平远高中数学第二章圆锥曲线与方程222双曲线的几何性质一2教案新人教A版选修11
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.2.2双曲线的几何性质(一)
☆要点强化☆ 1.双曲线的范围、对称性、顶点和渐近线;
2.双曲线的渐近线的概念。
☆当堂检测☆
1. 07宁夏理
已知双曲线的顶点到渐近线的距离为2,焦点到渐近线的距离为6,则该双曲线的离心率为 .
2. 求双曲线的标准方程:
⑴实轴的长是10,虚轴长是8,焦点在x 轴上;
⑵焦距是10,虚轴长是8,焦点在y 轴上;
⑶离心率e =()5,3M -; ⑷两条渐近线的方程是23y x =±,经过点9,12M ⎛⎫- ⎪⎝⎭
。 (选作题)
已知双曲线的中心在坐标原点,焦点12,F F 在坐标轴上,离心率为
,且过点
(4,, (1)求双曲线方程;
(2)若点(3,)M m 在双曲线上,求证:12MF MF ⊥;
(3)求12F MF ∆的面积。
●教学目标
1.掌握双曲线的几何性质
2.能通过双曲线的标准方程确定双曲线的顶点、实虚半轴、焦点、离心率、渐近线方程. ●教学重点
双曲线的几何性质
●教学难点
双曲线的渐近线
●教学方法
学导式
●教具准备
幻灯片、三角板
●教学过程
I.复习回顾:
师:上一节,我们学习了双曲线的标准方程,这一节,我们要根据它来研究双曲线的几何性质.同学们可以按照研究椭圆几何性质的方法和步骤,自己推出双曲线的几何性质,然后与课文对照,所以,我们来回顾一下研究椭圆的几何性质的方法与步骤.(略) II.讲授新课:
1.范围:
双曲线在不等式x ≥a 与x ≤-a 所表示的区域内.
2.对称性:
双曲线关于每个坐标轴和原点都对称,这时,坐标轴是双曲
线的对称轴,原点是双曲线的对称中心,双曲线的对称中心叫双
曲线中心.
3.顶点:
双曲线和它的对称轴有两个交点A 1(-a ,0)、A 2(a ,0),它们叫做双曲线的顶点. 线段A 1A 2叫双曲线的实轴,它的长等于2a ,a 叫做双曲线的实半轴长;线段B 1B 2叫双曲线的虚轴,它的长等于2b , b 叫做双曲线的虚半轴长.
4.渐近线
①我们把两条直线y=±x
a
b 叫做双曲线的渐近线; ②从图8—16可以看出,双曲线122
22=-b
y a x 的各支向外延伸时,与直线y =±x a
b 逐渐接近. ③“渐近”的证明:
先取双曲线在第一象限内的部分进行证明.这一部分的方程可写为
y =x a x a
b (22->a ). 设M (x ,y )是它上面的点,N (x ,y )是直线y=x a b 上与M 有相同横坐标的点,则Y =x a
b .
∵y =Y x a
b x a x a b a x a b =-=- 222)(1 ∴)(22a x x a b
y Y MN --=
-= 222222))((a
x x a x x a x x a b -+-+--⋅= 22a x x ab
-+= 设MQ 是点M 到直线y =x a
b 的距离,则MQ 在其他象限内,也可证明类似的情况. (上述内容用幻灯片给出). ④等轴双曲线: 实轴和虚轴等长的双曲线叫做等轴双曲线. ⑤ 利用双曲线的渐近线,可以帮助我们较准确地画出双曲线的草图.具体做法是:画出双曲线的渐近线,先确定双曲线顶点及第一象限内任意一点的位置,然后过这两点并根据双曲线在第一象限内从渐近线的下方逐渐接近渐近线的特点画出双曲线的一部分,最后利用双曲线的对称性画出完整的双曲线. 5.离心率: 双曲线的焦距与实轴长的比e = a c ,叫双曲线的离心率. 说明:①由c >a >0可得e >1; ②双曲线的离心率越大,它的开口越阔. 师:为使大家进一步熟悉双曲线的几何性质,我们来看下面的例题. 例1 求双曲线9y 2-16x 2=144的实半轴长和虚半轴长、焦点坐标、离心率、渐近线方程. 解:把方程化为标准方程. 1342 2 22=-x y . 由此可知,实半轴长a =4,虚半轴长b =3. 5342222=+=+=b a c . 焦点的坐标是(0,-5),(0,5). 离心率4 5==a c e . 渐近线方程为 y x 43±=,即x y 3 4±=. 说明:此题要求学生认识到第二种形式的标准方程所对应的双曲线性质与课本性质的相同点与不同点.可让学生比较得出(作为练习). III.课堂练习: (1)写出第二种形式的标准方程所对应的双曲线性质. (2)课本P 113练习1. ●课堂小结 师:通过本节学习,要求大家熟悉并掌握双曲线的几何性质,尤其是双曲线的渐近线方程及其“渐近”性质的证明,并能简单应用双曲线的几何性质. ●课后作业 习题8.4 1、5、6. ●板书设计 ●教学后记 ●教学目标 1.掌握双曲线的准线方程. 2.能应用双曲线的几何性质求双曲线方程; 3.应用双曲线知识解决生产中的实际问题. ●教学重点 双曲线的准线与几何性质的应用 ●教学难点 双曲线离心率、准线方程与双曲线关系. ●教学方法 启发式 ●教具准备 三角板 ●教学过程 I.复习回顾: 师:上一节,我们利用双曲线的标准方程推导了双曲线的几何性质,下面我们作一简要的回顾(略),这一节我们将继续研究双曲线的几何性质及其应用. II.讲授新课: 例2 双曲线型自然通风塔的外形,是双曲线的一部分绕其虚轴旋转 所成的曲面,它的最小半径为12 m ,上口半径为13 m ,下口半径为25 m , 高55 m.选择适当的坐标系,求出此双曲线的方程(精确到1m ). 解:如图8—17,建立直角坐标系xOy ,使A 圆的直径AA ′在x 轴上, 圆心与原点重合.这时上、下口的直径CC ′、BB ′平行于x 轴,且C C '=13 ×2 (m),B B '=25×2 (m). 设双曲线的方程为 12 2 22=-b y a x (a >0,b >0) 令点C 的坐标为(13,y ),则点B 的坐标为(25,y -55).因为点B 、C 在双曲线上,所以 ,1)55(12252 2 22=--b y .1121322 22=-b y