圆锥曲线公开课教案
圆锥曲线高中数学解读教案
圆锥曲线高中数学解读教案教学内容:圆锥曲线
课时安排:2课时
教学目标:
1. 理解圆锥曲线的定义以及各种形式的表达;
2. 掌握圆锥曲线的性质和特点;
3. 能够应用所学知识解决相关问题。
教学重点:
1. 圆锥曲线的定义和性质;
2. 椭圆、双曲线、抛物线的特点与区别;
3. 圆锥曲线的图像及方程。
教学内容和步骤:
第一课时:
1. 引入学习,了解学生对圆锥曲线的理解和认识;
2. 讲述圆锥曲线的定义及一般方程;
3. 分别介绍椭圆、双曲线和抛物线的定义和特点;
4. 指导学生做相关习题,巩固所学知识。
第二课时:
1. 复习前一节课的内容,解答学生提出的问题;
2. 讲解圆锥曲线的图像和方程的变化规律;
3. 继续指导学生进行练习和讨论;
4. 小结本节课的学习内容,布置相关作业。
教学方法:
1. 教师讲授与学生互动相结合,注重启发式教学方法;
2. 多媒体教学辅助,展示圆锥曲线的图像和方程;
3. 组织学生进行讨论和小组合作,促进彼此之间的交流和学习。
教学评价:
1. 课后布置相关练习和作业,及时进行批改和评价;
2. 观察学生学习情况,及时调整教学进度和方法;
3. 定期进行测试和考查,全面评估学生对圆锥曲线的掌握情况。
高中数学圆锥曲线解读教案
高中数学圆锥曲线解读教案
教学目标:
1. 了解圆锥曲线的基本概念和性质;
2. 掌握圆锥曲线的方程及其图像的特点;
3. 能够通过方程求解圆锥曲线的各项参数。
教学步骤:
一、导入(5分钟)
1. 引入圆锥曲线的概念,介绍圆锥曲线在实际生活中的应用。
2. 提出学习目标,激发学生的学习兴趣。
二、讲解(15分钟)
1. 讲解圆、椭圆、双曲线、抛物线等四种圆锥曲线的定义和性质。
2. 介绍圆锥曲线的方程和各项参数的含义。
3. 分别展示各种圆锥曲线的标准方程及其图像特点。
三、练习(20分钟)
1. 给学生提供几个圆锥曲线的方程,让他们分别绘制出对应的图像。
2. 让学生通过方程求解圆锥曲线的焦点、准线、长轴、短轴等参数。
四、展示(10分钟)
1. 学生展示他们绘制的圆锥曲线图像,并解读图像的特点。
2. 请学生通过求解方程,解读各种参数的意义。
五、总结(5分钟)
1. 总结圆锥曲线的性质和方程求解方法。
2. 强调重点,提醒学生注意常见的错误和解题技巧。
教学反思:
通过这节课的教学,学生能够对圆锥曲线的基本概念和性质有所了解,提高了他们的数学能力和解题技巧。
在未来的教学中,可以适当增加实例分析,激发学生的思维和创造力。
圆锥曲线学生公开课教案教学设计课件资料
圆锥曲线学生公开课教案教学设计课件资料教案章节:第一章至第五章第一章:圆锥曲线概述1.1 圆锥曲线的定义与性质1.2 圆锥曲线的历史发展1.3 圆锥曲线在现实生活中的应用第二章:椭圆2.1 椭圆的定义与性质2.2 椭圆的标准方程2.3 椭圆的应用第三章:双曲线3.1 双曲线的定义与性质3.2 双曲线的标准方程3.3 双曲线的应用第四章:抛物线4.1 抛物线的定义与性质4.2 抛物线的标准方程4.3 抛物线的应用第五章:圆锥曲线之间的联系5.1 圆锥曲线之间的关系5.2 圆锥曲线与其他几何图形的关系5.3 圆锥曲线的进一步研究本教案旨在帮助学生全面了解圆锥曲线的基本概念、性质和应用,通过生动的实例和丰富的互动活动,激发学生对圆锥曲线的兴趣和探究欲望。
在教学过程中,注重培养学生的数学思维能力和创新能力,提高他们解决实际问题的能力。
教学方法:1. 采用问题驱动的教学方式,引导学生主动探究圆锥曲线的性质和规律。
2. 利用多媒体课件和实物模型,直观展示圆锥曲线的形态和特点。
3. 设计丰富的互动环节,让学生在实践中理解和掌握圆锥曲线的知识。
4. 鼓励学生进行小组讨论和合作交流,培养团队协作能力。
教学评价:1. 通过课堂提问、作业和小组讨论,评估学生对圆锥曲线知识的掌握程度。
2. 结合学生的实际应用能力,评估他们在解决与圆锥曲线相关问题时的创新能力。
3. 收集学生对教学过程和教学资源的反馈意见,不断优化教学方案。
教学资源:1. 多媒体课件:包含圆锥曲线的图片、动画和实例,生动展示圆锥曲线的特点。
2. 实物模型:提供圆锥曲线的相关模型,让学生直观感受圆锥曲线的形态。
3. 练习题库:涵盖各种难度的练习题,满足不同层次学生的学习需求。
4. 参考资料:提供相关书籍、论文和网络资源,方便学生深入研究圆锥曲线。
教学进度安排:1. 第一章:2课时2. 第二章:3课时3. 第三章:3课时4. 第四章:2课时5. 第五章:2课时教学总结:通过本节课的学习,学生应能掌握圆锥曲线的基本概念、性质和应用,了解圆锥曲线之间以及与其他几何图形之间的关系。
圆锥曲线公开课教案
圆锥曲线--点的轨迹探究与欣赏一、教材分析1.地位和作用圆锥曲线与科研、生产以及人类生活有着密切的联系。
早在16、17世纪之交,开普勒就发现行星绕太阳运行的轨道是一个椭圆;探照灯反射面是抛物线绕其对称轴旋转形成的抛物面,发电厂冷却塔的外形线是双曲线。
本节课是在学生学习了圆锥曲线的定义和基本几何性质后展开的,旨在对圆锥曲线有更加深刻的了解。
2.教学重点难点(1)重点:求动点轨迹的基本方法。
(2)难点:找出相关点之间的内在关系,列出相应的数学式子。
(3)方法:定义法、交轨法,一题多变,发散思维,并用“几何画板”提高课堂效率。
3.教学目的:(1)通过教学活动,使学生掌握求点的轨迹的基本方法。
(2)“兴趣是最好的老师,它永远胜过责任心”(爱因斯坦语),本节课通过《几何画板》演示课本的习题和与圆锥曲线有关的几个精美图片激发学生的学习兴趣。
引导学生自主学习,自我探索,并从中体会到学习数学的乐趣。
(3)想通过本节课的学习也想加大学生的参与度,因为利用电脑,可以得到许多我们事先不知道的结果,正如平时一样,学生可以把上课的软件拷回家,自己课后加以学习研究,再去观察、再认识、再体会,象理化一样,给学生提供了做数学实验的机会。
二、教学过程三、小结与评价:1、本节课结合课本练习,研究了求轨迹的方法的一些方法:定义法、相关法、交轨法等。
2、充分利用《几何画板》的强大功能,动态显示课本习题,由此发现《几何画板》对学习数学的重要作用,并可自己动手实验,得到不同的结论,可以用它来验证我们的猜想和结论正确与否。
3、求轨迹方程时,应注意找出题目所给条件的内在联系,挖掘出它们关系,在化简时注意掌握必要的技巧和方法,并加以类比和总结。
四、练习与作业1、动圆M 过定点P (-4,0),且与圆08:22=-+x y x C 相切,求动圆圆心M 的轨迹方程。
2、M 是抛物线x y =2上一动点,以OM 为一边(O 为坐标原点)作正方形MNPO ,求动点P 的轨迹方程。
圆锥曲线学生公开课教案教学设计课件资料
圆锥曲线学生公开课教案教学设计课件资料一、教学目标1. 知识与技能:理解圆锥曲线的概念和性质。
掌握圆锥曲线的标准方程及其求法。
学会运用圆锥曲线解决实际问题。
2. 过程与方法:培养学生的观察、分析和解决问题的能力。
培养学生的逻辑思维能力和数学美感。
培养学生的合作交流和表达能力。
3. 情感态度与价值观:激发学生对圆锥曲线的兴趣和好奇心。
培养学生对数学美的感知和欣赏能力。
培养学生勇于探索和创新的思维精神。
二、教学内容1. 圆锥曲线的概念与性质引导学生通过观察圆锥的切割和展开,理解圆锥曲线的形成过程。
引导学生探究圆锥曲线的几何性质,如曲率、渐近线等。
2. 圆锥曲线的标准方程引导学生利用圆锥曲线的性质推导出标准方程。
引导学生理解不同类型的圆锥曲线(如椭圆、双曲线、抛物线)的标准方程及其特点。
3. 圆锥曲线的应用引导学生运用圆锥曲线解决实际问题,如测量问题、轨迹问题等。
引导学生运用圆锥曲线方程进行优化问题求解。
三、教学过程1. 导入通过展示圆锥曲线在现实生活中的应用实例,引发学生对圆锥曲线的兴趣。
引导学生回顾之前的数学知识,为新课的学习做好铺垫。
2. 知识讲解利用多媒体课件,生动形象地展示圆锥曲线的形成过程。
引导学生通过合作交流,探究圆锥曲线的几何性质。
利用数学软件,动态展示圆锥曲线的变化,增强学生对圆锥曲线的理解。
3. 例题讲解与练习讲解典型例题,引导学生掌握解题方法。
安排适量练习题,巩固所学知识。
4. 课堂小结总结本节课的主要内容和知识点。
强调圆锥曲线在实际生活中的应用价值。
四、教学评价1. 课堂表现评价:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。
2. 练习题评价:通过学生完成的练习题,评估学生对圆锥曲线知识点的掌握程度。
3. 小组讨论评价:评估学生在合作交流中的表现,如观点阐述、团队协作等。
五、教学资源1. 多媒体课件:展示圆锥曲线的形成过程、几何性质和应用实例。
2. 数学软件:动态展示圆锥曲线的变化,增强学生直观感受。
浙江大学圆锥曲线教案
教学目标:1. 知识与技能:理解圆锥曲线的定义,掌握椭圆、双曲线、抛物线的标准方程及其性质。
2. 过程与方法:通过实例分析和几何推导,培养学生运用圆锥曲线知识解决实际问题的能力。
3. 情感态度与价值观:激发学生对数学的兴趣,培养严谨的科学态度和团队合作精神。
教学重点:1. 圆锥曲线的定义和标准方程。
2. 圆锥曲线的性质和应用。
教学难点:1. 椭圆、双曲线、抛物线的标准方程推导。
2. 圆锥曲线的几何性质。
教学准备:1. 多媒体课件2. 圆锥曲线模型3. 相关习题教学过程:一、导入1. 展示生活中常见的圆锥曲线图像,如月亮、卫星轨道等,激发学生的学习兴趣。
2. 提问:什么是圆锥曲线?它们有什么特点?二、新课讲解1. 圆锥曲线的定义:圆锥曲线是平面内动点到定点F的距离与到定直线L的距离的比等于常数e的点的轨迹。
2. 椭圆、双曲线、抛物线的标准方程:- 椭圆:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$,其中$a>b>0$,$e<1$。
- 双曲线:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$,其中$a>0$,$b>0$,$e>1$。
- 抛物线:$y^2=2px$(开口向右)或$x^2=2py$(开口向上),其中$p>0$。
3. 圆锥曲线的性质:- 椭圆:长轴、短轴、焦距、离心率等。
- 双曲线:实轴、虚轴、焦距、离心率等。
- 抛物线:焦点、准线、焦距等。
三、实例分析1. 展示实例:地球绕太阳的运动轨迹为椭圆,分析椭圆的几何性质。
2. 引导学生思考:如何利用圆锥曲线的知识解决实际问题?四、课堂练习1. 给出椭圆、双曲线、抛物线的标准方程,要求学生求出它们的焦点、离心率等。
2. 给出实际问题,如卫星轨道设计、建筑设计等,要求学生运用圆锥曲线知识解决。
五、课堂小结1. 总结本节课所学内容,强调圆锥曲线的定义、标准方程、性质和应用。
高中数学北师大版《第三章 圆锥曲线与方程(通用)》省级名师优质课教案比赛获奖教案示范课教案公开课教案
高中数学北师大版选修2-1第三章《第三章圆锥曲线与方程(通用)》省级名师优质课教案比赛获奖教案示范课教案
公开课教案
【省级名师教案】
1教学目标
1.深刻理解并熟练掌握圆锥曲线的定义,能灵活应用定义解决问题;熟练掌握焦点坐标、顶点坐标、焦距、离心率、准线方程、渐近线、焦半径等概念和求法;能结合平面几何的基本知识求解圆锥曲线的方程。
2.通过对练习,强化对圆锥曲线定义的理解,提高分析、解决问题的能力;通过对问题的不断引申,精心设问,引导学生学习解题的一般方法。
3.借助多媒体辅助教学,激发学习数学的兴趣.
2学情分析
我所任教班级的学生参与课堂教学活动的积极性强,思维活跃,但计算能力较差,推理能力较弱,使用数学语言的表达能力也略显不足
3重点难点
教学重点
1.对圆锥曲线定义的理解
2.利用圆锥曲线的定义求“最值”
3.“定义法”求轨迹方程
教学难点:
巧用圆锥曲线定义解题
4教学过程
4.1第一学时
教学目标。
圆锥曲线高中数学讲解教案
圆锥曲线高中数学讲解教案
一、教学目标:
1. 了解圆锥曲线的定义和基本性质;
2. 掌握圆锥曲线的标准方程和性质;
3. 能够根据给定的条件求解圆锥曲线的方程;
4. 能够利用圆锥曲线解决实际问题。
二、教学重点:
1. 圆锥曲线的定义;
2. 圆锥曲线的标准方程;
3. 圆锥曲线的性质。
三、教学难点:
1. 圆锥曲线的方程求解;
2. 圆锥曲线的性质证明。
四、教学过程:
1. 圆锥曲线的定义和基本概念(15分钟)
- 圆锥曲线的定义;
- 圆锥曲线的类别;
- 圆锥曲线的几何性质。
2. 圆锥曲线的标准方程和性质(20分钟)
- 圆的标准方程和性质;
- 椭圆的标准方程和性质;
- 双曲线的标准方程和性质;
- 抛物线的标准方程和性质。
3. 圆锥曲线的方程求解(30分钟)
- 根据给定的条件求解圆锥曲线的方程;
- 利用圆锥曲线求解实际问题。
4. 圆锥曲线的性质证明(15分钟)
- 圆锥曲线的对称性证明;
- 圆锥曲线的焦点、准线和直径关系证明。
五、教学总结:
通过本节课的学习,我们对圆锥曲线的定义、标准方程和性质有了更深入的了解,掌握了圆锥曲线的求解方法和应用能力。
希望同学们能够认真复习,做好练习,提高对圆锥曲线的理解和应用能力。
下节课将继续深入学习圆锥曲线的相关内容,敬请期待。
高中数学圆锥曲线教案
高中数学圆锥曲线教案
一、教学目标
1.了解圆锥曲线的定义和基本性质。
2.能够掌握圆锥曲线的标准方程及其图像特点。
3.能够解决与圆锥曲线相关的问题。
二、教学重点和难点
重点:掌握圆锥曲线的标准方程及其图像特点。
难点:理解圆锥曲线的定义及性质。
三、教学内容
1.圆锥曲线的定义和基本性质。
2.圆锥曲线的标准方程及其图像特点。
3.圆锥曲线的相关问题解决方法。
四、教学过程
1.导入新知识:通过引入一个问题或实际应用场景引起学生的兴趣。
2.讲解圆锥曲线的定义和基本性质,包括椭圆、双曲线和抛物线。
3.介绍圆锥曲线的标准方程及其图像特点。
4.通过实例分析,让学生熟悉解决与圆锥曲线相关的问题的方法。
5.组织学生进行练习和讨论,巩固所学知识。
6.总结本节课内容,提出问题进行思考,激发学生的学习兴趣。
五、课堂作业
1.完成练习题。
2.思考如何将圆锥曲线应用到实际生活中。
六、教学反思
本节课主要对圆锥曲线的定义和基本性质进行了讲解,并通过实例让学生掌握了圆锥曲线的标准方程及其图像特点。
同时也引导学生思考如何将所学知识应用到实际生活中。
在教学过程中需要注意引导学生正确理解圆锥曲线的概念,帮助他们建立深刻的认识。
公开课教学设计 圆锥曲线的共同性质教案
公开课教学设计圆锥曲线的共同性质教案我们知道,平面内到一个定点的距离和到一条定直线不在上的距离的比等于的动点的轨迹是抛物线.当这个比值是一个不等于1的常数时,动点的轨迹又是什么曲线呢?2.问题:试探讨这个常数分别是和时,动点的轨迹?二、学生活动探讨过程略(可以用课件演示或直接推导);可以得到:当常数是时,得到的是椭圆;当常数等于2时得到的是双曲线;三、数学运用1.例题:例1.已知点到定点的距离与它到定直线的距离的比是常数,求点的轨迹.解:根据题意可得化简得令,上式可化为这是椭圆的标准方程.所以点的轨迹是以焦点为,长轴、短轴分别为的椭圆。
这个椭圆的离心率就是到定点的距离和它到定直线不在上的距离的比.类似地,我们可以得到:当点到定点的距离和它到定直线的距离的比是常数时,这个点的轨迹是双曲线,方程为(其中),这个常数就是双曲线的离心率.这样,圆锥曲线可以统一定义为:平面内到一个定点和到一条定直线(不在上)的距离的比等于常数的点的轨迹.当时,它表示椭圆;当时,它表示双曲线;当时,它表示抛物线.其中是圆锥曲线的离心率,定点是圆锥曲线的焦点,定直线是圆锥曲线的准线.根据图形的对称性可知,椭圆和双曲线都有两条准线,对于中心在原点,焦点在轴上的椭圆或双曲线,与焦点对应的准线方程分别为.例2.椭圆上一点到右准线的距离是,求该点到椭圆左焦点的距离.解:设该椭圆的的左右焦点分别是,该椭圆的离心率为,由圆锥曲线的统一定义可知,所以,即该点到椭圆左焦点的距离为.说明:椭圆和双曲线分别有两个焦点和两条准线,在解题过程中要注意对应,即左焦点对应左准线,右焦点对应右准线(或上焦点对应上准线、下焦点对应下准线.)例3.若椭圆内有一点,为右焦点,椭圆上有一点使最小,则点为()略解:因为椭圆的离心率为,则就等于点到右准线的距离,则可以看到,由点到直线的最短距离是垂线段得可以得到.故选.。
新版高中数学圆锥曲线教案
新版高中数学圆锥曲线教案一、教学目标:1. 熟练掌握圆锥曲线的基本概念和性质;2. 能够理解常见圆锥曲线方程的几何意义;3. 能够运用圆锥曲线解决实际问题。
二、教学重点:1. 圆锥曲线的定义和分类;2. 圆锥曲线的方程及性质;3. 圆锥曲线的应用实例。
三、教学内容:1. 圆锥曲线的基本概念:椭圆、双曲线、抛物线;2. 圆锥曲线的方程:椭圆方程、双曲线方程、抛物线方程;3. 圆锥曲线的性质:焦点、准线、离心率等;4. 圆锥曲线的应用:求解实际问题。
四、教学步骤:1. 引入:通过生活实例引入圆锥曲线的概念,引发学生兴趣;2. 讲解:介绍圆锥曲线的定义、分类、方程和性质;3. 练习:让学生进行练习,巩固所学内容;4. 应用:通过应用题,让学生运用所学知识解决实际问题;5. 总结:对本节课所学内容进行总结,强化记忆。
五、教学工具:1. 讲义、教材:提供相关知识点及例题;2. 幻灯片:辅助讲解,呈现图形与方程对应关系;3. 黑板、彩色粉笔:展示解题过程;4. 习题册、练习册:让学生进行巩固练习。
六、教学评价:1. 课堂表现:学生是否积极参与讨论、思维活跃;2. 作业情况:学生对作业的完成情况及正确率;3. 考试成绩:检验学生掌握情况。
七、教学反馈:1. 整理学生反馈意见,根据学生反馈调整教学方式;2. 总结本节课教学经验,为下一节课改进教学方法做准备。
八、教学延伸:1. 给学生留下更多实例让学生探究,提高学生学习兴趣;2. 引导学生自主进行拓展探索,培养学生解决问题的能力。
以上是本节课的教案范本,希望能够对教学工作有所帮助,祝教学顺利!。
关于学习圆锥曲线的教案
关于学习圆锥曲线的教案一、引言学习圆锥曲线是高中数学教学中的重点内容之一。
通过学习圆锥曲线的性质和应用,可以帮助学生深入理解数学中的几何概念和解决实际问题的能力。
本教案旨在为教师提供一个有条理、有效的教学方案,以帮助学生更好地学习和应用圆锥曲线。
二、教学目标1. 让学生了解圆锥曲线的定义和基本性质;2. 培养学生分析和解决圆锥曲线相关问题的能力;3. 引导学生掌握圆锥曲线的方程和图形特征;4. 培养学生运用圆锥曲线解决实际问题的能力。
三、教学内容1. 圆锥曲线的定义和分类a. 椭圆b. 双曲线c. 抛物线2. 圆锥曲线的方程和图形特征a. 椭圆的标准方程b. 双曲线的标准方程c. 抛物线的标准方程3. 圆锥曲线的性质和应用a. 焦点和准线的关系b. 椭圆的离心率和焦距的关系c. 双曲线的渐近线d. 抛物线的顶点和对称轴e. 圆锥曲线在物理和工程领域的应用四、教学方法1. 导入法:通过引入日常生活或实际问题,激发学生对圆锥曲线的兴趣和学习动力。
2. 讲授法:通过讲解圆锥曲线的概念、性质和方程,帮助学生建立起知识体系。
3. 示例法:通过解析和解题示例,引导学生熟练掌握圆锥曲线的应用方法。
4. 探究法:组织学生进行实验和探究活动,培养学生的实际操作和问题解决能力。
五、教学步骤1. 导入引导学生观察身边物体的形状,并通过问答帮助学生了解到圆锥曲线的普遍存在。
2. 讲解概念a. 介绍圆锥曲线的定义和分类,引导学生理解椭圆、双曲线和抛物线的区别和特点。
b. 通过示意图和实例,讲解圆锥曲线的方程及其与图形特征的对应关系。
3. 解析示范运用示例,详细解析椭圆、双曲线和抛物线的相关概念、方程和特征。
4. 练习巩固分别给学生提供一些练习题,以巩固他们对圆锥曲线基本知识的理解和掌握。
5. 拓展应用融合实际问题,引导学生运用所学知识解决日常生活或工程领域中的相关问题。
6. 总结回顾归纳总结圆锥曲线的性质和应用,与学生一起回顾所学内容,强化对知识的理解和记忆。
21圆锥曲线省公开课获奖课件市赛课比赛一等奖课件
2.1
探究点二 :双曲线旳定义
思考 5 已知定点 A、B,且 AB=4,动点 P 满足 PA-PB=3,则 P 点的轨迹形状 为_双__曲__线__旳__一__支___.
解析 由动点 P 满足 PA-PB=3<4=AB,结合双曲线的定义及右图可知:点 P 的 轨迹是以 A、B 为焦点的双曲线的一支.
2.经过对圆锥曲线性质旳研究,感受数形结合旳基本 思想和了解代数措施研究几何性质旳优越性.
明目标、知重点
填要点、记疑点
主目录
探要点、究所然
当堂测、查疑缺
填要点、记疑点
2.1
1.椭圆的定义 平面内与 两个定点F1,F2旳距离旳和 叫做椭圆,两个定点 F1,F2 叫做椭圆的 圆的 焦距 .
等于常数(大于 F1F2)的点的轨迹 焦点 .两焦点间的距离叫做椭
明目标、知重点
填要点、记疑点
主目录
探要点、究所然
当堂测、查疑缺
探要点、究所然
2.1
探究点二 :双曲线旳定义
思考 2 取一条拉链,拉开它的一部分,在拉开的两边上各选择一点,分别固定在 点 F1,F2 上,把笔尖放在点 M 处,拉开闭拢拉链,笔尖经过的点可画出一条曲 线,思考曲线满足什么条件? 答 如图,曲线上的点满足条件:MF1-MF2=常数;如果 改变一下位置,使 MF2-MF1=常数,可得到另一条曲线.
第2章 圆锥曲线与方程
§2.1 圆锥曲线
本节知识目录
2.1
明目的、知要点
圆锥曲线
填要点、记疑点 探要点、究所然 当堂测、查疑缺
探究点一 椭圆旳定义 探究点二 双曲线旳定义 探究点三 抛物线旳定义
明目标、知重点
填要点、记疑点
主目录
初中物理圆锥曲线教案
初中物理圆锥曲线教案教学目标:1. 让学生了解圆锥曲线的概念,理解圆锥曲线的形成原理。
2. 培养学生运用几何知识解决物理问题的能力。
3. 培养学生的观察能力、思考能力和动手实践能力。
教学内容:1. 圆锥曲线的概念及特点2. 圆锥曲线的形成原理3. 圆锥曲线在物理学中的应用教学过程:一、导入(5分钟)1. 利用多媒体展示各种圆锥曲线现象,如行星运动、抛物线运动等,引导学生关注圆锥曲线在生活中的应用。
2. 提问:这些现象有什么共同特点?它们与圆锥曲线有什么关系?二、新课讲解(20分钟)1. 讲解圆锥曲线的概念:圆锥曲线是由一个圆锥的截面与一个平面相交形成的曲线。
根据截面的位置和方向,圆锥曲线分为椭圆、抛物线和双曲线三种类型。
2. 讲解圆锥曲线的特点:a. 椭圆:焦点在x轴上,中心轴为x轴,两焦点距离为2a,长轴为2a,短轴为2b。
b. 抛物线:焦点在x轴上,中心轴为x轴,两焦点距离为2a,但没有短轴,只有一个顶点。
c. 双曲线:两焦点在x轴上,中心轴为x轴,两焦点距离为2a,实轴为2a,虚轴为2b。
3. 讲解圆锥曲线的形成原理:以椭圆为例,当一个平面与圆锥相交,且截面与底面不平行时,根据圆锥的性质,截面与底面的半径、斜高和母线之间的关系,形成椭圆。
三、实例分析(15分钟)1. 以抛物线为例,分析其在物理学中的应用,如抛物线运动、光学反射等。
2. 引导学生思考:圆锥曲线在其他领域有哪些应用?四、课堂练习(10分钟)1. 请学生运用所学知识,分析生活中常见的圆锥曲线现象,如自行车轮胎痕迹、篮球轨迹等。
2. 请学生总结圆锥曲线在物理学、工程学等领域的应用。
五、总结(5分钟)1. 回顾本节课所学内容,强调圆锥曲线的基本概念和特点。
2. 强调圆锥曲线在实际生活中的广泛应用,激发学生学习兴趣。
教学评价:1. 课堂讲解是否清晰、易懂,学生是否能掌握圆锥曲线的基本概念和特点。
2. 学生是否能运用所学知识分析生活中的圆锥曲线现象。
圆锥曲线统一定义优质课市公开课一等奖省优质课获奖课件
程方法。 二、教学重点、难点 重点:圆锥曲线统一定义。 难点:圆锥曲线统一定义
第2页
椭圆、双曲线、抛物线都是有一个平面截一 个圆锥面得到,统称圆锥曲线
我们知道,平面内到一个定点F距离和到 一条定直线 l(F 不在 l上)距离之比等于1 动 点 P 轨迹是抛物线.
d M l 表示点M到直线l:x
a2 c
的距离
焦点
准线
椭圆上点到一个定点距离与到一条定直线距离
之比为常数e (0<e<1) 点轨迹.
比
第7页
变式:假如我们在例1中,将条件(a>c>0)
改为(c>a>0),点P轨迹又发生怎样改变呢?
类似可得:双曲线 距离与它到定直线
x2 a2
l
y2
2
b
:x
1上点P到定点F(c,0) a2 (c a 0, b2 c2 a距2 ) 离比是
第10页
(三)巩固练习 1。求以下曲线焦点坐标和准线方程
x2 4 y2 16 x2 y2 1 2x2 4 y2 1
x2 y 0
2。已知平面内动点P 到一条定直线L距离和它
一个定点F距离(F不在L上)比等于
2
,则点P轨迹是什么曲线?
3。求到点A(1,1)和到直线x+2y=3距离相等 点轨迹。
●当这个比值是一个不等于1 常数时,动 点 P 轨迹又是什么曲线呢?
第3页
例1:已知点P(x,y)到定点F(c,0)距离与它
到定直线 l : x a2 距离比是常数
轨迹。
c
c (a c, 0求) 点P点
a
结论:点P轨迹是焦点为(-c,0),(c,0), 长轴、短轴分别为2a,2b椭圆。这个椭圆离 心率e就是P到定点F距离和它到定直线l(F不 在l上)距离比。
圆锥曲线学生公开课教案教学设计课件资料
圆锥曲线学生公开课教案教学设计课件资料一、教学目标1. 知识与技能:(1)理解圆锥曲线的定义及其基本性质;(2)掌握圆锥曲线的标准方程及其求法;(3)能够运用圆锥曲线解决实际问题。
2. 过程与方法:(1)通过观察、分析、归纳圆锥曲线的性质,培养学生的逻辑思维能力;(2)运用数形结合的方法,引导学生感受圆锥曲线的美妙与神奇;(3)培养学生运用数学知识解决实际问题的能力。
3. 情感态度与价值观:(1)激发学生对圆锥曲线的兴趣,培养对数学的美感;(2)培养学生勇于探索、积极思考的科学精神;(3)引导学生认识数学在生活中的重要性,提高学生的数学素养。
二、教学内容1. 圆锥曲线的定义及其基本性质2. 圆锥曲线的标准方程及其求法3. 圆锥曲线的基本性质与应用4. 圆锥曲线在实际问题中的应用5. 圆锥曲线的历史与发展三、教学重点与难点1. 重点:圆锥曲线的定义、标准方程及其求法;圆锥曲线的基本性质与应用。
2. 难点:圆锥曲线的标准方程求法;圆锥曲线在实际问题中的应用。
四、教学方法1. 采用问题驱动法,引导学生主动探究圆锥曲线的性质;2. 利用数形结合法,直观展示圆锥曲线的特点;3. 通过实例分析,让学生学会运用圆锥曲线解决实际问题;4. 鼓励学生参与讨论、交流,提高学生的合作能力。
五、教学过程1. 导入:(1)回顾椭圆、双曲线、抛物线的定义及其性质;(2)引导学生思考:这些曲线之间有什么联系和区别?2. 新课讲解:(1)讲解圆锥曲线的定义及其基本性质;(2)引导学生探究圆锥曲线的标准方程及其求法;(3)讲解圆锥曲线的基本性质与应用。
3. 实例分析:(1)分析圆锥曲线在实际问题中的应用;(2)让学生尝试解决相关问题,巩固所学知识。
4. 课堂练习:(1)设计一些有关圆锥曲线的练习题,让学生独立完成;(2)对学生的练习情况进行点评,解答疑难问题。
5. 课堂小结:(1)总结本节课所学的主要内容;(2)强调圆锥曲线在实际问题中的应用价值。
数学圆锥曲线高中教案
数学圆锥曲线高中教案教学内容:圆锥曲线的基本概念和性质教学目标:掌握圆锥曲线的定义、方程和性质,能够画出圆锥曲线的图形,并解决相关问题。
教学重点与难点:圆锥曲线的定义和方程、椭圆、双曲线和抛物线的性质。
教学准备:教材、黑板、彩色粉笔、几何工具箱、PPT演示等。
教学过程:一、引入与复习(5分钟)1. 复习前几节课的知识,回顾直线及其方程的相关内容。
2. 引入圆锥曲线的定义,让学生对圆锥曲线有初步了解。
二、椭圆的定义和性质(15分钟)1. 讲解椭圆的定义和方程。
2. 讲解椭圆的性质,如焦点、长轴、短轴等。
3. 给出练习题,让学生练习画出椭圆的图形。
三、双曲线的定义和性质(15分钟)1. 讲解双曲线的定义和方程。
2. 讲解双曲线的性质,如渐近线、焦点等。
3. 给出练习题,让学生练习画出双曲线的图形。
四、抛物线的定义和性质(15分钟)1. 讲解抛物线的定义和方程。
2. 讲解抛物线的性质,如焦点、准线等。
3. 给出练习题,让学生练习画出抛物线的图形。
五、综合练习与拓展(10分钟)1. 随堂小测验,检验学生对圆锥曲线的掌握程度。
2. 给出拓展性练习题,让学生巩固和加深对圆锥曲线的理解。
六、总结与反思(5分钟)1. 总结本节课的重点知识,强调圆锥曲线的重要性。
2. 让学生思考如何运用所学知识解决实际问题。
教学反馈:对学生的表现给予及时的反馈,并根据学生的实际情况进行必要的个性化指导。
教学延伸:鼓励学生积极参与课堂讨论,提高学生的思维能力和解决问题的能力。
教学方式:结合理论讲解和实例演练,引导学生主动思考和发现问题解决方法。
教学环节设计合理,有助于学生有效地掌握圆锥曲线的相关知识,并提高学生的学习兴趣和主动性。
知识科普圆锥曲线教案
知识科普圆锥曲线教案一、教学目标1. 了解圆锥曲线的定义和性质。
2. 掌握圆锥曲线的标准方程和参数方程。
3. 能够应用圆锥曲线解决实际问题。
二、教学重点1. 圆锥曲线的定义和性质。
2. 圆锥曲线的标准方程和参数方程。
三、教学难点1. 圆锥曲线的参数方程的推导和应用。
2. 圆锥曲线的实际问题解决。
四、教学过程1. 圆锥曲线的定义和性质圆锥曲线是平面上的一类曲线,它们可以由一个圆锥和一个平面相交而得到。
圆锥曲线包括圆、椭圆、双曲线和抛物线。
它们都具有许多重要的性质,广泛应用于数学、物理、工程等领域。
2. 圆锥曲线的标准方程和参数方程(1)圆的标准方程和参数方程圆的标准方程为:x^2 + y^2 = r^2,其中r为圆的半径。
圆的参数方程为:x = r*cosθ,y = r*sinθ,其中θ为参数。
(2)椭圆的标准方程和参数方程椭圆的标准方程为:(x/a)^2 + (y/b)^2 = 1,其中a和b分别为椭圆在x轴和y轴上的半轴长。
椭圆的参数方程为:x = a*cosθ,y = b*sinθ,其中θ为参数。
(3)双曲线的标准方程和参数方程双曲线的标准方程为:(x/a)^2 - (y/b)^2 = 1或者(y/b)^2 - (x/a)^2 = 1,其中a和b分别为双曲线在x轴和y轴上的半轴长。
双曲线的参数方程为:x = a*coshθ,y = b*sinhθ,其中θ为参数。
(4)抛物线的标准方程和参数方程抛物线的标准方程为:y^2 = 2px或者x^2 = 2py,其中p为焦点到准线的距离。
抛物线的参数方程为:x = p*t^2,y = 2pt,其中t为参数。
3. 圆锥曲线的实际问题解决圆锥曲线在实际问题中有着广泛的应用,比如天体运动、工程设计、物理实验等。
学生可以通过解决一些实际问题来加深对圆锥曲线的理解和应用能力。
五、教学方法1. 讲授法:通过讲解圆锥曲线的定义、性质、标准方程和参数方程,让学生了解圆锥曲线的基本知识。
高中数学圆锥曲线满分教案
高中数学圆锥曲线满分教案
主题:圆锥曲线
目标:学生能够掌握圆锥曲线的基本概念和性质,并能够运用所学知识解决实际问题。
教学步骤:
第一步:引入(5分钟)
教师引入圆锥曲线的概念,告诉学生圆锥曲线是由平面与圆锥相交而产生的曲线,包括圆、椭圆、双曲线和抛物线。
第二步:椭圆(15分钟)
1. 讲解椭圆的定义和性质,包括离心率、焦点、直径等概念。
2. 讲解椭圆的标准方程和图像。
3. 给学生几道椭圆的练习题,让他们熟练掌握椭圆的性质和解题方法。
第三步:双曲线(15分钟)
1. 讲解双曲线的定义和性质,包括离心率、焦点、渐近线等概念。
2. 讲解双曲线的标准方程和图像。
3. 给学生几道双曲线的练习题,让他们熟练掌握双曲线的性质和解题方法。
第四步:抛物线(15分钟)
1. 讲解抛物线的定义和性质,包括焦点、准线、焦距等概念。
2. 讲解抛物线的标准方程和图像。
3. 给学生几道抛物线的练习题,让他们熟练掌握抛物线的性质和解题方法。
第五步:综合练习(15分钟)
给学生几道综合性的圆锥曲线练习题,让他们巩固所学知识,并运用所学知识解决实际问题。
第六步:总结与展望(5分钟)
教师对本节课所学内容进行总结,并展望下节课的内容,鼓励学生继续努力学习。
扩展活动:可以组织学生进行小组讨论,让他们自己设计一个圆锥曲线的应用问题,并进
行解答和讨论。
备注:教案内容仅供参考,具体教学过程可以根据学生的实陵情况进行灵活调整。
高中苏教数学圆锥曲线教案
高中苏教数学圆锥曲线教案课时:1课时教学目标:1. 了解圆锥曲线的定义与性质。
2. 能够绘制椭圆、双曲线和抛物线的基本形态。
3. 能够利用圆锥曲线的性质解决实际问题。
教学重点:1. 圆锥曲线的基本概念。
2. 椭圆、双曲线和抛物线的性质。
教学难点:1. 圆锥曲线的几何解释。
2. 圆锥曲线的公式推导。
教学准备:1. 教材《高中数学》(苏教版)。
2. 平面直角坐标系的绘制工具。
3. 圆锥曲线的示意图。
教学内容与过程:一、引入教师引导学生回顾平面直角坐标系的相关知识,提出问题:在平面直角坐标系中,什么是圆锥曲线?为什么称之为圆锥曲线?有哪些类型的圆锥曲线?二、讲解1. 圆锥曲线的定义:平面上点P(x,y)到两个固定点F1和F2的距离之比为常数e(离心率)的轨迹称为椭圆;平面上点P(x,y)到两个固定点F1和F2的距离之差的绝对值为常数ε的轨迹称为双曲线;平面上点P(x,y)到一个固定点F和一条直线L的距离之比为常数的轨迹称为抛物线。
2. 椭圆、双曲线和抛物线的几何特征:椭圆是一个闭合曲线,双曲线有两个分支,抛物线只有一个分支。
3. 圆锥曲线的示意图:通过绘制特定的圆锥曲线示意图,展示椭圆、双曲线和抛物线的形态。
三、练习与讨论在平面直角坐标系中绘制椭圆、双曲线和抛物线的基本形态,并让学生讨论各类型圆锥曲线的性质和特点。
四、拓展应用利用圆锥曲线的性质解决实际问题,如焦点在x轴上的椭圆的方程为x²/16+y²/9=1,求离心率e和焦距。
五、总结与评价总结圆锥曲线的基本概念和性质,评价学生在绘制和讨论过程中的表现,强调圆锥曲线在几何和解析几何中的重要性。
六、作业布置布置作业:练习册上相关练习题,加深对圆锥曲线的理解。
教学反思:本节课通过引入、讲解、练习和拓展应用的方式,帮助学生理解圆锥曲线的基本概念和性质,引导学生在实践中应用所学知识解决问题。
在教学过程中要注重理论与实践相结合,激发学生的兴趣,提高学生的学习效果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆锥曲线
--点的轨迹探究与欣赏
一、教材分析
1.地位和作用
圆锥曲线与科研、生产以及人类生活有着密切的联系。
早在16、17世纪之交,开普勒就发现行星绕太阳运行的轨道是一个椭圆;探照灯反射面是抛物线绕其对称轴旋转形成的抛物面,发电厂冷却塔的外形线是双曲线。
本节课是在学生学习了圆锥曲线的定义和基本几何性质后展开的,旨在对圆锥曲线有更加深刻的了解。
2.教学重点难点
(1)重点:求动点轨迹的基本方法。
(2)难点:找出相关点之间的内在关系,列出相应的数学式子。
(3)方法:定义法、交轨法,一题多变,发散思维,并用“几何画板”提高课堂效率。
3.教学目的:
(1)通过教学活动,使学生掌握求点的轨迹的基本方法。
(2)“兴趣是最好的老师,它永远胜过责任心”(爱因斯坦语),本节课通过《几何画板》演示课本的习题和与圆锥曲线有关的几个精美图
片激发学生的学习兴趣。
引导学生自主学习,自我探索,并从中体
会到学习数学的乐趣。
(3)想通过本节课的学习也想加大学生的参与度,因为利用电脑,可以
得到许多我们事先不知道的结果,正如平时一样,学生可以把上课
的软件拷回家,自己课后加以学习研究,再去观察、再认识、再体
会,象理化一样,给学生提供了做数学实验的机会。
二、教学过程
问题设计师生活动
1.现实生活中,我们经
常看到一些与圆锥曲线
有关的事物:行星运行轨道、探照灯反射面、冷却塔外表的形状……欣赏行星运行轨道模拟图几何画板精美图案
2.选修1-1两道课本习题的画板演示及其它打开几何画板,演示点的轨迹
4. 例3:已知AB为圆
222
x y a
+=的直径,动弦MN垂直AB,求AM和NB的交点P的轨迹方程。
利用交规法,先写出两直线的方程,然后……
P点的轨迹方程为:
222
x y a
-=
5.例4:将上面的圆改
为椭圆22
221x y a b
+=,其它不
变
这两题也可通过判断渐近线
的方程进而快速求出轨迹方
程:22
221x y a b
-=
6.思考题:已知点D(0,3),
M 、N 在椭圆22
1
94
x y +=上,且DM DN λ=,求实数λ的取值范围。
利用画板直观演示变化过程 取值范围是:1
55
λ≤≤
7.演示椭圆、双曲线、抛物线的光学性质
可随意改变光源的位置,观察反射光线的路径
三、小结与评价:
1、本节课结合课本练习,研究了求轨迹的方法的一些方法:定义法、相关法、交轨法等。
2、充分利用《几何画板》的强大功能,动态显示课本习题,由此发现《几何画板》对学习数学的重要作用,并可自己动手实验,得到不同的结论,可以用它来验证我们的猜想和结论正确与否。
3、求轨迹方程时,应注意找出题目所给条件的内在联系,挖掘出它们关系,
在化简时注意掌握必要的技巧和方法,并加以类比和总结。
四、练习与作业
1、动圆M 过定点P (-4,0),且与圆08:22=-+x y x C 相切,求动圆圆心M 的轨迹方程。
2、M 是抛物线x y =2上一动点,以OM 为一边(O 为坐标原点)作正方形MNPO ,求动点P 的轨迹方程。
3、已知椭圆22
221x y a b
+=)0(>>b a 的左、右焦点分别为)0()0(21c ,,F c ,
F -,Q 是椭圆外的动点,满足a F 2||1=,点P 是线段Q F 1与椭圆的交点,点T 在线段Q F 2上,并满足0||022≠=⋅TF ,TF PT ,求点T 的轨迹C 的方程。