高中数学圆锥曲线与方程教案
全国高中数学 青年教师展评课 圆锥曲线起始课教学设计
城东蜊市阳光实验学校指定课题:圆锥曲线与方程〔起始课〕一、教学设计1.教学内容解析圆锥曲线与方程安排在普通高中A版选修2-1中.教材通过章引言介绍了圆锥曲线的名称由来、开展历史、实际用途和坐标方法,主要说明圆锥曲线是什么、为什么要学习圆锥曲线和怎样学习圆锥曲线.尤其是着重说明了类比研究直线与圆的坐标法,研究圆锥曲线的根本套路.同时教材又进一步通过【探究与发现】介绍了Dandelin双球证法,说明了为什么二次函数的图象是抛物线;通过【信息技术应用】介绍了用几何画板探究椭圆的轨迹;通过【阅读与考虑】介绍了圆锥曲线的光学性质及其应用.基于教材对本章内容设置的前后一致逻辑连接的构造顺序,作为本章起始课,拟定以理解圆锥曲线的开展过程和理解圆锥曲线的心理过程为根本线索,力图为学生构建前后一致逻辑连接的学习过程,使学生在领悟圆锥曲线名称由来、广泛应用和研究方法的过程中学会考虑,并侧重于椭圆定义的探究及初步应用.根据以上分析,本节课的教学重点确定为教学重点:椭圆的定义探究及初步应用〔Dandelin双球证法〕.2.学生学情诊断首先,学生在数学2中学习了研究直线与圆的坐标法,初步具备了运用代数方法研究几何问题的意识,初步感受了数形结合的根本思想,对椭圆、抛物线和双曲线的概念也仅仅停留在直观感性认识的层面上.因此,圆锥曲线作为学生再度理解坐标法和进一步感悟数形结合思想的学习内容,是螺旋上升的过程中掌握解析几何思想方法的一个打破口.其次,本节课授课班级是我校实验班,尽管数学根底总体程度较好,但如何将几何问题代数化仍然是多数学生所面临的难题.为此,在起始课中,为降低难点,只让学生初步尝试给定数据的详细椭圆方程的推导方法,而将引发学生推导椭圆标准方程一般式作为后继学习内容.根据以上分析,本节课的教学难点确定为教学难点:详细条件下椭圆方程的推导和化简;坐标法的应用.3.教学目的设置〔1〕通过动态演示平面与圆锥面的截线,学生经历从详细情境中抽象出椭圆、双曲线、抛物线模型的过程,感知圆锥曲线的来由;〔2〕通过丰富多彩的实例,学生体会圆锥曲线应用的广泛性,数与形的辩证统一的关系和圆锥曲线的内在美、和谐美和统一美,感受学习圆锥曲线的理由;〔3〕借助展板动手操作和类比圆的定义,学生探究椭圆的定义,能用文字和符号语言描绘椭圆的定义,会用Dandelin双球证明截口曲线为椭圆的情形,感悟圆锥曲线学法的来由.〔4〕通过详细画出的特殊椭圆,学生类比直线与圆的方程,会初步运用坐标法推导详细给定的椭圆方程,能说出圆锥曲线又作为二次曲线的特征,感触圆锥曲线方程的情由.4.教学策略分析根据章起始课应表达统领全局的地位和作用的特点,采用“引言导入—问题诱导—启发讨论—抽象概括—探究归纳—总结规律〞的探究式教学方法,紧紧围绕为什么学、学什么以及怎样学等问题展开,通过“引、思、探、练、归〞相结合的做法,让学生初识圆锥曲线的相关背景、知识构造、逻辑体系和应用价值,明晰本章的学习内容、学习特点和学习方法.为防止以教师讲解为主的告知式,采用激发兴趣、主动参与、积极体验、自主探究的教学方式,形成师生互动的教学气氛,充分调动学生的积极性,引发学生对圆锥曲线进一步学习的强烈期待,为全章内容的后续学习起到较好的铺垫作用.详细教学策略分成如下五个环节:第一环节:引言启导,追溯缘由.从“嫦娥奔月〞的情景和阅读章引言出发,通过问题设疑,引导学生在不断考虑中获取圆锥曲线的来龙去脉;第二环节:应用开路,初识性质.从圆锥曲线广泛的应用性出发,通过引言解读和兴趣传说,引导学生初识圆锥曲线的几何特征和光学性质;第三环节:定义探究,双球验证.从抽象概括椭圆的定义出发,通过类比圆的定义、动手操作画椭圆和讨论Dandelin双球证法,引导学生归纳和运用椭圆的定义;第四环节:方程推导,方法研究.从特殊椭圆方程的推导出发,通过类比直线与圆的方程的推导方法,引导学生尝试运用坐标法的根本步骤导出详细给定的椭圆方程;第五环节:课堂小结,有效建构.从学生自主归纳小结出发,通过引言提炼的内容概述图和交融三种圆锥曲线的知识构造图,让整章的知识体系和逻辑线索鲜活地展如今学生面前.其教学流程如下:二、课堂实录〔一〕情景引入引言:随着我国航天技术的开展日新月异,“嫦娥奔月〞这一古老而美丽的传说正在逐步变为现实.请同学们观看视频.师:这是嫦娥3号环月运行时变轨的过程.变轨后轨道是什么曲线生:椭圆.师:对!椭圆这一类曲线正是我们在本章将要研究的主要内容.请同学们翻开课本第33页,阅读本章引言.〔板书标题:圆锥曲线与方程〕〔二〕课内建构1.名称由来师:好!请同学们停下来,看大屏幕,同学们看书之后,知道圆锥曲线包括哪几种曲线吗生:圆,椭圆,双曲线,抛物线.师:对!那么为什么称为圆锥曲线呢与圆锥有怎样的关系吗请看动画.我们知道,用平面截一个圆锥,当平面与圆锥的轴垂直时,截口曲线是一个圆.用平面截圆锥面还能得到哪些曲线〔教师以flash动画给学生展示:当平面与轴所成的角 变化〔其中截面不过顶点〕时,截口曲线的变化情况.〕师:早在公元前约200年时,古希腊数学家阿波罗尼奥斯〔Apollonius,约前262年~约前190年〕对圆锥曲线的性质就做了系统的研究〔纯几何方法〕,并几乎网罗殆尽,使后人难以有新的发现.阿波罗尼奥斯和欧几里得、阿基米德合称为古希腊三大数学家.【评析】借助动画演示介绍名称由来,嵌入数学史话,加深认知印象.2.广泛应用圆锥曲线不仅在数学历史开展的过程中熠熠生辉,而且在科学文化的其他领域闪烁光.比方,圆锥曲线为开普勒、牛顿、哈雷等数理天文学家研究行星和彗星轨道提供了数学根底.师:让我们回到本章引言,这一段话的主要内容是什么呢生:圆锥曲线的应用.师:那么有哪些方面的应用呢请看图片,这是太阳系行星的运行轨迹,是什么曲线生:椭圆.师:对!有些彗星的轨迹是椭圆,比方著名的哈雷彗星,这是鹿林彗星,不为我们熟知一些,轨迹是双曲线.它的轨迹是如此的长,图片中显示的只是其中一部分.师:当人造天体被以不同的速度从地球发射出去的时候,它的轨迹分别是圆,椭圆,抛物线,双曲线.这涉及到物理中所讲的三大宇宙速度.师:这是热电厂的通风塔,同学们见过吗我们作它的轴截面,取出两侧的轮廓线,是什么曲线生:双曲线.师:这是橄榄球和探照灯.它们的外表分别是由椭圆和抛物线绕其对称轴旋转一周而来〔显示旋转动画〕.为什么探照灯要做成这种形状呢,只是为了美观吗生:应该是为了实用性.师:实际上由于圆锥曲线具有特殊的光学性质,在消费生活中具有广泛的应用.请同学们也来解决一个问题,请看传说:“杰尼西亚的耳朵〞:据说,很久以前,意大利西西里岛有一个山洞,叙拉古的暴君杰尼西亚把一些囚犯关在这个山洞里.囚犯们屡次密谋逃跑,但每次方案都被杰尼西亚发现.起初囚犯们认为出了内奸,但始终未发现告密者.后来他们觉察到囚禁他们的山洞形状古怪,洞壁把囚犯们的话都反射到狱卒耳朵里去了,于是囚犯们诅咒这个山洞为“杰尼西亚的耳朵〞.师:其中的奥秘,同学们解开了吗生:囚洞的剖面近似于椭圆,犯人聚居的地方恰好在椭圆的一个焦点附近,狱卒在另一个焦点处偷听.师:很好!恭喜你揭开了这个奥秘!这里是声波,不过声波和光波具有一样的传播性质.【评析】用传说创设情境,激发学生兴趣,到达引入课题的目的.师:事实上有很多美丽的建筑也与圆锥曲线有关,比方抛物面形天线,双曲线形建筑.师:喷泉是什么形状生:抛物线.师:中国国家大剧院.美吗生:很美.【评析】理解圆锥曲线的实际背景,感受圆锥曲线在刻画现实世界和解决实际问题中的作用,激发起学生学习圆锥曲线的兴趣.3.定义探究师:既然到处都有圆锥曲线美丽的身影,那么我们就有必要理解和研究它们,如何理解呢首先就要知道它的定义.那么圆锥曲线的定义是怎样的呢我们重点看一看椭圆的定义.请大家考虑这样的问题:〔1〕绳子一端固定在平整草地上,另一端拴着一只羊,小羊活动的最大边界是什么曲线生:圆.师:圆的定义是什么生:平面内到两定点的间隔等于定长的点的轨迹.〔2〕绳子两端都固定在草地上〔绳长大于两固定点间的间隔〕,绳上套个小环,环上拴一只羊,小羊活动的最大边界是什么曲线师:我们请每组同学互相配合,来画出小羊活动的最大边界.〔事先发给学生每组一块黑板,两个图钉,一根绳子,绳长240cm a =;每组选一位同学做代表画图,学生画图,教师走动,指导;画完后请三组画的好一些的,2c 的取值不同的三位同学拿着黑板上台展示.〕【评析】学生以小组为单位互相配合,动手操作,体验自主、的探究理念,印象更加深化.师:这三个椭圆,给我们最直观的感受,区别在哪儿生:扁平程度不同.师:你觉得椭圆的扁平程度与什么有关生:两定点间的间隔,绳长.师:很好!我来采访一下,这位同学椭圆画得这么好,有什么窍门吗生:在画的过程中要使得绳子绷直.师:使得绳子绷直,也就是说——生:保证绳长为定值.师:非常好!假设细绳长度等于12||F F ,画出的图形是什么不妨在小黑板上试试.小于呢生:绳长等于12||F F ,画出的图形是线段12F F ;小于12||F F 时,画不出任何图形.师:同学们答复得很好.那么大家能类比圆的定义,能给出椭圆的定义吗〔学生归纳,互相补充,教师再汇总.〕椭圆的定义:平面内与两个定点12,F F 的间隔的和等于常数〔大于12||F F 〕的点的轨迹叫做椭圆,两个定点12,F F 叫做椭圆的焦点,两焦点间的间隔叫做椭圆的焦距. 即12{||||2(22)}.M MF MF a a c +=>师:在前面三种用平面截圆锥的过程中,为什么第一种情况得到的截口曲线是椭圆呢事实上在19世纪,法国数学家Dandelin 就想到一种绝妙的方法证明了这个问题.他是怎么做的呢?让我们一起来分享一下:〔Dandelin 双球证法〕如图,Dandelin 在截面的两侧分别放置一个球,使它们都与截面相切〔切点分别为12,F F 〕,且与圆锥的侧面相切,两球与圆锥侧面的公一一共点分别构成圆1O 和圆2O .设点M 是截口曲线上任一点,Dandelin 过M 点作圆锥的一条母线〔辅助线〕分别交圆1O 和圆2O 于,P Q 两点.如今我们要证明点M 的轨迹是椭圆,用我们刚刚得到的椭圆的定义,如何来证明呢?根据定义,只需证明M 点到某两个定点的间隔之和为常数即可.应该是哪两个定点呢是12,F F 吗 〔学生讨论,说明12,F F 为何是定点.〕师:好!我们只需证明12||||MF MF +为定值即可.下面请同学们以小组为单位,开始讨论.〔学生分组讨论,教师走动指导〕〔几分钟后,相关小组的代表上台讲解〕学生讲解图中所示线段长度之间的关系:1||||MF MP =,2||||MF MQ =,并说明理由:因为过球外一点所作球的切线段的长相等.故12||||MF MF +_______||||MP MQ +________||PQ .师:线段PQ 的长度是常数吗生:||PQ 是常数.师:为什么生:||||||PQ VP VQ =-,即为圆台的母线.师:也就是说,截口曲线上任意一点到两个定点12,F F 的间隔的和等于常数〔大于12||F F 〕.这就说明了截口曲线是椭圆.事实上Dandelin 还利用双球证明了截口曲线是双曲线的情形,利用单球证明了截口曲线是抛物线的情形.这位卓越的数学家实在是具有非凡的天才.【评析】介绍历史上数学家的巧妙方法,并引导学生自主考虑,自主讲解,不仅强化了椭圆的定义,更浸透了数学家追求完美的理性精神.4.研究方法师:让我们再一次回到本章引言,如何来研究圆锥曲线呢在古希腊时代是如何研究圆锥曲线的生:几何法.师:后来呢生:代数的方法,也就是坐标法.师:是谁创造了坐标系生:笛卡尔.〔简要介绍笛卡尔的生平〕师:事实上我们以前已经用坐标法研究过直线与圆了,请同学们回忆一下直线方程及方程的形式. 生:点斜式,斜截式,两点式,截距式,一般式.师:利用直线方程,我们可以研究与直线有关的位置关系与相应的性质.比方,我们在初中的时候,要证明两直线平行用的什么方法生:假设同位角相等,或者者内错角相等,那么两直线平行.师:建立了平面直角坐标系,得到直线方程后,又是怎么判断两直线平行的呢生:假设两直线斜率存在且斜率相等,截距不等,那么两直线平行.师:圆的方程有哪些形式呢生:标准方程和一般方程.师:对.假设我们将坐标原点选取在圆心,方程又将如何呢〔演示坐标平挪动画〕生:222x y r +=师:很好!坐标系不同,方程的形式也不同.一般来说,形式越简单,越易于我们研究曲线的性质. 师:我们知道,圆的一般方程是一个特殊的二元二次方程,那么,更一般的形式怎样的?〔屏幕显示〕220.Ax Bxy Cy Dx Ey F +++++=〔※〕〔探究〕〔※〕式方程能否表示我们今天介绍的圆锥曲线的方程在以前我们所学的函数中有没有表示椭圆、双曲线、抛物线的例子请同学们互相讨论一下.学生举出反比例函数和二次函数的例子.学生答完后显示动画,先显示双曲线. 师:这是反比例函数1y x =,我们将坐标系旋转一下.〔旋转动画〕方程还是1y x=吗 生:不是.师:那么方程是怎样的呢〔停顿片刻〕我们后面再研究.师:这是二次函数20y ax bx c a =++>(),如今将坐标系平移,如图,方程变为什么形式 生:2y ax =.师:对,方程的形式变简单了,对吧旋转一下呢方程是——我们后面将要学习.再旋转一下呢 生:2y ax =-.师:当〔※〕式方程中的系数满足一定关系的时候,就可以表示不同的圆锥曲线,所以圆锥曲线也称为二次曲线.【评析】由复习旧知引出新知,符合学生的认知规律.师:同学们在先前画椭圆时,绳长为4分米,其中有同学选取的两图钉间的间隔为2分米,那么这个椭圆的方程如何求呢第一步该做什么生:建立平面直角坐标系.师:如何建立平面直角坐标系呢生1:以两定点12,F F 所在直线为x 轴,线段12F F 的中垂线为y 轴,建立平面直角坐标系. 生2:以两定点12,F F 所在直线为x 轴,点1F 为坐标原点,建立平面直角坐标系.师:分两大组分别在两种建系的情形下计算.〔将全班学生分两组,分别计算,再比较〕〔算出后教师在每组各选一个写的好一点的到实物投影展示;然后屏幕显示:建系,设点,列式,化简,方程的形式〕师:大家求出的椭圆方程也满足〔※〕方程;假设将详细数值换成2a ,2c ,椭圆方程的形式将是什么呢留给同学们下去研究.〔三〕课堂小结今天我们学习了圆锥曲线与方程,请同学们回忆一下,本节课我们学习了哪些内容呢〔2-3个学生归纳〕 师:同学们都归纳的很好!本章我们要研究的重点问题是曲线和方程,它们是我们关注的两个焦点.我们要运用的核心方法是坐标法.〔四〕课后作业1.ABC 中,BC 长为6,周长为16,那么顶点A 在怎样的曲线上运动建立适当的平面直角坐标系并推导其方程.2.查找Dandelin 研究截口曲线分别为双曲线、抛物线的相关资料.三、课后反思1.可取之处〔1〕注重学生的认知规律,教学过程突出“学生为主体,教师为主导〞的理念,强调自主、式学习,从而进步了课堂的效率;〔2〕注重问题的设置梯度,力求做到必要性、准确性、层次性、实效性和逻辑性,以问题促活动,以问题促探究,促成知识体系的生成与建构;〔3〕注重数学的人文价值,通过浸透数学史的相关知识,激发学生的学习兴趣和学习动机,加深学生对数学本质的理解.2.改进之处个别地方的语言欠准确,如“两焦点之间的线段〞;有些环节处理可以更开放一些,如推导给定的椭圆方程后,可让学生自我展示;有些设问不免有浅问浅答之嫌,可适度拓展延伸,为后继学习做好铺垫.。
高中文科数学圆锥曲线教案
高中文科数学圆锥曲线教案
学科:数学
年级:高中
课时:1课时
教学目标:
1. 了解圆锥曲线的基本概念和性质;
2. 掌握圆、椭圆、双曲线和抛物线的方程及其图像特征;
3. 能够通过方程判断图像种类和位置。
教学内容:
1. 圆锥曲线的定义和分类;
2. 圆的方程和图像特征;
3. 椭圆的方程和图像特征;
4. 双曲线的方程和图像特征;
5. 抛物线的方程和图像特征。
教学步骤:
一、导入(5分钟)
1. 引导学生回顾基础知识,复习圆的相关概念;
2. 提出问题:“什么是圆锥曲线?有哪些种类?”
二、讲解(20分钟)
1. 解释圆锥曲线的概念和分类;
2. 介绍圆、椭圆、双曲线和抛物线的方程和图像特征;
3. 分别讲解每种圆锥曲线的方程及其图像形状。
三、练习(20分钟)
1. 给学生练习一些简单的题目,让他们通过方程确定图像的种类;
2. 提示学生注意每种圆锥曲线的特征,做好区分。
四、总结(10分钟)
1. 总结本节课学习的重点内容,强调圆锥曲线的分类和特征;
2. 提醒学生在以后的学习中要注意圆锥曲线的应用。
五、作业布置(5分钟)
1. 布置相关练习题目,巩固今天学习的知识;
2. 提醒学生复习圆锥曲线的相关理论。
教学反思:
本节课内容相对简单,主要是让学生掌握圆锥曲线的基本概念和特征。
教学中应注意引导学生运用所学知识解决问题,培养他们的思维能力和分析能力。
同时,也要注重引导学生合理安排学习时间,将知识运用到实际问题中,提高学习效果。
高中数学教案——圆锥曲线方程教材分析
第八章圆锥曲线方程教材分析本章是在学生学习了直线和圆的方程的基础上,进一步学习用坐标法研究曲线。
这一章主要学习椭圆、双曲线、抛物线的定义、方程、简单几何性质以及它们的简单应用全章共分6个小节,教学时间约为18课时,各小节的教学时间分配如下:8.1椭圆及其标准方程 3课时8.2椭圆的简单几何性质 4课时8.3双曲线及其标准方程 2课时8.4双曲线的简单几何性质 3课时8.5抛物线及其标准方程 2课时8.6抛物线的简单几何性质 2课时小结与复习 2课时一、内容与要求(一)本章的教学内容圆锥曲线这一章研究的对象是图形,包括三种曲线:椭圆、双曲线、抛物线,使用的方法是代数方法,它的基础是第七章学过的曲线和方程的概念我们知道,曲线可以看成是符合某种条件的点的轨迹,在解析几何里用坐标法研究曲线的一般程序是:建立适当的坐标系;求出曲线的方程;利用方程讨论曲线的几何性质;说明这些性质在实际中的应用在第七草里学生已经初步学习了这种方法,不过,“圆锥曲线”这一章中,这种研究曲线的方法和过程以及它的优势体现得最突出所以,“圆锥曲线”一直是解析几何的重点内容,特别是在对学生掌握坐标法的训练方面有着不可替代的作用本章研究的椭圆、双曲线、抛物线的方程,主要是它们在直角坐标系中的标准方程,所谓标准方程就是曲线在标准位置时的方程,即曲线的中心或顶点在坐标原点,对称轴在坐标轴上时的方程,通过对这种方程的讨论得到的曲线的性质,可以利用平移图形推广到曲线的其他位置上去,所以,曲线的标准方程及它们在标准位置上的性质是本章的重点(二)教学要求本章的教学要求归纳起来有以下几点:1.掌握椭圆、双曲线、抛物线的定义、标准方程和几何性质;2.能够根据条件利用工具画圆锥曲线的图形,并了解圆锥曲线的初步应用;3.进一步掌握坐标方法;4.结合本章内容的教学,使学生进一步领会运动变化、对立统一的观点解析几何是用代数的方法解决几何问题,体现了形数结合的思想,因而这一部分的题目的综合性比较强,它要求学生既能分析图形,又能灵活地进行各坐标方法是要求学生掌握的,但是,作为普通高中的必修课的教学要求不能过高,只能以绝大多数学生所能达到的程度为标准二、本章的主要特点(一)突出重点1.突出重点内容本章所研究的三种圆锥曲线,都是重要的曲线因为对这几种曲线研究的问题基本一致,方法相同,所以教材对这三种曲线没有平均使用时间和力量,而是把重点放在椭圆上通过求椭圆的标准方程,使学生掌握列这一类轨迹方程的一般规律,化简的常用办法这样,在求双曲线、抛物线方程的时候,学在讨论椭圆的几何性质时,教材以椭圆为例详细地说明了在解析几何中讨论曲线几何性质的一般程序,以及怎样利用方程研究曲线的范围、对称性,怎样确定曲线上的点的位置等,这样,学生在学习双曲线和抛物线时,就可以练习使用这些方法,从而在掌握解析几何基本方法上得到锻炼和提高在讨论曲线的几何性质时,不求全,有选择地介绍主要性质以便学生集中精力掌握圆锥曲线的最基本的性质2.突出坐标方法要重视数学思想方法的教学,结合教学内容,把反映出来的数学思想方法的教学,作为高中数学教学的一项重要任务来完成根据圆锥曲线这部分内容的特点,在这一章里把训练学生掌握坐标法作为这一章数学方法教学的重点例如教材在第8.6节中选择了一个求正三角形边长的例题,解这个题目时,首先要证明正三角形的对称轴就是抛物线的对称轴,这是用方程证明图形性质的问题,并且是比较典型的(二)注意内容的整体性和训练的阶段性高中数学教材是一个整体,各部分知识和技能之间是有机联系着的,特别是教材采用了“混编”的形式,将代数、立体几何、解析几何合成统一的高中数学,这就更需要加强各章之间的联系,互相配合,发挥整体的效益(三)注意调动学生学习的主动性教材是为教学服务的,归根结底是为学生服务的学生是学习的主人,只有他们有主动性,才能达到学会学好的目的目前,高中学生被动学习的现象比较突出,在调动学生学习的主动性方面,注意交代知识的来龙去脉,教给学生解决问题的思路例如,在讲椭圆的几何性质时,由于这是第一次出现,所以教材增加了一些说明性的文字,首先说明解析几何里讨论曲线性质时,通常要讨论哪些性质,然后说明用方程讨论这些性质时的一般方法,这就使学生知道为什么学习,怎样去学习,学习就会变得主动又如,学生学习中遇到的另一个问题是不会分析问题,遇到问题不知从什么地方入手,只好被动地听讲教材注意提高例题的质量,在一些例题中给出了分析或小结(例题解后的注),通过对一些典型例题的分析,使学生学会分析解题思路,找出问题的关键,减少解题的盲目性;通过小结,指出解决问题的一般规律,提高学生解决问题的能力,提高学习效率三、教学中应注意的问题(一)注意准确地把握教学要求准确地把握教学要求包括两个方面,第一是把握好大纲的精神,第二是学生的实际 根据大纲的精神,圆锥曲线部分是属于控制教学要求的内容,但目 如何控制教学要求是个难点 高中的教学时间有限,作为全体学生都必须掌握的必修课程,应以最基础的知识和最基本的技能、能力为主,要使学生切实把基础打好不要过分重视技巧性很强的难题从学生的学习规律来说,训练不能一次完成,要循序渐进,打好基础才能有较大的发展余地,急于求成是不可取的;学生的基础、兴趣、志向都是不同的,要根据学生的实际提出恰当的教学要求,这样学生才有学习的积极性,才能使学生达到预定的教学要求(二)注意形数结合的教学解析几何的特点就是形数结合,而形数结合的思想是一种重要的数学思想,是教学大纲中要求学生学习的内容之一,所以在这一章的教学过程中,要时刻注意这种数学思想的教学,并注意以下几点:1.注意训练学生将几何图形的特征,用数或式表达出来,反过来,要使他们能根据点的坐标或曲线的方程,确定点的位置或曲线的性质,使学生能比较顺利地将形的问题转化为数或式的问题,将数或式的问题转化为形的问题。
高中数学选修2-1《圆锥曲线》教案
4. 待定系数法求圆、椭圆、双曲线以及抛物线的方程常用待定系数法求. 例4 已知抛物线y2=4x和以坐标轴为对称轴、实轴在y轴上的双曲曲线方程.分析:因为双曲线以坐标轴为对称轴,实轴在y轴上,所以可设双曲线方ax2-4b2x+a2b2=0•••抛物线和双曲线仅有两个公共点,根据它们的对称性,这两个点的横坐标应相等,因此方程ax2-4b 2x+a2b2=0 应有等根.•••△ =1664-4Q4b2=0,即卩a2=2b.(以下由学生完成)由弦长公式得:即a2b2=4b2-a 2.(三)巩固练习用十多分钟时间作一个小测验,检查一下教学效果•练习题用一小黑板给出.1 .△ ABC-边的两个端点是B(0 , 6)和C(0 , -6),另两边斜率的2. 点P与一定点F(2 , 0)的距离和它到一定直线x=8的距离的比是1 : 2,求点P的轨迹方程,并说明轨迹是什么图形?3. 求抛物线y2=2px(p >0)上各点与焦点连线的中点的轨迹方程. 答案:义法)由中点坐标公式得:(四)小结求曲线的轨迹方程一般地有直接法、定义法、相关点法、待定系数法,还有参数法、复数法也是求曲线的轨迹方程的常见方法,这等到讲了参数方程、复数以后再作介绍.五、布置作业1. 两定点的距离为6,点M到这两个定点的距离的平方和为26,求点M的轨迹方程.2. 动点P到点F1(1 , 0)的距离比它到F2(3 , 0)的距离少2,求P点的轨迹.3. 已知圆x2+y2=4上有定点A(2 , 0),过定点A作弦AB,并延长到点P,使3|AB|=2|AB|,求动点P的轨迹方程.作业答案:1. 以两定点A、B所在直线为x轴,线段AB的垂直平分线为y轴建立直角坐标系,得点M的轨迹方程x2+y2=4 2. v |PF2|-|PF|=2 ,且|F1F2| • P点只能在x轴上且x V 1,轨迹是一条射线六、板书设计教学反思:4斜率之积为4,9程.分析:由椭圆的标准方程的定义及给出的条件,容易求出a,b,c .引导学生用其他方法来解.另解:设椭圆的标准方程为2 25 31 a b 0,因点一,一在椭圆上,a b2 225 9 则 4a 2 4b 22 2a b 4;10<6例2如图,在圆x 24上任取一点P ,过点P 作x 轴的垂线段 PD , D 为垂足•当点P 在圆上运动时,线段PD 的中点M 的轨迹是什么?分析: 点P 在圆x 2 y 2 4上运动,由点 P 移动引起点 M 的运动,则称点 M 是点P 的伴随点,因点M 为线段 PD 的中点,则点 M 的坐标可由点P 来表示,从而能求点 M 的轨迹方程.引申: 设定点2xA 6,2 , P 是椭圆x252y1上动点,求线段 AP 中点M 的轨迹方程.9解法剖析:①(代入法求伴随轨迹)设M x, y , P x 1,y 1 :②(点与伴随点的关系): M为线段AP 的中点,X i y i2x 6;③(代入已知轨迹求出伴随轨迹)2y 22..X 1 '252y11 , •••点M9x的轨迹方程为一25④伴随轨迹表示的范围.例3如图,设A , B 的坐标分别为 5,0 , 5,0 .直线 AM , BM 相交于点M ,且它们的分析:若设点x, y ,则直线AM,BM 的斜率就可以用含 x, y 的式子表示,由于直线AM ,BM 的斜率之积是4 ,因此,可以求出9x, y 之间的关系式,即得到点M 的轨迹方程.解法剖析:设点M x, y ,则 k AM-^― x 5 , k BMx 5 ;x 5x 5代入点M 的集合有4-,化简即可得点 M 的轨迹方程. 9引申:如图,设△ ABC 的两个顶点 A a,0 , B a,0,顶点C 在移动,且k AC k BC k , 且k 0,试求动点C 的轨迹方程.引申目的有两点:①让学生明白题目涉及问题的一般情形;②当 色也是从椭圆的长轴T 圆的直径T 椭圆的短轴.练习:第45页1、2、3、4、 作业:第53页2、3、k 值在变化时,线段 AB 的角求点M 的轨迹方程.分析与解决问题的能力:通过学生的积极参与和积极探究,培养学生的分析问题和解决 问题的能力.思维能力:会把几何问题化归成代数问题来分析,反过来会把代数问题转化为几何问 题来思考;培养学生的会从特殊性问题引申到一般性来研究,培养学生的辩证思维能 力.实践能力:培养学生实际动手能力,综合利用已有的知识能力.创新意识能力:培养学生思考问题、并能探究发现一些问题的能力,探究解决问题的 一般的思想、方法和途径.♦过程与方法目标(1 )复习与引入过程引导学生复习由函数的解析式研究函数的性质或其图像的特点,在本节中不仅要注意通过对 椭圆的标准方程的讨论, 研究椭圆的几何性质的理解和应用,而且还注意对这种研究方法的培养.①由椭圆的标准方程和非负实数的概念能得到椭圆的范围;②由方程的性质得到椭圆的对称性;③先 定义圆锥曲线顶点的概念,容易得出椭圆的顶点的坐标及长轴、短轴的概念;④通过 题,探究椭圆的扁平程度量椭圆的离心率. 〖板书〗§ 2. 1. 2椭圆的简单几何性质.(2) 新课讲授过程(i )通过复习和预习,知道对椭圆的标准方程的讨论来研究椭圆的几何性质. 提问:研究曲线的几何特征有什么意义?从哪些方面来研究?通过对曲线的范围、对称性及特殊点的讨论,可以从整体上把握曲线的形状、 从范围、对称性、顶点及其他特征性质来研究曲线的几何性质.(ii )椭圆的简单几何性质2x一2 0,进一步得:a xax 代x ,且以 y 代y 这三个方面来研究椭圆的标准 y 轴为对称轴,原点为对称中心;即圆锥曲线的对称轴与圆锥曲线的交点叫做圆 锥曲线的顶点.因此椭圆有四个顶点,由于椭圆的对称轴有长短之分,较长的对称轴叫做长轴,较 短的叫做短轴;c④离心率: 椭圆的焦距与长轴长的比e 叫做椭圆的离心率(0 e 1 ),a当 e1 时,c a ,,b0.; 椭圆图形越扁(iii )例题讲解与引申、扩展400的长轴和短轴的长、离心率、焦点和顶点的坐标.分析:由椭圆的方程化为标准方程,容易求出a,b,c •弓I 导学生用椭圆的长轴、短轴、离心率、 焦点和顶点的定义即可求相关量.确度要求进行,没有作说明的按给定的有关量的有效数字处理;让学生参与并掌握利用信息技术探 究点的轨迹问题,培养学生学习数学的兴趣和掌握利用先进教学辅助手段的技能.♦能力目标(1)(3) (4)大小和位置.要巳8的思考冋①范围:由椭圆的标准方程可得,y 2 b 2b y b ,即椭圆位于直线x② 对称性:由以 x 代x ,以 方程发生变化没有,从而得到椭圆是以③ 顶点:先给出圆锥曲线的顶点的统一定义,y 代y 和 x 轴和 a ,同理可得:b 所围成的矩当 e 0 时,c 0,b a 椭圆越接近于圆例4求椭圆I6x 225y 2/Tn扩展:已知椭圆血5y2 5m m 0的离心率为e—,求m的值.解法剖析:依题意,m0,m 5,但椭圆的焦点位置没有确定, 应分类讨论: ①当焦点在x轴上,即0 m 5时,有a品 b 丽,c 75 ~m,二_—:得m 3;②当焦点在y轴上,即m例5如图,応b 岳c J m 5 , ••• J:5V m一种电影放映灯的反射镜面是旋转椭圆面的一部分.过对对称的截口5时,有a105253BAC是椭圆的一部分,灯丝位于椭圆的一个焦点F1上,片门位于另一个焦点F2上, 由椭圆一个焦点F1发出的光线,经过旋转椭圆面反射后集中到另一个焦点F2.已知BC F1F2,RB 2.8cm,F1F24.5cm .建立适当的坐标系,求截口BAC所在椭圆的方程.解法剖析:建立适当的直角坐标系,设椭圆的标准方程为1,算出a,b,c的值;此题应注意两点:①注意建立直角坐标系的两个原则;②关于a,b,c的近似值,原则上在没有注意精确度时,看题中其他量给定的有效数字来决定.引申:如图所示,“神舟”截人飞船发射升空,进入预定轨道开始巡天飞行,其轨道是以地球的中心F2为一个焦点的椭圆,近地点A距地面200km,远地点B距地面350km,已知地球的半径R 6371km •建立适当的直角坐标系,求出椭圆的轨迹方程.例6如图,设M x, y与定点F 4,0的距离和它到直线I : 兰的距离的比是常数4点M的轨迹方程./ 2 2 「亠「■25匚亠2MF(x 4 y ,到直线I:x 的距离d x44分析:若设点M x, y,则则容易得点M的轨迹方程.引申:(用《几何画板》探究)若点M x, y与定点F c,0的距离和它到定直线l :c距离比是常数e aac 0 ,则点M 的轨迹方程是椭圆.其中定点F c,0是焦点,2x —相应于F的准线;c由椭圆的对称性, 另一焦点F c,0 ,相应于F的准线l :练习:第52页1、作业:第53页4、教学反思:2、3、4、5、6、75ac4,求52a的c定直线l :类比椭圆:设参量b的意义:第一、便于写出双曲线的标准方程;第二、的几何意义.2 类比:写出焦点在y轴上,中心在原点的双曲线的标准方程召b (iii )例题讲解、引申与补充例1已知双曲线两个焦点分别为F15,0 , F25,0,双曲线上一点绝对值等于6,求双曲线的标准方程.分析:由双曲线的标准方程的定义及给出的条件,容易求出a,b,c的关系有明显P到R , F2距离差的2x2a1 a 0,b 0 . a,b, c.补充:求下列动圆的圆心M 的轨迹方程:① 与O C :2 22 y 2内切,且过点 A 2,0 :②与O C 1 : x 2 y 12 21 和O C2 : x y 4都外切;③与O C i :2 y 9外切,且与O C 2: x 223 y 1内切.解题剖析 半径为r :这表面上看是圆与圆相切的问题, 实际上是双曲线的定义问题•具体解: 设动圆•/ O C 与O M 内切,点A 在O C 外,• MC| r /2 MA,因此有MA 2x 2 •••点 MC 2,•点M 的轨迹是以C 、 A 为焦点的双曲线的左支,即M 的轨迹方程是MC i •••O M 与O c 1、O C 2 均外切,•••|MC 1| r 1, MC 2 r 2,因此有的轨迹是以C 2、C i 为焦点的双曲线的上支,• M 的轨迹方程是4y••• e M MC 2MC 24x 2 3MC i 1 ,与eG 外切,且e M 与e C 2内切,•- MC j4,•点M 的轨迹是以C i 、C 2为焦点的双曲线的右支,• MC 2r 1,因此M 的轨迹方程是例2已知A , B 两地相距800m ,在A 地听到炮弹爆炸声比在 B 地晚2s ,且声速为340m / s ,求炮弹爆炸点的轨迹方程. 分析:首先要判断轨迹的形状,由声学原理:由声速及 A , B 两地听到爆炸声的时间差,即可知A , B 两地与爆炸点的距离差为定值•由双曲线的定义可求出炮弹爆炸点的轨迹方程. 扩展:某中心接到其正东、正西、正北方向三个观察点的报告:正西、正北两个观察点同时听 到了一声巨响,正东观察点听到该巨响的时间比其他两个观察点晚 4s .已知各观察点到该中心的 距离都是1020m •试确定该巨响发生的位置(假定当时声音传播的速度为 340m/s ;相关点均在 同一平面内)• 解法剖析:因正西、正北同时听到巨响,则巨响应发生在西北方向或东南方向,以因正东比正西晚 4s ,则巨响应在以这两个观察点为焦点的双曲线上. 如图,以接报中心为原点 0,正东、正北方向分别为 x 轴、y 轴方向,建立直角坐标系,设 B 、C 分别是西、东、北观察点,则 A 1020,0 , B 1020,0 , C 0,1020 • 设P x,y 为巨响发生点,•/ A 、C 同时听到巨响,•OP 所在直线为y x ……①,又因B 点比A 点晚4s 听到巨响声,• PB PA 4 340 1360 m •由双曲线定义知,a 680 ,2 2c 1020 ,••• b 340^5 ,••• P点在双曲线方程为X 2y2 1 x 680……②.联立680 5 340①、②求出P点坐标为P 680 ;5,680 ,'5 •即巨响在正西北方向680、、10m处.探究:如图,设A,B的坐标分别为5,0,5,0 •直线AM,BM相交于点M,且它们4的斜率之积为,求点M的轨迹方程,并与§ 2. 1.例3比较,有什么发现?9探究方法:若设点M x,y,则直线AM , BM的斜率就可以用含x, y的式子表示,由于直线AM , BM的斜率之积是4,因此,可以求出x, y之间的关系式,即得到点M的轨迹方程.9练习:第60页1、2、3、作业:第66页1、2、2 . 3. 2双曲线的简单几何性质♦知识与技能目标了解平面解析几何研究的主要问题:(1)根据条件,求出表示曲线的方程;(2 )通过方程,研究曲线的性质.理解双曲线的范围、对称性及对称轴,对称中心、离心率、顶点、渐近线的概念;掌握双曲线的标准方程、会用双曲线的定义解决实际问题;通过例题和探究了解双曲线的第二定义,准线及焦半径的概念,利用信息技术进一步见识圆锥曲线的统一定义♦过程与方法目标(1 )复习与引入过程引导学生复习得到椭圆的简单的几何性质的方法,在本节课中不仅要注意通过对双曲线的标准方程的讨论,研究双曲线的几何性质的理解和应用,而且还注意对这种研究方法的进一步地培养.①由双曲线的标准方程和非负实数的概念能得到双曲线的范围;②由方程的性质得到双曲线的对称性;③由圆锥曲线顶点的统一定义,容易得出双曲线的顶点的坐标及实轴、虚轴的概念;④应用信息技术的《几何画板》探究双曲线的渐近线问题;⑤类比椭圆通过F56的思考问题,探究双曲线的扁平程度量椭圆的离心率. 〖板书〗§ 2. 2. 2双曲线的简单几何性质.(2) 新课讲授过程(i )通过复习和预习,对双曲线的标准方程的讨论来研究双曲线的几何性质.提问:研究双曲线的几何特征有什么意义?从哪些方面来研究?通过对双曲线的范围、对称性及特殊点的讨论,可以从整体上把握曲线的形状、大小和位置.要从范围、对称性、顶点、渐近线及其他特征性质来研究曲线的几何性质.(ii )双曲线的简单几何性质2 2①范围:由双曲线的标准方程得, 1 0,进一步得:x a ,或xa .这说b a明双曲线在不等式 x a ,或x a 所表示的区域;② 对称性:由以 x 代x ,以y 代y 和 x 代x ,且以 y 代y 这三个方面来研究双曲线的标准方程发生变化没有,从而得到双曲线是以x 轴和y 轴为对称轴,原点为对称中心;③ 顶点:圆锥曲线的顶点的统一定义,即圆锥曲线的对称轴与圆锥曲线的交点叫做圆锥曲线 的顶点.因此双曲线有两个顶点,由于双曲线的对称轴有实虚之分,焦点所在的对称轴叫做实轴, 焦点不在的对称轴叫做虚轴;c⑤ 离心率:双曲线的焦距与实轴长的比 e —叫做双曲线的离心率(e 1).a④渐近线:直线ybx 2x 叫做双曲线一 aa 2yb 2 1的渐近线;y 轴上的渐近线是扩展:求与双曲线x 2 162y —1共渐近线,2. 3, 3点的双曲线的标准方及离心率.解法剖析 :双曲线2x16291的渐近4x .①焦点在x 轴上时,设所求的双曲2线为X 216k 2 2 y 9k 2A 2;3, 3点在双曲线上,••• k 21,无解;4②焦点在y 轴上时,设所求的双曲线2x 16k 229:2 1,―A2 3, 3点在双曲线上,• k21,因此,所求双曲线42的标准方程为y9 41,离心率e5.这个要进行分类讨论,但只有一种情形有解,事实上, 3可直接设所求的双曲线的方程为2x162y一 mm R,m 0 .9(iii )例题讲解与引申、扩展例3求双曲线9y2 16x2 144的实半轴长和虚半轴长、焦点的坐标、离心率、渐近线方程.分析:由双曲线的方程化为标准方程,容易求出a,b,c.引导学生用双曲线的实半轴长、虚半轴长、离心率、焦点和渐近线的定义即可求相关量或式子,但要注意焦点在例4双曲线型冷却塔的外形,半径为12m,上口半径为13m,下口半径为25m,高为55m .试选择适当的坐标系,求出双曲线的方程(各长度量精确到1m).是双曲线的一部分绕其虚轴旋转所成的曲面如图(1),它的最小解法剖析:建立适当的直角坐标系,设双曲线的标准方程为2 2七七 1,算出a,b,c的值;a b此题应注意两点:①注意建立直角坐标系的两个原则;②关于 精确度时,看题中其他量给定的有效数字来决定.引申:如图所示,在 P 处堆放着刚购买的草皮,现要把这些草皮沿着道路 PA 或PB 送到呈矩形的足球场 ABCD 中去铺垫,已知|Ap 150m ,|Bp 100m,| BC| 60m , APB 60o •能否在足球场上画一条 “等距离”线,在“等距离”线的两侧的区域应该选择怎样的线路?说明理由.解题剖析:设M 为“等距离”线上任意一点,则|PA |AM点M 的轨迹方程.♦情感、态度与价值观目标在合作、互动的教学氛围中,通过师生之间、学生之间的交流、合作、互动实现共同探究,教 学相长的教学活动情境,结合教学内容,培养学生科学探索精神、审美观和科学世界观,激励学生 创新.必须让学生认同和掌握:双曲线的简单几何性质,能由双曲线的标准方程能直接得到双曲线 的范围、对称性、顶点、渐近线和离心率;必须让学生认同与理解:已知几何图形建立直角坐标系 的两个原则,①充分利用图形对称性,②注意图形的特殊性和一般性;必须让学生认同与熟悉:取 近似值的两个原则:①实际问题可以近似计算,也可以不近似计算,②要求近似计算的一定要按要 求进行计算,并按精确度要求进行,没有作说明的按给定的有关量的有效数字处理;让学生参与并 掌握利用信息技术探究点的轨迹问题, 培养学生学习数学的兴趣和掌握利用先进教学辅助手段的技能.♦能力目标(1) 分析与解决问题的能力:通过学生的积极参与和积极探究 ,培养学生的分析问题和解决 问题的能力.(2)思维能力:会把几何问题化归成代数问题来分析,反过来会把代数问题转化为几何问 题来思考;培养学生的会从特殊性问题引申到一般性来研究,培养学生的辩证思维能MF I 1 ^2 2 .16 ,16 J X 5y ,到直线l:x 一的距离dx — 15 5分析:若设点M x, y ,则a,b,c 的近似值,原则上在没有注意PB BM ,即BM | |AM | |Ap |Bp 50 (定值),“等距离”线是以A 、B 为焦点的双曲线的左支上的2部分,容易“等距离”线方程为x y1 35 x 625 375025,0 y 60 .理由略.例5如图,设M x, y 与定点F 5,0的距离和它到直线 15的距离的比是常数5,求4则容易得点M 的轨迹方程. 引申:《几何画板》探究点的轨迹:双曲线x, y 与定点 F c,0 的距离和它到定直线2a——的距离 c比是常数0,则点M 的轨迹方程是双曲线. 其中定点F c,02是焦点,定直线l : x —相c应于F 的准线; 另一焦点 F c,0,相应于F 的准线I : xx2力.(3) 实践能力:培养学生实际动手能力,综合利用已有的知识能力.(4)创新意识能力:培养学生思考问题、并能探究发现一些问题的能力,探究解决问题的 一般的思想、方法和途径.练习:第66页1、2、3、4、5 作业:第3、4、6补充:3.课题:双曲线第二定义教学目标:1•知识目标:掌握双曲线第二定义与准线的概念,并会简单的应用。
圆锥曲线高中数学讲解教案
圆锥曲线高中数学讲解教案
一、教学目标:
1. 了解圆锥曲线的定义和基本性质;
2. 掌握圆锥曲线的标准方程和性质;
3. 能够根据给定的条件求解圆锥曲线的方程;
4. 能够利用圆锥曲线解决实际问题。
二、教学重点:
1. 圆锥曲线的定义;
2. 圆锥曲线的标准方程;
3. 圆锥曲线的性质。
三、教学难点:
1. 圆锥曲线的方程求解;
2. 圆锥曲线的性质证明。
四、教学过程:
1. 圆锥曲线的定义和基本概念(15分钟)
- 圆锥曲线的定义;
- 圆锥曲线的类别;
- 圆锥曲线的几何性质。
2. 圆锥曲线的标准方程和性质(20分钟)
- 圆的标准方程和性质;
- 椭圆的标准方程和性质;
- 双曲线的标准方程和性质;
- 抛物线的标准方程和性质。
3. 圆锥曲线的方程求解(30分钟)
- 根据给定的条件求解圆锥曲线的方程;
- 利用圆锥曲线求解实际问题。
4. 圆锥曲线的性质证明(15分钟)
- 圆锥曲线的对称性证明;
- 圆锥曲线的焦点、准线和直径关系证明。
五、教学总结:
通过本节课的学习,我们对圆锥曲线的定义、标准方程和性质有了更深入的了解,掌握了圆锥曲线的求解方法和应用能力。
希望同学们能够认真复习,做好练习,提高对圆锥曲线的理解和应用能力。
下节课将继续深入学习圆锥曲线的相关内容,敬请期待。
高中数学 第二章《圆锥曲线与方程》2.1圆锥曲线学案 新人教版选修2-1
第2章圆锥曲线与方程2.1 圆锥曲线二、预习指导1.预习目标(1)认识用平面截圆锥面得到的各种曲线;(2)掌握椭圆、双曲线、抛物线的定义;(3)会根据不同的已知条件,利用圆锥曲线的定义判断动点的轨迹.2.预习提纲(1)查找有关轨迹的概念,回答下列问题:①平面内到线段两端点距离相等的点的轨迹是____________;②平面内到定点的距离等于定长的点的轨迹是____________;③空间中到定点的距离等于定长的点的轨迹是____________.(2)阅读教材选修4-1的71页到78页,教材选修2-1的25页到27页写下列空格:①一个平面截一个圆锥面,改变平面的位置,可得到如下图形____________,____________,____________,____________,____________;②平面内到两个定点F1,F2的距离_____等于常数(__________)的点的轨迹叫做椭圆,两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的__________;③平面内到两个定点F1,F2的距离____________等于常数(______________)的点的轨迹叫做双曲线,两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距;④平面内到一个定点F和一条定直线l(________________)的距离________的点的轨迹叫做抛物线,定点F叫做抛物线的焦点,定直线l叫做抛物线的_________.(3)阅读课本例1,动手实践借助细绳画椭圆,结合课本27页习题2.1第3题,动手实践借助拉链画双曲线,并说明理由,以此加深对椭圆、双曲线定义的认识.3.典型例题例1 动点P(x,y)与两个定点A(-2,0)、B(2,0)构成的三角形周长为10.(1)试证:动点P在一个椭圆上运动;(2)写出这个椭圆的焦点坐标.分析:找动点P满足的条件,利用圆锥曲线的定义.解:(1)由题意得:PA+PB+AB=10,AB=4,故PA+PB=6>4.由椭圆的定义得:动点P在以A(-2,0)、B(2,0)为焦点的椭圆上运动.(2)由(1)得:这个椭圆的两个焦点坐标为A(-2,0)、B(2,0).点评:在圆锥曲线(椭圆、双曲线、抛物线)的定义中,条件都有特定的限制,如在具体问题中不加以判断,会造成错解.如本题中PA+PB=6>4是十分必要的.在椭圆的定义中,PF1+PF2等于常数,常数大于F1F2的判断是必不可少的.若常数等于F 1F 2,则轨迹是线段F 1F 2;若常数小于F 1F 2,则不表示任何图形.在双曲线的定义中,注意两个限制:一是常数小于F 1F 2,二是差的绝对值,两者缺一不可.若PF 1-PF 2是正常数且常数小于F 1F 2,则点的轨迹是双曲线以F 2为焦点的一支;若PF 2-PF 1是正常数且常数小于F 1F 2,则点的轨迹是双曲线以F 1为焦点的一支;若|PF 1-PF 2|是常数且等于F 1F 2,则点的轨迹是两条射线;若PF 1-PF 2是常数且等于F 1F 2,则点的轨迹是以F 2为端点与F 1F 2同向的射线;若PF 2-PF 1是常数且等于F 1F 2,则点的轨迹是以F 1为端点与F 1F 2反向的射线. 在抛物线的定义中,当点F 在直线l 上时,则点P 的轨迹是过点F 与直线l 垂直的直线.例2 已知圆()221:31C x y ++=和圆()222:39C x y -+=,动圆M 同时与圆C 1及圆C 2相外切,试问动圆圆心M 在怎样的曲线上运动?分析:两圆外切,则圆心距等于半径之和.解: 设动圆的半径为R ,则由动圆M 同时与圆C 1及圆C 2相外切得:1213MC R MC R =+⎧⎨=+⎩ 消去R 得:MC 2-MC 1=2,故可知动点M 到两定点C 1,C 2的距离之差是常数2.由双曲线的定义得:动圆圆心M 在双曲线的一支(左边的一支)上运动.点评:本题由于动点M 到两定点C 1,C 2的距离之差是常数,而不是差的绝对值为常数,因此其轨迹只能是双曲线的一支.这一点在应用过程中要特别注意.4.自我检测(1)已知点A (1,0)、B (-1,0),动点P 满足:PA +PB =4,则动点P 的轨迹是__ .(2)已知点A (-2,0)、B (2,0),动点M 满足:|MA -MB |=2,则动点M 的轨迹是 ____ ,其两个焦点分别为 .(3)已知定点A (1,0)和定直线l :x = -3,若点N 到定点A 与到定直线l 的距离相等,则点N 的轨迹是 ,其焦点为 ,准线为 .(4)已知点A (-2,0)、B (2,0),动点M 满足:|MA -MB |=4,则动点M 的轨迹是 _.(5)在△ABC 中,B (0,-3),C (0,3),且AB ,BC ,AC 成等差数列,试证:点A 在以B 、C 为焦点的椭圆上运动.三、课后巩固练习A 组1.用合适的选项填写下列轨迹 ( 要求只填写序号 )①直线;②圆;③椭圆;④双曲线;⑤双曲线的一支;⑥抛物线;⑦线段(1)动点P 到两定点F 1(-4,0)、F 2(4,0)的距离和是8,则动点P 的轨迹为_______; (2)已知椭圆的焦点为F 1、F 2,P 是椭圆上的一个动点,如果延长F 1P 到Q ,使得PQ =PF 2,那么动点Q 的轨迹是_________;(3)动点P 到直线x +4=0的距离减去它到M (2,0)的距离之差等于2,则动点P 的轨迹是___________;(4)经过定圆外一定点,并且与定圆外切的动圆圆心的轨迹是__________.2.已知O (0,0)、A0)为平面内两个定点,动点P 满足:PO +PA =2,求动点P 的轨迹.3.在△ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边,且b ,a ,c 成等差数列,b ≥c .已知顶点B 、C 的坐标为B (-1,0),C (-1,0).试证:点A 在以B 、C 为焦点的左半椭圆上运动.4.在△ABC 中,A 为动点,(,0)(,0)(0)22a a B C a ->、为定点,且满足:1s i n s i n s i n 2C B A -=,试问动点A 在怎样的曲线上运动?B 组5.圆O 1与圆O 2的半径分别为1和2,O 1O 2=4,动圆与圆O 1内切而与圆O 2外切,则动圆圆心的轨迹是_____________________.6.已知定点A (-3,3)和定直线l :x =-3,若点N 到定点A 与到定直线l 的距离相等,则点N 的轨迹是 .7.已知圆的方程为22100x y +=,点A 的坐标为(-6,0),M 是圆O 上的任意一点,AM 的垂直平分线交OM 于点P ,试证明:点P 在以A 、O 为焦点的椭圆上运动.C 组8.已知A(0,7)、B(0,-7)、C(12,2),以C 为一个焦点作过A 、B 的椭圆,记椭圆的另一个焦点为F ,证明:点F 在以A(0,7)、B(0,-7)为焦点的双曲线的一支上运动.9.已知两个同心圆,其半径分别为R ,r (R >r ),AB 为小圆的一条定直径,求证:以大圆切线为准线,且过A 、B 两点的抛物线的焦点F 在以A 、B 为焦点的椭圆上.10.若一个动点P (x ,y )到定点F 1(-1,0),F 2(1,0)距离之和为定值m (m ≥0),试讨论点P 的轨迹.题号我们身边的圆锥曲线圆锥曲线的发现确实是一个伟大的发现.在笛卡尔直角坐标系中,这些曲线的方程是二次方程,所以圆锥曲线又叫做二次曲线.对于二次曲线的价值大概还没有人会估计得过高.在我们的实际生活中处处都有圆锥曲线.例如,我们的地球绕太阳运行的轨道是椭圆,太阳系的其他行星的运行轨道都是椭圆.这个事实是由开普勒第一定律确定的,之所以沿着椭圆轨道运动,是因为每一个行星在每一个瞬间都有不超过某一个值的速度.事实证明,假如这个速度过大了,运动就会沿着抛物线或双曲线轨道运行.相对于一个静止的物体,并按照万有引力定律受它吸引的物体运动,不可能有任何其他的轨道.因此,二次曲线实际上是以我们的宇宙为基础的.又如,如果让抛物线绕其轴旋转,就得到一个叫做旋转抛物面的曲面.在抛物面的轴上,有一个具有美妙性质的焦点,任何一条通过该点的直线由抛物面上反射出来之后,在指向上都平行于抛物面的轴.而这意味着如果把探照灯做成抛物面的形状,并且把灯泡放在焦点上,那么从抛物面上反射回来的所有光线就形成一束平行光束.这显然是一个很大的优点,因为正是这样一束光线在空间中,甚至于在离光源距离相当大的情况下,很少扩散.当然,实际上我们得不到理想的平行光束,因为灯泡不是一个点,但对于实用的目的来说,只要接近于这样的光束就够了.天文望远镜上的反射镜也是利用抛物面的形状制作的.它的作用刚好和探照灯的作用相反:探照灯的反射镜把光线反射到空间,天文望远镜的反射面则把来自宇宙的光线聚焦到自己的焦点上.只要用放大镜组瞄准这个焦点就行了,这样,我们就会得到聚焦到其光线的那个星球的信息,这比肉眼观察所能提供的信息要多得多.那条不穿过双曲线的对称轴叫做双曲线的虚轴.如果使双曲线绕这条轴旋转,那么,形成的曲面(这样的曲面称为单叶双曲面)也有许多实际用处.单叶双曲面是直纹曲面.上面有两组母直线族,各组内母线彼此不相交,而与另一组母线永远相交.正是这种性质在技术中得到了应用.例如,用直立木杆造水塔,如果把这些杆垂直地放置,那就只能得到一个很不牢固的建筑物,他会因为非常小的负荷而损坏.如果立杆时,使他们构成一个单叶双曲面(就是两组母线族),并使他们的交点处连接在一起,就会得到一个非常轻巧而又非常坚固的建筑物.许多化工厂或热电厂的冷却塔就是利用了这个原理.在尝试解决古代名题的过程中,所发现的各种美妙曲线远不限于螺线,蚌线和圆锥曲线.可是,不管找到了多少美妙的曲线,他们还是解决不了古代名题.要知道,正像我们还记得的那样,要求不只是解出这些名题,而是除了直尺和圆规外,不准利用其他任何工具.而仅仅利用这两种工具能否解决其中任何一个问题呢?这个问题该如何回答呢?如果这个答案存在的话,对这个问题给与肯定的回答,原则上显得比给与否定的回答更容易,只不过需要尝试才能找到这个答案.经过或多或少接连不断的寻找,这种题解通常可以找到.在题解不存在的情况下,事情则难办的多.这时,只停留在普通的几何直观上,几乎不可能得到所需要的答案.在这种情况下,可以对问题进行精确的代数分析,以便归结为完成某些代数方程的不可能性证明解答这个问题的不可能性.这样,就要求助于代数!2.1 圆锥曲线自我检测(1)以A,B为焦点的椭圆 (2) 以A,B为焦点的双曲线,A(-2,0)、B(2,0) (3)抛物线,A(1,0) ,l:x= -3 (4) 以A,B为端点的两条射线(5)因为AB,BC,AC成等差数列,所以AB+AC =2BC=12>BC,因此点A在以B、C为焦点的椭圆上运动.课后巩固练习A组1.(1)⑦;(2)②;(3)⑥;(4)⑤ 2.以O,A为焦点的椭圆3.证明略 4.点A在以B,C为焦点的双曲线的右支上B组5.以O1,O2为焦点的双曲线的一支 6.过点A且垂直于l的直线7.8.证明略C组9.证明略10.当m<2时,轨迹不存在;当m=2是,轨迹是以F1F2为端点的线段;当m>2时,轨迹是以F1F2为焦点的椭圆。
人教版高中数学 教案+学案综合汇编 第6章:圆锥曲线和方程式 课时6
人教版高中数学教案+学案综合汇编第6章椭圆及其它第 6 课时抛物线的几何性质一、教学目标(一)知识教学点使学生理解并掌握抛物线的几何性质,并能从抛物线的标准方程出发,推导这些性质.(二)能力训练点从抛物线的标准方程出发,推导抛物线的性质,从而培养学生分析、归纳、推理等能力.(三)学科渗透点使学生进一步掌握利用方程研究曲线性质的基本方法,加深对直角坐标系中曲线方程的关系概念的理解,这样才能解决抛物线中的弦、最值等问题.二、教材分析1.重点:抛物线的几何性质及初步运用.(解决办法:引导学生类比椭圆、双曲线的几何性质得出.)2.难点:抛物线的几何性质的应用.(解决办法:通过几个典型例题的讲解,使学生掌握几何性质的应用.)3.疑点:抛物线的焦半径和焦点弦长公式.(解决办法:引导学生证明并加以记忆.)三、活动设计提问、填表、讲解、演板、口答.四、教学过程(一)复习1.抛物线的定义是什么?请一同学回答.应为:“平面内与一个定点F和一条定直线l的距离相等的点的轨迹叫做抛物线.”2.抛物线的标准方程是什么?再请一同学回答.应为:抛物线的标准方程是y2=2px(p>0),y2=-2px(p>0),x2=2py(p>0)和x2=-2py(p>0).下面我们类比椭圆、双曲线的几何性质,从抛物线的标准方程y2=2px(p>0)出发来研究它的几何性质.(二)几何性质怎样由抛物线的标准方程确定它的几何性质?以y2=2px(p>0)为例,用小黑板给出下表,请学生对比、研究和填写.填写完毕后,再向学生提出问题:和椭圆、双曲线的几何性质相比,抛物线的几何性质有什么特点?学生和教师共同小结:(1)抛物线只位于半个坐标平面内,虽然它也可以无限延伸,但是没有渐近线.(2)抛物线只有一条对称轴,这条对称轴垂直于抛物线的准线或与顶点和焦点的连线重合,抛物线没有中心.(3)抛物线只有一个顶点,它是焦点和焦点在准线上射影的中点.(4)抛物线的离心率要联系椭圆、双曲线的第二定义,并和抛物线的定义作比较.其结果是应规定抛物线的离心率为1.注意:这样不仅引入了抛物线离心率的概念,而且把圆锥曲线作为点的轨迹统一起来了.(三)应用举例为了加深对抛物线的几何性质的认识,掌握描点法画图的基本方法,给出如下例1.例1 已知抛物线关于x轴对称,它的顶点在坐标原点,并且经过点解:因为抛物线关于x轴对称,它的顶点在坐标原点,并且经过点程是y2=4x.后一部分由学生演板,检查一下学生对用描点法画图的基本方法掌握情况.第一象限内的几个点的坐标,得:(2)描点作图描点画出抛物线在第一象限内的一部分,再利用对称性,就可以画出抛物线的另一部分(如图2-33).例2 已知抛物线的顶点在原点,对称轴是x轴,抛物线上的点M(-3,m)到焦点的距离等于5,求抛物线的方程和m的值.解法一:由焦半径关系,设抛物线方程为y2=-2px(p>0),则准线方因为抛物线上的点M(-3,m)到焦点的距离|MF|与到准线的距离得p=4.因此,所求抛物线方程为y2=-8x.又点M(-3,m)在此抛物线上,故m2=-8(-3).解法二:由题设列两个方程,可求得p和m.由学生演板.由题意在抛物线上且|MF|=5,故本例小结:(1)解法一运用了抛物线的重要性质:抛物线上任一点到焦点的距离(即此点的焦半径)等于此点到准线的距离.可得焦半径公式:设P(x0,这个性质在解决许多有关焦点的弦的问题中经常用到,因此必须熟练掌握.(2)由焦半径不难得出焦点弦长公式:设AB是过抛物线焦点的一条弦(焦点弦),若A(x1,y1)、B(x2,y2)则有|AB|=x1+x2+p.特别地:当AB⊥x轴,抛物线的通径|AB|=2p(详见课本习题).例3 过抛物线y2=2px(p>0)的焦点F的一条直线与这抛物线相交于A、B 两点,且A(x1,y1)、B(x2,y2)(图2-34).证明:(1)当AB与x轴不垂直时,设AB方程为:此方程的两根y1、y2分别是A、B两点的纵坐标,则有y1y2=-p2.或y1=-p,y2=p,故y1y2=-p2.综合上述有y1y2=-p2又∵A(x1,y1)、B(x2,y2)是抛物线上的两点,本例小结:(1)涉及直线与圆锥曲线相交时,常把直线与圆锥曲线方程联立,消去一个变量,得到关于另一变量的一元二次方程,然后用韦达定理求解,这是解决这类问题的一种常用方法.(2)本例命题1是课本习题中结论,要求学生记忆.(四)练习1.过抛物线y2=4x的焦点作直线交抛物线于A(x1,y1)、B(x2,y2)两点,若x1+x2=6,求|AB|的值.由学生练习后口答.由焦半径公式得:|AB|=x1+x2+p=82.证明:与抛物线的轴平行的直线和抛物线只有一个交点.请一同学演板,其他同学练习,教师巡视.证明:可设抛物线方程故抛物线y2=2px与平行于其轴的直线只有一个交点.(五)全课小结1.抛物线的几何性质;2.抛物线的应用.五、布置作业1.在抛物线y2=12x上,求和焦点的距离等于9的点的坐标.2.有一正三角形的两个顶点在抛物线y2=2px上,另一顶点在原点,求这个三角形的边长.3.图2-35是抛物线拱桥的示意图,当水面在l时,拱顶高水面2m,水面宽4m,水下降11m后,水面宽多少?4.求证:以抛物线的焦点弦为直径的圆,必与抛物线的准线相切.作业答案:3.建立直角坐标系,设拱桥的抛物线方程为x2=-2py,可得抛物线4.由抛物线的定义不难证明六、板书设计。
高中数学圆锥曲线教案
高中数学圆锥曲线教案
一、教学目标
1.了解圆锥曲线的定义和基本性质。
2.能够掌握圆锥曲线的标准方程及其图像特点。
3.能够解决与圆锥曲线相关的问题。
二、教学重点和难点
重点:掌握圆锥曲线的标准方程及其图像特点。
难点:理解圆锥曲线的定义及性质。
三、教学内容
1.圆锥曲线的定义和基本性质。
2.圆锥曲线的标准方程及其图像特点。
3.圆锥曲线的相关问题解决方法。
四、教学过程
1.导入新知识:通过引入一个问题或实际应用场景引起学生的兴趣。
2.讲解圆锥曲线的定义和基本性质,包括椭圆、双曲线和抛物线。
3.介绍圆锥曲线的标准方程及其图像特点。
4.通过实例分析,让学生熟悉解决与圆锥曲线相关的问题的方法。
5.组织学生进行练习和讨论,巩固所学知识。
6.总结本节课内容,提出问题进行思考,激发学生的学习兴趣。
五、课堂作业
1.完成练习题。
2.思考如何将圆锥曲线应用到实际生活中。
六、教学反思
本节课主要对圆锥曲线的定义和基本性质进行了讲解,并通过实例让学生掌握了圆锥曲线的标准方程及其图像特点。
同时也引导学生思考如何将所学知识应用到实际生活中。
在教学过程中需要注意引导学生正确理解圆锥曲线的概念,帮助他们建立深刻的认识。
新版高中数学圆锥曲线教案
新版高中数学圆锥曲线教案一、教学目标:1. 熟练掌握圆锥曲线的基本概念和性质;2. 能够理解常见圆锥曲线方程的几何意义;3. 能够运用圆锥曲线解决实际问题。
二、教学重点:1. 圆锥曲线的定义和分类;2. 圆锥曲线的方程及性质;3. 圆锥曲线的应用实例。
三、教学内容:1. 圆锥曲线的基本概念:椭圆、双曲线、抛物线;2. 圆锥曲线的方程:椭圆方程、双曲线方程、抛物线方程;3. 圆锥曲线的性质:焦点、准线、离心率等;4. 圆锥曲线的应用:求解实际问题。
四、教学步骤:1. 引入:通过生活实例引入圆锥曲线的概念,引发学生兴趣;2. 讲解:介绍圆锥曲线的定义、分类、方程和性质;3. 练习:让学生进行练习,巩固所学内容;4. 应用:通过应用题,让学生运用所学知识解决实际问题;5. 总结:对本节课所学内容进行总结,强化记忆。
五、教学工具:1. 讲义、教材:提供相关知识点及例题;2. 幻灯片:辅助讲解,呈现图形与方程对应关系;3. 黑板、彩色粉笔:展示解题过程;4. 习题册、练习册:让学生进行巩固练习。
六、教学评价:1. 课堂表现:学生是否积极参与讨论、思维活跃;2. 作业情况:学生对作业的完成情况及正确率;3. 考试成绩:检验学生掌握情况。
七、教学反馈:1. 整理学生反馈意见,根据学生反馈调整教学方式;2. 总结本节课教学经验,为下一节课改进教学方法做准备。
八、教学延伸:1. 给学生留下更多实例让学生探究,提高学生学习兴趣;2. 引导学生自主进行拓展探索,培养学生解决问题的能力。
以上是本节课的教案范本,希望能够对教学工作有所帮助,祝教学顺利!。
人教版高中数学 教案+学案综合汇编 第6章:圆锥曲线和方程式 课时0
人教版高中数学教案+学案综合汇编第6章椭圆及其它第 1 课时椭圆及其标准方程一、教学目标(一)知识教学点使学生理解椭圆的定义,掌握椭圆的标准方程的推导及标准方程.(二)能力训练点通过对椭圆概念的引入与标准方程的推导,培养学生分析探索能力,增强运用坐标法解决几何问题的能力.(三)学科渗透点通过对椭圆标准方程的推导的教学,可以提高对各种知识的综合运用能力.二、教材分析1.重点:椭圆的定义和椭圆的标准方程.(解决办法:用模型演示椭圆,再给出椭圆的定义,最后加以强调;对椭圆的标准方程单独列出加以比较.)2.难点:椭圆的标准方程的推导.(解决办法:推导分4步完成,每步重点讲解,关键步骤加以补充说明.)3.疑点:椭圆的定义中常数加以限制的原因.(解决办法:分三种情况说明动点的轨迹.)三、活动设计提问、演示、讲授、详细讲授、演板、分析讲解、学生口答.四、教学过程(一)椭圆概念的引入前面,大家学习了曲线的方程等概念,哪一位同学回答:问题1:什么叫做曲线的方程?求曲线方程的一般步骤是什么?其中哪几个步骤必不可少?对上述问题学生的回答基本正确,否则,教师给予纠正.这样便于学生温故而知新,在已有知识基础上去探求新知识.提出这一问题以便说明标准方程推导中一个同解变形.问题3:圆的几何特征是什么?你能否可类似地提出一些轨迹命题作广泛的探索?一般学生能回答:“平面内到一定点的距离为常数的点的轨迹是圆”.对同学提出的轨迹命题如:“到两定点距离之和等于常数的点的轨迹.”“到两定点距离平方差等于常数的点的轨迹.”“到两定点距离之差等于常数的点的轨迹.”教师要加以肯定,以鼓励同学们的探索精神.比如说,若同学们提出了“到两定点距离之和等于常数的点的轨迹”,那么动点轨迹是什么呢?这时教师示范引导学生绘图:取一条一定长的细绳,把它的两端固定在画图板上的F1和F2两点(如图2-13),当绳长大于F1和F2的距离时,用铅笔尖把绳子拉紧,使笔尖在图板上慢慢移动,就可以画出一个椭圆.教师进一步追问:“椭圆,在哪些地方见过?”有的同学说:“立体几何中圆的直观图.”有的同学说:“人造卫星运行轨道”等……在此基础上,引导学生概括椭圆的定义:平面内到两定点F1、F2的距离之和等于常数(大于|F1F2|)的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点的距离叫做焦距.学生开始只强调主要几何特征——到两定点F1、F2的距离之和等于常数、教师在演示中要从两个方面加以强调:(1)将穿有铅笔的细线拉到图板平面外,得到的不是椭圆,而是椭球形,使学生认识到需加限制条件:“在平面内”.(2)这里的常数有什么限制吗?教师边演示边提示学生注意:若常数=|F1F2|,则是线段F1F2;若常数<|F1F2|,则轨迹不存在;若要轨迹是椭圆,还必须加上限制条件:“此常数大于|F1F2|”.(二)椭圆标准方程的推导1.标准方程的推导由椭圆的定义,可以知道它的基本几何特征,但对椭圆还具有哪些性质,我们还一无所知,所以需要用坐标法先建立椭圆的方程.如何建立椭圆的方程?根据求曲线方程的一般步骤,可分:(1)建系设点;(2)点的集合;(3)代数方程;(4)化简方程等步骤.(1)建系设点建立坐标系应遵循简单和优化的原则,如使关键点的坐标、关键几何量(距离、直线斜率等)的表达式简单化,注意充分利用图形的对称性,使学生认识到下列选取方法是恰当的.以两定点F1、F2的直线为x轴,线段F1F2的垂直平分线为y轴,建立直角坐标系(如图2-14).设|F1F2|=2c(c>0),M(x,y)为椭圆上任意一点,则有F1(-1,0),F2(c,0).(2)点的集合由定义不难得出椭圆集合为:P={M||MF1|+|MF2|=2a}.(3)代数方程(4)化简方程化简方程可请一个反映比较快、书写比较规范的同学板演,其余同学在下面完成,教师巡视,适当给予提示:①原方程要移项平方,否则化简相当复杂;注意两次平方的理由详见问题3说明.整理后,再平方得(a2-c2)x2+a2y2=a2(a2-c2)②为使方程对称和谐而引入b,同时b还有几何意义,下节课还要(a>b>0).关于证明所得的方程是椭圆方程,因教材中对此要求不高,可从略.示的椭圆的焦点在x轴上,焦点是F1(-c,0)、F2(c,0).这里c2=a2-b2.2.两种标准方程的比较(引导学生归纳)0)、F2(c,0),这里c2=a2-b2;-c)、F2(0,c),这里c2=a2+b2,只须将(1)方程的x、y互换即可得到.教师指出:在两种标准方程中,∵a2>b2,∴可以根据分母的大小来判定焦点在哪一个坐标轴上.(三)例题与练习例题平面内两定点的距离是8,写出到这两定点的距离的和是10的点的轨迹的方程.分析:先根据题意判断轨迹,再建立直角坐标系,采用待定系数法得出轨迹方程.解:这个轨迹是一个椭圆,两个定点是焦点,用F1、F2表示.取过点F1和F2的直线为x轴,线段F1F2的垂直平分线为y轴,建立直角坐标系.∵2a=10,2c=8.∴a=5,c=4,b2=a2-c2=52-45=9.∴b=3因此,这个椭圆的标准方程是请大家再想一想,焦点F1、F2放在y轴上,线段F1F2的垂直平分练习1 写出适合下列条件的椭圆的标准方程:练习2 下列各组两个椭圆中,其焦点相同的是[ ]由学生口答,答案为D.(四)小结1.定义:椭圆是平面内与两定点F1、F2的距离的和等于常数(大于|F1F2|)的点的轨迹.3.图形如图2-15、2-16.4.焦点:F1(-c,0),F2(c,0).F1(0,-c),F2(0,c).五、布置作业1.如图2-17,在椭圆上的点中,A1与焦点F1的距离最小,|A1F1|=2,A2F1的距离最大,|A2F1|=14,求椭圆的标准方程.3.求适合下列条件的椭圆的标准方程:是过F1的直线被椭圆截得的线段长,求△ABF2的周长.作业答案:4.由椭圆定义易得,△ABF2的周长为4a.六、板书设计第2课时椭圆的几何性质一、教学目标(一)知识教学点通过椭圆标准方程的讨论,使学生掌握椭圆的几何性质,能正确地画出椭圆的图形,并了解椭圆的一些实际应用.(二)能力训练点通过对椭圆的几何性质的教学,培养学生分析问题和解决实际问题的能力.(三)学科渗透点使学生掌握利用方程研究曲线性质的基本方法,加深对直角坐标系中曲线与方程的关系概念的理解,这样才能解决随之而来的一些问题,如弦、最值问题等.二、教材分析1.重点:椭圆的几何性质及初步运用.(解决办法:引导学生利用方程研究曲线的性质,最后进行归纳小结.)2.难点:椭圆离心率的概念的理解.(解决办法:先介绍椭圆离心率的定义,再分析离心率的大小对椭圆形状的影响,最后通过椭圆的第二定义讲清离心率e的几何意义.)3.疑点:椭圆的几何性质是椭圆自身所具有的性质,与坐标系选择无关,即不随坐标系的改变而改变.(解决办法:利用方程分析椭圆性质之前就先给学生说明.)三、活动设计提问、讲解、阅读后重点讲解、再讲解、演板、讲解后归纳、小结.四、教学过程(一)复习提问1.椭圆的定义是什么?2.椭圆的标准方程是什么?学生口述,教师板书.(二)几何性质根据曲线的方程研究曲线的几何性质,并正确地画出它的图形,是b>0)来研究椭圆的几何性质.说明:椭圆自身固有几何量所具有的性质是与坐标系选择无关,即不随坐标系的改变而改变.1.范围即|x|≤a,|y|≤b,这说明椭圆在直线x=±a和直线y=±b所围成的矩形里(图2-18).注意结合图形讲解,并指出描点画图时,就不能取范围以外的点.2.对称性先请大家阅读课本椭圆的几何性质2.设问:为什么“把x换成-x,或把y换成-y?,或把x、y同时换成-x、-y时,方程都不变,所以图形关于y轴、x轴或原点对称的”呢?事实上,在曲线的方程里,如果把x换成-x而方程不变,那么当点P(x,y)在曲线上时,点P关于y轴的对称点Q(-x,y)也在曲线上,所以曲线关于y轴对称.类似可以证明其他两个命题.同时向学生指出:如果曲线具有关于y轴对称、关于x轴对称和关于原点对称中的任意两种,那么它一定具有另一种对称.如:如果曲线关于x轴和原点对称,那么它一定关于y轴对称.事实上,设P(x,y)在曲线上,因为曲线关于x轴对称,所以点P1(x,-y)必在曲线上.又因为曲线关于原点对称,所以P1关于原点对称点P2(-x,y)必在曲线上.因P(x,y)、P2(-x,y)都在曲线上,所以曲线关于y轴对称.最后指出:x轴、y轴是椭圆的对称轴,原点是椭圆的对称中心即椭圆中心.3.顶点只须令x=0,得y=±b,点B1(0,-b)、B2(0,b)是椭圆和y轴的两个交点;令y=0,得x=±a,点A1(-a,0)、A2(a,0)是椭圆和x轴的两个交点.强调指出:椭圆有四个顶点A1(-a,0)、A2(a,0)、B1(0,-b)、B2(0,b).教师还需指出:(1)线段A1A2、线段B1B2分别叫椭圆的长轴和短轴,它们的长分别等于2a和2b;(2)a、b的几何意义:a是长半轴的长,b是短半轴的长;这时,教师可以小结以下:由椭圆的范围、对称性和顶点,再进行描点画图,只须描出较少的点,就可以得到较正确的图形.4.离心率教师直接给出椭圆的离心率的定义:等到介绍椭圆的第二定义时,再讲清离心率e的几何意义.先分析椭圆的离心率e的取值范围:∵a>c>0,∴ 0<e<1.再结合图形分析离心率的大小对椭圆形状的影响:(2)当e接近0时,c越接近0,从而b越接近a,因此椭圆接近圆;(3)当e=0时,c=0,a=b两焦点重合,椭圆的标准方程成为x2+y2=a2,图形就是圆了.(三)应用为了加深对椭圆的几何性质的认识,掌握用描点法画图的基本方法,给出如下例1.例1 求椭圆16x2+25y2=400的长轴和短轴的长、离心率、焦点和顶点的坐标,并用描点法画出它的图形.本例前一部分请一个同学板演,教师予以订正,估计不难完成.后一部分由教师讲解,以引起学生重视,步骤是:(2)描点作图.先描点画出椭圆在第一象限内的图形,再利用椭圆的对称性就可以画出整个椭圆(图2-19).要强调:利用对称性可以使计算量大大减少.本例实质上是椭圆的第二定义,是为以后讲解抛物线和圆锥曲线的统一定义做准备的,同时再一次使学生熟悉求曲线方程的一般步骤,因此,要详细讲解:设d是点M到直线l的距离,根据题意,所求轨迹就是集合P={M将上式化简,得:(a2-c2)x2+a2y2=a2(a2-c2).这是椭圆的标准方程,所以点M的轨迹是椭圆.由此例不难归纳出椭圆的第二定义.(四)椭圆的第二定义1.定义平面内点M与一个定点的距离和它到一定直线的距离的比是常数线叫做椭圆的准线,常数e是椭圆的离心率.2.说明这时还要讲清e的几何意义是:椭圆上一点到焦点的距离和它到准线的距离的比.(五)小结解法研究图形的性质是通过对方程的讨论进行的,同一曲线由于坐标系选取不同,方程的形式也不同,但是最后得出的性质是一样的,即与坐标系的选取无关.前面我们着重分析了第一个标准方程的椭圆的性质,类似可以理解第二个标准方程的椭圆的性质.布置学生最后小结下列表格:五、布置作业1.求下列椭圆的长轴和短轴的长、焦距、离心率、各个顶点和焦点坐标、准线方程:(1)25x2+4y2-100=0,(2)x2+4y2-1=0.2.我国发射的科学实验人造地球卫星的运行轨道是以地球的中心为一个焦点的椭圆,近地点距地面266Km,远地点距地面1826Km,求这颗卫星的轨道方程.3.点P与一定点F(2,0)的距离和它到一定直线x=8的距离的比是1∶2,求点P的轨迹方程,并说明轨迹是什么图形.的方程.作业答案:4.顶点(0,2)可能是长轴的端点,也可能是短轴的一个端点,故分两种情况求方程:六、板书设计第3 课时双曲线及其标准方程一、教学目标(一)知识教学点使学生掌握双曲线的定义和标准方程,以及标准方程的推导.(二)能力训练点在与椭圆的类比中获得双曲线的知识,从而培养学生分析、归纳、推理等能力.(三)学科渗透点本次课注意发挥类比和设想的作用,与椭圆进行类比、设想,使学生得到关于双曲线的定义、标准方程一个比较深刻的认识.二、教材分析1.重点:双曲线的定义和双曲线的标准方程.(解决办法:通过一个简单实验得出双曲线,再通过设问给出双曲线的定义;对于双曲线的标准方程通过比较加深认识.)2.难点:双曲线的标准方程的推导.(解决办法:引导学生完成,提醒学生与椭圆标准方程的推导类比.)3.疑点:双曲线的方程是二次函数关系吗?(解决办法:教师可以从引导学生回忆函数定义和观察双曲线图形来解决,同时让学生在课外去研究在什么附加条件下,双曲线方程可以转化为函数式.)三、活动设计提问、实验、设问、归纳定义、讲解、演板、口答、重点讲解、小结.四、教学过程(一)复习提问1.椭圆的定义是什么?(学生回答,教师板书)平面内与两定点F1、F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫做椭圆.教师要强调条件:(1)平面内;(2)到两定点F1、F2的距离的和等于常数;(3)常数2a>|F1F2|.2.椭圆的标准方程是什么?(学生口答,教师板书)(二)双曲线的概念把椭圆定义中的“距离的和”改为“距离的差”,那么点的轨迹会怎样?它的方程是怎样的呢?1.简单实验(边演示、边说明)如图2-23,定点F1、F2是两个按钉,MN是一个细套管,两条细绳分别拴在按钉上且穿过套管,点M移动时,|MF1|-|MF2|是常数,这样就画出曲线的一支;由|MF2|-|MF1|是同一常数,可以画出另一支.注意:常数要小于|F1F2|,否则作不出图形.这样作出的曲线就叫做双曲线.2.设问问题1:定点F1、F2与动点M不在平面上,能否得到双曲线?请学生回答,不能.强调“在平面内”.问题2:|MF1|与|MF2|哪个大?请学生回答,不定:当M在双曲线右支上时,|MF1|>|MF2|;当点M在双曲线左支上时,|MF1|<|MF2|.问题3:点M与定点F1、F2距离的差是否就是|MF1|-|MF2|?请学生回答,不一定,也可以是|MF2|-|MF1|.正确表示为||MF2|-|MF1||.问题4:这个常数是否会大于等于|F1F2|?请学生回答,应小于|F1F2|且大于零.当常数=|F1F2|时,轨迹是以F1、F2为端点的两条射线;当常数>|F1F2|时,无轨迹.3.定义在上述基础上,引导学生概括双曲线的定义:平面内与两定点F1、F2的距离的差的绝对值是常数(小于|F1F2|)的点的轨迹叫做双曲线.这两个定点F1、F2叫做双曲线的焦点,两个焦点之间的距离叫做焦距.教师指出:双曲线的定义可以与椭圆相对照来记忆,不要死记.(三)双曲线的标准方程现在来研究双曲线的方程.我们可以类似求椭圆的方程的方法来求双曲线的方程.这时设问:求椭圆的方程的一般步骤方法是什么?不要求学生回答,主要引起学生思考,随即引导学生给出双曲线的方程的推导.标准方程的推导:(1)建系设点取过焦点F1、F2的直线为x轴,线段F1F2的垂直平分线为y轴(如图2-24)建立直角坐标系.设M(x,y)为双曲线上任意一点,双曲线的焦距是2c(c>0),那么F1、F2的坐标分别是(-c,0)、(c,0).又设点M与F1、F2的距离的差的绝对值等于常数.(2)点的集合由定义可知,双曲线就是集合:P={M||MF1|-|MF2||=2a}={M|MF1|-|MF2|=±2a}.(3)代数方程(4)化简方程(由学生演板)将这个方程移项,两边平方得:化简得:两边再平方,整理得:(c2-a2)x2-a2y2=a2(c2-a2).(以上推导完全可以仿照椭圆方程的推导.)由双曲线定义,2c>2a 即c>a,所以c2-a2>0.设c2-a2=b2(b>0),代入上式得:b2x2-a2y2=a2b2.这就是双曲线的标准方程.两种标准方程的比较(引导学生归纳):教师指出:(1)双曲线标准方程中,a>0,b>0,但a不一定大于b;(2)如果x2项的系数是正的,那么焦点在x轴上;如果y2项的系数是正的,那么焦点在y 轴上.注意有别于椭圆通过比较分母的大小来判定焦点在哪一坐标轴上.(3)双曲线标准方程中a、b、c的关系是c2=a2+b2,不同于椭圆方程中c2=a2-b2.(四)练习与例题1.求满足下列的双曲线的标准方程:焦点F1(-3,0)、F2(3,0),且2a=4;3.已知两点F1(-5,0)、F2(5,0),求与它们的距离的差的绝对值是6的点的轨迹方程.如果把这里的数字6改为12,其他条件不变,会出现什么情况?由教师讲解:按定义,所求点的轨迹是双曲线,因为c=5,a=3,所以b2=c2-a2=52-32=42.因为2a=12,2c=10,且2a>2c.所以动点无轨迹.(五)小结1.定义:平面内与两定点F1、F2的距离的差的绝对值等于常数(小于|F1F2|)的点的轨迹.3.图形(见图2-25):4.焦点:F1(-c,0)、F2(c,0);F1(0,-c)、F2(0,c).5.a、b、c的关系:c2=a2+b2;c=a2+b2.五、布置作业1.根据下列条件,求双曲线的标准方程:(1)焦点的坐标是(-6,0)、(6,0),并且经过点A(-5,2);3.已知圆锥曲线的方程为mx2+ny2=m+n(m<0<m+n),求其焦点坐标.作业答案:2.由(1+k)(1-k)<0解得:k<-1或k>1六、板书设计第 4 课时双曲线的几何性质一、教学目标(一)知识教学点使学生理解并掌握双曲线的几何性质,并能从双曲线的标准方程出发,推导出这些性质,并能具体估计双曲线的形状特征.(二)能力训练点在与椭圆的性质的类比中获得双曲线的性质,从而培养学生分析、归纳、推理等能力.(三)学科渗透点使学生进一步掌握利用方程研究曲线性质的基本方法,加深对直角坐标系中曲线与方程的关系概念的理解,这样才能解决双曲线中的弦、最值等问题.二、教材分析1.重点:双曲线的几何性质及初步运用.(解决办法:引导学生类比椭圆的几何性质得出,至于渐近线引导学生证明.)2.难点:双曲线的渐近线方程的导出和论证.(解决办法:先引导学生观察以原点为中心,2a、2b长为邻边的矩形的两条对角线,再论证这两条对角线即为双曲线的渐近线.)3.疑点:双曲线的渐近线的证明.(解决办法:通过详细讲解.)三、活动设计提问、类比、重点讲解、演板、讲解并归纳、小结.四、教学过程(一)复习提问引入新课1.椭圆有哪些几何性质,是如何探讨的?请一同学回答.应为:范围、对称性、顶点、离心率,是从标准方程探讨的.2.双曲线的两种标准方程是什么?再请一同学回答.应为:中心在原点、焦点在x轴上的双曲线的标下面我们类比椭圆的几何性质来研究它的几何性质.(二)类比联想得出性质(性质1~3)引导学生完成下列关于椭圆与双曲线性质的表格(让学生回答,教师引导、启发、订正并板书).<见下页>(三)问题之中导出渐近线(性质4)在学习椭圆时,以原点为中心,2a、2b为邻边的矩形,对于估计仍以原点为中心,2a、2b为邻边作一矩形(板书图形),那么双曲线和这个矩形有什么关系?这个矩形对于估计和画出双曲线简图(图2-26)有什么指导意义?这些问题不要求学生回答,只引起学生类比联想.接着再提出问题:当a、b为已知时,这个矩形的两条对角线的方程是什么?下面,我们来证明它:双曲线在第一象限的部分可写成:当x逐渐增大时,|MN|逐渐减小,x无限增大,|MN|接近于零,|MQ|也接近于零,就是说,双曲线在第一象限的部分从射线ON的下方逐渐接近于射线ON.在其他象限内也可以证明类似的情况.现在来看看实轴在y轴上的双曲线的渐近线方程是怎样的?由于焦点在y轴上的双曲线方程是由焦点在x轴上的双曲线方程,将x、y字母对调所得到,自然前者渐近线方程也可由后者渐近线方程将x、y字这样,我们就完满地解决了画双曲线远处趋向问题,从而可比较精再描几个点,就可以随后画出比较精确的双曲线.(四)顺其自然介绍离心率(性质5)由于正确认识了渐近线的概念,对于离心率的直观意义也就容易掌握了,为此,介绍一下双曲线的离心率以及它对双曲线的形状的影响:变得开阔,从而得出:双曲线的离心率越大,它的开口就越开阔.这时,教师指出:焦点在y轴上的双曲线的几何性质可以类似得出,双曲线的几何性质与坐标系的选择无关,即不随坐标系的改变而改变.(五)练习与例题1.求双曲线9y2-16x2=144的实半轴长和虚半轴长、焦点坐标、离心率、渐近线方程.请一学生演板,其他同学练习,教师巡视,练习毕予以订正.由此可知,实半轴长a=4,虚半轴长b=3.焦点坐标是(0,-5),(0,5).本题实质上是双曲线的第二定义,要重点讲解并加以归纳小结.解:设d是点M到直线l的距离,根据题意,所求轨迹就是集合:化简得:(c2-a2)x2-a2y2=a2(c2-a2).这就是双曲线的标准方程.由此例不难归纳出双曲线的第二定义.(六)双曲线的第二定义1.定义(由学生归纳给出)平面内点M与一定点的距离和它到一条直线的距离的比是常数e=叫做双曲线的准线,常数e是双曲线的离心率.2.说明(七)小结(由学生课后完成)将双曲线的几何性质按两种标准方程形式列表小结.五、布置作业1.已知双曲线方程如下,求它们的两个焦点、离心率e和渐近线方程.(1)16x2-9y2=144;(2)16x2-9y2=-144.2.求双曲线的标准方程:(1)实轴的长是10,虚轴长是8,焦点在x轴上;(2)焦距是10,虚轴长是8,焦点在y轴上;曲线的方程.点到两准线及右焦点的距离.作业答案:距离为7六、板书设计第 5 课时抛物线及其标准方程一、教学目标(一)知识教育点使学生掌握抛物线的定义、抛物线的标准方程及其推导过程.(二)能力训练点要求学生进一步熟练掌握解析几何的基本思想方法,提高分析、对比、概括、转化等方面的能力.(三)学科渗透点通过一个简单实验引入抛物线的定义,可以对学生进行理论来源于实践的辩证唯物主义思想教育.二、教材分析1.重点:抛物线的定义和标准方程.(解决办法:通过一个简单实验与椭圆、双曲线的定义相比较引入抛物线的定义;通过一些例题加深对标准方程的认识.)2.难点:抛物线的标准方程的推导.(解决办法:由三种建立坐标系的方法中选出一种最佳方法,避免了硬性规定坐标系.) 3.疑点:抛物线的定义中需要加上“定点F不在定直线l上”的限制.(解决办法:向学生加以说明.)三、活动设计提问、回顾、实验、讲解、演板、归纳表格.四、教学过程(一)导出课题我们已学习了圆、椭圆、双曲线三种圆锥曲线.今天我们将学习第四种圆锥曲线——抛物线,以及它的定义和标准方程.课题是“抛物线及其标准方程”.请大家思考两个问题:问题1:同学们对抛物线已有了哪些认识?在物理中,抛物线被认为是抛射物体的运行轨道;在数学中,抛物线是二次函数的图象?问题2:在二次函数中研究的抛物线有什么特征?在二次函数中研究的抛物线,它的对称轴是平行于y轴、开口向上或开口向下两种情形.引导学生进一步思考:如果抛物线的对称轴不平行于y轴,那么就不能作为二次函数的图象来研究了.今天,我们突破函数研究中这个限制,从更一般意义上来研究抛物线.(二)抛物线的定义1.回顾平面内与一个定点F的距离和一条定直线l的距离的比是常数e的轨迹,当0<e<1时是椭圆,当e>1时是双曲线,那么当e=1时,它又是什么曲线?2.简单实验如图2-29,把一根直尺固定在画图板内直线l的位置上,一块三角板的一条直角边紧靠直尺的边缘;把一条绳子的一端固定于三角板另一条直角边上的点A,截取绳子的长等于A 到直线l的距离AC,并且把绳子另一端固定在图板上的一点F;用一支铅笔扣着绳子,紧靠着三角板的这条直角边把绳子绷紧,然后使三角板紧靠着直尺左右滑动,这样铅笔就描出一条曲线,这条曲线叫做抛物线.反复演示后,请同学们来归纳抛物线的定义,教师总结.3.定义这样,可以把抛物线的定义概括成:平面内与一定点F和一条定直线l的距离相等的点的轨迹叫做抛物线(定点F不在定直线l 上).定点F叫做抛物线的焦点,定直线l叫做抛物线的准线.(三)抛物线的标准方程设定点F到定直线l的距离为p(p为已知数且大于0).下面,我们来求抛物线的方程.怎样选择直角坐标系,才能使所得的方程取较简单的形式呢?。
高中数学第二章圆锥曲线与方程2
14/85
2.焦点在 x 轴上,顶点到焦点的距离为 4 的抛物线
的标准方程是( )
A.y2=16x
B.y2=8x
C.y2=±8x
D.y2=±16x
15/85
[解析] 由已知p2=4,∴p=8,而抛物线开口是向左 还是向右无法确定,∴抛物线方程为 y2=±16x.故选 D.
6/85
④离心率 抛物线上的点 M 到焦点的距离和它到准线的距离之 比,叫做抛物线的________,用 e 表示,由定义可知,e =1.
7/85
(2)注意三个结论 ①抛物线只有一个焦点,一个顶点,一条对称轴, 一条准线,没有中心. ②抛物线 y2=2px(p>0)上任意一点 P(x0,y0)的焦半 径为 x0+p2. ③过抛物线的焦点且垂直于抛物线对称轴的一条 弦,称为抛物线的通径,通径长为 2p.
准线 ________ ________ ________ ________
性 范围 ________ ________ ________ ________
质 轴
____ ____ x轴
____
____
y轴
顶点
O(0,0)
离心率
e=1
10/85
[答案] 1.抛物线的轴 顶点 离心率 2.Fp2,0 F-p2,0 F0,p2 F0,-p2 x= -p2 x=p2 y=-p2 y=p2 x≥0,y∈R x≤0,y∈R x∈R,y≥0 x∈R,y≤0
所以中点为 P(3,2).
39/85
方法二:设直线 y=x-1 与抛物线 y2=4x 交于点 A(x1,y1),B(x2,y2),其中点为 P(x0,y0).则 y22=4x2, y12=4x1,y22-y21=4x2-4x1,∴y2-xy21-yx21+y1=4.因为 xy22--xy11=kAB=1,y2+y1=4,y0=2,x0=y0+1=3,故中 点为 P(3,2).
高中数学 第二章 圆锥曲线与方程 2.5 圆锥曲线求弦长教案 新人教B版1新人教B版数学教案
圆锥曲线的弦长课题圆锥曲线的弦长课时第一课时课型新授教学重点求弦长依据:2018年高考大纲分析教学难点正确计算圆锥曲线的弦长依据:学生的计算能力较差积累、归纳总结规律不够。
自主学习目标1、在求圆锥曲线弦长的过程中,培养学生严谨的解题态度2、学生牢记弦长公式3、归纳总结求弦长的解题步骤教具多媒体课件、教材,教辅教学环节教学内容教师行为学生行为设计意图时间1.课前3分钟一、小考1、两点间距离公式2、韦达定理3、已知两点求斜率公式二、解读学习目标检查,评价总结小考结果。
1.默写公式2.牢记公式明确本节课学习目标,准备学习。
3分钟2.承接结果直观体验直线与圆锥曲线的位置关系。
1、学生自己展示预习习题完成情况。
验收学生自主学习的结果,并解决学生自主学习中遇到的困惑。
13分钟思考1 上面三个图象中直线l 与椭圆、抛物线、双曲线的图象的位置关系是什么?思考2 直线与抛物线、双曲线只有一个公共点时,是否一定相切? 弦长公式若直线l :y =kx +b 与圆锥曲线交于两点A (x 1,y 1),B (x 2,y 2),则弦长2121x x k AB -+==2122124)(1x x x x k -++学生从动手实践,再到观察课件,懂得不同条件的轨迹2、 小组互相提问。
其余学生互相补充并学生对所展示习题进行评价。
3、 质疑、解答。
3. 做、议讲、评例1 已知直线l :y =2x +m ,椭圆C :x 24+y 22=1.试问当m 取何值时,直线l 与椭圆C :(1)有两个不重合的公共点;(2)有且只有一个公共点;(3)没有公共点?1、 展示课件2、 巡视学生完成情况,让学生更准确的认识命题 3、 抽查记忆情况。
1、 学生先独立完成例题,然后以小组为单位统一答案。
2、 小组讨论并展示自己组所写的过程通过具体说写,记住方程。
3分钟目标检测:1.若直线y =kx +1与椭圆x 25+y 2m=1总有公共点,则m 的取值范围是( )A .m >1B .m ≥1或0<m <1C .0<m <5且m ≠1D .m ≥1且m ≠52.抛物线y =4x 2上一点到直线y =4x -5的距离最短,则该点坐标为( ) A .(1,2)B .(0,0) C.⎝ ⎛⎭⎪⎫12,1 D .(1,4)3.过椭圆x 25+y 24=1的右焦点作一条斜率为2的直线与椭圆交于A ,B 两点,O 为坐标原点,则△OAB 的面积为________.4.过点A (6,1)作直线l 与双曲线x 216-y 24=1相交于两点B 、C ,且A 为线段BC 的中点,则直线l 的方程为________________.5.已知点P (x ,y )到定点F (c ,0)的距离与它到直线l :x =a 2c 的距离之比为常数ca(c >a >0),求点P的轨迹.。
高中数学 第2章 圆锥曲线与方程 章末小结(含解析)1数学教案
第2章圆锥曲线与方程1.圆锥曲线的标准方程求椭圆、双曲线、抛物线的标准方程包括“定位”和“定量”两方面,一般要先确定焦点的位置,再确定参数,当焦点位置不确定时,要分情况讨论,也可将方程设为一般形式:①椭圆方程为Ax2+By2=1(A>0,B>0,A≠B);②双曲线方程为Ax2+By2=1(AB<0);③抛物线方程为x2=2py(p≠0)或y2=2px(p≠0).2.椭圆、双曲线的离心率求椭圆、双曲线的离心率常用以下两种方法:(1)定义法:由椭圆(双曲线)的标准方程可知,不论椭圆(双曲线)的焦点在x轴上还是y轴上都有关系式a2-b2=c2(a2+b2=c2)以及e=ca,已知其中的任意两个参数,可以求其他的参数,这是基本且常用的方法.(2)方程法:建立参数a与c之间的齐次关系式,从而求出其离心率,这是求离心率的十分重要的思路及方法.3.直线与圆锥曲线的位置关系(1)从几何的角度看,直线和圆锥曲线的位置关系可分为三类:无公共点、仅有一个公共点及有两个相异的公共点.其中,直线与圆锥曲线仅有一个公共点,对于椭圆,表示直线与其相切;对于双曲线,表示与其相切或直线与双曲线的渐近线平行;对于抛物线,表示与其相切或直线与其对称轴平行或重合.(2)从代数的角度看,可通过将表示直线的方程与曲线的方程组成方程组,消元后利用所得形如一元二次方程根的情况来判断.4.求曲线的方程求曲线方程的常用方法有:(1)直接法:建立适当的坐标系,设动点为(x,y),根据几何条件直接寻求x,y之间的关系式.(2)代入法:利用所求曲线上的动点与某一已知曲线上的动点的关系,把所求动点转换为已知动点.具体地说,就是用所求动点的坐标x,y来表示已知动点的坐标并代入已知动点满足的曲线的方程,由此即可求得所求动点坐标x,y之间的关系式.(3)定义法:如果所给几何条件正好符合圆、椭圆、双曲线、抛物线等曲线的定义,则可直接利用这些已知曲线的方程写出动点的轨迹方程.(4)参数法:选择一个(或几个)与动点变化密切相关的量作为参数,用参数表示动点的坐标(x,y),即得动点轨迹的参数方程,消去参数,可得动点轨迹的普通方程.曲线方程的求法[例1] 过原点作圆的弦OA,求OA中点B的轨迹方程.[解] 法一(直接法):设B点坐标为(x,y),由题意,得|OB|2+|BC|2=|OC|2,如图所示,即x 2+y 2+[(x -1)2+y 2]=1, 即OA 中点B 的轨迹方程为⎝⎛⎭⎪⎫x -122+y 2=14(去掉原点).法二(几何法):设B 点坐标为(x ,y ), 由题意知CB ⊥OA ,OC 的中点记为M ⎝ ⎛⎭⎪⎫12,0, 如法一中图,则|MB |=12|OC |=12,故B 点的轨迹方程为⎝⎛⎭⎪⎫x -122+y 2=14(去掉原点).法三(代入法):设A 点坐标为(x 1,y 1),B 点坐标为(x ,y ),由题意得⎩⎪⎨⎪⎧x =x 12,y =y12,即⎩⎪⎨⎪⎧x 1=2x ,y 1=2y .又因为(x 1-1)2+y 21=1,所以(2x -1)2+(2y )2=1.即⎝⎛⎭⎪⎫x -122+y 2=14(去掉原点).法四(交点法):设直线OA 的方程为y =kx ,当k =0时,B 为(1,0);当k ≠0时,直线BC 的方程为: y =-1k(x -1),直线OA ,BC 的方程联立消去k 即得其交点轨迹方程:y 2+x (x -1)=0,即⎝⎛⎭⎪⎫x -122+y 2=14(x ≠0,1),显然B (1,0)满足⎝⎛⎭⎪⎫x -122+y 2=14,故⎝⎛⎭⎪⎫x -122+y 2=14(去掉原点)为所求.(1)解决轨迹问题要明确圆锥曲线的性质,做好对图形变化情况的总体分析,选好相应的解题策略和拟定好具体的方法,注意将动点的几何特性用数学语言表述.(2)要注意一些轨迹问题所包含的隐含条件,也就是曲线上点的坐标的取值范围.1.求与圆x 2+y 2=1外切,且和x 轴相切的动圆圆心M 的轨迹方程.解:设两圆的切点为A ,M 的坐标为(x ,y ),圆M 与x 轴相切于点N ,∴|AM |=|MN |, |MO |-1=|MN |=|y |. ∴x 2+y 2-1=|y |. 化简得:x 2=2|y |+1.∴动圆圆心M 的轨迹方程为x 2=2|y |+1.2.已知定点A (4,0)和圆x 2+y 2=4上的动点B ,点P 分AB 之比为AP ∶PB =2∶1,求点P 的轨迹方程.解:设点P 的坐标为(x ,y ),点B 的坐标为(x 0,y 0),由题意得AP ―→=2PB―→,即(x -4,y )=2(x 0-x ,y 0-y ),∴⎩⎪⎨⎪⎧x -4=2x 0-2x ,y =2y 0-2y ,即⎩⎪⎨⎪⎧x 0=3x -42,y 0=3y 2,代入圆的方程x 2+y 2=4,得⎝ ⎛⎭⎪⎫3x -422+9y 24=4, 即⎝⎛⎭⎪⎫x -432+y 2=169.∴所求轨迹方程为⎝⎛⎭⎪⎫x -432+y 2=169.圆锥曲线的定义及性质问题[例2] F 1,F 2为左、右焦点,P 为双曲线上一点,且∠F 1PF 2=60°,S △PF 1F 2=123,求双曲线的标准方程.[解] 如图所示,设双曲线方程为x 2a 2-y 2b2=1(a>0,b >0).∵e =ca=2,∴c =2a .由双曲线的定义,得||PF1|-|PF2||=2a=c,在△PF1F2中,由余弦定理,得:|F1F2|2=|PF1|2+|PF2|2-2|PF1||PF2|cos 60°=(|PF1|-|PF2|)2+2|PF1||PF2|(1-cos 60°),即4c2=c2+|PF1||PF2|.①又S△PF1F2=123,∴12|PF1||PF2|sin 60°=123,即|PF1||PF2|=48.②由①②,得c2=16,c=4,则a=2,b2=c2-a2=12,∴所求的双曲线方程为x24-y212=1.(1)圆锥曲线的定义是标准方程和几何性质的根源,对于圆锥曲线的有关问题,要有运用圆锥曲线定义解题的意识,“回归定义”是一种重要的解题策略.(2)应用圆锥曲线的性质时,要注意与数形结合思想、方程思想结合起来.3.(2017·全国卷Ⅲ)已知双曲线C:x2a2-y2b2=1(a>0,b>0)的一条渐近线方程为y=52x,且与椭圆x212+y23=1有公共焦点,则C的方程为( )A.x 28-y 210=1 B.x 24-y 25=1C.x 25-y 24=1 D.x 24-y 23=1解析:根据双曲线C 的渐近线方程为y =52x ,可知b a =52.①又椭圆x 212+y 23=1的焦点坐标为(3,0)和(-3,0),所以a 2+b 2=9.②根据①②可知a 2=4,b 2=5, 所以C 的方程为x 24-y 25=1.答案:B4.抛物线y 2=2px (p >0)上有A (x 1,y 1),B (x 2,y 2),C (x 3,y 3)三点,F 是它的焦点,若|AF |,|BF |,|CF |成等差数列,则( )A .x 1,x 2,x 3成等差数列B .y 1,y 2,y 3成等差数列C .x 1,x 3,x 2成等差数列D .y 1,y 3,y 2成等差数列 解析:由抛物线定义:|AF |=|AA ′|,|BF |=|BB ′|,|CF |=|CC ′|.∵2|BF |=|AF |+|CF |, ∴2|BB ′|=|AA ′|+|CC ′|.又∵|AA ′|=x 1+p 2,|BB ′|=x 2+p 2,|CC ′|=x 3+p2,∴2⎝⎛⎭⎪⎫x 2+p 2=x 1+p 2+x 3+p2⇒2x 2=x 1+x 3.答案:A直线与圆锥曲线的位置关系[例3] x 轴上,若右焦点到直线x -y +22=0的距离为3.(1)求椭圆的方程;(2)设椭圆与直线y =kx +m (k ≠0)相交于不同的两点M ,N ,当|AM |=|AN |时,求m 的取值范围.[解] (1)依题意可设椭圆方程为x 2a2+y 2=1(a >1),则右焦点F (a 2-1,0),由题设,知|a 2-1+22|2=3,解得a 2=3,故所求椭圆的方程为x 23+y 2=1.(2)设点P 为弦MN 的中点,由⎩⎪⎨⎪⎧y =kx +m ,x 23+y 2=1,得(3k 2+1)x 2+6mkx +3(m 2-1)=0,由于直线与椭圆有两个交点, 所以Δ>0,即m 2<3k 2+1, ① 所以x P =x M +x N2=-3mk 3k 2+1,从而y P =kx P +m =m3k 2+1,所以k AP =y P +1x P =-m +3k 2+13mk,又|AM |=|AN |,所以AP ⊥MN ,则-m +3k 2+13mk =-1k,即2m =3k 2+1, ②把②代入①得2m >m 2, 解得0<m <2,由②得k 2=2m -13>0,解得m >12,故所求m的取值范围是⎝ ⎛⎭⎪⎫12,2.讨论直线与圆锥曲线的位置关系,一般是将直线方程与圆锥曲线方程联立,组成方程组,消去一个未知数,转化为关于x (或y )的一元二次方程,由根与系数的关系求出x 1+x 2,x 1x 2(或y 1+y 2,y 1y 2)进而解决了与“距离”“中点”等有关的问题.5.设抛物线y 2=4x 截直线y =2x +k 所得弦长|AB |=3 5. (1)求k 的值;(2)以弦AB 为底边,x 轴上的P 点为顶点组成的三角形面积为39时,求点P 的坐标.解:(1)设A (x 1,y 1),B (x 2,y 2).由⎩⎪⎨⎪⎧y =2x +k ,y 2=4x ,得4x 2+4(k -1)x +k 2=0,Δ=16(k -1)2-16k 2>0,∴k <12.又由根与系数的关系有x 1+x 2=1-k ,x 1x 2=k 24,∴|AB |=x 1-x 22+y 1-y 22=1+22·x 1+x 22-4x 1x 2=5·1-2k , 即51-2k =35,∴k =-4.(2)设x 轴上点P (x,0),P 到AB 的距离为d , 则d =|2x -0-4|5=|2x -4|5,S △PAB =12·35·|2x -4|5=39,∴|2x -4|=26,∴x =15或x =-11. ∴P 点坐标为(15,0)或(-11,0).圆锥曲线中的定点、定值、最值问题[例4] (2017·全国卷Ⅲ)已知椭圆C :2a 2+2b2=1(a >b >0),四点P 1(1,1),P 2(0,1),P 3⎝ ⎛⎭⎪⎪⎫-1,32,P 4⎝ ⎛⎭⎪⎪⎫1,32中恰有三点在椭圆C 上.(1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为-1,证明:l 过定点.[解析] (1)由于P 3,P 4两点关于y 轴对称, 故由题设知椭圆C 经过P 3,P 4两点.又由1a 2+1b 2>1a 2+34b 2知,椭圆C 不经过点P 1,所以点P 2在椭圆C 上.因此⎩⎪⎨⎪⎧1b 2=1,1a 2+34b 2=1,解得⎩⎪⎨⎪⎧a 2=4,b 2=1.故椭圆C 的方程为x 24+y 2=1.(2)证明:设直线P 2A 与直线P 2B 的斜率分别为k 1,k 2.如果l 与x 轴垂直,设l :x =t ,由题设知t ≠0,且|t |<2,可得A ,B的坐标分别为⎝⎛⎭⎪⎪⎫t ,4-t 22,⎝ ⎛⎭⎪⎪⎫t ,-4-t 22. 则k 1+k 2=4-t 2-22t -4-t 2+22t =-1,得t =2,不符合题设.从而可设l :y =kx +m (m ≠1). 将y =kx +m 代入x 24+y 2=1得(4k 2+1)x 2+8kmx +4m 2-4=0. 由题设可知Δ=16(4k 2-m 2+1)>0. 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-8km 4k 2+1,x 1x 2=4m 2-44k 2+1.而k 1+k 2=y 1-1x 1+y 2-1x 2=kx 1+m -1x 1+kx 2+m -1x 2=2kx 1x 2+m -1x 1+x 2x 1x 2.由题设k 1+k 2=-1,故(2k +1)x 1x 2+(m -1)(x 1+x 2)=0. 即(2k +1)·4m 2-44k 2+1+(m -1)·-8km4k 2+1=0.解得k =-m +12.当且仅当m >-1时,Δ>0,于是l :y =-m +12x +m ,即y +1=-m +12(x -2),所以l 过定点(2,-1).(1)圆锥曲线中的定点、定值问题往往与圆锥曲线中的“常数”有关,如椭圆的长轴、短轴,双曲线的虚轴、实轴,抛物线的焦点等,可以通过直接计算求解,也可用“特例法”和“相关系数法”.(2)圆锥曲线中的最值问题,通常有两类:一类是有关长度、面积等的最值问题;一类是圆锥曲线中有关几何元素的最值问题,这两类问题的解决往往要通过回归定义,结合几何知识,建立目标函数,利用函数的性质或不等式知识,以及数形结合、设参、转化代换等途径来解决.6.设椭圆x 29+y 24=1上的动点P (x ,y ),点A (a,0)(0<a <3).若|AP |的最小值为1,求a 的值.解:|AP |2=(x -a )2+y 2=(x -a )2+4⎝⎛⎭⎪⎫1-x 29=59⎝ ⎛⎭⎪⎫x -9a 52-4a 25+4.因为x 29=1-y 24,所以x 29≤1,0≤|x |≤3. (1)当0<9a 5≤3,即0<a ≤53时,x =9a 5,|AP |2取最小值4-4a 25=1.解得a =152.因为152>53,所以a 不存在.(2)当9a 5>3,即53<a <3时,x =3,|AP |2取最小值59⎝ ⎛⎭⎪⎫3-9a 52+4-4a25=1.解得a =2或a =4(舍).所以,当a =2时,|AP |的最小值为1.7.过抛物线y 2=2px (p >0)的焦点F 的直线交抛物线于A ,B 两点,点C 在抛物线的准线上,且BC ∥x 轴,证明:直线AC 经过原点O .证明:如图所示.∵抛物线y 2=2px (p >0)的焦点为F ⎝ ⎛⎭⎪⎫p 2,0, ∴经过点F 的直线AB 的方程可设为x =my +p2,代入抛物线方程得y 2-2pmy -p 2=0,设A (x 1,y 1),B (x 2,y 2),则y 1,y 2是该方程的两个根, ∴y 1y 2=-p 2,∵BC ∥x 轴,且点C 在准线x =-p2上,∴点C的坐标为⎝ ⎛⎭⎪⎫-p 2,y 2,故直线CO 的斜率k =y 2-p 2=-2y 2p =y 1x 1,即k 也是直线OA 的斜率, ∴直线AC 经过原点O .(时间120分钟,满分150分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2017·浙江高考)椭圆x 29+y 24=1的离心率是( )A.133B.53C.23D.59解析:根据题意知,a =3,b =2,则c =a 2-b 2=5,∴椭圆的离心率e =c a =53.答案:B2.如果方程x 2+ky 2=2表示焦点在y 轴上的椭圆,那么实数k 的取值范围是( )A .(1,+∞)B .(1,2) C.⎝ ⎛⎭⎪⎫12,1 D .(0,1)解析:由x 2+ky 2=2,得x 22+y 22k=1,又∵椭圆的焦点在y 轴上, ∴2k>2,即0<k <1.答案:D3.若抛物线x 2=2ay 的焦点与椭圆x 23+y 24=1的下焦点重合,则a 的值为( )A .-2B .2C .-4D .4解析:椭圆x 23+y 24=1的下焦点为(0,-1),∴a2=-1,即a =-2. 答案:A4.θ是任意实数,则方程x 2+y 2sin θ=4的曲线不可能是( )A .椭圆B .双曲线C .抛物线D .圆解析:由于θ∈R ,对sin θ的值举例代入判断.sin θ可以等于1,这时曲线表示圆,sin θ可以小于0,这时曲线表示双曲线,sin θ可以大于0且小于1,这时曲线表示椭圆.答案:C5.已知椭圆E 的中心在坐标原点,离心率为12,E 的右焦点与抛物线C :y 2=8x 的焦点重合,A ,B 是C 的准线与E 的两个交点,则|AB |=( )A .3B .6C .9D .12解析:抛物线y 2=8x 的焦点为(2,0), ∴椭圆中c =2,又c a =12,∴a =4,b 2=a 2-c 2=12, 从而椭圆的方程为x 216+y 212=1.∵抛物线y 2=8x 的准线为x =-2, ∴x A =x B =-2,将x A =-2代入椭圆方程可得|y A |=3, 由图象可知|AB |=2|y A |=6.故选B. 答案:B6.设已知抛物线C 的顶点在坐标原点,焦点为F (1,0),过F 的直线l 与抛物线C 相交于A ,B 两点,若直线l 的倾斜角为45°,则弦AB 的中点坐标为( )A .(1,0)B .(2,2)C .(3,2)D .(2,4)解析:依题意得,抛物线C 的方程是y 2=4x ,直线l 的方程是y =x -1.由⎩⎪⎨⎪⎧y 2=4x ,y =x -1,消去y 得(x -1)2=4x ,即x 2-6x +1=0.因此线段AB 的中点的横坐标是62=3,纵坐标是y =3-1=2.所以线段AB 的中点坐标是(3,2).答案:C7.过双曲线x 2a 2-y 2b2=1(a >0,b >0)的左焦点F (-c,0)(c >0)作圆x 2+y 2=a 24的切线,切点为E ,延长FE 交双曲线右支于点P ,若OE―→=12(OF ―→+OP ―→),则双曲线的离心率为( ) A.102B.105C.10D.2解析:设双曲线右焦点为M ,∵OE ⊥PF ,∴在直角三角形OEF 中,|EF |=c 2-a 24.又OE ―→=12(OF ―→+OP ―→),∴E 是PF 的中点.∴|PF |=2c 2-a 24,|PM |=a .又|PF |-|PM |=2a ,∴2c 2-a 24-a =2a .∴离心率e =c a =102.答案:A8.已知|AB ―→|=3,A ,B 分别在y 轴和x 轴上运动,O 为原点,OP ―→=13OA ―→+23OB ―→,则动点P 的轨迹方程是( )A.x 24+y 2=1 B .x 2+y 24=1C.x 29+y 2=1 D .x 2+y 29=1解析:设P (x ,y ),A (0,y 0),B (x 0,0), 由已知得(x ,y )=13(0,y 0)+23(x 0,0),即x =23x 0,y =13y 0,所以x 0=32x ,y 0=3y .因为|AB ―→|=3,所以x 20+y 20=9,即⎝ ⎛⎭⎪⎫32x 2+(3y )2=9, 化简整理得动点P 的轨迹方程是x 24+y 2=1.答案:A9.已知双曲线x 29-y 216=1的左、右焦点分别是F 1,F 2,P 是双曲线上的一点,若|PF 1|=7,则△PF 1F 2最大内角的余弦值为( )A .-17B.17C.59117D.1113解析:由双曲线定义知|PF 2|=|PF 1|±2a . 所以|PF 2|=13或|PF 2|=1<c -a =2(舍去)又|F 1F 2|=10,所以△PF 1F 2的最大内角为∠PF 1F 2, cos ∠PF 1F 2=102+72-1322×10×7=-17.答案:A10.设双曲线C :x 2a2-y 2=1(a >0)与直线l :x +y =1相交于两个不同的点,则双曲线C 的离心率e 的取值范围为( )A.⎝⎛⎭⎪⎪⎫62,2 B .(2,+∞)C.⎝ ⎛⎭⎪⎪⎫62,+∞ D.⎝⎛⎭⎪⎪⎫62,2∪(2,+∞) 解析:由⎩⎪⎨⎪⎧x 2a 2-y 2=1,x +y =1消去y 并整理得(1-a 2)x 2+2a 2x -2a 2=0.由于直线与双曲线相交于两个不同的点,则1-a 2≠0⇒a 2≠1,且此时Δ=4a 2(2-a 2)>0⇒a 2<2,所以a 2∈(0,1)∪(1,2).另一方面e =1a 2+1,则a 2=1e 2-1,从而e ∈⎝⎛⎭⎪⎪⎫62,2∪(2,+∞).答案:D11.以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C 的准线于D ,E 两点.已知|AB |=42,|DE |=25,则C 的焦点到准线的距离为( )A .2B .4C .6D .8解析:设抛物线的方程为y 2=2px (p >0),圆的方程为x 2+y 2=r 2.∵|AB |=42,|DE |=25, 抛物线的准线方程为x =-p2,∴不妨设A ⎝ ⎛⎭⎪⎫4p,22,D ⎝ ⎛⎭⎪⎫-p 2,5. ∵点A ⎝ ⎛⎭⎪⎫4p ,22,D ⎝ ⎛⎭⎪⎫-p 2,5在圆x 2+y 2=r 2上,∴⎩⎪⎨⎪⎧16p 2+8=r 2,p 24+5=r 2,∴16p 2+8=p24+5,∴p =4(负值舍去).∴C 的焦点到准线的距离为4. 答案:B12.已知O 为坐标原点,F 是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左焦点,A ,B 分别为C 的左、右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( )A.13 B.12 C.23D.34解析:如图所示,由题意得A (-a,0),B (a,0),F (-c,0). 设E (0,m ),由PF ∥OE ,得|MF ||OE |=|AF ||AO |,则|MF |=m a -ca.①又由OE ∥MF ,得12|OE ||MF |=|BO ||BF |,则|MF |=m a +c2a.②由①②得a -c =12(a +c ),即a =3c ,∴e =c a =13.答案:A二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13.已知F 1,F 2为椭圆x 225+y 29=1的两个焦点,过F 1的直线交椭圆于A ,B 两点,若|F 2A |=|AB |=6,则|F 2B |=________.解析:由椭圆定义知|F 1A |+|F 2A |=|F 1B |+|F 2B |=2a =10,所以|F 1A |=10-|F 2A |=4,|F 1B |=|AB |-|F 1A |=2,故|F 2B |=10-|F 1B |=8.答案:814.已知点P 是抛物线y 2=2x 上的动点,点P 在y 轴上的射影是M ,点A的坐标是⎝ ⎛⎭⎪⎫72,4,则|PA |+|PM |的最小值是________.解析:设抛物线焦点为F ,则|PM |=|PF |-12,∴|PA |+|PM |=|PA |+|PF |-12.∴当且仅当A ,P ,F 共线时|PA |+|PF |取最小值为|AF |=5,∴|PA |+|PM |最小值为92.答案:9215.设F 1,F 2分别是椭圆x 225+y 216=1的左、右焦点,P 为椭圆上任一点,点M 的坐标为(6,4),则|PM |+|PF 1|的最大值为________.解析:由椭圆的定义知|PF 1|+|PF 2|=10,|PF 1|=10-|PF 2|,|PM |+|PF 1|=10+|PM |-|PF 2|,易知M 点在椭圆外,连接MF 2并延长交椭圆于点P ,此时|PM |-|PF 2|取最大值|MF 2|,故|PM |+|PF 1|的最大值为10+|MF 2|=10+6-32+42=15.答案:1516.已知动点P 与双曲线x 2-y 2=1的两个焦点F 1,F 2的距离之和为定值,且cos ∠F 1PF 2的最小值为-13,则动点P 的轨迹方程为____________.解析:∵x 2-y 2=1,∴c = 2.设|PF 1|+|PF 2|=2a (常数a >0),2a >2c =22, ∴a > 2. 由余弦定理有cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1||PF 2|=|PF 1|+|PF 2|2-2|PF 1||PF 2|-|F 1F 2|22|PF 1||PF 2|=2a 2-4|PF 1||PF 2|-1, ∵|PF 1||PF 2|≤⎝⎛⎭⎪⎫|PF 1|+|PF 2|22=a 2, ∴当且仅当|PF 1|=|PF 2|时, |PF 1||PF 2|取得最大值a 2.此时cos ∠F 1PF 2取得最小值2a 2-4a2-1.由题意2a 2-4a 2-1=-13,解得a 2=3,∴b 2=a 2-c 2=3-2=1.∴P 点的轨迹方程为x 23+y 2=1.答案:x 23+y 2=1三、解答题(本大题共6小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)设F (1,0),M 点在x 轴上,P 点在y轴上,且MN ―→=2MP ―→,PM ―→⊥PF ―→,当点P 在y 轴上运动时,求N 点的轨迹C 的方程.解:∵MN ―→=2MP ―→,故P 为MN 中点.又∵PM ―→⊥PF ―→,P 在y 轴上,F 为(1,0), 故M 在x 轴的负方向上.设N (x ,y ),则M (-x,0),P ⎝ ⎛⎭⎪⎫0,y 2,(x >0).∴PM ―→=⎝ ⎛⎭⎪⎫-x ,-y 2,PF ―→=⎝⎛⎭⎪⎫1,-y 2.∵PM ―→⊥PF ―→,∴PM ―→·PF―→=0,即-x +y 24=0.∴y 2=4x (x >0)是轨迹C 的方程.18.(本小题满分12分)已知双曲线C 的两个焦点坐标分别为F 1(-2,0),F 2(2,0),双曲线C 上一点P 到F 1,F 2距离差的绝对值等于2.(1)求双曲线C 的标准方程;(2)经过点M (2,1)作直线l 交双曲线C 的右支于A ,B 两点,且M 为AB 的中点,求直线l 的方程.解:(1)依题意,得双曲线C 的实半轴长为a =1,焦半距为c =2,所以其虚半轴长b =c 2-a 2= 3.又其焦点在x 轴上,所以双曲线C 的标准方程为x 2-y 23=1.(2)设A ,B 的坐标分别为(x 1,y 1),(x 2,y 2),则⎩⎪⎨⎪⎧3x 21-y 21=3,3x 22-y 22=3,两式相减,得3(x 1-x 2)(x 1+x 2)-(y 1-y 2)(y 1+y 2)=0. 因为M (2,1)为AB 的中点,所以⎩⎪⎨⎪⎧x 1+x 2=4,y 1+y 2=2.所以12(x 1-x 2)-2(y 1-y 2)=0,即k AB =y 1-y 2x 1-x 2=6.故AB 所在直线l 的方程为y -1=6(x -2), 即6x -y -11=0.19.(本小题满分12分)在直角坐标系xOy 中,直线l :y =t (t ≠0)交y 轴于点M ,交抛物线C :y 2=2px (p >0)于点P ,M 关于点P 的对称点为N ,连接ON 并延长交C 于点H .(1)求|OH ||ON |;(2)除H 以外,直线MH 与C 是否有其他公共点?说明理由. 解:(1)如图,由已知得M (0,t ),P ⎝ ⎛⎭⎪⎫t 22p ,t . 又N 为M 关于点P 的对称点,故N ⎝ ⎛⎭⎪⎫t 2p ,t , 故直线ON 的方程为y =ptx ,将其代入y 2=2px 整理得px 2-2t 2x =0,解得x 1=0,x 2=2t2p.因此H ⎝⎛⎭⎪⎫2t 2p,2t .所以N 为OH 的中点,即|OH ||ON |=2.(2)直线MH 与C 除H 以外没有其他公共点. 理由如下:直线MH 的方程为y -t =p 2t x ,即x =2tp(y -t ).代入y 2=2px 得y 2-4ty +4t 2=0,解得y 1=y 2=2t , 即直线MH 与C 只有一个公共点,所以除H 以外,直线MH 与C 没有其他公共点.20.(本小题满分12分)设F 1,F 2分别是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,M 是C 上一点且MF 2与x 轴垂直.直线MF 1与C 的另一个交点为N .(1)若直线MN 的斜率为34,求C 的离心率;(2)若直线MN 在y 轴上的截距为2,且|MN |=5|F 1N |,求a ,b .解:(1)根据a 2-b 2=c 2及题设知M ⎝⎛⎭⎪⎫c ,b 2a ,b 2a 2c =34,得2b 2=3ac .将b 2=a 2-c 2代入2b 2=3ac ,解得c a =12,ca=-2(舍去).故C 的离心率为12.(2)设直线MN 与y 轴的交点为D ,由题意,原点O 为F 1F 2的中点,MF 2∥y 轴,所以直线MF 1与y 轴的交点D (0,2)是线段MF 1的中点,故b 2a=4,即b 2=4a .①由|MN |=5|F 1N |得|DF 1|=2|F 1N |. 设N (x 1,y 1),由题意知y 1<0,则⎩⎪⎨⎪⎧2-c -x 1=c ,-2y 1=2,即⎩⎪⎨⎪⎧x 1=-32c ,y 1=-1.代入C 的方程,得9c 24a 2+1b 2=1.②将①及a 2-b 2=c 2代入②得9a 2-4a 4a 2+14a=1. 解得a =7,b 2=4a =28, 故a =7,b =27.21.(本小题满分12分)已知抛物线C :y 2=2px (p >0)过点A (1,-2).(1)求抛物线C 的方程,并求其准线方程;(2)是否存在平行于OA (O 为坐标原点)的直线l ,使得直线l 与抛物线C 有公共点,且直线OA 与l 的距离等于55?若存在,求直线l 的方程;若不存在,说明理由.解:(1)将(1,-2)代入y 2=2px ,得(-2)2=2p ·1, 所以p =2.故所求抛物线C 的方程为y 2=4x , 其准线方程为x =-1.(2)假设存在符合题意的直线l , 设其方程为y =-2x +t ,由⎩⎪⎨⎪⎧y =-2x +t ,y 2=4x ,消去x ,得y 2+2y -2t =0.因为直线l 与抛物线C 有公共点, 所以Δ=4+8t ≥0,解得t ≥-12.由直线OA 与l 的距离d =55可得|t |5=15,解得t =±1.因为-1∉⎣⎢⎡⎭⎪⎫-12,+∞,1∈⎣⎢⎡⎭⎪⎫-12,+∞,所以符合题意的直线l 存在,其方程为2x +y -1=0.22.(2017·全国卷Ⅱ)设O 为坐标原点,动点M 在椭圆C :x 22+y 2=1上,过M 作x 轴的垂线,垂足为N ,点P 满足NP ―→= 2 NM―→.(1)求点P 的轨迹方程;(2)设点Q 在直线x =-3上,且OP ―→·P Q ―→=1.证明:过点P 且垂直于O Q 的直线l 过C 的左焦点F .解:(1)设P (x ,y ),M (x 0,y 0),则N (x 0,0),NP ―→=(x -x 0,y ),NM ―→=(0,y 0).由NP ―→= 2 NM ―→,得x 0=x ,y 0=22y .因为M (x 0,y 0)在椭圆C 上,所以x 22+y 22=1.因此点P 的轨迹方程为x 2+y 2=2.(2)证明:由题意知F (-1,0).设Q(-3,t ),P (m ,n ), 则O Q ―→=(-3,t ),PF ―→=(-1-m ,-n ),O Q ―→·PF―→=3+3m -tn , OP ―→=(m ,n ),P Q ―→=(-3-m ,t -n ). 由OP ―→·P Q ―→=1,得-3m -m 2+tn -n 2=1,又由(1)知m 2+n 2=2,故3+3m -tn =0. 所以O Q ―→·PF ―→=0,即O Q ―→⊥PF ―→. 又过点P 存在唯一直线垂直于O Q ,所以过点P 且垂直于O Q 的直线l 过C 的左焦点F .。
高中数学 第二章 圆锥曲线与方程 2.5 直线与圆锥曲线学案(含解析)新人教B版选修2-1-新人教B
§2.5直线与圆锥曲线学习目标 1.通过类比直线与圆的位置关系,学会判断直线与椭圆、双曲线、抛物线的位置关系.2.会求直线与圆锥曲线相交所得弦的长,以及直线与圆锥曲线的综合问题.知识点一直线与圆锥曲线的位置关系直线与圆锥曲线的位置关系直线与圆锥曲线联立,消元得方程ax2+bx+c=0.方程特征交点个数位置关系直线与椭圆a≠0,Δ>02相交a≠0,Δ=1相切a≠0,Δ<00相离直线与双曲线a=01直线与双曲线的渐近线平行且两者相交a≠0,Δ>02相交a≠0,Δ=1相切a≠0,Δ<00相离直线与抛物线a=01直线与抛物线的对称轴重合或平行且两者相交a≠0,Δ>02相交a≠0,Δ=1相切a≠0,Δ<00相离知识点二 弦长公式若直线l :y =kx +b 与圆锥曲线交于两点A (x 1,y 1),B (x 2,y 2),则弦长|AB |=1+k 2|x 2-x 1|=1+k2[x 1+x 22-4x 1x 2].1.直线与圆锥曲线有且只有一个公共点时,直线与圆锥曲线相切.( × ) 2.直线与圆锥曲线交点的个数就是它们的方程联立方程组的解的个数.( √ )题型一 直线与圆锥曲线的位置关系判定例1 已知直线l :y =2x +m ,椭圆C :x 24+y 22=1.试问当m 取何值时,直线l 与椭圆C :(1)有两个不重合的公共点;(2)有且只有一个公共点;(3)没有公共点? 解 直线l 的方程与椭圆C 的方程联立,得方程组⎩⎪⎨⎪⎧y =2x +m ,①x 24+y22=1,②将①代入②,整理得9x 2+8mx +2m 2-4=0,③ 这个关于x 的一元二次方程的判别式Δ=(8m )2-4×9×(2m 2-4)=-8m 2+144.(1)由Δ>0,得-32<m <3 2.于是,当-32<m <32时,方程③有两个不同的实数根,可知原方程组有两组不同的实数解.这时直线l 与椭圆C 有两个不同的公共点. (2)由Δ=0,得m =±3 2.也就是当m =±32时,方程③有两个相同的实数根,可知原方程组有两组相同的实数解.这时直线l 与椭圆C 有两个互相重合的公共点,即直线l 与椭圆C 有且只有一个公共点. (3)由Δ<0,得m <-32或m >3 2.从而当m <-32或m >32时,方程③没有实数根,可知原方程组没有实数解.这时直线l与椭圆C 没有公共点.反思感悟 在讨论直线与圆锥曲线的位置关系时,要先讨论得到的方程二次项系数为零的情况,再考虑Δ的情况,而且不要忽略直线斜率不存在的情形.跟踪训练1 已知双曲线C :x 2-y 22=1,直线l 的斜率为k 且直线l 过点P (1,1),当k 为何值时,直线l 与双曲线C :(1)有一个公共点;(2)有两个公共点;(3)无公共点? 解 设直线l :y -1=k (x -1),即y =kx +(1-k ).由⎩⎪⎨⎪⎧y =kx +1-k ,x 2-y 22=1,得(k 2-2)x 2-2k (k -1)x +k 2-2k +3=0.(*)当k 2-2=0,即k =±2时,(*)式只有一解,直线l 与双曲线相交,只有一个公共点. 当k 2-2≠0时,Δ=24-16k ,若Δ=0,即k =32,方程(*)只有一解,直线与双曲线相切,只有一个公共点;若Δ>0,即k <32且k ≠±2,方程(*)有两解,直线与双曲线相交,有两个公共点;若Δ<0,即k >32,方程(*)无解,直线与双曲线无公共点.综上,(1)当k =±2或k =32时,直线l 与双曲线只有一个公共点;(2)当k <32且k ≠±2时,直线l 与双曲线有两个公共点;(3)当k >32时,直线l 与双曲线无公共点.题型二 中点弦及弦长问题例2 已知点A (-1,0),B (1,0),直线AM ,BM 相交于点M ,且k MA ·k MB =-2. (1)求点M 的轨迹C 的方程;(2)过定点(0,1)作直线PQ 与曲线C 交于P ,Q 两点,且|PQ |=322,求直线PQ 的方程.解 (1)设M (x ,y ),则k MA =y x +1,k MB =yx -1(x ≠±1), ∴yx +1×yx -1=-2,∴x 2+y 22=1(x ≠±1). (2)当直线PQ 的斜率不存在,即PQ 是椭圆的长轴时,其长为22,显然不合题意,即直线PQ 的斜率存在,设直线PQ 的方程是y =kx +1,P (x 1,y 1),Q (x 2,y 2), 则y 1-y 2=k (x 1-x 2),联立⎩⎪⎨⎪⎧x 2+y 22=1,y =kx +1,消去y 得(k 2+2)x 2+2kx -1=0.∵Δ=4k 2+4(k 2+2)=8(k 2+1)>0,∴k ∈R ,x 1+x 2=-2k k 2+2,x 1x 2=-1k 2+2, ∴|PQ |=x 1-x 22+y 1-y 22=1+k 2[x 1+x 22-4x 1x 2]=22·k 2+1k 2+2,∴|PQ |=322=22·k 2+1k 2+2,k 2=2,k =±2,∴直线PQ 的方程是y ±2x -1=0.反思感悟 直线和圆锥曲线相交问题的通法就是利用两个方程联立得到的一元二次方程,利用弦长公式和根与系数的关系解决(要考虑特殊情形);对于中点弦问题可采用点差法,但要验证得到的直线是否适合题意.跟踪训练2 中心在原点、对称轴为坐标轴的椭圆与直线x +y -1=0相交于A ,B ,C 是AB 中点,若|AB |=22,OC 的斜率为22,求椭圆的方程. 解 设椭圆方程为ax 2+by 2=1(a >0,b >0,a ≠b ). 设A (x 1,y 1),B (x 2,y 2),代入椭圆方程并作差得,a (x 1+x 2)(x 1-x 2)+b (y 1+y 2)(y 1-y 2)=0,而y 1-y 2x 1-x 2=-1,y 1+y 2x 1+x 2=k OC =22, 代入上式可得b =2a , 再由|AB |=2|x 2-x 1|=22,其中x 1,x 2是方程(a +b )x 2-2bx +b -1=0的两根, 故⎝⎛⎭⎪⎫2b a +b 2-4·b -1a +b =4,将b =2a 代入得a =13,∴b =23.∴所求椭圆的方程是x 2+2y 2=3. 题型三 圆锥曲线中的最值及范围问题例3 已知△AOB 的一个顶点为抛物线y 2=2x 的顶点O ,A ,B 两点都在抛物线上,且∠AOB =90°.(1)求证:直线AB 必过一定点; (2)求△AOB 面积的最小值.(1)证明 设OA 所在直线的方程为y =kx (易知k ≠0),则直线OB 的方程为y =-1kx .由⎩⎪⎨⎪⎧y =kx ,y 2=2x ,得A ⎝ ⎛⎭⎪⎫2k2,2k ,由⎩⎪⎨⎪⎧y =-1k x ,y 2=2x ,得B (2k 2,-2k ).∴直线AB 所在直线方程为(y +2k )⎝ ⎛⎭⎪⎫2k 2-2k 2=⎝ ⎛⎭⎪⎫2k +2k (x -2k 2),化简得x -⎝ ⎛⎭⎪⎫1k -k y -2=0,∴直线过定点P (2,0).(2)解 由于直线AB 所在直线方程过定点P (2,0), ∴可设直线AB 的方程为x =my +2.由⎩⎪⎨⎪⎧x =my +2,y 2=2x ,得y 2-2my -4=0.∴|y 1-y 2|=2m 2+16=4m 2+16.∴S △AOB =12|y 1|·|OP |+12|y 2|·|OP |=12|OP |·|y 1-y 2|=|y 1-y 2|=4m 2+16≥4.∴△AOB 面积的最小值为4. 反思感悟 (1)求参数范围的方法根据已知条件建立等式或不等式的函数关系,再求参数范围. (2)求最值问题的方法 ①几何法题目中给出的条件有明显的几何特征,则考虑用图象来解决. ②代数法题目中给出的条件和结论几何特征不明显,则可以建立目标函数,再求这个函数的最值,求最值的常见方法是均值不等式法,单调性法等. 跟踪训练3 如图,过抛物线y 2=x 上一点A (4,2)作倾斜角互补的两条直线AB ,AC 交抛物线于B ,C 两点,求证:直线BC 的斜率是定值.证明 设k AB =k (k ≠0), ∵直线AB ,AC 的倾斜角互补,∴k AC =-k (k ≠0),∴AB 的方程是y =k (x -4)+2.由方程组⎩⎪⎨⎪⎧y =k x -4+2,y 2=x ,消去y 后,整理得k 2x 2+(-8k 2+4k -1)x +16k 2-16k +4=0.∵A (4,2),B (x B ,y B )是上述方程组的解. ∴4·x B =16k 2-16k +4k 2,即x B =4k 2-4k +1k2, 设C (x C ,y C ),以-k 代换x B 中的k ,得x C =4k 2+4k +1k2, ∴k BC =y B -y C x B -x C =k x B -4+2-[-k x C -4+2]x B -x C=k x B +x C -8x B -x C=k ⎝ ⎛⎭⎪⎫8k 2+2k 2-8-8kk 2=-14.∴直线BC 的斜率为定值.1.过点P (0,1)与抛物线y 2=x 有且只有一个交点的直线有( ) A .4条B .3条C .2条D .1条考点 直线与抛物线的位置关系 题点 直线与抛物线公共点个数问题 答案 B解析 当直线垂直于x 轴时,满足条件的直线有1条; 当直线不垂直于x 轴时,满足条件的直线有2条,故选B.2.若直线y =kx +1与椭圆x 25+y 2m=1总有公共点,则m 的取值范围是( )A .m >1B .m ≥1或0<m <1C .0<m <5且m ≠1D .m ≥1且m ≠5答案 D解析 ∵直线y =kx +1恒过(0,1)点,若5>m ,则m ≥1, 若5<m ,则必有公共点,∴m ≥1且m ≠5.3.抛物线y =4x 2上一点到直线y =4x -5的距离最短,则该点坐标为( )A .(1,2)B .(0,0) C.⎝ ⎛⎭⎪⎫12,1D .(1,4) 答案 C解析 因为y =4x 2与y =4x -5不相交, 设与y =4x -5平行的直线方程为y =4x +m .由⎩⎪⎨⎪⎧y =4x 2,y =4x +m ,得4x 2-4x -m =0.(*)设此直线与抛物线相切,有Δ=0, 即Δ=16+16m =0,∴m =-1. 将m =-1代入(*)式,得x =12,y =1,所求点的坐标为⎝ ⎛⎭⎪⎫12,1. 4.过椭圆x 25+y 24=1的右焦点作一条斜率为2的直线与椭圆交于A ,B 两点,O 为坐标原点,则△OAB 的面积为________. 答案 53解析 由已知可得直线方程为y =2x -2,联立方程得方程组⎩⎪⎨⎪⎧x 25+y 24=1,y =2x -2,解得A (0,-2),B ⎝ ⎛⎭⎪⎫53,43.∴S △AOB =12|OF ||y A -y B |=53.5.过点A (6,1)作直线l 与双曲线x 216-y 24=1相交于两点B ,C ,且A 为线段BC 的中点,则直线l 的方程为________________. 答案 3x -2y -16=0解析 设B (x 1,y 1),C (x 2,y 2),则⎩⎪⎨⎪⎧x 2116-y 214=1,x 2216-y224=1,∴x 21-x 2216-y 21-y 224=0.∴y 1-y 2x 1-x 2=x 1+x 24y 1+y 2=124×2=32. 即k BC =32,∴直线l 的方程是y -1=32(x -6).即3x -2y -16=0,经验证符合题意.1.解决直线与圆锥曲线的交点问题时,主要方法是构建一元二次方程,判断其解的个数.确定斜率与直线的倾斜角时,应特别注意斜率为0和斜率不存在的两种情形,以及在双曲线和抛物线中,直线和圆锥曲线有一个公共点并不一定相切. 2.与弦中点有关的问题,求解的方法有两种:(1)一般方法:利用根与系数的关系及中点坐标公式来求解;(2)点差法:利用端点在曲线上,坐标满足方程,将端点坐标分别代入曲线方程,然后作差构造出中点坐标和斜率的关系.3.在探求最值时,常结合几何图形的直观性,充分利用平面几何结论,借助于函数的单调性、均值不等式等使问题获解.同时,要注意未知数的取值范围、最值存在的条件.一、选择题1.已知双曲线C :x 2-y 2=1,F 是其右焦点,过F 的直线l 只与双曲线的右支有唯一的交点,则直线l 的斜率等于( ) A .1B .-1C .±1D.±2 答案 C解析 结合题意,F (2,0),且渐近线为y =±x ,欲使直线l 与其右支有唯一交点,只需其斜率与渐近线斜率相等.2.已知双曲线x 2-y 23=1,过P (2,1)点作一直线交双曲线于A ,B 两点,并使P 为AB 的中点,则直线AB 的斜率为( ) A .3B .4C .5D .6 答案 D解析 设A (x 1,y 1),B (x 2,y 2),则由x 21-y 213=1与x 22-y 223=1得k AB =y 1-y 2x 1-x 2=3x 1+x 2y 1+y 2=6.3.对于抛物线C :y 2=4x ,我们称满足y 20<4x 0的点M (x 0,y 0)在抛物线的内部,若点M (x 0,y 0)在抛物线的内部,则直线l :y 0y =2(x +x 0)与拋物线C ( )A .恰有一个公共点B .恰有两个公共点C .可能有一个公共点也可能有两个公共点D .没有公共点 答案 D解析 C 与l 联立得y 0y =2⎝ ⎛⎭⎪⎫y 24+x 0,即y 2-2y 0y +4x 0=0,Δ=4y 20-16x 0, 由题意y 20<4x 0,∴Δ<0,没有公共点.4.已知M (a,2)是抛物线y 2=2x 上的一定点,直线MP ,MQ 的倾斜角之和为π,且分别与抛物线交于P ,Q 两点,则直线PQ 的斜率为( ) A .-14B .-12C.14D.12答案 B解析 由题意得M (2,2).设P ⎝ ⎛⎭⎪⎫y 212,y 1,Q ⎝ ⎛⎭⎪⎫y 222,y 2, 由k MP =-k MQ , 得y 1-2y 212-2=-y 2-2y 222-2, 则y 1+y 2=-4,故k PQ =2y 1+y 2=-12. 5.设双曲线的一个焦点为F ,虚轴的一个端点为B ,如果直线FB 与该双曲线的一条渐近线垂直,那么此双曲线的离心率为( ) A.2B.3C.3+12 D.5+12答案 D解析 设双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0),如图所示,双曲线的一条渐近线方程为y =bax ,而k BF =-bc.∴b a ·⎝ ⎛⎭⎪⎫-b c=-1,整理得b 2=ac .∴c 2-a 2-ac =0.两边同除以a 2,得e 2-e -1=0, 解得e =1+52或e =1-52(舍去),故选D.6.直线y =x -3与抛物线y 2=4x 交于A ,B 两点,过A ,B 两点向抛物线的准线作垂线,垂足分别为P ,Q ,则梯形APQB 的面积为( ) A .48B .56C .64D .72 答案 A解析 由⎩⎪⎨⎪⎧y =x -3,y 2=4x ,得x 2-10x +9=0,解得⎩⎪⎨⎪⎧x =1,y =-2或⎩⎪⎨⎪⎧x =9,y =6.设|AP |=10,|BQ |=2,又|PQ |=8, ∴梯形APQB 的面积为S =12(|AP |+|BQ |)×|PQ |=12(10+2)×8=48.7.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32.双曲线x 2-y 2=1的渐近线与椭圆C 有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆C 的方程为( ) A.x 28+y 22=1B.x 212+y 26=1 C.x 216+y 24=1 D.x 220+y 25=1 答案 D解析 ∵椭圆的离心率为32,∴c a =a 2-b 2a =32,∴a =2b .∴椭圆方程为x 2+4y 2=4b 2.∵双曲线x 2-y 2=1的渐近线方程为x ±y =0,∴渐近线x ±y =0与椭圆x 2+4y 2=4b 2在第一象限的交点为⎝⎛⎭⎪⎫255b ,255b ,∴由圆锥曲线的对称性得四边形在第一象限部分的面积为255b ×255b =4,∴b 2=5,∴a 2=4b 2=20.∴椭圆C 的方程为x 220+y 25=1. 8.已知椭圆x 2a 2+y 2b2=1(a >b >0)被抛物线y 2=4x 的准线截得的弦长为3,以坐标原点为圆心,以椭圆的长半轴长为半径的圆与直线y =x +22相切,则椭圆的离心率为( ) A.12B.22C.23D.24 答案 A解析 由题意得抛物线准线方程为x =-1,且椭圆被抛物线截得的弦长为3, 故椭圆过点⎝ ⎛⎭⎪⎫-1,32,将该点代入椭圆方程,得1a 2+94b2=1,① 又点(0,0)到x -y +22=0的距离为a , 即|0-0+22|12+-12=a ,②由②得a =2,代入①得b = 3. 故c =a 2-b 2=1,所以其离心率e =c a =12.二、填空题9.椭圆x 24+y 2=1的左、右焦点分别为F 1,F 2,点P 为椭圆上一动点,若∠F 1PF 2为钝角,则点P 的横坐标的取值范围是________.答案 ⎝ ⎛⎭⎪⎫-263,263解析 设椭圆上一点P 的坐标为(x ,y ), 则F 1P →=(x +3,y ),F 2P →=(x -3,y ). ∵∠F 1PF 2为钝角,∴F 1P →·F 2P →<0, 即x 2-3+y 2<0,(*)∵y 2=1-x 24,代入(*)式得x 2-3+1-x 24<0,34x 2<2,∴x 2<83. 解得-263<x <263,∴x ∈⎝ ⎛⎭⎪⎫-263,263.10.已知F 是抛物线C :y 2=4x 的焦点,A ,B 是抛物线C 上的两个点,线段AB 的中点为M (2,2),则△ABF 的面积为________. 答案 2解析 设A (x 1,y 1),B (x 2,y 2),则y 21=4x 1,y 22=4x 2. ∴(y 1+y 2)(y 1-y 2)=4(x 1-x 2). ∵x 1≠x 2,∴y 1-y 2x 1-x 2=4y 1+y 2=1. ∴直线AB 的方程为y -2=x -2,即y =x . 将其代入y 2=4x ,得A (0,0),B (4,4). ∴|AB |=4 2.又F (1,0)到y =x 的距离为22, ∴S △ABF =12×22×42=2.11.曲线C 是平面内与两个定点F 1(-1,0)和F 2(1,0)的距离的积等于常数a 2(a >1)的点的轨迹,给出下列三个结论:①曲线C 过坐标原点;②曲线C 关于坐标原点对称;③若点P 在曲线C 上,则△F 1PF 2的面积不大于12a 2.其中所有正确结论的序号是__________. 答案 ②③ 解析设曲线C 上任一点P (x ,y ),由|PF 1|·|PF 2|=a 2,可得x +12+y 2·x -12+y 2=a 2(a >1),将原点(0,0)代入,等式不成立,故①不正确.∵点P (x ,y )在曲线C 上,∴点P 关于原点的对称点为P ′(-x ,-y ),将P ′代入曲线C 的方程,等式成立,故②正确.设∠F 1PF 2=θ,则12F PF S=12|PF 1||PF 2|·sin θ=12a 2sin θ≤12a 2,故③正确.三、解答题12.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,其中左焦点为F (-2,0).(1)求椭圆C 的方程;(2)若直线y =x +m 与椭圆C 交于不同的两点A ,B 且线段AB 的中点M 在圆x 2+y 2=1上,求m 的值.解 (1)由题意,得⎩⎪⎨⎪⎧c a =22,c =2,a 2=b 2+c 2,解得⎩⎨⎧a =22,b =2.∴椭圆C 的方程为x 28+y 24=1.(2)设点A ,B 的坐标分别为(x 1,y 1),(x 2,y 2),线段AB 的中点为M (x 0,y 0),由⎩⎪⎨⎪⎧x 28+y 24=1,y =x +m ,消去y 得,3x 2+4mx +2m 2-8=0,Δ=96-8m 2>0,∴-23<m <23,∵x 0=x 1+x 22=-2m 3,∴y 0=x 0+m =m3,∵点M (x 0,y 0)在圆x 2+y 2=1上, ∴⎝ ⎛⎭⎪⎫-2m 32+⎝ ⎛⎭⎪⎫m 32=1,∴m =±355.13.已知直线l :y =k (x +1)与抛物线y 2=-x 交于A ,B 两点,O 为坐标原点. (1)若△OAB 的面积为10,求k 的值; (2)求证:以弦AB 为直径的圆必过原点.(1)解 设A (x 1,y 1),B (x 2,y 2),原点O 到直线AB 的距离为d ,联立得⎩⎪⎨⎪⎧y =k x +1,y 2=-x ,化简整理得k 2x 2+(2k 2+1)x +k 2=0,由题意知k ≠0, 由根与系数的关系得,x 1+x 2=-2k 2+1k2,x 1x 2=1.由弦长公式,得|AB |=1+k 2|x 1-x 2| =1+k 2·1k4+4k2,由点到直线距离公式得d =|k |1+k2,得S △OAB =12|AB |·d =121k 2+4=10,解得k =±16.(2)证明 ∵k OA =y 1x 1,k OB =y 2x 2,∴k OA ·k OB =y 1y 2x 1x 2. ∵y 21=-x 1,y 22=-x 2,∴x 1x 2=(y 1y 2)2, ∴k OA ·k OB =1y 1y 2,由⎩⎪⎨⎪⎧y =k x +1,y 2=-x ,得ky 2+y -k =0,∴y 1y 2=-1, 即k OA ·k OB =-1,∴OA ⊥OB , ∴以弦AB 为直径的圆必过原点.14.有一动圆P 恒过定点F (a,0)(a >0)且与y 轴相交于点A ,B ,若△ABP 为正三角形,则点P 的轨迹为( )A .直线B .圆C .椭圆D .双曲线 答案 D解析 设P (x ,y ),动圆P 的半径为R ,由于△ABP 为正三角形. ∴P 到y 轴的距离d =32R ,即|x |=32R . 而R =|PF |=x -a 2+y 2, ∴|x |=32·x -a2+y 2.整理得(x +3a )2-3y 2=12a 2,即x +3a212a2-y 24a2=1. ∴点P 的轨迹为双曲线.15.在平面直角坐标系xOy 中,F 1,F 2分别为椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,B 为短轴的一个端点,E 为椭圆C 上的一点,满足OE →=OF 1→+22OB →,且△EF 1F 2的周长为2(2+1).(1)求椭圆C 的方程;(2)设点M 是线段OF 2上的一点,过点F 2且与x 轴不垂直的直线l 交椭圆C 于P ,Q 两点,若△MPQ 是以M 为顶点的等腰三角形,求点M 到直线l 的距离的取值范围. 解 (1)由已知得F 1(-c,0),不妨设B (0,b ), 则OF 1→=(-c,0),OB →=(0,b ), 所以OE →=⎝ ⎛⎭⎪⎫-c ,22b ,即E ⎝ ⎛⎭⎪⎫-c ,22b .又点E 在椭圆C 上,所以c 2a 2+12b 2b2=1,得c a =22.① 又△EF 1F 2的周长为2(2+1), 所以2a +2c =2+22.②由①②,得c =1,a =2,所以b =1. 所以所求椭圆C 的方程为x 22+y 2=1.(2)设点M (m,0)(0<m <1),直线l 的方程为y =k (x -1)(k ≠0).由⎩⎪⎨⎪⎧y =k x -1,x 2+2y 2=2,消去y ,得(1+2k 2)x 2-4k 2x +2k 2-2=0. 设P (x 1,y 1),Q (x 2,y 2),PQ 中点为N (x 0,y 0),则x 1+x 2=4k 21+2k 2,所以y 1+y 2=k (x 1+x 2-2)=-2k1+2k2, 所以x 0=x 1+x 22=2k 21+2k2, y 0=y 1+y 22=-k 1+2k2,即N ⎝ ⎛⎭⎪⎫2k 21+2k 2,-k 1+2k 2. 因为△MPQ 是以M 为顶点的等腰三角形, 所以MN ⊥PQ ,即k 2m 1+2k 2-2k 2=-1. 所以m =k 21+2k2=12+1k 2∈⎝ ⎛⎭⎪⎫0,12. 设点M 到直线l :kx -y -k =0的距离为d ,则d 2=k2m -12k 2+1=k 2k 2+11+2k 22<14k 2+k 2+121+2k22=14, 所以d ∈⎝ ⎛⎭⎪⎫0,12.(或k 2=m 1-2m 且m ∈⎝ ⎛⎭⎪⎫0,12,所以d 2=k 2m -12k 2+1=m (1-m )<14⇒d ∈⎝ ⎛⎭⎪⎫0,12. 即点M 到直线l 的距离的取值范围是⎝ ⎛⎭⎪⎫0,12.。
人教版高中数学《圆锥曲线与方程》单元教材教学分析
2、圆锥曲线的教学
(1)基于圆锥曲线的共同特征较多,以及椭圆作为新的轨迹衔接了圆和后续的双曲线,因此,教学中可以加重对椭圆的教学;
(2)注重让学生更好地掌握圆锥曲线的定义和性质特征的教学设计与方法;
(3)在例题、习题选配上,建议
①突出基础与规范。
②突出数形结合。
③突出圆锥曲线的应用
单元目标
了解圆锥曲线与二次方程的关系,掌握圆锥曲线的基本几何性质,感受圆锥曲线在刻画现实世界和解决实际问题中的作用。结合已学过的曲线及其方程的实例,
重点、难点与关键
圆锥曲线与方法和手段的设计
1、曲线与方程的教学——
(1)曲线是方程的曲线、方程是曲线的方程的概念
(2)求轨迹的一般方法
④适当的方程思想、函数思想、转化思想与方法的训练
3、直线与圆锥曲线的教学
(1)教材要求掌握判断直线与圆锥曲线的位置关系、弦长问题、中点问题。——建议在此补充韦达定理、弦长公式,以便简化运算。
(2)在知识的交汇点处适当补充训练,但是要控制难度。
学生思想教育和行为习惯的培养及学习方法
通过本章学习,应用曲线及其方程的实例,了解曲线与方程的对应关系,进一步体会数形结合的思想。
1、选修4-4参数方程的内容的添加问题
2、关于圆锥曲线的统一定义的处理
3、圆锥曲线考查什么
人教版高中数学《《圆锥曲线与方程》》单元教材教学分析
学段及学科
高中数学
教材版本
人教版
单元名称
《《圆锥曲线与方程》》
单元教材主题内容与价值作用
本单元在必修阶段学习平面解析几何初步的基础上学习圆锥曲线与方程,了解圆锥曲线与二次方程的关系,掌握圆锥曲线的基本几何性质,感受圆锥曲线在刻画现实世界和解决实际问题中的作用。结合已学过的曲线及其方程的实例,了解曲线与方程的对应关系,进一步体会数形结合的思想。
高中数学新课圆锥曲线方程教案
高中数学新课圆锥曲线方程教案一、教学目标1. 理解圆锥曲线的基本概念,掌握圆锥曲线的定义及其性质。
2. 学习圆锥曲线的标准方程及其求法。
3. 能够运用圆锥曲线方程解决实际问题,提高数学应用能力。
二、教学内容1. 圆锥曲线的定义与性质1.1 圆锥曲线的定义1.2 圆锥曲线的性质2. 圆锥曲线的标准方程2.1 椭圆的标准方程2.2 双曲线的标准方程2.3 抛物线的标准方程三、教学重点与难点1. 重点:圆锥曲线的定义、性质及标准方程的求法。
2. 难点:圆锥曲线标准方程的推导与应用。
四、教学方法1. 采用问题驱动法,引导学生主动探究圆锥曲线的定义与性质。
2. 利用图形演示,让学生直观理解圆锥曲线的特点。
3. 运用类比法,引导学生发现圆锥曲线标准方程的规律。
4. 注重实践操作,让学生在解决问题中巩固圆锥曲线方程的应用。
五、教学准备1. 教学课件:圆锥曲线的相关图片、图形演示等。
2. 教学素材:圆锥曲线的实例问题。
3. 学生用书:《高中数学》圆锥曲线相关章节。
教案篇幅有限,后续章节(六、七、八、九、十)将陆续提供。
请随时查阅。
六、教学过程1. 导入:通过展示生活中的圆锥曲线实例,如旋转的伞、地球卫星轨道等,引导学生关注圆锥曲线在现实世界中的应用。
2. 新课导入:介绍圆锥曲线的定义,引导学生理解圆锥曲线的形成过程。
3. 性质探讨:引导学生发现圆锥曲线的性质,如对称性、渐近线等。
4. 标准方程求法:讲解椭圆、双曲线、抛物线的标准方程求法。
5. 巩固练习:布置相关练习题,让学生巩固所学知识。
七、课堂互动1. 小组讨论:让学生分组讨论圆锥曲线的性质,分享各自的发现。
2. 提问环节:鼓励学生提问,解答学生关于圆锥曲线方程的疑问。
3. 案例分析:分析实际问题,引导学生运用圆锥曲线方程解决实际问题。
八、课后作业1. 完成学生用书上的课后练习题。
2. 选取一个实际问题,运用圆锥曲线方程进行解答。
九、教学反思2. 反思教学方法:观察学生对圆锥曲线方程的掌握情况,调整教学方法,提高教学效果。
高中数学圆锥曲线满分教案
高中数学圆锥曲线满分教案
主题:圆锥曲线
目标:学生能够掌握圆锥曲线的基本概念和性质,并能够运用所学知识解决实际问题。
教学步骤:
第一步:引入(5分钟)
教师引入圆锥曲线的概念,告诉学生圆锥曲线是由平面与圆锥相交而产生的曲线,包括圆、椭圆、双曲线和抛物线。
第二步:椭圆(15分钟)
1. 讲解椭圆的定义和性质,包括离心率、焦点、直径等概念。
2. 讲解椭圆的标准方程和图像。
3. 给学生几道椭圆的练习题,让他们熟练掌握椭圆的性质和解题方法。
第三步:双曲线(15分钟)
1. 讲解双曲线的定义和性质,包括离心率、焦点、渐近线等概念。
2. 讲解双曲线的标准方程和图像。
3. 给学生几道双曲线的练习题,让他们熟练掌握双曲线的性质和解题方法。
第四步:抛物线(15分钟)
1. 讲解抛物线的定义和性质,包括焦点、准线、焦距等概念。
2. 讲解抛物线的标准方程和图像。
3. 给学生几道抛物线的练习题,让他们熟练掌握抛物线的性质和解题方法。
第五步:综合练习(15分钟)
给学生几道综合性的圆锥曲线练习题,让他们巩固所学知识,并运用所学知识解决实际问题。
第六步:总结与展望(5分钟)
教师对本节课所学内容进行总结,并展望下节课的内容,鼓励学生继续努力学习。
扩展活动:可以组织学生进行小组讨论,让他们自己设计一个圆锥曲线的应用问题,并进
行解答和讨论。
备注:教案内容仅供参考,具体教学过程可以根据学生的实陵情况进行灵活调整。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章圆锥曲线与方程一、课程目标在必修阶段学习平面解析几何初步的基础上,在本模块中,学生将学习圆锥曲线与方程,了解圆锥曲线与二次方程的关系,掌握圆锥曲线的基本几何性质,感受圆锥曲线在刻画现实世界和解决实际问题中的作用。
结合已学过的曲线及其方程的实例,了解曲线与方程的对应关系,进一步体会数形结合的思想。
二、学习目标:(1)、圆锥曲线:①了解圆锥曲线的实际背景,感受圆锥曲线在刻画现实世界和解决实际问题中的作用。
②经历从具体情境中抽象出椭圆、抛物线模型的过程,掌握它们的定义、标准方程、几何图形及简单性质。
③了解双曲线的定义、几何图形和标准方程,知道双曲线的有关性质。
④能用坐标法解决一些与圆锥曲线有关的简单几何问题(直线与圆锥曲线的位置关系)和实际问题。
⑤通过圆锥曲线的学习,进一步体会数形结合的思想。
三、本章知识结构框图:2.1 求曲线的轨迹方程(新授课)一、教学目标知识与技能:结合已经学过的曲线及方程的实例,了解曲线与方程的对应关系,了解两条曲线交点的求法;能根据曲线的已知条件求出曲线的方程,并初步学会通过方程来研究曲线的性质。
过程与方法:通过求曲线方程的学习,可培养我们的转化能力和全面分析问题的能力,帮助我们理解研究圆锥曲线的基本方法。
情感、态度与价值观:通过曲线与方程概念的学习,可培养我们数与形相互联系,对立统一的辩证唯物主义观。
二、教学重点与难点重点:求动点的轨迹方程的常用技巧与方法.难点:作相关点法求动点的轨迹方法.三、教学过程(一)复习引入平面解析几何研究的主要问题是:1、根据已知条件,求出表示平面曲线的方程;2、通过方程,研究平面曲线的性质.我们已经对常见曲线圆、椭圆、双曲线以及抛物线进行过这两个方面的研究,今天在上面已经研究的基础上来对根据已知条件求曲线的轨迹方程的常见技巧与方法进行系统分析.(二)几种常见求轨迹方程的方法1.直接法由题设所给(或通过分析图形的几何性质而得出)的动点所满足的几何条件列出等式,再用坐标代替这等式,化简得曲线的方程,这种方法叫直接法.例1、(1)求和定圆x2+y2=R2的圆周的距离等于R的动点P的轨迹方程;(2)过点A(a,o)作圆O∶x2+y2=R2(a>R>o)的割线,求割线被圆O截得弦的中点的轨迹.对(1)分析:动点P的轨迹是不知道的,不能考查其几何特征,但是给出了动点P的运动规律:|OP|=2R 或|OP|=0.解:设动点P(x,y),则有|OP|=2R或|OP|=0.即x2+y2=4R2或x2+y2=0.故所求动点P的轨迹方程为x2+y2=4R2或x2+y2=0.对(2)分析:题设中没有具体给出动点所满足的几何条件,但可以通过分析图形的几何性质而得出,即圆心与弦的中点连线垂直于弦,它们的斜率互为负倒数.解答为:设弦的中点为M(x,y),连结OM,则OM⊥AM.∵k OM·k AM=-1,其轨迹是以OA为直径的圆在圆O内的一段弧(不含端点).2.定义法利用所学过的圆的定义、椭圆的定义、双曲线的定义、抛物线的定义直接写出所求的动点的轨迹方程,这种方法叫做定义法.这种方法要求题设中有定点与定直线及两定点距离之和或差为定值的条件,或利用平面几何知识分析得出这些条件.直平分线l交半径OQ于点P(见图2-45),当Q点在圆周上运动时,求点P的轨迹方程.分析:∵点P在AQ的垂直平分线上,∴|PQ|=|PA|.又P在半径OQ上.∴|PO|+|PQ|=R,即|PO|+|PA|=R.故P点到两定点距离之和是定值,可用椭圆定义写出P点的轨迹方程.解:连接PA ∵l⊥PQ,∴|PA|=|PQ|.又P在半径OQ上.∴|PO|+|PQ|=2.由椭圆定义可知:P点轨迹是以O、A为焦点的椭圆.3.相关点法若动点P(x,y)随已知曲线上的点Q(x0,y0)的变动而变动,且x0、y0可用x、y表示,则将Q点坐标表达式代入已知曲线方程,即得点P的轨迹方程.这种方法称为相关点法(或代换法).例3、已知抛物线y2=x+1,定点A(3,1),B为抛物线上任意一点,点P在线段AB上,且有BP∶PA=1∶2,当B点在抛物线上变动时,求点P的轨迹方程.分析:P点运动的原因是B点在抛物线上运动,因此B可作为相关点,应先找出点P与点B的联系.解:设点P(x,y),且设点B(x0,y0)∵BP∶PA=1∶2,且P为线段AB的内分点.4.待定系数法求圆、椭圆、双曲线以及抛物线的方程常用待定系数法求.例4、已知抛物线y2=4x和以坐标轴为对称轴、实轴在y轴上的双曲线仅有两个公共点,2,求此双曲线方程。
又直线y=2x被双曲线所截的的线段长等于5a2x2-4b2x+a2b2=0∵抛物线和双曲线仅有两个公共点,根据它们的对称性,这两个点的横坐标应相等,因此方程a2x2-4b2x+a2b2=0应有等根.∴△=16b4-4a4b2=0,即a2=2b.由弦长公式得:即a2b2=4b2-a2.(三)巩固练习1.△ABC 一边的两个端点是B(0,6)和C(0,-6),另两边斜率的积是94,求顶点A 的轨迹。
2.点P 与一定点F(2,0)的距离和它到一定直线x=8的距离的比是1∶2,求点P 的轨迹方程,并说明轨迹是什么图形?3.求抛物线y 2=2px(p >0)上各点与焦点连线的中点的轨迹方程. (四)课时小结求曲线的轨迹方程一般地有直接法、定义法、相关点法、待定系数法,还有参数法、复数法也是求曲线的轨迹方程的常见方法,这等到讲了参数方程、复数以后再作介绍.(五)布置作业:习题2.1 A 组2.3.4 四、课后反思:2.2.1 椭圆及其标准方程(新授课)一、教学目标知识与技能:了解椭圆的实际背景,掌握椭圆的定义及其标准方程。
过程与方法:通过椭圆的概念引入椭圆的标准方程的推导,培养学生的分析探索能力,熟练掌握解决解析问题的方法—坐标法。
情感、态度与价值观:通过对椭圆的定义及标准方程的学习,渗透数形结合的思想,让学生体会运动变化、对立统一的思想,提高对各种知识的综合运用能力.二、教学重点与难点重点:椭圆的定义和椭圆的标准方程. 难点:椭圆的标准方程的推导. 三、教学过程 (一)椭圆概念的引入问题1:什么叫做曲线的方程?求曲线方程的一般步骤是什么?问题3:圆的几何特征是什么?你能否可类似地提出一些轨迹命题作广泛的探索?一般学生能回答:“平面内到一定点的距离为常数的点的轨迹是圆”.对学生提出的轨迹命题如:“到两定点距离之和等于常数的点的轨迹.”“到两定点距离平方差等于常数的点的轨迹.”“到两定点距离之差等于常数的点的轨迹.”取一条一定长的细绳,把它的两端固定在画图板上的F1和F2两点(如图2-13),当绳长大于F1和F2的距离时,用铅笔尖把绳子拉紧,使笔尖在图板上慢慢移动,就可以画出一个椭圆.教师进一步追问:“椭圆,在哪些地方见过?”有的同学说:“立体几何中圆的直观图.”有的同学说:“人造卫星运行轨道”等……在此基础上,引导学生概括椭圆的定义:平面内到两定点F1、F2的距离之和等于常数(大于|F1F2|)的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点的距离叫做焦距.学生开始只强调主要几何特征——到两定点F1、F2的距离之和等于常数、教师在演示中要从两个方面加以强调:(1)将穿有铅笔的细线拉到图板平面外,得到的不是椭圆,而是椭球形,使学生认识到需加限制条件:“在平面内”.(2)这里的常数有什么限制吗?教师边演示边提示学生注意:若常数=|F1F2|,则是线段F1F2;若常数<| F1F2 |,则轨迹不存在;若要轨迹是椭圆,还必须加上限制条件:“此常数大于| F1F2 |”.(二)椭圆标准方程的推导1.标准方程的推导由椭圆的定义,可以知道它的基本几何特征,但对椭圆还具有哪些性质,我们还一无所知,所以需要用坐标法先建立椭圆的方程.如何建立椭圆的方程?根据求曲线方程的一般步骤,可分:(1)建系设点;(2)点的集合;(3)代数方程;(4)化简方程等步骤.(1)建系设点建立坐标系应遵循简单和优化的原则,如使关键点的坐标、关键几何量(距离、直线斜率等)的表达式简单化,注意充分利用图形的对称性,使学生认识到下列选取方法是恰当的.以两定点F1、F2的直线为x轴,线段F1F2的垂直平分线为y轴,建立直角坐标系(如图2-14).设| F1F2 |=2c(c>0),M(x,y)为椭圆上任意一点,则有F1(-1,0),F2(c,0).(2)点的集合由定义不难得出椭圆集合为:P={M||MF1|+|MF2|=2a}.(3)代数方程(4)化简方程(学生板演,教师点拨)2.两种标准方程的比较(引导学生归纳)0)、F2(c,0),这里c2=a2-b2;-c)、F2(0,c),这里c2=a2+b2,只须将(1)方程的x、y互换即可得到.教师指出:在两种标准方程中,∵a2>b2,∴可以根据分母的大小来判定焦点在哪一个坐标轴上.(三)例题讲解例、平面内两定点的距离是8,写出到这两定点的距离的和是10的点的轨迹的方程.分析:先根据题意判断轨迹,再建立直角坐标系,采用待定系数法得出轨迹方程.解:这个轨迹是一个椭圆,两个定点是焦点,用F1、F2表示.取过点F1和F2的直线为x轴,线段F1F2的垂直平分线为y轴,建立直角坐标系.∵2a=10,2c=8.∴a=5,c=4,b2=a2-c2=25-16=9.∴b=3因此,这个椭圆的标准方程是思考:焦点F1、F2放在y轴上呢?(四)课堂练习:课本42页练习1、2、3、4(五) 课时小结1.定义:椭圆是平面内与两定点F1、F2的距离的和等于常数(大于|F1F2|)的点的轨迹.3.图形(六)布置作业:习题2.2 A组1、7四、课后反思2.2.2 椭圆的简单几何性质(新授课)一、教学目标知识与技能:通过椭圆标准方程的讨论,使学生掌握椭圆的几何性质,能正确地画出椭圆的图形,并能根据几何性质解决一些简单的问题,从而培养我们的分析、归纳、推理等能力。
过程与方法:掌握利用方程研究曲线性质的基本方法,进一步体会数形结合的思想。
情感、态度与价值观:通过本小节的学习,进一步体会方程与曲线的对应关系,感受圆锥曲线在刻画现实世界和解决实际问题中的作用。
二、教学重点与难点重点:椭圆的几何性质及初步运用.难点:椭圆离心率的概念的理解.三、教学过程(一)复习提问1.椭圆的定义是什么?2.椭圆的标准方程是什么?(二)几何性质根据曲线的方程研究曲线的几何性质,并正确地画出它的图形,是解析几何的基本问题之一。
1、范围即|x|≤a,|y|≤b,这说明椭圆在直线x=±a和直线y=±b所围成的矩形里,注意结合图形讲解,并指出描点画图时,就不能取范围以外的点.2.对称性先请大家阅读课本椭圆的几何性质2.设问:为什么“把x换成-x,或把y换成-y?,或把x、y同时换成-x、-y时,方程都不变,所以图形关于y轴、x轴或原点对称的”呢?事实上,在曲线的方程里,如果把x换成-x而方程不变,那么当点P(x,y)在曲线上时,点P关于y轴的对称点Q(-x,y)也在曲线上,所以曲线关于y轴对称.类似可以证明其他两个命题.同时向学生指出:如果曲线具有关于y轴对称、关于x轴对称和关于原点对称中的任意两种,那么它一定具有另一种对称.如:如果曲线关于x轴和原点对称,那么它一定关于y 轴对称.事实上,设P(x,y)在曲线上,因为曲线关于x轴对称,所以点P1(x,-y)必在曲线上.又因为曲线关于原点对称,所以P1关于原点对称点P2(-x,y)必在曲线上.因P(x,y)、P2(-x,y)都在曲线上,所以曲线关于y轴对称.最后指出:x轴、y轴是椭圆的对称轴,原点是椭圆的对称中心即椭圆中心.3.顶点只须令x=0,得y=±b,点B1(0,-b)、B2(0,b)是椭圆和y轴的两个交点;令y=0,得x=±a,点A1(-a,0)、A2(a,0)是椭圆和x轴的两个交点.强调指出:椭圆有四个顶点A1(-a,0)、A2(a,0)、B1(0,-b)、B2(0,b).教师还需指出:(1)线段A1A2、线段B1B2分别叫椭圆的长轴和短轴,它们的长分别等于2a和2b;(2)a、b的几何意义:a是长半轴的长,b是短半轴的长;这时,教师可以小结以下:由椭圆的范围、对称性和顶点,再进行描点画图,只须描出较少的点,就可以得到较正确的图形.4.离心率教师直接给出椭圆的离心率的定义:等到介绍椭圆的第二定义时,再讲清离心率e 的几何意义. 先分析椭圆的离心率e 的取值范围: ∵a >c >0,∴ 0<e <1.再结合图形分析离心率的大小对椭圆形状的影响:(2)当e 接近0时,c 越接近0,从而b 越接近a ,因此椭圆接近圆;(3)当e=0时,c=0,a=b 两焦点重合,椭圆的标准方程成为x 2+y 2=a 2,图形就是圆了. (三)应用为了加深对椭圆的几何性质的认识,掌握用描点法画图的基本方法,给出如下例1.例1、求椭圆16x 2+25y 2=400的长轴和短轴的长、离心率、焦点和顶点的坐标,并用描点法画出它的图形.本例前一部分请一个同学板演,教师予以订正,估计不难完成.后一部分由教师讲解,以引起学生重视,步骤是:(2)描点作图.先描点画出椭圆在第一象限内的图形,再利用椭圆的对称性就可以画出整个椭圆(图2-19).要强调:利用对称性可以使计算量大大减少.本例实质上是椭圆的第二定义,是为以后讲解抛物线和圆锥曲线的统一定义做准备的,同时再一次使学生熟悉求曲线方程的一般步骤,因此,要详细讲解:设d 是点M 到直线l 的距离,根据题意,所求轨迹就是︱MF ︴=ac d将上式化简,得:(a 2-c 2)x 2+a 2y 2=a 2(a 2-c 2).这是椭圆的标准方程,所以点M的轨迹是椭圆.由此例不难归纳出椭圆的第二定义.(四)椭圆的第二定义1.定义平面内点M与一个定点的距离和它到一定直线的距离的比是常数线叫做椭圆的准线,常数e是椭圆的离心率.2.说明这时还要讲清e的几何意义是:椭圆上一点到焦点的距离和它到准线的距离的比.(五)课时小结解法研究图形的性质是通过对方程的讨论进行的,同一曲线由于坐标系选取不同,方程的形式也不同,但是最后得出的性质是一样的,即与坐标系的选取无关.前面我们着重分析了第一个标准方程的椭圆的性质,类似可以理解第二个标准方程的椭圆的性质.布置学生最后小结下列表格:(五)布置作业1.求下列椭圆的长轴和短轴的长、焦距、离心率、各个顶点和焦点坐标、准线方程:(1)25x2+4y2-100=0,(2)x2+4y2-1=0.2.我国发射的科学实验人造地球卫星的运行轨道是以地球的中心为一个焦点的椭圆,近地点距地面266Km,远地点距地面1826Km,求这颗卫星的轨道方程.3.点P与一定点F(2,0)的距离和它到一定直线x=8的距离的比是1∶2,求点P的轨迹方程,并说明轨迹是什么图形.四、课后反思:2.3.1 双曲线及其标准方程(新授课)一、教学目标知识与技能:使学生理解并掌握双曲线的定义,掌握双曲线的标准方程的推导及标准方程。