如图示),当圆柱的侧面的面积最大时,圆柱的底面半径是1cm.分析:易得扇形的弧长,除以2π也就得到了圆锥的底面半径,再加上母线长,利用勾股定理即可求得圆锥的高,利用相似可求得圆柱的高与母线的关系,表示出侧面积,根据二次函数求出相应的最值时自变量的取值即可.解答:解:扇形的弧长=4πcm,∴圆锥的底面半径=4π÷2π=2cm,∴圆锥的高为=2cm,设圆柱的底面半径为rcm,高为Rcm.=,解得:R=2﹣r,∴圆柱的侧面积=2π×r×(2﹣r)=﹣2πr2+4πr(cm2),∴当r==1cm时,圆柱的侧面积有最大值.三、解答题(72)17.(14分)已知抛物线y=﹣x2+bx+c(c>0)过点C(﹣1,0),且与直线y=7﹣2x只有一个交点.(1)求抛物线的解析式;(2)若直线y=﹣x+3与抛物线相交于两点A、B,则在抛物线的对称轴上是否存在点Q,使△ABQ是等腰三角形?若存在,求出Q点坐标;若不存在,说明理由.分析:(1)将C点坐标代入y=﹣x2+bx+c得c=b+1,联立抛物线y=﹣x2+bx+b+1与直线y=7﹣2x,转化为关于x的二元一次方程,令△=0求b的值即可;(2)直线y=﹣x+3与(1)中抛物线求A、B两点坐标,根据抛物线解析式求对称轴,根据线段AB为等腰三角形的腰或底,分别求Q点的坐标.解答:解:(1)把点C(﹣1,0)代入y=﹣x2+bx+c中,得﹣1﹣b+c=0,解得c=b+1,联立,得x2﹣(b+2)x+6﹣b=0,∵抛物线与直线只有一个交点,∴△=(b+2)2﹣4(6﹣b)=0,解得b=﹣10或2,∵c=b+1>0,∴b=2,∴抛物线解析式为y=﹣x2+2x+3;(2)存在满足题意的点Q.联立,解得或,则A(0,3),B(3,0),由抛物线y=﹣x2+2x+3,可知抛物线对称轴为x=1,由勾股定理,得AB=3,当AB为腰,∠A为顶角时,Q(1,3+)或(1,3﹣);当AB为腰,∠B为顶角时,Q(1,)或(1,﹣);当AB为底时,Q(1,1).故满足题意的Q点坐标为:(1,3+)或(1,3﹣)或(1,)或(1,﹣)或(1,1).18.(14分)有一河堤坝BCDF为梯形,斜坡BC坡度,坝高为5m,坝顶CD=6m,现有一工程车需从距B点50m的A处前方取土,然后经过B﹣C﹣D放土,为了安全起见,工程车轮只能停在离A、D处1m的地方即M、N处工作,已知车轮半经为1m,求车轮从取土处到放土处圆心从M到N所经过的路径长.分析:作出圆与BA,BC相切时圆心的位置G,与CD相切时圆心的位置P,与CD相切时圆心的位置I,分别求得各段的路径的长,然后求和即可.解答:解:当圆心移动到G的位置时,作GR⊥AB,GL⊥BC分别于点R,L.∵,∴∠CBF=30°,∴∠RGB=15°,∵直角△RGB中,tan∠RGB=,∴BR=GR•tan∠RGB=2﹣,则BL=BR=2﹣,则从M移动到G的路长是:AB﹣BR﹣1=50﹣(2﹣)﹣1=47+m,BC=2×5=10m,则从G移动到P的位置(P是圆心在C,且与BC相切时圆心的位置),GP=10﹣BL=10﹣(2﹣)=8+m;圆心从P到I(I是圆心在C,且与CD相切时圆心的位置),移动的路径是弧,弧长是:=m;圆心从I到N移动的距离是:6﹣1=5m,则圆心移动的距离是:(47+)+(8+)+5+=60+2+(m).19.(14分)如图,过正方形ABCD的顶点C在形外引一条直线分别交AB、AD延长线于点M、N,DM与BN交于点H,DM与BC交于点E,BN△AEF与DC交于点F.(1)猜想:CE与DF的大小关系?并证明你的猜想.(2)猜想:H是△AEF的什么心?并证明你的猜想.分析:(1)利用正方形的性质得到AD∥BC,DC∥AB,利用平行线分线段成比例定理得到,,从而得到,然后再利用AB=BC即可得到CE=DF;(2)首先证得△ADF≌△DCE,从而得到∠DAF=∠FDE,再根据∠DAF+∠ADE=90°得到AF⊥DE,同理可得FB⊥AE,进而得到H为△AEF的垂心.解答:解:(1)CE=DF;证明:∵正方形ABCD∴AD∥BC,DC∥AB∴,(∴∴又AB=BC∴CE=DF;(2)垂心.在△ADF与△DCE中,,∴△ADF≌△DCE(SAS),∴∠DAF=∠FDE,∵∠DAF+∠ADE=90°,∴AF⊥DE,同理FB⊥AE.H为△AEF的垂心.20.(15分)如图,已知菱形ABCD边长为,∠ABC=120°,点P在线段BC延长线上,半径为r1的圆O1与DC、CP、DP分别相切于点H、F、N,半径为r2的圆O2与PD延长线、CB延长线和BD分别相切于点M、E、G.(1)求菱形的面积;(2)求证:EF=MN;(3)求r1+r2的值.解答:(1)解:∵菱形ABCD边长为,∠ABC=120°,∴△ADC和△DBC都是等边三角形,∴菱形的面积=2S△DBC=2××(6)2=54;(2)证明:∵PM与PE都是⊙O2的切线,∴PM=PE,又∵PN与PF都是⊙O1的切线,∴PN=PF,∴PM﹣PN=PE﹣PB,即EF=MN;(3)解:∵BE与BG都是⊙O2的切线,∴BE=BG,∠O2BE=∠O2BG,O2E⊥BE,而∠EBG=180°﹣∠DBC=180°﹣60°=120°,∴∠O2BE=60°,∠EO2B=30°,∴BE=O2E=r2,∴BG=r2,∴DM=DG=6﹣r2,同理可得CF=r1,DN=DH=6﹣r1,∴MN=DM+DN=12﹣(r1+r2),∵EF=EB+BC+CF=r2+6+r1=6+(r1+r2),而EF=MN,∴6+(r1+r2)=12﹣(r1+r2),∴r1+r2=9.21.(15分)(2012•黄冈)如图,已知抛物线的方程C1:y=﹣(x+2)(x﹣m)(m>0)与x轴相交于点B、C,与y轴相交于点E,且点B在点C的左侧.(1)若抛物线C1过点M(2,2),求实数m的值;(2)在(1)的条件下,求△BCE的面积;(3)在(1)条件下,在抛物线的对称轴上找一点H,使BH+EH最小,并求出点H的坐标;(4)在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F为顶点的三角形与△BCE 相似?若存在,求m的值;若不存在,请说明理由.解答:解:(1)依题意,将M(2,2)代入抛物线解析式得:2=﹣(2+2)(2﹣m),解得m=4.(2)令y=0,即(x+2)(x﹣4)=0,解得x1=﹣2,x2=4,∴B(﹣2,0),C(4,0)在C1中,令x=0,得y=2,∴E(0,2).∴S△BCE=BC•OE=6.(3)当m=4时,易得对称轴为x=1,又点B、C关于x=1对称.如解答图1,连接EC,交x=1于H点,此时BH+EH最小(最小值为线段CE的长度).设直线EC:y=kx+b,将E(0,2)、C(4,0)代入得:y=x+2,当x=1时,y=,∴H(1,).(4)分两种情形讨论:①当△BEC∽△BCF时,如解答图2所示.则,∴BC2=BE•BF.由函数解析式可得:B(﹣2,0),E(0,2),即OB=OE,∴∠EBC=45°,∴∠CBF=45°,作FT⊥x 轴于点T,则∠BFT=∠TBF=45°,∴BT=TF.∴可令F(x,﹣x﹣2)(x>0),又点F在抛物线上,∴﹣x﹣2=﹣(x+2)(x﹣m),∵x+2>0,∵x>0,∴x=2m,F(2m,﹣2m﹣2).此时BF==2(m+1),BE=,BC=m+2,又∵BC2=BE•BF,∴(m+2)2=•(m+1),∴m=2±,∵m>0,∴m=+2.②当△BEC∽△FCB时,如解答图3所示.则,∴BC2=EC•BF.∵△BEC∽△FCB∴∠CBF=∠ECO,∵∠EOC=∠FTB=90°,∴△BTF∽△COE,∴,∴可令F(x,(x+2))(x>0)又∵点F在抛物线上,∴(x+2)=﹣(x+2)(x ﹣m),∵x>0,∴x+2>0,∴x=m+2,∴F(m+2,(m+4)),EC=,BC=m+2,又BC2=EC•BF,∴(m+2)2=•整理得:0=16,显然不成立.综合①②得,在第四象限内,抛物线上存在点F,使得以点B、C、F为顶点的三角形与△BCE相似,m=+2.。
【中考数学】历年各校自招数学真题及参考答案
1 1 10.定义 min a, b, c 表示实数 a, b, c 中的最小值,若 x, y 是任意正实数,则 M min x, , y 的最大 x y
值是 .
二、计算题(20 分) (10 分) 11.四个不同的三位整数的首位数字相同,并且它们的和能被它们中的三个数整除,求这些数.
12.如图,已知 PA 切 O 于 A , APO 30 , AH PO 于 H ,任作割线 PBC 交 O 于点 B 、 C ,计算
HC HB 的值.(10 分) BC
2.定义①1*1=1,②(n+1)*1=n*1+1,求 n*1=_________;
3. f ( x)
(a 1) x 2 (a 3) x 2a 8 的定义域为 D, f ( x)>0 在定义域 D 内恒成立,求 a 的取值范围? (2a 1) x 2 (a 1) x a 4
3 3 3
.
3.若有理数 a, b 满足
21 3 3 a b ,则 a b 4
.
4.如图, △ABC 中,AC=3,BC=4,AB=5,线段 DE⊥AB,且 △BDE 的面积是 △ABC 面积的三分之一, 那么,线段 BD 长为 。
5.二次函数 y ax 2 bx c 的图像与 x 轴有两个交点 M,N,顶点为 R,若 △MNR 恰好是等边三角形, 则 b 2 4ac 。
7.如图所示,正方形 ABCD 的面积设为 1, E 和 F 分别是 AB 和 BC 的中点,则图中阴影部分的面积 是 .
自招真题合集
8.在直角梯形 ABCD 中, ABC BAD 90o , AB 16 ,对角线 AC 与交 BD 于点 E ,过 E 作 EF AB 于点 F , O 为边 AB 的中点,且 FE EO 8 ,则 AD BC 的值为 .
长沙市高中四大名校自主招生考试试卷附答案(中考、理科数学竞赛必备).
长郡中学2008年高一实验班选拔考试试卷注意:(1) 试卷共有三大题16小题,满分120分,考试时间80分钟. (2) 请把解答写在答题卷的对应题次上, 做在试题卷上无效.一、 选择题(本题有6小题,每小题5分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母填在答题卷中相应的格子内.1.在直角坐标系中,若一点的横坐标与纵坐标互为相反数,则该点一定不在( ) (A) 直线y = –x 上 (B) 抛物线 y =2x 上 (C) 直线y = x 上 (D) 双曲线xy = 1上2.以等速度行驶的城际列车,若将速度提高25%,则相同距离的行车时间可节省k%,那么k 的值是 ( )(A) 35 (B) 30 (C) 25 (D) 20 3.若-1<a <0,则aa a a 1,,,33一定是 ( ) (A) a1最小,3a 最大 (B) 3a 最小,a 最大(C)a 1最小,a 最大 (D) a1最小, 3a 最大4.如图,将△ADE 绕正方形ABCD 的顶点A 顺时针旋转90°,得△ABF ,连结EF 交AB 于H ,则下列结论错误的是( )(A) AE ⊥AF (B )EF :AF =2:1 (C) AF 2 = FH ·FE (D )FB :FC = HB :EC5.在△ABC 中,点D ,E 分别在AB ,AC 上,且CD 与BE 相交于点F ,已知△BDF 的面积为10,△BCF 的面积为20,△CEF 的面积为16,则四边形区域ADFE 的面积等于( ) (A) 22 (B) 24 (D) 36 (D)446.某医院内科病房有护士15人,每2人一班,轮流值班,每8小时换班一次,某两人同值一班后,到下次两人再同班,最长需要的天数是( ) (A )30 (B )35 (C )56 (D ) 448 二、填空题(本题有6个小题,每小题5分,共30分)7.若4sin 2A – 4sinAcosA + cos 2A = 0, 则tanA = ___ ___ .第4题8.在某海防观测站的正东方向12海浬处有A 、B 两艘船相会之后,A 船以每小时12海浬的速度往南航行,B 船则以每小时3海浬的速度向北漂流. 则经过 小时后,观测站及A 、B 两船恰成一个直角三角形.9.如右图,在坐标平面上,沿着两条坐标轴摆着三个相同的长方形,其长、宽分别为4、2,则通过A,B,C 三点的拋物线对应的函数关系式是 .10.桌面上有大小两颗球,相互靠在一起。
襄阳四中、五中自主招生测试数学试题
襄阳四中、五中⾃主招⽣测试数学试题襄阳四中、五中⾃主招⽣模拟测试数学试题亲爱的同学们,欢迎参加襄阳四中、五中⾃主招⽣考核.希望你们凝神静⽓,考出⽔平!开放的襄阳四中、五中热忱欢迎你们!本学科满分为120分,共21题;⽤时120分钟.⼀、选择题(本⼤题共8⼩题,每⼩题4分,共32分)1. 已知a 为实数,关于x 的⽅程08)64()2(22=+-+-x a x a a 的解都是整数,则a 的值的个数为( )A.3B.4C.5D.6 2. 连续2次掷⽴⽅体骰⼦得到的点数依次为n m ,,则以点A ),(),3,4(),0,0(n m C B 为顶点能构成等腰三⾓形的概率为( )A.61 B.91 C.365 D.367 3. 设c b a ,,均为正数,若ac b c b a b a c +<+<+,则c b a ,,三个数的⼤⼩关系是( ) A.c b a << B.a c b << C.b a c << D.a b c <<4. 如图是⼀个切去了⼀个⾓的正⽅体纸盒,切⾯与棱的交点A 、B 、C 均是棱的中点,现将纸盒剪开展成平⾯,则展开图不可能是( )A. B. C. D. 5. 如图,在半径为1的⊙O 中,直径AB 把⊙O 分成上下两个半圆,点上半圆上⼀个动点(C 与点A,B 不重合),过点C 作弦CD ⊥AB,∠OCD 的平分线交⊙O 于点P,设CE=x ,AP=y,下列图象中,能反映A. B. C. D. 6. 如图,在△AOB 中,已知∠AOB=90°,AO=3,BO=6,将△AOB 绕点O 逆时针旋转到△A`OB`处,此时线段A`B`与BO 的交点E 为BO 的中点,那么线段B`E 的长度为( ) A.556 B.557 C.558 D.559 7. 如图,矩形ABCD 被分成8块,图中的数字是其中5块的⾯积数,则图中阴影部分的⾯积为( )A.80B.85C.90D.958. 已知n 为正整数,⼆次⽅程0)12(22=+++n x n x 的两根为n n βα,,则)1)(1(1)1)(1(1)1)(1(120204433+++++++++βαβαβα的值为( ) A.4019 B.4029 C.760341 D.760531⼆、填空题(本⼤题共7⼩题,每⼩题4分,共28分)9. 如图1是长⽅形纸带,∠DEF=24°,将纸带沿EF 折叠成图2,再沿BF 折叠成图3,则图3中的∠CFE 的度数是____________.10. 已知整数4321,,,a a a a 满⾜下列条件:|,2||,1|,023121+-=+-==a a a a a+-=|,3|34a a 依次类推,则2018a 的值为__________.11. 现有1-13共13张已按⼀定顺序正⾯朝上叠放好的扑克牌,将牌的第1张放到第13张后⾯,拿出此时牌的最上⾯的⼀张,放在桌⼦上;再将⼿中牌的第1张放到最后,拿出牌的最上⾯的⼀张,放在桌⼦上,……,如此反复进⾏,直到⼿中的牌全部取出.如果取出的牌的顺序正好是1,2,3,4,……,11,12,13,则原来扑克牌的顺序为7,1,12,2,8,3,11,4,9,5,13,6,10.若取出的牌的顺序为13,12,11,……,3,2,1,那么按原来牌的顺序第10张牌为________.12. 已知三个⾮负实数c b a ,,满⾜:523=++c b a 和132=-+c b a ,若c b a m 73-+=,则第7题图第6题图B 图3图2图1C D G F C G F F C A B B A A B D E E D Em 的最⼩值为__________.13. 甲⼄两个机器⼈同时按匀速进⾏1000⽶速度测试,⾃动记录仪表明:当甲距离终点差10⽶,⼄距离终点差20⽶;甲到达终点时,⼄距离终点差10.1⽶,经过计算,这条跑道长度不标准,则这条跑道⽐1000⽶多________⽶.14. 如图,在△ABC 中,AB=AC=15,54cos =∠BAC ,点D 在边AB 上,且AD=2BD,点E 是边AC 上的⼀个动点,把△ADE 沿直线DE 翻折后,得到△FDE,且EF ⊥AC,那么点A 到E 的距离是__________.15. 两个反⽐例函数x k y =)1(>k 和x y 1=在第⼀象限内的图象如图所⽰,点P 在xk y =的图象上,PC ⊥x 轴于点C,交x y 1=的图象于点A,PD ⊥y 轴于点D,交xy 1=的图象于点B,当点P 在xky =的图象上运动时,以下结论:①△ODB 与△OCA 的⾯积相等;②四边形PAOB 的⾯积不会发⽣变化;③当点A 是PC 的中点时,点B ⼀定是PD 的中点;④PB PA ?的值不会发⽣变化;⑤若k 变化时,PB PA ?的值随k 的增⼤⽽增⼤.其中⼀定正确的是___________.三、解答题(本⼤题共6⼩题,每⼩题10分,共60分)16. 解⽅程:)0}({2][2≥+=x x x x(注:][x 表⽰实数x 的整数部分,}{x 表⽰实数x 的⼩数部分,14.0}14.3{,3]14.3[==)17. 已知实数b a ≠,且满⾜22)1(3)1(3),1(33)1(+-=++-=+b b a a ,求baaa b b+的值.第15题图第14题图C18. 已知如图,△ABC 中,4:2:1::=∠∠∠C B A ,设c AB b AC a BC ===,,. 求证:ac b 111=+.19. 在两个三⾓形的六对元素(三对⾓与三对边)中,即使有五对元素对应相等,这两个三⾓形也未必全等.(1) 试给出⼀个这样的样⼦,画出简图,分别标出两个三⾓形的边长;(2) 为了把所有这样的反例都构造出来,试探求符合条件的此类三⾓形三边的⼀般规律(要求过程完整,推理严密,结论明晰)20. 已知⼆次函数),(2为常数n m n mx x y ++=.(1)当3,2-==n m 时,若⾃变量x 的值满⾜20≤≤x ,求⼆次函数的最⼩值; (2)当3-=n 时,若⾃变量x 的值满⾜20≤≤x ,求⼆次函数的最⼩值(可以⽤m 表⽰);(3)当2m n =时,若⾃变量x 的值满⾜3+≤≤m x m 的情况下,与其对应的函数值y 的最的最⼩值是21,求此时⼆次函数的解析式.A21. 如图,已知在△ABC 中,AB=AC=6,AH ⊥BC 于H.点D 在边AB 上,且AD=2,连接CD 交 AH 于点E.(1) 如图1,如果AE=AE,求AH 的长;(2) 如图2,圆A 是以点A 为圆⼼,AD 为半径的圆,交AH 于点F.设点P 为边BC 上⼀点, 如果以点P 为圆⼼,BP 为半径的圆与圆A 外切,以点P 为圆⼼,CP 为半径的圆与圆A 内切, 求边BC 的长;(3) 如图3,连接DF.设DF=x ,△ABC 的⾯积为y ,求y 关于x 的函数解析式.图3图2图1H H H BC C BBC参考答案:1-8 CBCB ADBD 9. 108° 10.1006- 11. 9 12.75- 13. 10 14. 2或14 15.①②③④ 16.38,34,0321===x x x 17.23- 18.延长BC ⾄E,使得AE=AC,延长AB ⾄D,使BD=AC,连接DE.证△ABC 与△ADE 相似.19.略 20.(1)3-(2)①当0>m 时,最⼩值为3-;②当04<≤-m 时,最⼩值为342--m ③当4-(3) )220(161697223<<--=x x x x y。
2024初升高自主招生数学试卷(一)及参考答案
—1—2024初升高自主招生数学模拟试卷(一)1.方程43||||x x x x -=实数根的个数为()A .1B .2C .3D .42.如图,△ABC 中,点D 在BC 边上,已知AB =AD =2,AC =4,且BD :DC =2:3,则△ABC 是()A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形3.已知G 是面积为24的△ABC 的重心,D 、E 分别为边AB 、BC 的中点,则△DEG 的面积为()A .1B .2C .3D .44.如图,在Rt △ABC 中,AB =35,一个边长为12的正方形CDEF 内接于△ABC ,则△ABC 的周长为()A .35B .40C .81D .845.已知2()6f x x ax a =+-,()y f x =的图象与x 轴有两个不同的交点(x 1,0),(x 2,0),且1212383(1)()1)(16)(16)a a x x a x a x -=-++----,则a 的值是()A .1B .2C .0或12D .126.如图,梯形ABCD 中,AB //CD ,AB =a ,CD =b .若∠ADC =∠BFE ,且四边形ABFE 的面积与四边形CDEF 的面积相等,则EF 的长等于()A .2a b+B .abC .2ab a b +D .222a b +—2—7.在△ABC 中,BD 平分∠ABC 交AC 于点D ,CE 平分∠ACB 交AB 于点E .若BE +CD =BC ,则∠A 的度数为()A .30°B .45°C .60°D .90°8.设23a =,26b =,212c =.现给出实数a 、b 、c 三者之间所满足的四个关系式:①2a c b +=;②23a b c +=-;③23b c a +=+;④21b ac -=.其中,正确关系式的个数是()A .1B .2C .3D .49.已知m 、n 是有理数,方程20x mx n ++=2,则m +n =.10.正方形ABCD 的边长为5,E 为边BC 上一点,使得BE =3,P 是对角线BD 上的一点,使得PE +PC 的值最小,则PB =.11.已知x y ≠,22()()3x y z y z x +=+=.则2()z x y xyz +-=.12.如图,四边形ABCD 的对角线相交于点O ,∠BAD =∠BCD =60°,∠CBD =55°,∠ADB =50°.则∠AOB 的度数为.13.两个质数p 、q 满足235517p q +=,则p q +=.14.如图,四边形ABCD 是矩形,且AB =2BC ,M 、N 分别为边BC 、CD 的中点,AM 与BN 交于点E .若阴影部分的面积为a ,那么矩形ABCD 的面积为.第12题图第14题图15.设k 为常数,关于x 的方程2223923222k k x x k x x k --+=---有四个不同的实数根,求k 的取值范围.—3—16.已知实数a 、b 、c 、d 互不相等,并且满足1111a b c d x b c d a+=+=+=+=,求x 的值.17.已知抛物线2y x =与动直线(21)y t x c =--有公共点(x 1,y 1),(x 2,y 2),且2221223x x t t +=+-.(1)求t 的取值范围;(2)求c 的最小值,并求出c 取最小值时t 的取值.—4—18.如图,已知在⊙O 中,AB 、CD 是两条互相垂直的直径,点E 在半径OA 上,点F 在半径OB 延长线上,且OE=BF ,直线CE 、CF 与⊙O 分别交于点G 、H ,直线AG 、AH 分别与直线CD 交于点N 、M .求证:1DM DN MC NC-=.参考答案。
高考自主招生中考数学试卷
一、选择题(本大题共12小题,每小题5分,共60分)1. 已知集合A={x|2x-1=0},集合B={x|x^2-3x+2=0},则集合A与集合B的交集是()A. {1}B. {2}C. {1, 2}D. 空集2. 在直角坐标系中,点P(a, b)关于原点的对称点是()A. (-a, -b)B. (a, -b)C. (-a, b)D. (a, b)3. 若函数f(x)=x^3-3x在区间[0, 1]上单调递增,则f(0)与f(1)的大小关系是()A. f(0) > f(1)B. f(0) < f(1)C. f(0) = f(1)D. 无法确定4. 在等差数列{an}中,若a1=3,公差d=2,则第10项an的值为()A. 21B. 22C. 23D. 245. 已知函数f(x)=x^2-4x+4,则f(x)的对称轴方程是()A. x=2B. y=2C. x=0D. y=06. 在平面直角坐标系中,点A(1, 2),点B(3, 4),则线段AB的中点坐标是()A. (2, 3)B. (2, 2)C. (3, 3)D. (3, 2)7. 若等比数列{an}的第一项a1=2,公比q=3,则第5项an的值为()A. 54B. 81C. 162D. 2438. 在平面直角坐标系中,点P(2, 3)到直线y=4x的距离是()A. 2B. 3C. 4D. 59. 若函数f(x)=x^3-3x^2+2x在区间[0, 1]上连续,则f(x)的极值点是()A. x=0B. x=1C. x=0或x=1D. 无极值点10. 已知等差数列{an}的前三项分别是a1=2,a2=5,a3=8,则该数列的公差d是()A. 1B. 2C. 3D. 411. 在平面直角坐标系中,若直线y=kx+b与圆x^2+y^2=1相切,则k和b的关系是()A. k^2+b^2=1B. k^2+b^2>1C. k^2+b^2<1D. k^2+b^2=012. 已知函数f(x)=ax^2+bx+c,若f(1)=2,f(2)=4,f(3)=6,则a、b、c的值分别是()A. a=1,b=1,c=1B. a=2,b=2,c=2C. a=3,b=3,c=3D. a=4,b=4,c=4二、填空题(本大题共6个小题,每小题7分,共42分)13. 已知函数f(x)=x^2-4x+3,若f(x)在区间[1, 3]上取得最小值,则最小值是__________。
高中自主招生考试数学试题(含答案详解)
一中自主招生考试数学试题一.选择题(共6小题,满分24分,每小题4分)1.(4分)如果关于x的方程x2﹣ax+a2﹣3=0至少有一个正根,则实数a的取值范围是()A.﹣2<a<2B.C.D.2.(4分)假期里王老师有一个紧急通知,要用电话尽快通知给50个同学,假设每通知一个同学需要1分钟时间,同学接到电话后也可以相互通知,那么要使所有同学都接到通知最快需要的时间为()A.8分钟B.7分钟C.6分钟D.5分钟3.(4分)如图是一个正方体的表面展开图,已知正方体的每一个面都有一个实数,且相对面上的两个数互为倒数,那么代数式的值等于()A.B.﹣6C.D.64.(4分)(2008•青岛)如图,把图1中的△ABC经过一定的变换得到图2中的△A′B′C′,如果图1中△ABC上点P的坐标为(a,b),那么这个点在图2中的对应点P′的坐标为()A.(a﹣2,b﹣3)B.(a﹣3,b﹣2)C.(a+3,b+2)D.(a+2,b+3)5.(4分)如图,四边形BDCE内接于以BC为直径的⊙A,已知:,则线段DE的长是()A.B.7C.4+3D.3+46.(4分)如图,张三同学把一个直角边长分别为3cm,4cm的直角三角形硬纸板,在桌面上翻滚(顺时针方向),顶点A的位置变化为A1⇒A2⇒A3,其中第二次翻滚时被桌面上一小木块挡住,使纸板一边A2C1与桌面所成的角恰好等于∠BAC,则A翻滚到A2位置时共走过的路程为()A.8cm B.8πcm C.2cm D.4πcm二.填空题(共6小题,满分24分,每小题4分)7.(4分)若x+=3,则x2+=_________.8.(4分)如图,E、F分别是平行四边形ABCD的边AB、CD上的点,AF与DE相交于点P,BF与CE相交于点Q,若S△APD=15cm2,S△BQC=25cm2,则阴影部分的面积为_________cm2.9.(4分)如图,正方形ABCD的边长为4cm,正方形AEFG的边长为1cm.如果正方形AEFG绕点A旋转,那么C、F两点之间的最小距离为_________cm.10.(4分)对于正数x,规定f(x)=,计算f()+f()+f()+…+f()+f()+f(1)+f(2)+f(3)+…+f(98)+f(99)+f(100)=_________.11.(4分)甲,乙,丙3人用擂台赛形式进行训练,每局2人进行单打比赛,另1人当裁判,每﹣局的输方去当下﹣局的裁判,而由原来的裁判向胜者挑战.半天训练结束时发现甲共打了12局,乙共打了21局,而丙共当裁判8局.那么,整个比赛的第10局的输方一定是_________.12.(4分)(2002•广州)如图所示,在正方形ABCD中,AO⊥BD,OE,FG,HI都垂直于AD,EF,GH,IJ都垂直于AO,若已知S△AIJ=1,则正方形ABCD的面积为_________.三.解答题(共6小题,满分52分)13.(6分)把几个数用大括号围起来,中间用逗号断开,如:{1,2,3},{2,7,8,19},我们称之为集合,其中的数称其为集合的元素.如果一个集合满足:当实数a是集合的元素时,实数8﹣a也必是这个集合的元素,这样的集合我们称为好的集合.(1)请你判断集合{1,2},{1,4,7}是不是好的集合;(2)请你写出满足条件的两个好的集合的例子.14.(8分)(2007•丽水)在课外活动时间,小王、小丽、小华做“互相踢踺子”游戏,踺子从一人传到另一人就记为踢一次.(1)若从小丽开始,经过两次踢踺后,踺子踢到小华处的概率是多少?(用树状图或列表法说明)(2)若经过三次踢踺后,踺子踢到小王处的可能性最小,应确定从谁开始踢,并说明理由.15.(8分)某中学为了进一步改善办学条件,决定计划拆除一部分旧校舍,建造新校舍.拆除旧校舍每平方米需80元,建造新校舍每平方米需要800元,计划在年内拆除旧校舍与建造新校舍共9000平方米,在实施中为扩大绿化面积,新建校舍只完成了计划的90%而拆除旧校舍则超过了计划的10%,结果恰好完成了原计划的拆、建总面积.(1)求原计划拆、建面积各是多少平方米?(2)若绿化1平方米需要200元,那么把在实际的拆、建工程中节余的资金全部用来绿化,可绿化多少平方米?16.(10分)如图,⊙O的直径EF=cm,Rt△ABC中,∠ACB=90°,∠BAC=30°,AB=cm.E、F、A、B 四点共线.Rt△ABC以1cm/s的速度沿EF所在直线由右向左匀速运动,设运动时间为t(s),当t=0s时,点B与点F重合.(1)当t为何值时,Rt△ABC的直角边与⊙O相切?(2)当Rt△ABC的直角边与⊙O相切时,请求出重叠部分的面积(精确到0.01).17.(10分)(2008•广东)(1)如图1,点O是线段AD的中点,分别以AO和DO为边在线段AD的同侧作等边三角形OAB和等边三角形OCD,连接AC和BD,相交于点E,连接BC.求∠AEB的大小;(2)如图2,△OAB固定不动,保持△OCD的形状和大小不变,将△OCD绕点O旋转(△OAB和△OCD不能重叠),求∠AEB的大小.18.(10分)(2008•益阳)我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.如图所示,点A、B、C、D分别是“蛋圆”与坐标轴的交点,已知点D的坐标为(0,﹣3),AB为半圆的直径,半圆圆心M的坐标为(1,0),半圆半径为2.(1)请你求出“蛋圆”抛物线部分的解析式,并写出自变量的取值范围;(2)你能求出经过点C的“蛋圆”切线的解析式吗?试试看;(3)开动脑筋想一想,相信你能求出经过点D的“蛋圆”切线的解析式.答案与评分标准一.C ,C ,A ,C ,D ,D甲,256,二.7,40,3,,三.解:(1)集合{1,2}不是好的集合,这是因为8﹣1=7,而7不是{1,2}中的数,所以{1,2}不是好的集合,{1,4,7}是好的集合,这是因为8﹣1=7,7是{1,4,7}中的数,8﹣4=4,4也是{1,4,7}中的数,8﹣7=1,1又是{1,4,7}中的数.所以{1,4,7}是好的集合;(2)答案不唯一.集合{4}、{3,4,5}、{2,6}、{1,2,4,6,7}、{0,8}等都是好的集合.解:(1)踺子踢到小华处的概率是.树状图如下:列表法如下:小丽小王小华小王(小丽,小王)(小王,小华)小华(小华,小丽)(小华,小王)(2)小王.树状图如下:理由:若从小王开始踢,三次踢踺后,踺子踢到小王处的概率是,踢到其它两人处的概率都是,因此,踺子踢到小王处的可能性是最小.解:(1)由题意可设拆旧舍x平方米,建新舍y平方米,则答:原计划拆建各4500平方米.(2)计划资金y1=4500×80+4500×800=3960000元实用资金y2=1.1×4500×80+0.9×4500×800=4950×80+4050×800=396000+3240000=3636000∴节余资金:3960000﹣3636000=324000∴可建绿化面积=平方米答:可绿化面积1620平方米.解:(1)∵∠BAC=30°,AB=,∴BC=又∵⊙O的直径EF=,即半径为,∠ACB=90°,∴当点B运动到圆心O时,AC边与⊙O相切.(如图1所示)(1分)此时运动距离为FO=,∴t=s.(2分)当BC边与⊙O相切时(如图2所示),设切点为G.连接OG,则OG⊥BC.(3分)由已知,∠BOG=∠BAC=30°,OG=,∴BO=2.(4分)又FO=,∴BF=.(此步亦可利用相似求解,请参照给分)∴此时s.(5分)由上所述,当秒时,Rt△ABC的直角边与⊙O相切.(6分)(2)由图1,此时⊙O与Rt△ABC的重叠部分为扇形COF.(7分)由已知,∠COF=60°,∴.(8分)由图2,设AC与⊙O交于点M,此时⊙O与Rt△ABC的重叠部分为扇形OMGE加上△OAM.(9分)过点M作MN⊥OG于N,则MN=GC.由(1)可知BG=1则MN=GC=.(10分)∴,∴∠MON=25°,即∠MOE=55°.(11分)∴.(12分)又∵OM=,∴点M到AB的距离h=OM•sin∠MOE≈1.419,(13分)∴S△AOM =•OA•h≈1.229cm2此时⊙O与Rt△ABC的重叠部分的面积为S扇形OMEF+S△AOM≈2.67cm2.(14分)解:(1)如图3,∵△DOC和△ABO都是等边三角形,且点O是线段AD的中点,∴OD=OC=OB=OA,∠1=∠2=60°,∴∠4=∠5.又∵∠4+∠5=∠2=60°,∴∠4=30°.同理∠6=30°.∵∠AEB=∠4+∠6,∴∠AEB=60°.(2)如图4,∵△DOC和△ABO都是等边三角形,∴OD=OC,OB=OA,∠1=∠2=60°.又∵OD=OA,∴OD=OB,OA=OC,∴∠4=∠5,∠6=∠7.∵∠DOB=∠1+∠3,∠AOC=∠2+∠3,∴∠DOB=∠AOC.∵∠4+∠5+∠DOB=180°,∠6+∠7+∠AOC=180°,∴2∠5=2∠6,∴∠5=∠6.又∵∠AEB=∠8﹣∠5,∠8=∠2+∠6,∴∠AEB=∠2+∠6﹣∠5=∠2+∠5﹣∠5=∠2,∴∠AEB=60°.解:(1)根据题意可得:A(﹣1,0),B(3,0);则设抛物线的解析式为y=a(x+1)(x﹣3)(a≠0),又∵点D(0,﹣3)在抛物线上,∴a(0+1)(0﹣3)=﹣3,解之得:a=1∴y=x2﹣2x﹣3(3分)自变量范围:﹣1≤x≤3(4分)(2)设经过点C“蛋圆”的切线CE交x轴于点E,连接CM,在Rt△MOC中,∵OM=1,CM=2,∴∠CMO=60°,OC=在Rt△MCE中,∵MC=2,∠CMO=60°,∴ME=4∴点C、E的坐标分别为(0,),(﹣3,0)(6分)∴切线CE 的解析式为(8分)(3)设过点D(0,﹣3),“蛋圆”切线的解析式为:y=kx ﹣3(k≠0)(9分)由题意可知方程组只有一组解即kx﹣3=x2﹣2x﹣3有两个相等实根,∴k=﹣2(11分)∴过点D“蛋圆”切线的解析式y=﹣2x﹣3.(12分)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
长郡中学2008年高一实验班选拔考试试卷注意:(1) 试卷共有三大题16小题,满分120分,考试时间80分钟. (2) 请把解答写在答题卷的对应题次上, 做在试题卷上无效.一、 选择题(本题有6小题,每小题5分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母填在答题卷中相应的格子内.1.在直角坐标系中,若一点的横坐标与纵坐标互为相反数,则该点一定不在( ) (A) 直线y = –x 上 (B) 抛物线 y =2x 上 (C) 直线y = x 上 (D) 双曲线xy = 1上2.以等速度行驶的城际列车,若将速度提高25%,则相同距离的行车时间可节省k%,那么k 的值是 ( )(A) 35 (B) 30 (C) 25 (D) 20 3.若-1<a <0,则aa a a 1,,,33一定是 ( ) (A) a1最小,3a 最大 (B) 3a 最小,a 最大(C)a 1最小,a 最大 (D) a1最小, 3a 最大4.如图,将△ADE 绕正方形ABCD 的顶点A 顺时针旋转90°,得△ABF ,连结EF 交AB 于H ,则下列结论错误的是( )(A) AE ⊥AF (B )EF :AF =2:1 (C) AF 2 = FH ·FE (D )FB :FC = HB :EC5.在△ABC 中,点D ,E 分别在AB ,AC 上,且CD 与BE 相交于点F ,已知△BDF 的面积为10,△BCF 的面积为20,△CEF 的面积为16,则四边形区域ADFE 的面积等于( ) (A) 22 (B) 24 (D) 36 (D)446.某医院内科病房有护士15人,每2人一班,轮流值班,每8小时换班一次,某两人同值一班后,到下次两人再同班,最长需要的天数是( ) (A )30 (B )35 (C )56 (D ) 448 二、填空题(本题有6个小题,每小题5分,共30分)7.若4sin 2A – 4sinAcosA + cos 2A = 0, 则tanA = ___ ___ .第4题8.在某海防观测站的正东方向12海浬处有A 、B 两艘船相会之后,A 船以每小时12海浬的速度往南航行,B 船则以每小时3海浬的速度向北漂流. 则经过 小时后,观测站及A 、B 两船恰成一个直角三角形.9.如右图,在坐标平面上,沿着两条坐标轴摆着三个相同的长方形,其长、宽分别为4、2,则通过A,B,C 三点的拋物线对应的函数关系式是 .10.桌面上有大小两颗球,相互靠在一起。
已知大球的半径为20cm ,小球半径5cm, 则这两颗球分别与桌面相接触的两点之间的距离等于 cm.11.物质A 与物质B 分别由点A(2,0)同时出发,沿正方形BCDE 的周界做环绕运动,物质A 按逆时针方向以l 单位/秒等速运动,物质B 按顺时针方向,以2单位/秒等速运动,则两个物质运动后的第11次相遇地点的坐标是 . 12.设,C ,C ,C 321… … 为一群圆, 其作法如下:1C 是半径为a 的圆, 在1C 的圆内作四个相等的圆2C (如图), 每个圆2C 和圆1C 都内切, 且相邻的两个圆2C 均外切, 再在每一个圆2C 中, 用同样的方法作四个相等的圆3C , 依此类推作出,C ,C ,C 654…… , 则 (1) 圆2C 的半径长等于(用a表示);(2) 圆k C 的半径为( k 为正整数,用a 表示,不必证明)三、解答题(本题有4个小题,共60分)解答应写出文字说明,证明过程或推演步骤。
13.(本小题满分12分)如图,四边形ABCD 内接于圆O ,且AD是圆O 的直径,DC 与AB 的延长线相交于E 点,OC ∥AB. (1) 求证AD = AE ;(2) 若OC=AB = 4,求△BCE 的面积.(第9题)(第11题)第12题第13题14.(本题满分14分)已知抛物线y = x2 + 2px + 2p –2的顶点为M,(1) 求证抛物线与x 轴必有两个不同交点;(2) 设抛物线与x 轴的交点分别为A,B,求实数p的值使△ABM面积达到最小.15 (本小题满分16分)某次足球邀请赛的记分规则及奖励方案如下表:A队共积19分。
(1) 试判断A队胜、平、负各几场?(2) 若每一场每名参赛队员均得出场费500元,设A队中一位参赛队员所得的奖金与出场费的和为W(元),试求W的最大值.16(本小题满分18分)已知:矩形ABCD ,(字母顺序如图)的边长AB=3,AD=2,将此矩形放在平面直角坐标系xOy 中,使AB 在x 轴正半轴上,而矩形的其它两个顶点在第一象限,且直线y =23x -1经过这两个顶点中的一个. (1)求出矩形的顶点A 、B 、C 、D 的坐标;(2)以AB 为直径作⊙M ,经过A 、B 两点的抛物线,y = ax 2+bx +c 的顶点是P 点.① 若点P 位于⊙M 外侧且在矩形ABCD 内部,求a 的取值范围;② 过点C 作⊙M 的切线交AD 于F 点,当PF ∥AB 时,试判断抛物线与y 轴的交点Q 是位于直线y =32x -1的上方?还是下方?还是正好落在此直线上?并说明理由.(第16题)2008年高一实验班选拔考试数学卷评分标准一、 选择题(本题有6小题,每小题5分,共30分)1.D 2.D 3.A 4.C 5.D 6.B 二、填空题(本题有6个小题,每小题5分,共30分) 7.21. 8.2. 9. y = –125x 2 –21x +320.10.20. 11.( –34,–2). 12.(1) 圆2C 的半径 a )12( ; (2)圆k C 的半径 (2 –1 )n – 1 a . 三、解答题13.(本小题满分12分)(1)证1.∵AD 是圆O 的直径,点C 在圆O 上, ∴∠ACD = 90,即AC ⊥DE.又∵OC ∥AE ,O 为AD 中点,∴AD = AE. 4分证2 ∵O 为AD 中点,OC ∥AE ,∴2OC = AE ,又∵AD 是圆O 的直径,∴ 2OC = AD ,∴AD = AE. 4分(2)由条件得ABCO 是平行四边形,∴BC ∥AD ,又C 为中点,∴AB =BE = 4, ∵AD = AE ,∴BC = BE = 4, 4分 连接BD ,∵点B 在圆O 上, ∴∠DBE= 90,∴CE = BC= 4, 即BE = BC = CE= 4,∴ 所求面积为43. 4分14.(本题满分14分)解:(1) ∵⊿ = 4p 2 – 8p + 8 = 4 ( p –1)2 + 4 >0 ,∴抛物线与x 轴必有两个不同交点. 4分 (2) 设A (x 1, 0 ), B( x 2, 0),则|AB|2 = |x 2 – x 1|2 = [ (x 1 + x 2)2 – 4x 1x 2]2 = [4p 2 – 8p + 8 ]2 = [4 ( p –1)2 + 4]2, ∴|AB| = 21)1p (2+-. 5分 又设顶点M ( a , b ), 由y = ( x – p)2 – ( p – 1 )2 – 1 . 得b = – ( p – 1 )2 – 1 .当p =1时,|b|及|AB|均取最小,此时S △ABM = 21|AB||b|取最小值1 . 5分15 (本小题满分16分)解:(1)设A 队胜x 场,平y 场,负z 场, 得⎩⎨⎧=+=++19y x 312z y x ,可得:⎩⎨⎧-=-=7x 2z x319y 4分依题意,知x ≥0,y ≥0,z ≥0,且x 、y 、z 均为整数,∴⎪⎩⎪⎨⎧≥≥-≥-0x 07x 20x 319 解得:27≤x ≤319 ,∴ x 可取4、5、6 4分∴ A 队胜、平、负的场数有三种情况: 当x=4时, y=7,z=1; 当x=5时,y= 4,z = 3 ;当x=6时,y=1,z= 5. 4分 (2)∵W=(1500+500)x + (700+500)y +500z= – 600x+19300当x = 4时,W 最大,W 最大值= – 60×4+19300=16900(元) 答略. 4分16(本小题满分18分)解:(1)如图,建立平面直有坐标系, ∵矩形ABCD 中,AB= 3,AD =2,设A(m 0)( m > 0 ), 则有B(m +3 0);C(m +3 2), D(m 2);若C 点过y =32x -1;则2=32(m +3)-1, m = -1与m >0不合;∴C 点不过y=32x -1;若点D过y=32x-1,则2=32m-1, m=2,∴A (2, 0), B(5,0),C(5,2 ),D(2,2);5分(2)①∵⊙M以AB为直径,∴M(3.5 0),由于y = ax2+bx+c过A(2, 0)和B(5 ,0)两点,∴0420255=++=++⎧⎨⎩a b ca b c∴b ac a=-=⎧⎨⎩7102分∴y = ax2-7ax+10a( 也可得:y= a(x-2)(x-5)= a(x2-7x+10) = ax2-7ax+10a )∴y = a(x-72)2-94a;∴抛物线顶点P(72, -94a) 2分∵顶点同时在⊙M内和在矩形ABCD内部,∴32<-94a <2,∴-98<a<–32. 3分②设切线CF与⊙M相切于Q,交AD于F,设AF = n, n>0;∵AD、BC、CF均为⊙M切线,∴CF=n+2, DF=2-n; 在Rt∆DCF中,∵DF2+DC2=CF2;∴32+(2-n)2=(n+2)2, ∴n=98, ∴F(2,98)∴当PF∥AB时,P点纵坐标为98;∴-94a =98,∴a = -12;∴抛物线的解析式为:y= -12x2+72x-5 3分抛物线与y轴的交点为Q(0,-5),又直线y =32x-1与y轴交点(0,-1);∴Q在直线y=32x-1下方. 3分2009年长郡中学高一招生数学试题(B)时间60分钟满分100分一.选择题:(本题有8小题,每小题5分,共40分。
每小题只有一个符合题意的答案)1. 下列四个图形中,每个小正方形都标上了颜色。
若要求一个正方体两个相对面上的颜色都一黄 红 黄 红绿绿黄红 绿红绿 黄 绿红 红绿 黄黄 绿红黄 红 黄 绿C .D .样,那么不可能是这一个正方体的展开图的是( )2.某工厂第二季度的产值比第一季度的产值增长了x %,第三季度的产值又比第二季度的产值增长了x %,则第三季度的产值比第一季度的产值增长了 ( ) A .2x % B . 1+2x % C .(1+x %)x % D .(2+x %)x %3.甲从一个鱼摊上买了三条鱼,平均每条a 元,又从另—个鱼摊上买了两条鱼,平均每条b 元,后来他又以每条2ba 元的价格把鱼全部卖给了乙,结果发现赔了钱,原因是( ) A .a >b B .a <b C .a =b D .与a 和b 的大小无关4.若D 是△ABC 的边AB 上的一点,∠ADC=∠BCA ,AC=6,DB=5,△ABC 的面积是S ,则△BCD 的面积是 ( ) A .S 53 B . S 74 C .S 95 D .S 116 5.如图,AE ⊥AB 且AE=AB ,BC ⊥CD 且BC=CD ,请按照图中所标注的数据,计算图中实线所围成的图形的面积S 是( ) A .50 B .62 C .65 D .686.如图,两个标有数字的轮子可以分别绕轮子的中心旋转,旋转停止时,每个轮子上方的箭头各指着轮子上的一个数字,若左图轮子上方的箭头指着的数字为a ,右图轮子上方的箭头指着的数字为b ,数对(a ,b )所有可能的个数为n ,其中a +b 恰为偶数的不同数对的参数为m ,则m/n 等于 ( )A .21 B .61 C .125 D .43 7.如图,甲、乙两动点分别从正方形ABCD 的顶点,A 、C 同时沿正方形的边开始移动,甲点依顺时针方向环行,乙点依逆时针方向环行,若乙的速度是甲的速度的4倍,则它们第2000次相遇在边 ( ) A .AB 上 B .BC 上 C .CD 上 D .DA 上8.已知实数a 满足|2006|2007a a a -+-=,那么22006a -的值是( )A .2005B .2006C .2007D .2008 二.填空题:(本题有8小题,每小题5分,共40分。