空间几何体练习题集
空间几何体(经典习题)
正视图 俯视图侧视图空间几何体(经典习题)一、选择题:1、半径为R 的半圆卷成一个圆锥,则它的体积为( )A .3R B .3R C .3R D .3R 2、一个正方体的顶点都在球面上,它的棱长为2cm ,则球的表面积是( ) A. 28cm π B. 212cmπC. 216cmπD. 220cm π3、圆台的一个底面周长是另一个底面周长的3倍,母线长为3,圆台的侧面积为84π,则 圆台较小底面的半径为( )A . 7 B. 6 C. 5 D. 34、棱台上、下底面面积之比为1:9,则棱台的中截面分棱台成两部分的体积之比是( ) A . 1:7 B. 2:7 C. 7:19 D. 5:165、一简单组合体的三视图及尺寸如图示(单位: cm )则该组合 体的体积为( )A. 720003cmB. 640003cmC. 560003cmD. 440003cm62的等腰三角形,俯视图是半径为1的半圆,则该几何体的 体积是( )A. C 7、如图,在多面体ABCDEF 中,已知平面ABCD 是边长为3的正方形,//EF AB ,32EF =,且EF 与平面ABCD 的距离为2,则该多面体的体积为( )A .92B. 5 C. 6 D. 152侧视图俯视图8、一个棱锥的三视图如图,则该棱锥的体积是( ) C.4 D.89、如图是一个空间几何体的三视图,则该几何体的侧面积为( )第8题 第9题10、如图为一平面图形的直观图,则此平面图形可能是选项中的( )11、棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去8 个三棱锥后,剩下的凸多面体的体积是( )A、23 B 、76 C 、45 D 、5612、在一个盛满水的三棱锥容器,不久发现三条侧棱上各有一个小洞D 、E 、F ,且知SD :DA=SE :EB=CF :FS=2:1,若仍用这个容器盛水,则最多可盛原来水的( )A 、2923 B 、2719 C 、3130 D 、2723 13、 一空间几何体的三视图如图所示,A.2π+B. 4π+C. 23π+D. 43π+俯视图14、一个棱锥的三视图如图,则该棱锥的全面积(单位:c 2m )为( ).(A )(B )(C )(D )15、正六棱锥P-ABCDEF 中,G 为PB 的中点,则三棱锥D-GAC 与三棱锥P-GAC 体积之比为( )(A )1:1 (B) 1:2 (C) 2:1 (D) 3:216、如右图,某几何体的正视图与侧视图都是边长为1的正方形, 且体积为12。
(完整版)空间几何体练习题含答案
空间几何体练习题1.空间几何体的三视图如图所示,则此空间几何体的直观图为 ( )A. B. C. D.2.一个水平放置的平面图形的斜二测直观图是一个底角为45︒,腰长为1的等腰直角三角形,则这个平面图形的面积是( ) A. 2 B. 22 C. 28 D. 243.已知某几何体的三视图如图所示,则它的体积为( )A. 12πB. 45πC. 57πD. 81π4.某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm 3)是 ( )A. 2π+1B. 2π+3C. 32π+1D. 32π+35.某几何体的三视图如图所示,则它的体积为( )A. 283π- B. 83π- C. 82π- D. 23π6.某几何体的三视图如图所示,其中俯视图和侧视图中的正方形的边长为2,正视图和俯视图中的三角形均为等腰直角三角形,则该几何体的体积为( )A. 163B. 8C. 203D. 127.某空间几何体的三视图如图所示,则该几何体的体积为()A. 16+2πB. 16+πC. 8+πD. 8+2π8.某空间几何体的三视图如图所示,则该几何体的体积为()A. 4B. 6C. 8D. 169.将棱长为2的正方体削成一个体积最大的球,则这个球的体积为( )A. 163π B.43πC.323π D. 4π10.如图是三棱锥D ABC-的三视图,则该三棱锥的外接球体积为( )A. 92πB.33πC. 62πD.23π11.某空间几何体的正视图是三角形,则该几何体不可能是( )A. 圆锥B. 圆柱C. 四面体D. 三棱锥12.若一个正三棱柱的三视图如下图所示,则这个正三棱柱的高和底面边长分别为().A. 2,22B. 2,4C. 23,2D. 4,313.某几何体的三视图如图所示,则该几何体的表面积是()A.322++ B.5322++ C.332++ D.7322++14.一个球的内接正方体的表面积为54,则球的表面积为( )A. 27πB. 18πC. 19πD. 54π15.将一个直角边长为1的等腰直角三角形绕其一条直角边旋转一周所形成几何体的侧面积为( )A. 4πB. 22πC. 2πD. 2π16.把球的表面积扩大到原来的2倍,那么体积扩大到原来的( )A. 2倍B. 22倍C. 2倍D. 32倍17.如果一个几何体的主视图与左视图是全等的长方形,边长分别是4,2,如图所示,俯视图是一个边长为4的正方形.(1)求该几何体的表面积;(2)求该几何体的外接球的体积.18.如图是一建筑物的三视图(单位:m),现需将其外壁用油漆粉刷一遍,已知每平方米用漆0.2kg,问需要油漆多少千克?(无需求近似值)cm. 19.一个棱柱的侧面展开图是三个全等的矩形,矩形的长和宽分别为6cm,4cm,则该棱柱的侧面积为________2 20.一个几何体的三视图如图所示,则该几何体的体积为______.21.一个几何体的三视图如图所示,则该几何体的表面积为_______.22.体积为52的圆台,一个底面积是另一个底面积的9倍,那么截得这个圆台的圆锥的体积是________.23.已知正三棱锥的高为1,底面边长为26,则该三棱锥的表面积为________.-的所有棱长都为2,则该三棱锥的外接球的表面积为________.24.已知三棱锥A BCD25.若正三棱锥的底面边长为3,侧棱长为2,则其外接球的表面积为__________.26.已知高与底面直径之比为2:1的圆柱内接于球,且圆柱的体积为500π,则球的体积为________.cm).27.某几何体的三视图如图所示(单位:cm),则该几何体的体积是_____(单位:3参考答案1.A2.A3.C4.A5.A6.C7.D8.C9.B10.A11.B12.B13.D14.A15.C16.B17.(1)64;(2)36π.18.()()4.87.8kg π+19.7220.2π321.5π22.5423.24.3π25.4π26π+27.12。
(完整版)空间几何体练习题含答案
第一章空间几何体一、选择题1.下图是由哪个平面图形旋转得到的()A B C D2.过圆锥的高的三等分点作平行于底面的截面,它们把圆锥侧面分成的三部分的面积之比为()A. B. C. D.1:2:31:3:51:2:41:3:93.在棱长为的正方体上,分别用过共顶点的三条棱中点的平面截该正方形,则截去个三18棱锥后,剩下的几何体的体积是()A. B. C. D.237645564.已知圆柱与圆锥的底面积相等,高也相等,它们的体积分别为和,则(1V2V12:V V=)A. B. C. D.1:31:12:13:15.如果两个球的体积之比为,那么两个球的表面积之比为( )8:27A. B. C. D.8:272:34:92:96.有一个几何体的三视图及其尺寸如下(单位),则该几何体的表面积及体积为:cmA. ,B. ,224cmπ212cmπ215cmπ212cmπC. ,D. 以上都不正确224cmπ236cmπ二、填空题1. 若圆锥的表面积是,侧面展开图的圆心角是,则圆锥的体积是_______。
15π0602.一个半球的全面积为,一个圆柱与此半球等底等体积,则这个圆柱的全面积是.Q3.球的半径扩大为原来的倍,它的体积扩大为原来的_________ 倍.24.一个直径为厘米的圆柱形水桶中放入一个铁球,球全部没入水中后,水面升高厘米329则此球的半径为_________厘米.5.已知棱台的上下底面面积分别为,高为,则该棱台的体积为___________。
4,163三、解答题1. (如图)在底半径为,母线长为的圆柱,求圆柱的表面积242.如图,在四边形中,,,,,ABCD 090DAB ∠=0135ADC ∠=5AB =CD =,求四边形绕旋转一周所成几何体的表面积及体积.2AD =ABCD AD参考答案一、选择题1.A 几何体是圆台上加了个圆锥,分别由直角梯形和直角三角形旋转而得2.B 从此圆锥可以看出三个圆锥,123123::1:2:3,::1:2:3,r r r l l l == 12312132::1:4:9,:():()1:3:5S S S S S S S S =--=3.D 111115818322226V V -=-⨯⨯⨯⨯⨯=正方体三棱锥4.D 121:():()3:13V V Sh Sh ==5.C 121212:8:27,:2:3,:4:9V V r r S S ===6.A 此几何体是个圆锥,23,5,4,33524r l h S πππ====⨯+⨯⨯=表面 2134123V ππ=⨯⨯=二、填空题1. 设圆锥的底面半径为,母线为,则,得,r l 123r l ππ=6l r =,得,圆锥的高226715S r r r r ππππ=+⋅==r =h =21115337V r h ππ==⨯=2. 109Q 22223,S R R R Q R πππ=+===全 32222221010,,2233339V R R h h R S R R R R Q πππππ==⋅==+⋅==3. 821212,8r r V V ==4. 12234,123V Sh r h R R ππ=====5. 28'11()(416)32833V S S h =++=⨯+⨯= 三、解答题1.解:圆锥的高,h ==1r =22(2S SS πππ=+=+=侧面表面底面 2.解:S S S S=++表面圆台底面圆台侧面圆锥侧面25(25)2πππ=⨯+⨯+⨯⨯⨯1)π=+ V V V=-圆台圆锥222112211()331483r r r r h r h πππ=++-=。
构成空间几何体的练习题
构成空间几何体的练习题一、选择题1. 下列几何体中,哪一个不是由平面图形构成的空间几何体?A. 正方体B. 圆柱体C. 三棱锥D. 球体2. 一个正方体的六个面都是正方形,下列关于正方体的说法正确的是?A. 正方体的六个面面积相等B. 正方体的六个面都是相同大小的正方形C. 正方体的六个面都是矩形D. 正方体的六个面都是平行四边形3. 下列哪个几何体的底面是圆形?A. 圆柱体B. 三棱锥C. 四棱锥D. 立方体二、填空题1. 由六个完全相同的正方形组成的几何体是______体。
2. 一个圆柱体的底面半径为r,高为h,则其体积为______。
3. 一个正方体的棱长为a,则其对角线长度为______。
三、判断题1. 两个完全相同的正方体可以组成一个长方体。
()2. 圆锥体的底面一定是圆形。
()3. 任何多面体的侧面都是平面图形。
()四、作图题1. 请画出由两个正方形和四个等边三角形组成的几何体的三视图。
2. 请画出底面半径为2cm,高为3cm的圆柱体的直观图。
五、解答题1. 一个正方体的棱长为2cm,求其对角线长度。
2. 一个圆锥体的底面半径为3cm,高为4cm,求其体积。
3. 两个完全相同的正方体组成一个长方体,求该长方体的表面积。
4. 一个三棱锥的底面是一个边长为3cm的正三角形,高为4cm,求其体积。
5. 请描述一个球体的特征,并求出半径为5cm的球体的表面积和体积。
六、相似与全等几何体的判断两个棱长为3cm的正方体。
两个底面半径为2cm,高为4cm的圆柱体。
两个底面边长为4cm,侧棱长为5cm的正四棱锥。
一个棱长为2cm的正方体和一个棱长为4cm的正方体。
一个底面半径为3cm,高为5cm的圆锥体和一个底面半径为6cm,高为10cm的圆锥体。
一个底面边长为6cm,高为8cm的正三棱锥和一个底面边长为9cm,高为12cm的正三棱锥。
七、几何体的展开与折叠一个正方体。
一个正四棱锥。
一个圆锥体。
2. 根据给出的展开图,判断下列几何体能否折叠成立体图形:一个由四个相同大小的正方形和两个相同大小的等腰直角三角形组成的图形。
高中空间立体几何经典例题精选全文完整版
可编辑修改精选全文完整版立体几何一、选择题1.(20XX 年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))设,m n 是两条不同的直线,,αβ是两个不同的平面,下列命题中正确的是 ( )A .若αβ⊥,m α⊂,n β⊂,则m n ⊥B .若//αβ,m α⊂,n β⊂,则//m nC .若m n ⊥,m α⊂,n β⊂,则αβ⊥D .若m α⊥,//m n ,//n β,则αβ⊥【答案】D2 2.(20XX 年上海市春季高考数学试卷(含答案))若两个球的表面积之比为1:4,则这两个球的体积之比为( )A .1:2B .1:4C .1:8D .1:16【答案】C 【答案】A3 3.(20XX 年高考新课标1(理))某几何体的三视图如图所示,则该几何体的体积为( )A .168π+B .88π+C .1616π+D .816π+【答案】A4 4.(20XX 年高考湖南卷(理))已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能...等于 ( )A .1B .2C .2-12D .2+12【答案】C5.(20XX 年普通高等学校招生统一考试山东数学(理)试题(含答案))已知三棱柱111ABC A B C -的侧棱与底面垂直,体积为94,底面是边长为3.若P 为底面111A B C 的中心,则PA 与平面ABC 所成角的大小为( )A.512πB .3πC.4πD.6π【答案】B6.(20XX年普通高等学校招生统一考试重庆数学(理)试题(含答案))某几何体的三视图如题()5图所示,则该几何体的体积为()A.5603B.5803C.200D.240【答案】C7.(20XX年高考江西卷(理))如图,正方体的底面与正四面体的底面在同一平面α上,且AB CD,正方体的六个面所在的平面与直线CE,EF相交的平面个数分别记为,m n,那么m n+=()A.8 B.9 C.10 D.11【答案】A二、填空题8.(20XX年高考北京卷(理))如图,在棱长为2的正方体ABCD-A1B1C1D1中,E为BC的中点,点P在线段D1E上,点P到直线CC1的距离的最小值为__________.1D1BPD1CCEBA1A【答案】2559.(20XX 年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))如图,在三棱柱ABC C B A -111中,F E D ,,分别是1AA AC AB ,,的中点,设三棱锥ADE F -的体积为1V ,三棱柱ABC C B A -111的体积为2V ,则=21:V V ____________.【答案】1:2410.(20XX 年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))某几何体的三视图如图所示,则该几何体的体积是____________.【答案】1616π-11.(20XX 年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))已知某一多面体内接于球构成一个简单组合体,如果该组合体的正视图.测试图.俯视图均如图所示,且图中的四边形是边长为2的正方形,则该球的表面积是_______________【答案】12π12.(20XX 年上海市春季高考数学试卷(含答案))在如图所示的正方体1111ABCD A B C D -中,异面直线1A B 与1B C 所成角的大小为_______AB C1A D EF1B 1C【答案】3π三、解答题13.(20XX 年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))如图,AB是圆的直径,PA 垂直圆所在的平面,C 是圆上的点. (I)求证:PAC PBC ⊥平面平面;(II)2.AB AC PA C PB A ===--若,1,1,求证:二面角的余弦值D 1 C 1 B 1A 1D C AB14.(20XX 年上海市春季高考数学试卷(含答案))如图,在正三棱锥111ABC A B C -中,16AA =,异面直线1BC 与1AA 所成角的大小为6π,求该三棱柱的体积.【答案】[解]因为1CC 1AA .所以1BC C ∠为异面直线1BC 与1AA .所成的角,即1BC C ∠=6π. 在Rt 1BC C ∆中,113tan 6233BC CC BC C =⋅∠==从而2333ABC S BC ∆==因此该三棱柱的体积为1336183ABC V S AA ∆=⋅==15.(20XX 年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))B 1 A 1C 1ACB如图,在三棱锥ABC S -中,平面⊥SAB 平面SBC ,BC AB ⊥,AB AS =,过A 作SB AF ⊥,垂足为F ,点G E ,分别是棱SC SA ,的中点.求证:(1)平面//EFG 平面ABC ; (2)SA BC ⊥.【答案】证明:(1)∵AB AS =,SB AF ⊥∴F 分别是SB 的中点 ∵E.F 分别是SA.SB 的中点 ∴EF ∥AB又∵EF ⊄平面ABC, AB ⊆平面ABC ∴EF ∥平面ABC 同理:FG ∥平面ABC又∵EF FG=F, EF.FG ⊆平面ABC ∴平面//EFG 平面ABC (2)∵平面⊥SAB 平面SBC 平面SAB 平面SBC =BC AF ⊆平面SAB AF ⊥SB∴AF ⊥平面SBC 又∵BC ⊆平面SBC ∴AF ⊥BC又∵BC AB ⊥, AB AF=A, AB.AF ⊆平面SAB ∴BC ⊥平面SAB 又∵SA ⊆平面SAB ∴BC ⊥SA16.(20XX 年高考上海卷(理))如图,在长方体ABCD-A 1B 1C 1D 1中,AB=2,AD=1,A 1A=1,证明直线BC 1平行于平面DA 1C,并求直线BC 1到平面D 1AC 的距离.C 11A【答案】因为ABCD-A 1B 1C 1D 1为长方体,故1111//,AB C D AB C D =,故ABC 1D 1为平行四边形,故11//BC AD ,显然B 不在平面D 1AC 上,于是直线BC 1平行于平面DA 1C; 直线BC 1到平面D 1AC 的距离即为点B 到平面D 1AC 的距离设为h考虑三棱锥ABCD 1的体积,以ABC 为底面,可得111(12)1323V =⨯⨯⨯⨯=而1AD C ∆中,11AC DC AD ==故132AD C S ∆= AB CSGFE所以,13123233V h h =⨯⨯=⇒=,即直线BC 1到平面D 1AC 的距离为23.17.(20XX 年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))如图1,在等腰直角三角形ABC中,90A ∠=︒,6BC =,,D E 分别是,AC AB 上的点,CD BE =O 为BC 的中点.将ADE ∆沿DE 折起,得到如图2所示的四棱锥A BCDE '-,其中A O '(Ⅰ) 证明:A O '⊥平面BCDE ; (Ⅱ) 求二面角A CD B '--的平面角的余弦值.【答案】(Ⅰ) 在图1中,易得3,OC AC AD ===连结,OD OE,在OCD ∆中,由余弦定理可得OD=由翻折不变性可知A D '=,所以222A O OD A D ''+=,所以A O OD '⊥,理可证A O OE '⊥, 又OD OE O =,所以A O '⊥平面BCDE . (Ⅱ) 传统法:过O 作OH CD ⊥交CD 的延长线于H ,连结A H ', 因为A O '⊥平面BCDE ,所以A H CD '⊥, 所以A HO '∠为二面角A CD B '--的平面角. 结合图1可知,H 为AC 中点,故2OH =,从而2A H '== 所以cos OH A HO A H '∠=='所以二面角ACD B '--向量法:以O 点为原点,建立空间直角坐标系O -.CO BDEA CDOBE'A图1图2C DO BE'AH则(A ',()0,3,0C -,()1,2,0D -所以(CA '=,(1,DA '=- 设(),,n x y z =为平面A CD '的法向量,则00n CA n DA ⎧'⋅=⎪⎨'⋅=⎪⎩,即3020y x y ⎧+=⎪⎨-++=⎪⎩,解得y x z =-⎧⎪⎨=⎪⎩,令1x =,得(1,1,n =- 由(Ⅰ)知,(OA '=为平面CDB 的一个法向量,所以3cos ,3n OA n OA n OA'⋅'===',即二面角A CD B '--的平面角的余弦值为5.18.(20XX年普通高等学校招生统一考试天津数学(理)试题(含答案))如图, 四棱柱ABCD-A1B1C1D1中, 侧棱A1A⊥底面ABCD, AB//DC, AB⊥AD, AD = CD = 1, AA1 = AB = 2, E为棱AA1的中点.(Ⅰ) 证明B1C1⊥CE;(Ⅱ) 求二面角B1-CE-C1的正弦值.(Ⅲ) 设点M在线段C1E上, 且直线AM与平面ADD1A1所成角的正弦值为2, 求线段AM的长.6【答案】19.(20XX年高考陕西卷(理))如图, 四棱柱ABCD-A1B1C1D1的底面ABCD是正方形, O为底面中心, A1O⊥平面ABCD,12AB AA==(Ⅰ) 证明: A1C⊥平面BB1D1D;(Ⅱ) 求平面OCB1与平面BB1D1D的夹角θ的大小.1A【答案】解:(Ⅰ) BDOAABCDBDABCDOA⊥∴⊂⊥11,,面且面;又因为,在正方形AB CD 中,BDCAACACAACABDAACOABDAC⊥⊂⊥=⋂⊥11111,,故面且面所以;且.在正方形AB CD中,AO = 1 . .111=∆OAOAART中,在OECAOCEAEDB1111111⊥为正方形,所以,则四边形的中点为设.,所以由以上三点得且,面面又OOBDDDBBODDBBBD=⋂⊂⊂111111E.E,DDBBCA111面⊥.(证毕)(Ⅱ) 建立直角坐标系统,使用向量解题.以O为原点,以OC为X轴正方向,以OB为Y轴正方向.则)1,0,1()1,1,1(),10(),1(,0,1,0111-=⇒CABACB,,,,)(.由(Ⅰ)知, 平面BB1D1D的一个法向量.0,0,1),1,1,1(),1,0,1(111)(==-==OCOBCAn设平面OCB1的法向量为,则0,0,2122=⋅=⋅OCnOBnn).1-,1,0(法向量2=n为解得其中一个21221||||||,cos|cos212111=⋅=⋅=><=nnnnnnθ.所以,平面OCB1与平面BB1D1D的夹角θ为3π1A。
空间几何体练习题
高中数学必修二第一章《空间几何体》单元练习题(30分钟50分)一、选择题(每小题3分,共18分)1.斜四棱柱的侧面是矩形的面最多有( )A.0个B.1个C.2个D.3个2.所给三视图表示的简单组合体的结构特征是( )A.由圆柱和圆锥组成B.由圆柱和棱锥组成C.由棱柱和圆锥组成D.由圆台和圆锥组成4.圆柱的轴截面是正方形,面积是S,则它的侧面积是( )A.SB.πSC.2πSD.4πS6.如图,某几何体的正视图与侧视图都是边长为1的正方形,且体积为,则该几何体的俯视图可以是( )二、填空题(每小题4分,共12分)7.圆柱形容器内盛有高度为8 cm的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球(如图所示),则球的半径是cm.三、解答题(每小题10分,共20分)10.已知四棱锥P-ABCD,其三视图和直观图如图,求该四棱锥的体积.高中数学必修二第一章《空间几何体》单元练习题(30分钟50分)一、选择题(每小题3分,共18分)1.斜四棱柱的侧面是矩形的面最多有( )A.0个B.1个C.2个D.3个【解析】选C.根据棱柱的结构特征不可能有奇数个,因此最多2个.2.所给三视图表示的简单组合体的结构特征是( )A.由圆柱和圆锥组成B.由圆柱和棱锥组成C.由棱柱和圆锥组成D.由圆台和圆锥组成【解析】选A.由三视图可知此组合体的上方是圆柱,下方是圆锥,故选A.4.(2015·西安高一检测)圆柱的轴截面是正方形,面积是S,则它的侧面积是( ) A.S B.πS C.2πS D.4πS=2πr·2r=4πr2=πS.【解析】选B.设圆柱底面半径为r,则S=4r2,S侧6.(2015·威海高一检测)如图,某几何体的正视图与侧视图都是边长为1的正方形,且体积为,则该几何体的俯视图可以是( )【解析】选C.当俯视图为A中正方形时,几何体为棱长为1的正方体,体积为1;当俯视图为B 中圆时,几何体为底面半径为,高为1的圆柱,体积为;当俯视图为C中三角形时,几何体为三棱柱,且底面为直角边长为1的等腰直角三角形,高为1,体积为;当俯视图为D中扇形时,几何体为圆柱的,且体积为.二、填空题(每小题4分,共12分)7.圆柱形容器内盛有高度为8 cm的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球(如图所示),则球的半径是cm.【解析】设球的半径为rcm,则πr2×8+πr3×3=πr2×6r.解得r=4.答案:4三、解答题(每小题10分,共20分)10.已知四棱锥P-ABCD,其三视图和直观图如图,求该四棱锥的体积.【解析】由三视图知底面ABCD为矩形,AB=2,BC=4.顶点P在面ABCD内的射影为BC中点E,即棱锥的高为2,则体积VP-ABCD =SABCD×PE=×2×4×2=.。
(完整版)空间几何体测试题及答案,推荐文档
而 l12 l22 4a2 , 即152 52 92 52 4a2 , a 8, S侧面积 ch 4 8 5 160
7.D
V1
: V2
(Sh) : (1 3
Sh)
3:1
8.C
V1 :V2 8 : 27, r1 : r2 2 : 3, S1 : S2 4 : 9
9.A
二、10、 3 R3
、
、
的几何体构成的组合体.
13.正方体 ABCD A1B1C1D1 中, O 是上底面 ABCD 中心,若正方体的棱长为 a ,
则三棱锥 O AB1D1 的体积为____________ 三、解答题(每小题 13 分,共 26 分) 14.将圆心角为1200 ,面积为 3 的扇形,作为圆锥的侧面,求圆锥的表面积和体积
空间几何体测试题
(满分 100 分)
一、选择题(每小题 6 分,共 54 分)
1.有一个几何体的三视图如下图所示,这个几何体应是一个( )
A.棱台
B.棱锥
C.棱柱
D.都不对
主视图
左视图
俯视图
3.对于一个底边在 x 轴上的三角形,采用斜二测画法作出其直观图,其直观图面积是原三
角形面积的( )
A. 2 倍
C.1: 2
D.1:4
二、填空题(每小题 5 分,共 20 分) 10.半径为 R 的半圆卷成一个圆锥,则它的体积为________.
11.右面三视图所表示的几何体是
.
正视图
侧视图
俯视图
12.已知,ABCD 为等腰梯形,两底边为 AB,CD 且 AB>CD,绕 AB 所在的直线旋转一周
所得的几何体中是由
11、 2 :1 12、 六棱锥
空间几何体练习题
空间几何体练习题一、填空题1. 设矩形长为6 cm,宽为4 cm,高为3 cm,则矩形的体积为__________。
2. 已知一个圆柱的底面积为28π cm²,高为10 cm,则该圆柱的体积为__________。
3. 一个正方体的体积为125 cm³,则它的边长为__________。
4. 底面积为48 cm²的直角三角形棱柱,高为10 cm,则该棱柱的体积为__________。
5. 一个圆锥的底面积为36π cm²,高为8 cm,则该圆锥的体积为__________。
二、选择题1. 已知一个长方体的长、宽、高分别为a cm、b cm、c cm,则该长方体的体积为()。
A. abc cm³B. ab+bc+ca cm³C. 2(ab+bc+ca) cm³D. a²b²c² cm³2. 一个边长为2 cm的正方体,把它的每条边拉长为原来的2倍,则这个正方体的体积是原来的()。
A. 2 倍B. 4 倍C. 6 倍D. 8 倍3. 已知一个正方锥的底面积为16 cm²,高为12 cm,则该正方锥的体积为()。
A. 64 cm³B. 128 cm³C. 192 cm³D. 256 cm³4. 一个长方体,它的底面是一个边长为6 cm的正方形,高为8 cm,底面积是原来的()。
A. 1/3B. 2/3C. 3/4D. 4/35. 设一个棱长为a cm的正方体的体积为V cm³,把每条边的长度都加倍后得到一个新的正方体,则这个新的正方体的体积为()。
A. V cm³B. 2V cm³C. 4V cm³D. 8V cm³三、解答题1. 某圆锥的底面积为12π cm²,高为9 cm,试求该圆锥的体积,并保留最简整数。
空间几何体练习试题和答案解析
(数学 2 必修)第一章空间几何体[ 基础训练A组]一、选择题1.有一个几何体的三视图如下图所示,这个几何体应是一个( )A. 棱台B. 棱锥C. 棱柱D. 都不对主视图左视图俯视图2.棱长都是1的三棱锥的表面积为()A. 3B. 2 3C. 3 3D. 4 33.长方体的一个顶点上三条棱长分别是3, 4,5 ,且它的8 个顶点都在同一球面上,则这个球的表面积是()A.25 B.50 C.125 D.都不对4.正方体的内切球和外接球的半径之比为()A. 3 :1 B.3: 2 C.2: 3 D.3:35.在△ABC中,AB BC ABC ,若使绕直线BC 旋转一周,2, 1.5, 120则所形成的几何体的体积是()A. 92B.72C.52D.326.底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为 5 ,它的对角线的长分别是9和15 ,则这个棱柱的侧面积是()A.130 B.140 C.150 D.160二、填空题1.一个棱柱至少有_____个面,面数最少的一个棱锥有________个顶点,. .专业知识分享. .顶点最少的一个棱台有________条侧棱。
2.若三个球的表面积之比是1: 2 :3,则它们的体积之比是_____________。
3.正方体ABCD A1B1C1D1 中,O是上底面ABCD 中心,若正方体的棱长为a,则三棱锥O AB D 的体积为_____________。
1 14.如图,E,F 分别为正方体的面ADD1 A1 、面BCC1B1 的中心,则四边形B F D1E 在该正方体的面上的射影可能是____________ 。
5.已知一个长方体共一顶点的三个面的面积分别是 2 、 3 、 6 ,这个长方体的对角线长是___________;若长方体的共顶点的三个侧面面积分别为3,5,15 ,则它的体积为___________.三、解答题1.养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪之用),已建的仓库的底面直径为12M ,高4M ,养路处拟建一个更大的圆锥形仓库,以存放更多食盐,现有两种方案:一是新建的仓库的底面直径比原来大4M (高不变);二是高度增加4M (底面直径不变)。
空间几何体练习题
空间几何体练习题一、选择题1. 下列几何体中,属于多面体的是:A. 球体B. 圆锥C. 立方体D. 圆柱2. 一个正方体的棱长为2,其表面积为:A. 12B. 24C. 36D. 483. 一个圆柱的底面半径为r,高为h,其体积公式为:A. πr^2hB. πr^2 + hC. 2πrhD. πrh4. 一个圆锥的底面半径为r,高为h,其体积公式为:A. 1/3πr^2hB. πr^2hC. πr^2 + hD. 1/3πrh5. 一个棱锥的底面积为S,高为h,其体积公式为:A. S*hB. S/hC. 1/3ShD. 3Sh二、填空题6. 一个长方体的长、宽、高分别为a、b、c,其体积公式为__________。
7. 一个正四面体的每个面都是等边三角形,其边长为a,其体积公式为_________。
8. 若一个圆锥的底面半径为2,高为3,则其体积为_________。
9. 若一个圆柱的底面半径为1,高为4,则其体积为_________。
10. 若一个棱锥的底面积为9,高为4,则其体积为_________。
三、简答题11. 描述如何计算一个正十二面体的体积。
12. 说明如何确定一个几何体是否为凸多面体。
13. 给出一个正二十面体的顶点数、边数和面数。
14. 解释什么是欧拉公式,并给出其在凸多面体中的表达形式。
15. 假设有一个棱柱,其底面为正六边形,高为h,求其体积公式。
四、计算题16. 一个棱柱,其底面为正三角形,边长为3,高为5,计算其体积。
17. 一个圆锥,其底面半径为4,高为6,计算其体积。
18. 一个圆柱,其底面半径为5,高为10,计算其表面积和体积。
19. 一个球体,其半径为7,计算其表面积和体积。
20. 一个棱锥,其底面为正六边形,边长为2,高为3,计算其体积。
五、证明题21. 证明一个正四面体的体积是其底面积与高的乘积的三分之一。
22. 证明欧拉公式V - E + F = 2对于所有凸多面体都成立,其中V 是顶点数,E是边数,F是面数。
空间几何体测试题及答案
第六章空间几何体测试题一、选择题(15x4=60分)1、面数最少的多面体的顶点的个数为( B ) A 3 B 4 C 5 D 62、设集合M={正四棱柱},N={长方体},P={直四棱柱},Q={正方体},下列关系正确的是( D ) A Q M N P ⊃⊃⊃ B Q M N P ⊂⊂⊂ C Q N M P ⊃⊃⊃ D Q N M P ⊂⊂⊂3、下列命题正确的是( D ) A 三条侧棱相等的三棱锥是正三棱锥 B 侧面都是梯形的多面体是棱台C 平行于坐标轴的线段长度在直观图仍保持不变D 两点的球面距离就是过两点的大圆在这两点间的劣弧的长度 4、经过球面上两点的平面截球面所得的图形是( A ) A 圆 B 椭圆 C 三角形 D 正方形5、已知正方体的体积为64,则它的棱长为(B ) A 8 B 4 C 2 D 166、正三棱锥的底面边长为a ,高为2a ,则它的侧面积为( B )A24B 24C 2D 26a 7、正四棱台的上、下底面边长为分别为2、8,斜高为4,则它的侧面积为( B ) A 100 B 80 C 60 D 208、正三棱锥侧面都是直角三角形,其体积为3,则其底面边长为(B )A 1B 2C 3D 4 9、下面棱柱是正四棱柱的是( C )A 底面是正方形,有两个侧面是矩形B 底面是正方形,有两个侧面垂直于底面C 底面是矩形,两个相邻侧面分别是矩形和正方形D 四个侧面是全等的矩形 10、过球面上任意两点,可以做大圆的个数为( D )A 1个B 2个C 无数个D 1个或无数个 11、在斜棱柱的侧面中矩形最多有( A ) A 2个 B 3个 C 4个 D 6个12、正四棱锥的侧面是正三角形,则它的高与底面边长之比为( D )13、球的半径为2,则球的表面积与体积分别为( B ) A 4,8ππ B 3216,3ππ C 88,3ππ D 816,3ππ 14、圆锥的侧面展开图是半径为1,圆心角是270°的扇形,则它的底面积为( B ) A34π B 916π C 2116π D 316π15、长方体的长、宽、高的比为1:2:3,对角线长为,其体积为( C ) A 16 B 24 C 48 D 96 二、填空题:(5x4=20分)16、把一个圆锥截成圆台,已知圆台的上、下底面半径比为1:3,母线长为10,则圆锥的母线长为_15___.17、球的体积与其表面积的数值相等,则球的半径为___3______________. 18、正六棱柱的底面边长为2,高为2,则其体积为19、用一张长宽分别为8cm 与4cm 的矩形硬纸板,折成正四棱柱的侧面,则此四棱柱的对角线长为20、正方体的体积为64,它的全面积为_____96____________ 三、解答题:(2x10=20分)21、如果一个正三棱锥的底面边长为6解:S 底=26⨯=在直角三角形SMB 中'h = ∴S 侧 =1236⨯⨯= S 全= S 底 + S 侧 =22、一个平面截一个球得到直径为6cm 的圆面,球心到这个圆面的距离为4cm ,求该球的表面积与体积。
人教版高中数学第一章空间几何体练习题及答案(全)
第一章空间几何体1.1 空间几何体的结构一、选择题1、下列各组几何体中是多面体的一组是()A 三棱柱四棱台球圆锥B 三棱柱四棱台正方体圆台C 三棱柱四棱台正方体六棱锥D 圆锥圆台球半球2、下列说法正确的是()A 有一个面是多边形,其余各面是三角形的多面体是棱锥B 有两个面互相平行,其余各面均为梯形的多面体是棱台C 有两个面互相平行,其余各面均为平行四边形的多面体是棱柱D 棱柱的两个底面互相平行,侧面均为平行四边形3、下面多面体是五面体的是()A 三棱锥B 三棱柱C 四棱柱D 五棱锥4、下列说法错误的是()A 一个三棱锥可以由一个三棱锥和一个四棱锥拼合而成B 一个圆台可以由两个圆台拼合而成C 一个圆锥可以由两个圆锥拼合而成D 一个四棱台可以由两个四棱台拼合而成5、下面多面体中有12条棱的是()A 四棱柱B 四棱锥C 五棱锥D 五棱柱6、在三棱锥的四个面中,直角三角形最多可有几个()A 1 个B 2 个C 3个D 4个二、填空题7、一个棱柱至少有————————个面,面数最少的棱柱有————————个顶点,有—————————个棱。
8、一个棱柱有10个顶点,所有侧棱长的和为60,则每条侧棱长为————————————9、把等腰三角形绕底边上的高旋转1800,所得的几何体是——————10、水平放置的正方体分别用“前面、后面、上面、下面、左面、右面”表示。
图中是一个正方体的平面展开图,若图中的“似”表示正方体的前面,“锦”表示右面,“程”表示下面。
则“祝”“你”“前”分别表示正方体的—————祝你前程似锦三、解答题:11、长方体ABCD —A 1B 1C 1D 1中,AB =3,BC =2,BB 1=1,由A 到C 1在长方体表面上的最短距离为多少?AA 1B 1BCC 1D 1D12、说出下列几何体的主要结构特征(1)(2)(3)1.2空间几何体的三视图和直观图一、选择题1、两条相交直线的平行投影是( ) A 两条相交直线 B 一条直线C 一条折线D 两条相交直线或一条直线 2、如图中甲、乙、丙所示,下面是三个几何体的三视图,相应的标号是( )① 长方体 ② 圆锥 ③ 三棱锥 ④ 圆柱 A ②①③ B ①②③ C ③②④ D ④③②正视图侧视图俯视图 正视图 侧视图 俯视图 正视图 侧视图 俯视图甲 乙 丙3、如果一个几何体的正视图和侧视图都是长方形,则这个几何体可能是( )A 长方体或圆柱B 正方体或圆柱C 长方体或圆台D 正方体或四棱锥 4、下列说法正确的是( )A 水平放置的正方形的直观图可能是梯形B 两条相交直线的直观图可能是平行直线C 平行四边形的直观图仍然是平行四边形D 互相垂直的两条直线的直观图仍然互相垂直5、若一个三角形,采用斜二测画法作出其直观图,其直观图面积是原三角形面积的( ) A 21倍 B42倍 C 2倍 D 2倍 6、如图(1)所示的一个几何体,,在图中是该几何体的俯视图的是( )(1) 二、选择题7、当圆锥的三视图中的正视图是一个圆时,侧视图与俯视图是两个全等的———————三角形。
空间几何体练习题及答案
1.1.1 柱、锥、台、球的结构特征1.下列命题中正确的是( )A.以直角三角形的一直角边为轴旋转所得的旋转体是圆锥B.以直角梯形的一腰为轴旋转所得的旋转体是圆台C.圆柱、圆锥、圆台都有两个底面D.圆锥的侧面展开图为扇形,这个扇形所在圆的半径等于圆锥底面圆的半径2.长方体AC 1的长、宽、高分别为3、2、1,从A 到C 1沿长方体的表面的最短距离为( ) A.31+ B.102+ C.23 D.323.下面几何体中,过轴的截面一定是圆面的是( )A.圆柱B.圆锥C.球D.圆台4.一个无盖的正方体盒子展开后的平面图,如图14所示,A 、B 、C 是展开图上的三点,则在正方体盒子中∠ABC=____________.图145.有一粒正方体的骰子每一个面有一个英文字母,如图16所示.从3种不同角度看同一粒骰子的情况,请问H 反面的字母是___________.图166.圆台的一个底面周长是另一个底面周长的3倍,轴截面的面积等于392 cm 2,母线与轴的夹角是45°,求这个圆台的高、母线长和底面半径.1.1.2 简单组合体的结构特征1 如图3所示,一个圆环绕着同一个平面内过圆心的直线l 旋转180°,想象并说出它形成的几何体的结构特征.图3.2 已知如图5所示,梯形ABCD 中,AD ∥BC ,且AD <BC ,当梯形ABCD 绕BC 所在直线旋转一周时,其他各边旋转围成的一个几何体,试描述该几何体的结构特征.3.若干个棱长为2、3、5的长方体,依相同方向拼成棱长为90的正方体,则正方体的一条对角线贯穿的小长方体的个数是( )A.64B.66C.68D.701.2.3 空间几何体的直观图1.画水平放置的等边三角形的直观图.2.如图7所示,梯形ABCD 中,AB ∥CD ,AB=4 cm ,CD=2 cm ,∠DAB=30°,AD=3 cm ,试画出它的直观图.图73. 关于“斜二测画法”,下列说法不正确的是( )A.原图形中平行于x 轴的线段,其对应线段平行于x′轴,长度不变B.原图形中平行于y 轴的线段,其对应线段平行于y′轴,长度变为原来的21 C.在画与直角坐标系xOy 对应的x′O′y′时,∠x′O′y′必须是45°D.在画直观图时,由于选轴的不同,所得的直观图可能不同4.已知一个正方形的直观图是一个平行四边形,其中有一边长为4,则此正方形的面积是( )A.16B.64C.16或64D.都不对5.一个三角形用斜二测画法画出来的直观图是边长为2的正三角形,则原三角形的面积是( ) A.62 B.64 C.3 D.都不对6.一个水平放置的平面图形的直观图是一个底角为45°,腰和上底长均为1的等腰梯形,则该平面图形的面积等于( ) A.2221+ B.221+ C.21+ D.22+1.1.1 柱、锥、台、球的结构特征1.下列几个命题中,①两个面平行且相似,其余各面都是梯形的多面体是棱台;②有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台;③各侧面都是正方形的四棱柱一定是正方体;④分别以矩形两条不等的边所在直线为旋转轴,将矩形旋转,所得到的两个圆柱是两个不同的圆柱. 其中正确的有__________个.( )A.1B.2C.3D.4分析:①中两个底面平行且相似,其余各面都是梯形,并不能保证侧棱会交于一点,所以①是错误的;②中两个底面互相平行,其余四个面都是等腰梯形,也有可能两底面根本就不相似,所以②不正确;③中底面不一定是正方形,所以③不正确;很明显④是正确的.答案:A1.下列命题中正确的是( )A.以直角三角形的一直角边为轴旋转所得的旋转体是圆锥B.以直角梯形的一腰为轴旋转所得的旋转体是圆台C.圆柱、圆锥、圆台都有两个底面D.圆锥的侧面展开图为扇形,这个扇形所在圆的半径等于圆锥底面圆的半径分析:以直角梯形垂直于底的腰为轴,旋转所得的旋转体才是圆台,所以B 不正确;圆锥仅有一个底面,所以C 不正确;圆锥的侧面展开图为扇形,这个扇形所在圆的半径等于圆锥的母线长,所以D 不正确.很明显A 正确.答案:A2 (2007宁夏模拟,理6)长方体AC 1的长、宽、高分别为3、2、1,从A 到C 1沿长方体的表面的最短距离为( ) A.31+ B.102+ C.23 D.32解:如图3,在长方体ABCD —A 1B 1C 1D 1中,AB=3,BC=2,BB 1=1.图3如图4所示,将侧面ABB 1A 1和侧面BCC 1B 1展开,图4则有AC 1=261522=+,即经过侧面ABB 1A 1和侧面BCC 1B 1时的最短距离是26;如图5所示,将侧面ABB 1A 1和底面A 1B 1C 1D 1展开,则有AC 1=233322=+,即经过侧面ABB 1A 1和底面A 1B 1C 1D 1时的最短距离是23;图5如图6所示,将侧面ADD 1A 1和底面A 1B 1C 1D 1展开,图6则有AC 1=522422=+,即经过侧面ADD 1A 1和底面A 1B 1C 1D 1时的最短距离是52. 由于23<52,23<26,所以由A 到C 1在正方体表面上的最短距离为23.答案:C3.下面几何体中,过轴的截面一定是圆面的是( )A.圆柱B.圆锥C.球D.圆台分析:圆柱的轴截面是矩形,圆锥的轴截面是等腰三角形,圆台的轴截面是等腰梯形,球的轴截面是圆面,所以A 、B 、D 均不正确.答案:C4.(2007山东菏泽二模,文13)一个无盖的正方体盒子展开后的平面图,如图14所示,A 、B 、C 是展开图上的三点,则在正方体盒子中∠ABC=____________.图14分析:如图15所示,折成正方体,很明显点A 、B 、C 是上底面正方形的三个顶点,则∠ABC=90°.图15答案:90°5.(2007山东东营三模,文13)有一粒正方体的骰子每一个面有一个英文字母,如图16所示.从3种不同角度看同一粒骰子的情况,请问H 反面的字母是___________.图16分析:正方体的骰子共有6个面,每个面都有一个字母,从每一个图中都看到有公共顶点的三个面,与标有S 的面相邻的面共有四个,由这三个图,知这四个面分别标有字母H 、E 、O 、p 、d ,因此只能是标有“p”与“d”的面是同一个面,p 与d 是一个字母;翻转图②,使S 面调整到正前面,使p 转成d ,则O 为正下面,所以H 的反面是O.答案:O6.圆台的一个底面周长是另一个底面周长的3倍,轴截面的面积等于392 cm 2,母线与轴的夹角是45°,求这个圆台的高、母线长和底面半径.分析:这类题目应该选取轴截面研究几何关系.解:圆台的轴截面如图17,图17设圆台上、下底面半径分别为x cm 和3x cm ,延长AA 1交OO 1的延长线于S.在Rt △SOA 中,∠ASO=45°,则∠SAO=45°.所以SO=AO=3x.所以OO 1=2x. 又21(6x+2x )·2x=392,解得x=7, 所以圆台的高OO 1=14 cm ,母线长l=2OO 1=214cm ,而底面半径分别为7 cm 和21 cm,即圆台的高14 cm ,母线长214cm ,底面半径分别为7 cm 和21 cm.1.1.2 简单组合体的结构特征1 如图3所示,一个圆环绕着同一个平面内过圆心的直线l 旋转180°,想象并说出它形成的几何体的结构特征.图3答案:一个大球内部挖去一个同球心且半径较小的球.2 已知如图5所示,梯形ABCD 中,AD ∥BC ,且AD <BC ,当梯形ABCD 绕BC 所在直线旋转一周时,其他各边旋转围成的一个几何体,试描述该几何体的结构特征.图5 图6解:如图6所示,旋转所得的几何体是两个圆锥和一个圆柱拼接成的组合体.3.(2005湖南数学竞赛,9)若干个棱长为2、3、5的长方体,依相同方向拼成棱长为90的正方体,则正方体的一条对角线贯穿的小长方体的个数是( )A.64B.66C.68D.70分析:由2、3、5的最小公倍数为30,由2、3、5组成的棱长为30的正方体的一条对角线穿过的长方体为整数个,所以由2、3、5组成棱长为90的正方体的一条对角线穿过的小长方体的个数应为3的倍数. 答案:B1.2.3 空间几何体的直观图1.画水平放置的等边三角形的直观图.2.如图7所示,梯形ABCD 中,AB ∥CD ,AB=4 cm ,CD=2 cm ,∠DAB=30°,AD=3 cm ,试画出它的直观图.图7解:步骤是:(1)如图8所示,在梯形ABCD 中,以边AB 所在的直线为x 轴,点A 为原点,建立平面直角坐标系xOy.如图9所示,画出对应的x′轴,y′轴,使∠x′A′y′=45°.(2)如图8所示,过D 点作DE ⊥x 轴,垂足为E.在x′轴上取A′B′=AB=4 cm ,A′E′=AE=323cm ≈2.598 cm ;过E′作E′D′∥y′轴,使E′D′=ED 21,再过点D′作D′C′∥x′轴,且使D′C′=CD=2 cm.图8 图9 图10(3)连接A′D′、B′C′、C′D′,并擦去x′轴与y′轴及其他一些辅助线,如图10所示,则四边形A′B′C′D′就是所求作的直观图.3.关于“斜二测画法”,下列说法不正确的是( )A.原图形中平行于x 轴的线段,其对应线段平行于x′轴,长度不变B.原图形中平行于y 轴的线段,其对应线段平行于y′轴,长度变为原来的21 C.在画与直角坐标系xOy 对应的x′O′y′时,∠x′O′y′必须是45°D.在画直观图时,由于选轴的不同,所得的直观图可能不同分析:在画与直角坐标系xOy 对应的x′O′y′时,∠x′O′y′也可以是135°,所以C 不正确.答案:C4.已知一个正方形的直观图是一个平行四边形,其中有一边长为4,则此正方形的面积是( )A.16B.64C.16或64D.都不对分析:根据直观图的画法,平行于x 轴的线段长度不变,平行于y 轴的线段变为原来的一半,于是长为4的边如果平行于x 轴,则正方形边长为4,面积为16,边长为4的边如果平行于y 轴,则正方形边长为8,面积是64.答案:C5.一个三角形用斜二测画法画出来的直观图是边长为2的正三角形,则原三角形的面积是( ) A.62 B.64 C.3 D.都不对分析:根据斜二测画法的规则,正三角形的边长是原三角形的底边长,原三角形的高是正三角形高的22倍,而正三角形的高是3,所以原三角形的高为62,于是其面积为21×2×62=62. 答案:A6.一个水平放置的平面图形的直观图是一个底角为45°,腰和上底长均为1的等腰梯形,则该平面图形的面积等于( ) A.2221+ B.221+ C.21+ D.22+ 分析:平面图形是上底长为1,下底长为21+,高为2的直角梯形.计算得面积为22+.答案:D。
空间几何题库及答案详解
空间几何题库及答案详解1. 题目一:已知空间中不共线的三点A、B、C,求证:直线AB与直线AC的夹角小于等于90°。
解答:设直线AB与直线AC的夹角为θ。
根据空间几何的基本性质,我们可以构造一个以A、B、C为顶点的三角形ABC。
由于A、B、C 三点不共线,三角形ABC是存在的。
根据余弦定理,我们有:\[ \cos(θ) = \frac{AB^2 + AC^2 - BC^2}{2 \cdot AB \cdot AC} \]由于AB和AC是三角形的两边,根据三角形的边长关系,我们有:\[ AB^2 + AC^2 \geq BC^2 \]代入余弦定理的公式,我们得到:\[ \cos(θ) \geq 0 \]由于θ是锐角,所以θ ≤ 90°,证毕。
2. 题目二:已知空间中平面α内的一点P和平面β内的一点Q,若PQ垂直于平面α,QR垂直于平面β,求证:PQ与QR平行。
解答:设PQ与QR的交点为O。
由于PQ垂直于平面α,QR垂直于平面β,根据垂直的性质,我们有:\[ PQ \perp α \]\[ QR \perp β \]由于PQ与QR相交于O点,根据线面垂直的性质,我们可以得出:\[ OP \parallel α \]\[ OQ \parallel β \]由于OP和OQ是平面α和β的平行线,根据平行线的性质,我们可以得出:\[ PQ \parallel QR \]证毕。
3. 题目三:已知空间中两条直线m和n,它们分别在两个不同的平面α和β内,且m与α平行,n与β平行。
若平面α与平面β相交于直线l,求证:m与n平行。
解答:设平面α与平面β相交于直线l,由于m与α平行,n 与β平行,根据平行平面的性质,我们可以得出:\[ m \parallel l \]\[ n \parallel l \]由于m和n都与直线l平行,根据平行线的性质,我们可以得出: \[ m \parallel n \]证毕。
空间几何体练习题及参考答案
A空间几何体部分1、如果一个水平放置的图形的斜二测直观图是一个底面为45o,腰和上底均为1的等腰梯形,那么原平面图形的面积是( )A. 2+1+2、半径为R 的半圆卷成一个圆锥,则它的体积为() 3R 3R 3R 3R 3、一个棱柱是正四棱柱的条件是A 、底面是正方形,有两个侧面是矩形B 、底面是正方形,有两个侧面垂直于底面C 、底面是菱形,且有一个顶点处的三条棱两两垂直D 、每个侧面都是全等矩形的四棱柱4.有一个几何体的三视图如下图所示,这个几何体应是一个A 、棱台B 、棱锥C 、棱柱D 、都不对5.在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方形,则截去8个三棱锥后 ,剩下的几何体的体积是( )A.23 B. 76 C. 45D. 566.长方体的一个顶点上三条棱长分别是3、4、5,且它的8个顶点都在同一球面上,则这个球的表面积是A 、25πB 、50πC 、125πD 、都不对 7.正方体的内切球和外接球的半径之比为()A.B.2 C. 2 D.38.在△ABC 中,AB=2,BC=1.5,∠A BC=120o,若使绕直线BC 旋转一周,则所形成的几何体的体积是A. 92π B. 72π C. 52π D. 32π9、圆台的一个底面周长是另一个底面周长的3倍,母线长为3,圆台的侧面积为84π,则圆台较小底面的半径为A 、7B 、6C 、5D 、3 10.直三棱柱ABC —A 1B 1C 1的体积为V ,点P 、Q 分别在 侧棱AA 1和CC 1上,AP=C 1Q ,则四棱锥B —APQC 的体积为A 、2VB 、3VC 、4VD 、5V 11、如图,在多面体ABCDEF 中,已知平面ABCD 是边长为3的正 方形,EF ∥AB,32EF =,且EF 与平面ABCD 的距离为2,则该多面体的体积为( )正视图侧视图俯视图_ A _BBB 1DCC 1AEE 1D 1A 1FF 1A 、92 、5 C 、6 D 、15212、如右图所示,正三棱锥V-ABC中,D,E,F分别是VC ,VA,AC 的中点,P为VB上任意一点,则直线DE与PF 所成的角的大小是( )A6π B 2π C 3πD 随P点的变化而变化。
空间几何体结构测试题
空间几何体结构测试题一、单项选择题1、下列几何体中,有六个面的是()A.长方体B.正方体C.圆锥D.三棱柱2、下列几何体中,只有两个面平行的是()A.长方体B.正方体C.圆柱D.三棱柱3、下列几何体中,有四个面是三角形的是()A.长方体B.正方体C.四棱锥D.三棱柱4、下列几何体中,没有曲面的是()A.长方体B.正方体C.圆柱D.三棱柱5、下列几何体中,不能看作是旋转体的是()A.长方体B.正方体C.圆柱D.圆锥二、填空题1、下列几何体中,有六个面的是_________。
2、下列几何体中,只有两个面平行的是_________。
3、下列几何体中,有四个面是三角形的是_________。
4、下列几何体中,没有曲面的是_________。
5、下列几何体中,不能看作是旋转体的是_________。
三、解答题1、画出一个长方体,并标明它有六个面。
2、画出一个三棱柱,并标明它有三个侧面。
高一空间几何体单元测试题一、选择题1、下列图形中,是空间几何体的是()A.长方形B.三角形C.球体D.圆柱体2、下列图形中,不能经过平面图形围成的是()A.球体B.正方体C.圆柱体D.三棱锥3、下列说法中,正确的是()A.两个平面图形只能平行,不能相交B.将一个平面图形平移到另一个平面上,得到的图形是平面图形C.两个平面图形可以相交,但不可能垂直相交D.两个平面图形可以垂直相交,但不可能在空间内垂直移动4、下列说法中,错误的是()A.经过两条平行直线及另一条直线必共面B.经过两条平行直线必共面C.经过一条直线及另一条直线必共面D.经过两条平行直线及一条直线必共面二、填空题1、在长方体、正方体、三棱柱、球体中,是平面图形的有__________个。
2、下列命题中,正确的是()A.两个平面图形只能平行,不能相交B.将一个平面图形平移到另一个平面上,得到的图形是平面图形 C.两个平面图形可以相交,但不可能垂直相交 D.两个平面图形可以垂直相交,但不可能在空间内垂直移动3、下列说法中,正确的是()A.一条直线及另一条直线平行,则它们一定共面B.一条直线及另一条直线垂直,则它们一定共面C.一条直线及另一条直线相交,则它们一定共面D.一条直线及另一条直线共面,则它们一定相交4、下列说法中,错误的是()A.经过两条平行直线及另一条直线必共面B.经过两条平行直线必共面C.经过一条直线及另一条直线必共面D.经过两条平行直线及一条直线必共面一次函数测试题一、解题思路&问题建模在数学的世界里,一次函数是一个基础且重要的概念。
空间几何体测试题及答案.doc
空间几何体测试题(满分100分)一、选择题(每小题6分,共54分)1.柯一个几何体的三视阁如下阁所示,这个几何体应是一个(A.棱台B.棱锥C.棱柱D.都不对3. 对于一个底边在X 轴上的三角形,采用斜二测凼法作出观图,其直观图血积是原三角 形面积的()3. 棱长都是1的三棱锥的表凼积为()A. V3B. 2^3C. 3^3D. 4^34. 长方体的一个顶点上三条棱长分别是3,4,5,且仑的8个顶点都在同一球面上,则这个球的表曲'积是()A. 25TTB. 507TC. 125兀D.都不对 5. 正方体的内切球和外接球的半径之比为()A. 73:1B. 73:2C. 2:^3D. ^3:36. 底面是菱形的棱柱其侧棱乘直于底面,且侧棱长为5,它的对角线的K:分别是9和15,则这个棱柱的侧而积是()A. 130B. 140C. 150D. 1607. 已知岡柱与圆锥的底側积相等,高也相等,它们的体积分别为V 和V 2,则()A. 1:3B. 1:1C. 2:1D. 3:18. 如果两个球的体积之比为8:27,那么两个球的表面积之比为() A. 8:27 B. 2:3 C. 4:9 D. 2:99. 圆锥平行于底而的截而而积是底面积的一半,则此截面分圆锥的高为上、卜‘两段的比为 ()A.-1) B. 1:2C. 1: y/2D. 1:4二、填空题(每小题5分,共20分)10. 半径为/?的半圆卷成一个岡锥,则它的体积为 _________ .俯视图A. 2倍主视图 左视图俯视阁12. 己知,ABCD 为等腰梯形,两底边为AB ,CD 且AB 〉CD,绕AB 所在的直线旋转一周所 13. H •:方体—屮,0是上底面中心,若正方体的棱为《,则三棱锥O - AB,D X 的体积为 ______________三、解答题(每小题13分,共26分)14. 将圆心角为120(),而积为3兀的扇形,作为圆锥的侧而,求圆锥的表而积和体积15. (如阳在欣半径为2,时线长为4的圆锥中内接一个高为人的圆柱, 求岡柱农面积。
高考数学一轮复习《空间几何体》练习题(含答案)
高考数学一轮复习《空间几何体》练习题(含答案)一、单选题1.降水量(precipitation[amount]):从天空降落到地面上的液态或固态(经融化后)水,未经蒸发、渗透、流失,而在水平面上积聚的深度.降水量以mm 为单位,气象观测中一般取一位小数,现某地10分钟的降雨量为13.1mm ,小王在此地此时间段内用口径为10cm 的圆柱型量筒收集的雨水体积约为( )(其中π 3.14≈)A .331.0210mm ⨯B .331.0310mm ⨯C .531.0210mm ⨯D .531.0310mm ⨯2.某几何体的三视图如图所示(单位:cm ),则该几何体的表面积(单位:2cm )是( )A .()256122cm +B .()248162cm + C .()280122cm + D .()272162cm + 3.阿基米德(Archimedes ,公元前287年-公元前212年)是古希腊伟大的数学家,物理学家和天文学家,在他墓碑上刻着的一个圆柱容器里放了一个球,该球与圆柱的两个底面及侧面均相切,如图所示,则在该几何体中,圆柱表面积与球表面积的比值为( )A .32B .43C .32或23D .234.已知一个几何体的三视图如图所示,则这个几何体的表面积为( )A .33πB .2πC .3πD .4π5.某圆锥的母线长为2,高为423,其三视图如下图所示,圆锥表面上的点M 在正视图上的对应点为A ,圆锥表面上的点N 在侧视图上的对应点为B ,则在此圆锥侧面上,从M 到N 的路径中,最短路径的长度为A .2B .22C .823+D .223- 6.已知某空间几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:3cm )是( )A .323B .163C .4D .87.已知正方体的六个面的中心可构成一个正八面体,现从正方体内部任取一个点,则该点落在这个正八面体内部的概率为( )A .12B .13C .16D .1128.某几何体的三视图如图所示,则该几何体的表面积为( )A .810+16B .40C .810++24D .489.棱长为1的正方体1111ABCD A B C D -中,点E 是侧面11CC B B 上的一个动点(包含边界),则下面结论正确的有( )①若点E 满足1AE B C ⊥,则动点E 的轨迹是线段;②若点E 满足130EA C ∠=,则动点E 的轨迹是椭圆的一部分;③在线段1BC 上存在点E ,使直线1A E 与CD .所成的角为30;④当E 在棱1BB 上移动时,1EC ED +的最小值是352+. A .1个 B .2个 C .3个 D .4个10.某锥体的正视图和侧视图均为如图所示的等腰三角形,则该几何体的体积最小值为A .4πB .12C .1D .211.已知四棱锥S ABCD -的所有顶点都在同一球面上,底面ABCD 是正方形且和球心O 在同一平面内,当此四棱锥体积取得最大值时,其表面积等于443+,则球O 的体积等于( )A .3223πB .1623πC .823πD .423π 12.一个长方体被一平面截去一部分后,所剩几何体的三视图如图所示,则该几何体的体积为A .36B .48C .64D .72二、填空题13.如果用半径为r 的半圆形铁皮卷成一个圆锥筒,那么这个圆锥筒的高等于____. 14.点A ,B ,C ,D 在同一个球的球面上,3AB BC AC ==,若四面体ABCD 体积的3________.15.“方锥”,在《九章算术》卷商功中解释为正四棱锥.现有“方锥”S ABCD -,其中4AB =,SA 与平面ABCD 32,则此“方锥”的外接球表面积为________. 16.棱长为6的正方体内有一个棱长为x 的正四面体,正四面体的中心(正四面体的中心就是该四面体外接球的球心)与正方体的中心重合,且该四面体可以在正方体内任意转动,则x 的最大值为______.三、解答题17.如图,已知直三棱柱111ABC A B C ,其底面是等腰直角三角形,且22AB BC ==14AC AA ==.(1)求该几何体的表面积;(2)若把两个这样的直三棱柱拼成一个大棱柱,求拼得的棱柱表面积的最小值.18.如图是一个以111A B C为底面的直三棱柱被一平面所截得到的几何体,截面为ABC,已知11112A B B C==,11190A B C∠=︒,14AA=,13BB=,12CC=,求该几何体的体积.19.如图是某几何体的三视图,请你指出这个几何体的结构特征,并求出它的表面积与体积.(单位:cm)20.如图所示,在四棱锥P -ABCD 中,P A ⊥平面ABCD ,底面ABCD 是矩形,2PA AB ==,2AD =,过点B 作BE ⊥AC ,交AD 于点E ,点F ,G 分别为线段PD ,DC 的中点.(1)证明:AC ⊥平面BEF ;(2)求三棱锥F -BGE 的体积.21.如图,多面体ABCDEF 中,四边形ABCD 是边长为2的菱形,AC =23,△ADE 为等腰直角三角形,∠AED =90°,平面ADE ⊥平面ABCD ,且EF //AB ,EF =1.(1)证明:AC ⊥平面BDF ;(2)若G 为棱BF 的中点,求三棱锥G —DEF 的体积.22.如图,在三棱锥-P ABC 中,2AB BC ==,22PA PB PC AC ====,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且MC =2MB ,求点C 到平面POM 的距离.23.如图,在三棱锥S -ABC 中,SA =SC ,D 为AC 的中点,SD ⊥AB .(1)证明:平面SAC ⊥平面ABC ;(2)若△BCD 是边长为3的等边三角形,点P 在棱SC 上,PC =2SP ,且932S ABC V -=,求三棱锥A -PBC 的体积.24.如图,在四棱锥P ABCD -中,底面ABCD 是边长为4的菱形,60DAB ∠=︒,7PA PD ==,O F 、分别为AD AB 、的中点,PF AC ⊥.(1)求证:面POF ⊥面ABCD ;(2)求三棱锥B PCF -的体积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
空间几何体
【课时目标】熟练掌握空间几何体的结构,以三视图为载体,进一步巩固几何体的体积与表面积计算.
1.圆柱、圆锥、圆台的侧面展开图及侧面面积公式.
2
一、选择题
1.圆柱的轴截面是正方形,面积是S ,则它的侧面积是( )
A .1
πS B .πS C .2πS D .4πS
2.若某空间几何体的三视图如图所示,则该几何体的体积是( )
A .12
B .2
3 C .1 D .2
3.如图,某几何体的正视图与侧视图都是边长为1的正方形,且体积为1
2,则该几何体的俯视图可以是( )
4.一个几何体的三视图如图,该几何体的表面积为()
A.280 B.292 C.360 D.372
5.棱长为a的正方体中,连接相邻面的中心,以这些线段为棱的八面体的体积为()
A .a 33
B .a 34
C .a 36
D .a 312
6.已知一个球与一个正三棱柱的三个侧面和两个底面相切,若这个球的体积是32π
3,则这个三棱柱的体积是( )
A .96 3
B .16 3
C .24 3
D .483
二、填空题
7.一个几何体的三视图如图所示,则这个几何体的体积为________.
8.若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是________cm 3.
9.圆柱形容器内盛有高度为8 cm 的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球(如图所示),则球的半径是________cm .
三、解答题
10.如下的三个图中,上面的是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图在下面画出(单位:cm).
(1)按照画三视图的要求画出该多面体的俯视图;
(2)按照给出的尺寸,求该多面体的体积;
11.如图所示,为了制作一个圆柱形灯笼,先要制作4个全等的矩形骨架,总计耗用9.6米铁丝,再用S平方米塑料片制成圆柱的侧面和下底面(不安装上底面).
(1)当圆柱底面半径r取何值时,S取得最大值并求出该最大值(结果精确到0.01平方米);
(2)若要制作一个如图放置的、底面半径为0.3米的灯笼,请作出用于制作灯笼的三视图(作图时,不需考虑骨架等因素).
能力提升12.设某几何体的三视图如下(尺寸的长度单位为m).则该几何体的体积为________m3.
13.如图所示,在直三棱柱ABC-A1B1C1中,底面为直角三角形,∠ACB=90°,AC=6,BC=CC1=2,P是BC1上一动点,则CP+PA1的最小值是___________.
1.空间几何体是高考必考的知识点之一,重点考查空间几何体的三视图和体积、表面积的计算,尤其是给定三视图求空间几何体的体积或表面积,更是近几年高考的热点.其中组合体的体积和表面积有加强的趋势,但难度也不会太大,解决这类问题的关键是充分发挥空间想象能力,由三视图得到正确立体图,进行准确计算.
2.“展”是化折为直,化曲为平,把立体几何问题转化为平面几何问题,多用于研究线面关系,求多面体和旋转体表面的两点间的距离最值等等.
习题课空间几何体答案
知识梳理
1.2πrlπrlπ(r+r′)l
2.Sh 1
3Sh
1
3(S上+S下+S上S下)h4πR2
作业设计
1.B[设圆柱底面半径为r,则S=4r2,S侧=2πr·2r=4πr2=πS.]
2.C [由三视图可知,该空间几何体是底面为直角三角形的直三棱柱,三棱柱的底面
直角三角形的直角边长分别为1和2,三棱柱的高为2,所以该几何体的体积V =1
2×1×2×2=1.]
3.C [当俯视图为A 中正方形时,几何体为边长为1的正方体,体积为1;当俯视图
为B 中圆时,几何体为底面半径为12,高为1的圆柱,体积为π
4;当俯视图为C 中三角形时,
几何体为三棱柱,且底面为直角边长为1的等腰直角三角形,高为1,体积为1
2;当俯视图
为D 中扇形时,几何体为圆柱的14,且体积为π
4.]
4.C [由三视图可知该几何体是由下面一个长方体,上面一个长方体组合而成的几何体.
∵下面长方体的表面积为8×10×2+2×8×2+10×2×2=232,上面长方体的表面积为8×6×2+2×8×2+2×6×2=152,又∵长方体表面积重叠一部分,∴几何体的表面积为232+152-2×6×2=360.]
5.C [连接正方体各面中心构成的八面体由两个棱长为2
2a 的正四棱锥组成,正四棱
锥的高为a 2,则八面体的体积为V =2×13×(22a)2·a 2=a 3
6.]
6.D [由43πR 3=32π
3,得R =2. ∴正三棱柱的高h =4. 设其底面边长为a , 则13·3
2a =2,∴a =43.
∴V =3
4(43)2·4=483.] 7.103
解析 该几何体是上面是底面边长为2的正四棱锥,下面是底面边长为1、高为2的正四棱柱的组合体,其体积为
V =1×1×2+13×22×1=10
3. 8.144
解析 此几何体为正四棱台与正四棱柱的组合体,而V 正四棱台=1
3(82+42+82×42)×3=112,V 正四棱柱=4×4×2=32,故V =112+32=144.
9.4
解析 设球的半径为r cm ,则πr 2×8+4
3πr 3×3 =πr 2×6r .解得r =4. 10.解 (1)如图所示.
(2)所求多面体体积V =V 长方体-V 正三棱锥
=4×4×6-13×⎝⎛⎭
⎫12×2×2×2=2843 (cm 3). 11.解 由题意可知矩形的高即圆柱的母线长为错误!=1.2-2r ,∴塑料片面积S =πr 2
+2πr(1.2-2r)=πr 2+2.4πr -4πr 2=-3πr 2+2.4πr =-3π(r 2-0.8r)=-3π(r -0.4)2+0.48π.
∴当r =0.4时,S 有最大值0.48π,约为1.51平方米.
(2)若灯笼底面半径为0.3米,则高为1.2-2×0.3=0.6(米).制作灯笼的三视图如图.
12.4
解析 由三视图可知原几何体是一个三棱锥,且三棱锥的高为2,底面三角形的一边长
为4,且该边上的高为3,故所求三棱锥的体积为V =13×1
2×3×4×2=4 m 3.
13.5 2 解析
将△BCC1沿BC1线折到面A1C1B上,如图.
连接A1C即为CP+PA1的最小值,过点C作CD⊥C1D于D点,△BCC1为等腰直角三角形,
∴CD=1,C1D=1,A1D=A1C1+C1D=7.
∴A1C=A1D2+CD2=49+1=5 2.。