2019届浙江省高考模拟卷+数学
浙江省杭州市2019届高三高考模拟卷模拟数学试卷8(含答案)

2019年高考模拟试卷数学卷考试时间:120分钟 满分值:150分一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(原创)设全集=U R ,集合{}2≤=x x A ,{}0432<--=x x x B ,则B A ⋂=( ) A .{}42<≤-x x B .{}2≤1-x x < C .{}2≤≤2-x x D .{}2≤≤1-x x2.(原创)已知复数i a 2z 1+=,i z -=22,若21z z 为实数,则实数a 的值为( ) A .2 B .—2C .4D .4-3.(原创)已知条件p :53<<x ,q :2ln <x ,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件4.(教材改编)如图所示是一个几何体的三视图,则该几何体的表面积为A. π420+B. π320+C. π424+D. π324+ 5.(教材改编)在等比数列中,=2,前n 项和为,若数列也是等比数列,则等于( ) A.B.3nC.2nD.6.(教材改编)设x ,y 满足约束条件,则133++x y 的最大值是( ) A.15 B.8 C.6D.107.(改编)函数xe xx x f 252)(2+=的大致图象是( )411正视图222侧视图俯视图(改编于杭州地区七校共同体2018学年第一学期期末复习卷第7题)8.已知a ,b ,c 和d 为空间中的4个单位向量,且a +b +c =0,则|a -d |+|b -d |+|c -d |=0不可能等于( )A. 3B. 23C.4D.329.已知双曲线()2222:10,0x y C a b a b-=>>的左右焦点分别为12,F F ,P 为双曲线C 上一点,Q 为双曲线渐近线C 上一点,,P Q 均位于第一象限,且2122,0QP PF QF QF →→→→=⋅=,则双曲线C 的离心率为( )A.31-B.31+C.132-D.132+10.已知11()(3)(,),[,3]3f x a x b a b R x x =++-∈∈,记()f x 的最大值为(,)M a b ,则(,)M a b 的最小值是( ) A.13 B. 23C.43D.53二、填空题:本题共7道小题,多空题每题每空6分,单空题每题4分,共36分.11.(教材改编)双曲线的焦点在x 轴上,实轴长为4,离心率为3,则双曲线的标准方程为 ,渐近线方程为 .12.(教材改编)已知)(x f 在R 上是偶函数,且满足)()4(x f x f =+,当)2,0(∈x 时,3)(x x f =,则=)3-(f ;=)27(f .13.(教材改编)随机变量X 的分布列如右表所示,若1()3E X =, 则ab = ;(32)D X -= .14.(教材改编)在△ABC 中,D 是AC 边的中点,∠BAC=3π, cos ∠BDC=72-,△ABC 的面积为6,则AC= ;sin ∠ABD= .15.(教材改编)有3所高校欲通过三位一体招收21名学生,要求每所高校至少招收一名且认识各不相同,则不同的招收方法有 种.16.在ABC ∆中,16,7,cos ,5AC BC A O ABC ===∆是的内心,若OP xOA yOB =+u u u r u u u r u u u r ,01,01x y ≤≤≤≤其中,则动点P 的轨迹所覆盖的面积为 .17.已知向量a ,b 满足=3,=2,若恒成立,则实数t 的取值范围为 .三、解答题:本大题共5小题,共74分.解答应给出文字说明,证明过程或演算步骤.18.(教材改编)(本题满分14分)已知向量(2sin ,cos ),(3cos ,2cos )a x x b x x ==r r.(1)若,2x k k Z ππ≠+∈,且b a ⊥,求222sin cos x x -的值;(2)定义函数1)(+•=b a x f ρρ,求函数)(x f 的单调递减区间;并求当[0,]2x π∈时,函数)(x f 的值域.19.(本题满分 15 分) 在三棱锥 D - ABC 中,AD ⊥DC ,AC ⊥CB ,AB =2AD =2DC =2,且平面 ABD ⊥ 平面 BCD ,E 为 AC 的中点. (1)证明: AD ⊥ BC ;(2)求直线 DE 与平面 ABD 所成的角的正弦值.20.(本题满分15分)已知在数列{}n a 中,1a +22a +33a +…+n n a =n (2n +1) (n N *∈) (1)求数列{}n a 的通项公式; (2)求数列2n n na ⎧⎫⎨⎬⎩⎭的前n 项和n T .21.(本题满分15分)已知椭圆E :22221(0)y x a b a b+=>>,不经过原点O 的直线 :(0)l y kx m k =+>与椭圆E 相交于不同的两点A 、B ,直线,,OA AB OB 的斜率依次构成等比数列.(1)求,,a b k 的关系式. (2)若离心率12e =且7||=AB m ,当m 为何值时,椭圆的焦距取得最小值?22.(本小题满分15分)设函数431()4f x x x =-,x ∈R . (1)求函数()f x 在1x =处的切线方程;(2)若对任意的实数x ,不等式()2f x a x ≥-恒成立,求实数a 的最大值;(3)设0m ≠,若对任意的实数k ,关于x 的方程()f x kx m =+有且只有两个不同的实根,求实数m 的取值范围.2019年高考模拟试卷数学参考答案与评分标准一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.题号 1 2 3 4 5 6 7 8 9 10 答案BCADCABACB二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.11.18-422=y x ,x y 2±= ;12. 1,81 ;13. 61,5 ;14. 12,14213 ; 15. 352 ;16.1063 ;17. 313≥-≤t t 或 三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤. 18.解:(1)因为⊥,所以0cos 2sin 322=+x x , 因为,2x k k Z ππ≠+∈,所以cos 0x ≠,即33tan -=x , 所以411tan 1tan 2cos sin 22222-=+-=-x x x x . .………7分 (2)22cos 2sin 31cos 2cos sin 321-)(2++=++=+=x x x x x x f=2)6π2sin(2++x , .………9分令3222,262k x k k Z πππππ+≤+≤+∈,得2,63k x k k Z ππππ+≤≤+∈,所以函数)(x f 的单调递减区间是2[,],63k k k Z ππππ++∈. .………11分因为[0,]2x π∈,所以72[,]666x πππ+∈,1sin(2)[,1]62x π+∈-,所以当[0,]2x π∈时,函数)(x f 的值域[1,4]. .………14分19.解:(I )法一:过C 做CH BD ⊥,(其中H 与B D ,都不重合,否则,若H 与B 重合,则CB BD ⊥与12CD CB =<=H 与D 重合,则1AD BD ==,与2AB =矛盾)Q 面ABD ⊥面BCD ∴CH ⊥面BCD∴CH ⊥AD ,又Q AD ⊥CD ∴AD ⊥面BCD ∴AD ⊥BC.………7分法二:参见第(II )问的法三(II )法一:做EQ AH ⊥,则//EQ CH ,由(1)知:EQ ⊥面ADB∴EDQ ∠即DE 与面ABD 所成角,且22223DE EQ ==∴3sin QE EDQ ED ∠== (15)分法二:由(I )知:,3AD BD BD ⊥=2AC BC ==记AB 的中点为F ,AF 的中点为MQ E 是AC 的中点,∴AB EM ⊥,AB DM ⊥∴AB ⊥面DEM ∴面ABD ⊥面DEM∴EDM ∠即DE 与面ABD 所成角,且132,2ME MD ED ===∴3sin 3ME EDM MD ∠==.………15分Q EAHM F EAH法三:由(I )知AD ⊥平面BCD ,AD BD ∴⊥,以D 为原点,分别以射线,DB DA 为x 轴,y 轴的正半轴,建立空间直角坐标系D xyz -由题意知:112(0,0,0),(0,1,0),(,0,0),(,0,)333D A F C∴111(,,)2236E ,111(,,)2236DE ∴=u u u r ∵平面ABD 的法向量为(0,0,1)n =r,设DE 与面ABD 所成角为θ∴3sin |cos ,|||3||||n DE DE n n DE θ⋅===⋅r u u u ru u u r r ru u u r .………15分法四:以D 为坐标原点,,DC DA 为,x y 轴,建立空间直角坐标系D xyz -则()()1,0,0,0,1,0C A ,设(),,B a b c ,面ABD 的法向量为1n u r,面BCD 的法向量为2n u u r ,则12200AB AC BC n n =⎧⎪⋅=⎨⎪⋅=⎩u u u r u u u r u r u u r ,即()()()22212141,1,01,,00a b c a b c n n ⎧+-+=⎪⎪-⋅---=⎨⎪⋅=⎪⎩u r u u r ,则12a b c ⎧=⎪=⎨⎪=±⎩ ∴0AD BC ⋅=u u u r u u u r,∴AD ⊥BC∴113sin 3DE n DE n θ⋅==⋅u u u r u r u u u r u r ,即DE 与面ABD 所成角的正弦值为33. .………15分20.(1)2n ≥时,1a +22a +33a +…+(n -1)1n a -=(n -1)(2n -1),41n na n ∴=-,14n a n =-,当1n =时,13a =满足上式,∴14n a n =-()n N *∈..………7分 (2)记2n n n na b =,则412n nn b -=, .………9分233711412222n n n T -∴=++++L ,2341137114122222n n n T +-=++++L ,.………12分 两式相减,得11747222n n n T ++=-,4772n nn T +∴=-. .………15分 21. 解:(Ⅰ)设1122(,),(,)A x y B x y ,由题意得21212OA OB y y k k k x x =⋅=由22221y x a by kx m ⎧+=⎪⎨⎪=+⎩可得222222222()20b a k x a kmx a m a b +++-= x y zEADCxyzEAB C故222222222(2)4()()0a km b a k a m a b ∆=-+-> ,即22220bm a k -+>1122222222222222()()a kmx x b a k a m a bx x b a k ⎧+=-⎪+⎪⎨-⎪⋅=⎪+⎩,2221212121212()y y k x x km x x m k x x x x +++== .……3分即212()0km x x m ++=,222222220()a k m mb a k -+=+ 又直线不经过原点,所以0m ≠所以222ba k = 即b ak =.………7分(Ⅱ)若12e =,则2,3a c b c ==,234k =,又0k >,得3k =.………9分11222222222222222232()223()m a km x x b a k a m a b x x m c b a k ⎧+=-=⎪+⎪⎨-⎪⋅==-⎪+⎩.………11分 22222121212772321()4()4(2)2233m AB k x x x x x x m c =+-=+-⋅=--- 22774823=-+=m c 化简得22223123=+≥m c m (0∆>恒成立) ……14分 当 43=m 时,焦距最小.………15分22.(Ⅰ)解:32()3f x x x '=-,'(1)2f =-. .………1分且3(1)4f =-,所以在1x =处的切线方程为524y x =-+. ………3分 (Ⅱ)证明:因为对任意的实数x ,不等式()2f x a x ≥-恒成立.所以4324x a x x ≤-+恒成立. .………4分 设43()24x g x x x =-+, 则32'()32g x x x =-+2(1)(22)x x x =---(1)(13)(13)x x x =----+ 所以()g x 在()13,1,()1+3,+∞单调递增,在(,13-∞,(1,1+3单调递减. ………6分 所以min ()min{(13),(13)}g x g g =, 因为131+3222=0x x --的两根.所以430000()24x g x x x =-+20000(22)(22)24x x x x +=-++ 2200(1)2x x =+-20021x x =-++1=-. (其中013x = 所以a 的最大值为1-. ………9分 (Ⅲ)解:若对任意的实数k ,关于x 的方程()f x kx m =+有且只有两个不同的实根, 当0x =,得0m =,与已知矛盾.所以43444x x m k x --=有两根,即43444x x my x --=与y k =有两个交点. …10分令4344()4x x m h x x --=,则432384'()4x x mh x x -+=.令43()384p x x x m =-+,2'()12(2)p x x x =-,则()p x 在(,2)-∞单调递减,(2,)+∞单调递增,所以min ()(2)416p x p m ==-. …11分(ⅰ)当4160m -≥时,即4m ≥时,则'()0h x ≥,即()h x 在(,0)-∞,(0,)+∞单调递增,且当x →-∞时,()h x →-∞;当0x -→时,()h x →+∞;当0x +→时,()h x →-∞;当x →+∞时,()h x →+∞.此时对任意的实数k ,原方程恒有且只有两个不同的解. ………12分(ⅱ)当04m <<时,()p x 有两个非负根1x ,2x ,所以()h x 在(,0)-∞,1(0,)x ,2(,)x +∞单调递增,12(,)x x 单调递减,所以当21((),())k h x h x ∈时有4个交点,1=()k h x 或2=()k h x 有3个交点,均与题意不合,舍去. ………13分(ⅲ)当0m <时,则()p x 有两个异号的零点1x ,2x ,不妨设120x x <<,则()h x 在1(,)x -∞,2(,)x +∞单调递增;()h x 在1(,0)x ,2(0,)x 单调递减.又x →-∞时,()h x →-∞;当0x -→时,()h x →-∞;当0x +→时,()h x →+∞;当x →+∞时,()h x →+∞.所以当12()()h x h x =时,对任意的实数k ,原方程恒有且只有两个不同的解.所以有43113840x x m -+=,43223840x x m -+=,得2222121212123()()8()x x x x x x x x ++=++. 由12()()h x h x =,得3232112233x x x x -=-,即221212123()x x x x x x ++=+.所以22128x x +=,122x x =-,122x x +=. 故3344121288()3()m x x x x =+-+22222212112212128()()3[()2()]x x x x x x x x x x =+-+-+-8=-.所以1m =-.所以当4m ≥或1m =-时,原方程对任意实数k 均有且只有两个解.………15分。
2019届浙江省杭州市高考命题比赛模拟(一)数学试卷(word版)

2019届浙江省杭州市高考命题比赛模拟(一)数 学本试卷分选择题和非选择题两部分。
全卷共4页,选择题部分1至2页,非选择题部分3至4页。
满分150分,考试时间120分钟。
考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填在试题卷和答题卷规定的位置上。
2.答题前,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效。
参考公式:若事件,A B 互斥,则()()()P A B P A P B +=+ 棱柱的体积公式V Sh = 若事件,A B 相互独立,则()()()P A B P A P B ⋅=⋅ 其中S 表示棱柱的底面积,h 表示棱柱的高若事件A 在一次试验中发生的概率是p ,则n 次 棱锥的体积公式 13V Sh =独立重复试验中事件A 恰好发生k 次的概率 其中S 表示棱锥的底面积,h 表示棱锥的高()(1),(0,1,2,,)k kn k n n P k C p p k n -=-= 球的表面积公式台体的体积公式 24S R π=)(312211S S S S h V ++=球的体积公式 其中S 1,S 2分别表示棱台的上、下底面积,h 表示 334R V π=棱台的高 其中R 表示球的半径选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(原创)已知集合}215412{≤-=xx M ,}1{x y x N -==,那么=N M ( ) A .}12{<≤-x x B .}12{≤≤-x x C .}2{-<x xD .}2{≤x x2.(原创)设ααsin 2sin =,)0,2(πα-∈,则tan 2α的值是 ( )A .3B .3-C .33 D .33- 3.(原创)若复数i z +=1(i 是虚数单位),则 ( ) A .01222=--z z B .01222=+-z z C .0222=--z z D .0222=+-z z 4.(摘抄)已知q 是等比数列}{n a 的公比,则“1>q ”是“数列}{n a 是递增数列”的 ( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件5.(摘抄)已知n m ,为异面直线,βα,为两个不同平面,α⊥m ,β⊥n ,且直线l 满足m l ⊥,n l ⊥,α⊄l ,β⊄l ,则 ( )A .βα//且α//lB .βα⊥且β⊥lC .α与β相交,且交线垂直于lD .α与β相交,且交线平行于l 6.(改编)若正数,a b 满足111a b +=,则14111a b +=--的最小值为 ( ) A .4 B .6 C .9 D .167.(原创)已知21,F F 是双曲线)0,0(12222>>=-b a by a x 的左、右焦点,若点2F 关于直线x a by =的对称点M 也在双曲线上,则该双曲线的离心率为 ( ) A .25B .2C .5D .2 8.(原创)已知关于x 的方程2(2)0ax a b x mb +-+=有解,其中,a b 不共线,则参数m 的解的集合为( ) A .{0}或{2}- B. {0,2}- C.{|20}m m -≤≤ D.Φ9.(摘抄)已知F 为抛物线2:4C y x =的焦点,,,A B C 为抛物线C 上三点,当0FA FB FC ++=时,称ABC∆为“和谐三角形”,则“和谐三角形”有 ( )A .0个B .1个C .3个D .无数个10.(摘抄)已知函数2()f x x ax b =++,,m n 满足m n <且()f m n =,()f n m =,则当m x n <<时, ( )A .()f x x m n+<+B .()f x x m n+>+ C .()0f x x -< D .()0f x x ->非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分. 11.(原创)二项式61(2)2x x-的展开式中,(1)常数项是 ;(2)所有项的系数和是 .12.(摘抄)正四面体(即各条棱长均相等的三棱锥)的棱长 为6,某学生画出该正四面体的三视图如下,其中有一个视 图是错误的,则该视图修改正确后对应图形的面积为______, 该四面体的体积为_________.13.(原创)若将向量(2,3)a =围绕起点按逆时针方向旋转23πEC1AA到向量,则向量的坐标为_____,与共线的单位向量=e_____.14.(原创)在1,2,3,,9这9个自然数中,任取3个数,(1)这3个数中恰有1个是偶数的概率是;(用数字作答)(2)设ξ为这3个数中两数相邻的组数(例如:若取出的数为1,2,3,则有两组相邻的数1,2和2,3,此时ξ的值是2).则随机变量ξ的数学期望Eξ=.15.(原创)若变量,x y满足:2202403110x yx yx y-+≤⎧⎪+-≥⎨⎪-+≥⎩,且满足:(1)(2)0t x t y t++++=,则参数t的取值范围为______________.16.(原创)若点G为ABC∆的重心,且BGAG⊥,则Csin的最大值为_________________.17.(改编)若存在[]1,2a∈,使得方程22()()x x a a a t-=+有三个不等的实数根,则实数t的取值范围是.三、解答题:本大题共5小题,满分74分,解答须写出文字说明、证明过程或演算步骤.18.(本小题满分14分)(原创)在ABC∆中,内角,,A B C的对边分别为,,a b c,且sin5B c=,11cos14B=.(Ⅰ)求角A的大小;(Ⅱ)设BC边的中点为D,AD=ABC∆的面积.19.(本小题满分15分)(原创)正方体1111ABCD A BC D-的棱长为1,E是边11D C的中点,点F在正方体内部或正方体的面上,且满足://EF面11A BC。
2019届浙江省杭州市高三高考仿真模拟考试数学试卷(3)及答案

2019届杭州市高三高考仿真模拟考试
数学试卷(3)
考生须知:
1. 本卷满分150分,考试时间120分钟;
2. 答题前务必将自己的姓名,准考证号用黑色字迹的签字笔或钢笔分别填写在试题卷和答题纸规定的地方。
3. 答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范答题,在本试卷纸上答题一律无效。
4. 考试结束后,只需上交答题卷。
参考公式:
如果事件,A B 互斥,那么 柱体的体积公式 ()()()P A B P A P B +=+ V Sh =
如果事件,A B 相互独立,那么 其中S 表示柱体的底面积,h 表示柱体的高
()()()P AB P A P B = 锥体的体积公式
如果事件A 在一次试验中发生的概率为p ,那么n 1
3V Sh = 次独立重复试验中事件A 恰好发生k 次的概率为 其中S 表示锥体的底面积,h 表示锥体的高
()()10,1,2),,(k k n k n n P k C p p k n -==⋯- 球的表面积公式
台体的体积公式 24S R =π
121()3
V S S h = 球的体积公式 其中12,S S 分别表示台体的上、下底面积, 34
3V R =π h 表示为台体的高 其中R 表示球的半径
选择题部分(共40分)
一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选。
浙江省杭州市2019届高三高考模拟卷模拟数学试卷17附答案

2019年高考模拟试卷数学卷本试题卷分选择题和非选择题两部分.满分150分,考试时间120分钟。
请考生按规定用笔将所有试题的答案涂、写在答题纸上。
注意事项:1.答题前,考生务必将自己的姓名、准考证号用黑色的字迹的签字笔或钢笔填写在答题纸上。
2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
答在试题卷上无效。
参考公式:如果事件A ,B 互斥,那么 棱柱的体积公式()()()P A B P A P B +=+ V Sh =如果事件A ,B 相互独立,那么 其中S 表示棱柱的底面积,h 表示棱柱的高()()()P A B P A P B ⋅=⋅ 棱锥的体积公式如果事件A 在一次试验中发生的概率是p ,那么 13V Sh =n次独立重复试验中事件A 恰好发生k 次的概率 其中S 表示棱锥的底面积,h 表示棱锥的高()()()1,0,1,2,,n kk kn n P k C p k k n -=-= 棱台的体积公式球的表面积公式 24S R π= ()1213V h S S =球的体积公式 343V R π= 其中12,S S 分别表示棱台的上底、下底面积, 其中R 表示球的半径 h 表示棱台的高选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(原创)已知复数bi-2z =实部和虚部相等,则z =( )A .2B . 3C .D . (命题意图:考查复数的概念及复数模的求法,属容易题)2.(原创)已知x R ∈,则“3>x ”是“0652>+-x x ”成立的( ) A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件(命题意图:考查充分条件、必要条件与充要条件的意义,属容易题)3.(原创)已知等差数列{}n a 的前n 项和为n s ,若21975=++a a a ,则13s =( )A .36B .72C .91D .182(命题意图:考查等差数列前n 项和的公式及等差数列性质的应用,属中档题)4.(根据惠州市2017届第二次调研考试改编)如图,在正方形ABCD 中,点E 是DC 的中点,点F 是BC 的一个四等分点(F 是靠近B 处的),那么=( ) A.AD AB 3121- B. AD AB 3141+ C.2131+ D. 4321- (命题意图:考查平面向量基本定理的应用,属容易题)5.(原创)已知双曲线)0,0(1:2222>>=-b a by a x C 的一条渐近线与直线013-=+y x 垂直,则双曲线的离心率为( )A. 3B.25C.10D.2 (命题意图:考查双曲线的离心率概念,渐近线表示及直线垂直位置关系的表示,属中档题)6.(根据山东省济南市2017届高三一模考试改编)已知某几何体的三视图及相关数据如图所示,则该几何体的表面积为 A. 2πB. π276+C. 43πD. ππ25276++(命题意图:考查三视图,直观图,属容易题)7.(原创)设变量,x y 满足不等式组⎪⎩⎪⎨⎧≤--≥-≥+2224y x y x y x ,则22x y +的最小值是( )A .22B .9C .8D .2(命题意图:考查线性规划中的最值及数形结合的思想方法,中等偏难题)8.(原创)在正四棱锥ABCD P -中,2=PA ,二面角C AB P --的平面角为︒60,则PA 与底面ABCD 所成角的正弦值是( ) A .515 B .33 C .23 D .55(命题意图:考查空间二面角及直线和平面所成角,属中档题) 9.(根据浙江省宁波市2016届高三适应性考试改编) 已知函数⎩⎨⎧≤+->=mx x x m x x f ,22,3)(2,若函数()()g x f x x =-有三个不同的零点,则实数m 的取值范围是( )A .3>mB .3≤mC .2≥mD .32<≤m (命题意图:考查函数零点的定义,及函数数形结合思想应用,属中等偏难题) 10.(根据广东省惠州市2017届高三二模考试改编) 定义在R 上的函数)(x f y =满足)()5)()5(>'-=-x f x x f x f ,(,若21x x <,且521>+x x ,则有( )A .)()(21x f x f >B .)()(21x f x f <C .)()(21x f x f =D .不确定 (命题意图:考查函数的导数定义,利用导数求函数的单调性,属较难题) 非选择题部分(共110分) 注意事项:1.用黑色的字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上。
浙江省杭州市2019届高三高考模拟卷模拟数学试卷1附答案

2019年高考模拟试卷数学卷数学本试卷分选择题和非选择题两部分。
全卷共4页,选择题部分1至2页,非选择题部分3至4页。
满分150分,考试时间120分钟。
考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填在试题卷和答题卷规定的位置上。
2.答题前,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效。
参考公式:若事件,A B互斥,则棱柱的体积公式若事件相互独立,则其中表示棱柱的底面积,表示棱柱的高若事件在一次试验中发生的概率是,则次棱锥的体积公式独立重复试验中事件恰好发生次的概率其中表示棱锥的底面积,表示棱锥的高球的表面积公式台体的体积公式球的体积公式其中S1,S2分别表示棱台的上、下底面积,表示棱台的高其中表示球的半径选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(原创)已知集合,,那么()A. B. C.D.2.(原创)设,,则的值是() A.B.C.D.3.(原创)若复数(是虚数单位),则()A. B. C. D.4.(摘抄)已知是等比数列的公比,则“”是“数列是递增数列”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件5.(摘抄)已知为异面直线,为两个不同平面,,,且直线满足,,,,则()A.且 B.且C.与相交,且交线垂直于 D.与相交,且交线平行于6.(改编)若正数满足,则的最小值为()A.4 B.6 C.9 D.167.(原创)已知是双曲线的左、右焦点,若点关于直线的对称点也在双曲线上,则该双曲线的离心率为()A. B. C. D.8.(原创)已知关于的方程有解,其中不共线,则参数的解的集合为()A.或 B. C. D.9.(摘抄)已知为抛物线的焦点,为抛物线上三点,当时,称为“和谐三角形”,则“和谐三角形”有()A.0个B.1个C.3个D.无数个10.(摘抄)已知函数,满足且,,则当时,()A.B.C.D.非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.11.(原创)二项式的展开式中,(112.(摘抄)正四面体(即各条棱长均相等的三棱锥)的棱长为6,某学生画出该正四面体的三视图如下,其中有一个视图是错误的,则该视图修改正确后对应图形的面积为______,该四面体的体积为_________.13.(原创)若将向量围绕起点按逆时针方向旋转,得到向量,则向量的坐标为_____,与共线的单位向量_____.14.(原创)在这个自然数中,任取个数,(1)这个数中恰有个是偶数的概率是;(用数字作答)(2)设为这个数中两数相邻的组数(例如:若取出的数为,则有两组相邻的数和,此时的值是).则随机变量的数学期望.15.(原创)若变量满足:,且满足:,则参数的取值范围为______________.16.(原创)若点为的重心,且,则的最大值为_________________.17.(改编)若存在,使得方程有三个不等的实数根,则实数的取值范围是.三、解答题:本大题共5小题,满分74分,解答须写出文字说明、证明过程或演算步骤.18.(本小题满分14分)(原创)在中,内角的对边分别为,且,.(Ⅰ)求角的大小;(Ⅱ)设边的中点为,,求的面积.19.(本小题满分15分)E正方体内部或正方体的面上,且满足:面。
浙江省2019年高考模拟训练卷数学(三)(附解析)

浙江省2019 年高考模拟训练卷数学(三)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,,则()A. B. C. D.【答案】C【解析】【分析】先求出A∩B,然后再在全集U={1,2,3,4,5}下求∁U(A∩B).【详解】∵A=,B=,∴A∩B={1,2,3},又∵全集U={1,2,3,4,5},∴∁U(A∩B)={4,5}.故选:C.【点睛】本题主要考查集合的交并补的混合运算,求得A与B的交集是关键,属于基础题.2.已知双曲线,则的离心率是()A. B. C. 2 D.【答案】B【解析】【分析】由题意知双曲线为等轴双曲线,由此得离心率.【详解】∵双曲线方程为,∴双曲线为等轴双曲线,∴e=.故选B.【点睛】本题考查了等轴双曲线的特点,考查了双曲线的性质,属于基础题.3.已知(为虚数单位),则()A. B. C. D.【答案】B【解析】【分析】由于a+bi=,故有a=,b=-,即可得结果.【详解】由于a+bi==,∴a+bi=,∴a=,b=-,∴=故选B.【点睛】本题主要考查两个复数相等的充要条件,考查了复数的乘除运算,属于基础题.4.函数的图像可能是()A. B.C. D.【答案】C【解析】【分析】利用奇偶性及函数值的正负进行排除即可.【详解】∵=,∴函数为偶函数,排除A、B,又当0<x<时,,排除D,故选C.【点睛】本题考查了函数图像的识别,利用函数性质及特殊函数值进行排除是常用方法,属于基础题. 5.某几何体的三视图如图所示(单位:),则该几何体的体积(单位:)是()A. 2B.C.D.【答案】D【解析】【分析】由已知中的三视图可得该几何体是一个以俯视图为底面高为1的棱锥,利用锥体体积公式可得到答案.【详解】由三视图可知:该几何体是如下的一个三棱锥,如图:∴该几何体的体积.故选:D.【点睛】本题考查了三视图的还原、三棱锥的体积计算公式,考查了空间想象能力,属于中档题.6.已知5辆不同的白颜色和3辆不同的红颜色汽车停成一排,则白颜色汽车至少2辆停在一起且红颜色的汽车互不相邻的停放方法有()A. 1880B. 1440C. 720D. 256【答案】B【解析】【分析】先从5辆白色汽车选3辆全排列后视为一个整体,再将剩余2辆白色汽车全排列后视为一个整体,再将这两个整体全排列,共有3个空,3辆不同的红颜色汽车插空排列即可.【详解】由题意知,白颜色汽车按3,2分两组,先从5辆白色汽车选3辆全排列共种排法,再将剩余2辆白色汽车全排列共种排法,再将这两个整体全排列,共种排法,排完后有3个空,3辆不同的红颜色汽车插空共种排法,由分步计数原理得共种.故选B.【点睛】本题主要考查排列中的相邻与不邻问题,常用捆绑与插空法解决,应用了分步计数原理,理解题意是解题得关键,属于中档题.7.在中,“”是“为钝角三角形”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】【分析】先由诱导公式将正弦化余弦,利用余弦函数的单调性得到角或角为钝角,再举反例说明必要性不成立即可.【详解】∵,且B必为锐角,可得或,即角或角为钝角;反之,当,时,,而=,所以不成立,所以“”是“为钝角三角形”的充分不必要条件,故选.【点睛】本题考查充分必要条件的判定,考查了三角形形状的判定,考查诱导公式及三角函数的单调性,属于综合题.8.设函数.已知对任意的,若,,恒有,则正实数的取值范围是()A. B. C. D.【答案】D【解析】【分析】利用函数的性质将不等式转化为,由对称性结合区间端点的大小得到a与k的关系,即在上恒成立,求得的最值即可得到k的范围.【详解】因为==,∴为偶函数且在上单调递增,由对称性得在上单调递减,∴,又>,只需-(,即,即在上恒成立,∴,则正实数的取值范围是.故选D.【点睛】本题主要考查函数的单调性与奇偶性的应用,注意不等式恒成立问题转化为求函数的最值,考查了分析问题的能力及转化思想,属于中档题.9.如图,是以直径的圆上的动点,已知,则的最大值是()A. B. C. D.【解析】【分析】过点作的平行线交圆于点,交BC于M,且M为垂足,设D在OE的投影为N,由向量的几何意义可知,=,只需当N落在E处时,MN最大,求得2cosθ,再由θ∈[0,)求得最值即可.【详解】如图,先将C视为定点,设∠CAB=θ,θ∈[0,),则AC=2cosθ,连接CB,则CB AC,过O作AC的平行线交圆于E,交BC于M,且M为垂足,又知当D、C在AB同侧时,取最大值,设D在OE的投影为N,当C确定时,M为定点,则当N落在E处时,MN最大,此时取最大值,由向量的几何意义可知,=,最大时为,又OM=cosθ, ∴cosθ,∴最大为2cosθ,当且仅当cosθ=时等号成立,即θ=,∴ 的最大值为.故选A.【点睛】本题考查向量数量积的几何意义,考查了数形结合思想,解题关键是找到数量积取得最大时的D的位置,当题目中有多个动点时,可以先定住一个点,是常用的手段,考查了逻辑推理能力,属于难题. 10.已知数列满足,,,数列满足,,,若存在正整数,使得,则()A. B. C. D.【解析】【分析】由题意得,,利用单调性可得,代入已知求得,,又,得到,可得所求.【详解】因为,,则有,,且函数在上单调递增,故有,得,同理有,又因为,故,所以.故选D.【点睛】本题考查了数列及函数单调性的应用,考查了逻辑思维能力及分析能力,属于难题.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)11.已知函数,则__________;__________.【答案】 (1). 2 (2).【解析】【分析】由已知利用分段函数及对数函数的性质求解.【详解】∵函数,∴f(4)==2,=f()==,故答案为:(1). 2 (2).【点睛】本题考查函数值的求法,是中档题,解题时要认真审题,注意分段函数及对数性质的合理运用.12.若实数满足不等式组,则的最大值为__________.【答案】10【解析】【分析】作出不等式组对应的平面区域,利用数形结合即可得到结论.【详解】由z=y﹣2x,得y=2x+z,作出不等式对应的可行域,平移直线y=2x+z,由平移可知当直线y=2x+z经过点A时,线y=2x+z的截距最大,此时z取得最大值,由,得,即A(-3,4)代入z=y﹣2x,得z=4﹣2×(-3)=10,即z=y﹣2x的最大值为10.故答案为:10.【点睛】本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法,属于基础题.13.若,则__________.【答案】0【解析】【分析】利用二项式定理可知,对已知关系式中的x赋值,即可求得的值.【详解】∵令x=2得:0=,即=0;故答案为:0.【点睛】本题考查二项式定理的应用,考查赋值法的应用,属于基础题.14.在中,角所对的边,点为边上的中点,已知,,,则__________;__________.【答案】 (1). (2).【解析】【分析】直接利用余弦定理可得,利用中线定理的向量表示法将表示出,平方可得模.【详解】在中,=,同理可得-,又=(+),平方得=,所以,故答案为(1). (2).【点睛】本题考查了余弦定理,考查了向量法表示中线及求模,属于中档题.15.已知,若,则的最小值为__________;若,则的最大值为__________.【答案】 (1). 8 (2).【解析】【分析】根据题意,由基本不等式的性质可得4=x+2y≥2,变形可得2xy,进而可得x2+4y2=(x+2y)2﹣4xy =16﹣4xy,分析可得第一个空;再利用柯西不等式求得第二个式子的最值.【详解】根据题意,x,y∈R+,且x+2y=4,则有4=x+2y≥2,变形可得2xy,(当且仅当x=2y时等号成立)x2+4y2=(x+2y)2﹣4xy=16﹣4xy,又由4xy,则有x2+4y2,即x2+4y2的最小值为8;若,则由柯西不等式得()(1+),(当且仅当x=4y时等号成立),所以4即的最大值为,故答案为:(1). 8 (2). .【点睛】本题考查基本不等式的性质以及应用,考查了柯西不等式,属于中档题.16.已知直线与抛物线交于两点,点,,且,则__________.【答案】-3【解析】【分析】设,,将条件坐标化,利用向量相等与点在抛物线上,得到,构造方程,求得结果.【详解】设,,则,,,则有,代入方程,故有,同理,有,即可视为方程的两根,则.故答案为-3.【点睛】本题考查了向量相等的坐标表示,考查了曲线与方程的定义,考查了方程思想,属于中档题. 17.如图,在三棱锥中,点为的中点,点在平面的投影恰为的中点.已知,点到的距离为,则当最大时,二面角的余弦值是__________.【答案】【解析】【分析】由条件得到点的轨迹是以为长轴的椭圆,利用椭圆的对称性知当最大时有,做出二面角的平面角,在中求解即可.【详解】因为点到的距离为,则点是以为旋转面的轴的圆柱与平面的公共点,即点的轨迹是以为长轴,以为短轴长的椭圆,又由椭圆的对称性可知,则当最大时有.如图,在上取一点,满足,连接,则有,又因为,则是二面角的平面角,在中,OP=1,OE=, ∴PE=, ∴PF=,在中,,故二面角的余弦值是.故答案为.【点睛】本题考查了二面角的作法及求法,考查了平面截圆锥所得的圆锥曲线的形状,考查了逻辑思维与运算能力,属于难题.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)18.已知函数.(1)求函数在上的值域;(2)若,求.【答案】(1)(2)【解析】【分析】(1)根据正弦函数的定义域求得的范围,利用正弦函数在的图像特点求得函数f(x)sin (2x)的值域.(2)将展开,结合二倍角公式及同角基本关系式,将弦化切,直接解方程即可.【详解】(1)因为x,∴,当时,最大为,当时,最小为1,所以在的值域为;(2)因为,即,所以.∴.【点睛】本题着重考查了三角函数的图象与性质,考查了利用同角基本关系求值问题,考查了二倍角公式,属于中档题.19.在三棱锥中,平面平面,,,,.(1)证明:;(2)求直线与平面所成角的正弦值.【答案】(1)详见解析(2)【解析】【分析】(1)利用面面垂直,可证平面,从而有,再利用勾股定理证明,可证平面,证得结论.(2)先证得平面平面,过点作于点,有平面,可证明是与平面所成的角,在△ABC中,求得,可得,由等面积法知,即可求解直线与平面所成角的正弦值. 【详解】(1)由题意平面平面,平面,平面平面=AC,又,,∴,∴平面,从而有,又由勾股定理得,,∴平面,即;(2)设,则,在中,,即.故,,过作于点,连接,过点作于点,连接,因为且,故平面,又因为平面,所以平面平面,进而有平面,故是与平面所成的角,在中,有,得,故,,由等面积法知,所以,故直线与平面所成角的正弦值为.【点睛】本题考查了直线与平面垂直的判定与性质,考查了面面垂直的性质定理的应用,考查了直线与平面所成角的正弦值,关键是正确作出直线与平面所成角,是中档题.20.已知数列的前项为.(1)证明:为等比数列;(2)求数列的前项和为.【答案】(1)详见解析(2).【解析】【分析】(1)由已知数列递推式求出数列首项,进一步可得当n≥2时,S n﹣1=3a n﹣1﹣,与原递推式联立可得结论;(2)把(1)中求得的数列通项公式代入,利用分组求和及错位相减法即可求得T n.【详解】(1)当时,,当时,S n﹣1=3a n﹣1﹣,∴,即,故,所以,故是为首项,以为公比的等比数列;(2)由(1)知,故,令数列,的前和为,则,因为,,,则,即,故.【点睛】本题考查数列递推式,考查了等比关系的判定与证明,考查了错位相减法及分组求和法求数列的前n项和,是中档题.21.如图,直线交椭圆于两点,点是线段的中点,连接并延长交椭圆于点.(1)设直线的斜率为,求的值;(2)若,求面积的最大值.【答案】(1)(2)【解析】【分析】(1)设A(x1,y1),B(x2,y2),代入椭圆方程,利用点差法能得到的值.(2)由(1)知,则可求点F坐标,利用点到直线的距离公式求得的高,联立,由韦达定理求得,将面积表示为关于m的函数,求导求得最值.【详解】(1)设,则,将A、B点坐标代入椭圆方程,有……①,……②,①-②得,即,即;(2)由(1)知,当时,有,则有直线,直线,不妨设,则有,故点到直线的距离,联立方程组,即,则,故面积,令,则,令则或2(舍去)∴时,有最大值243,即面积的最大值为.【点睛】本题考查椭圆方程的求法,考查两直线的斜率之积为定值的证明,注意根的判别式、韦达定理、直线的斜率、椭圆性质、点差法的合理运用,考查了弦长公式的应用,借助导数求函数最值的求法,体现了“设而不求”的解题思想方法,是中档题.22.知函数,.(1)求的单调区间;(2)证明:存在,使得方程在上有唯一解.【答案】(1)详见解析(2)详见解析【解析】【分析】(1)求出函数f(x)的定义域,对函数f(x)求导得到,分与,得到导函数在各区间段内的符号,得到函数f(x)的单调区间;(2)构造,求导分析的单调性,找到a<1时,在上恒成立,在上递增,而h(,,由函数零点存在定理得到存在,使得方程在上有唯一解,即证得结论.【详解】(1)函数f(x)的定义域为,因为,令,则,即,则在上恒成立,当或,由有或,由有,综上,当时,的递增区间是,当或时,的递增区间是,递减区间是;(2)令,当时,则,因为,故当时,,当时,,所以在上递减,在上递增,即当时,有最小值,又h(1)=1-2a,当a<1时,h(1)0,即在上恒成立,又a<1时,,取x=,则即,又在上递增,而h(,由函数零点存在定理知在上存在唯一零点,所以当a<1时即存在,使得方程在上有唯一解,即方程在上有唯一解.【点睛】本题主要考查导数的运算、导数在研究函数中的应用、函数零点等基础知识,考查了推理论证能力、运算求解能力,考查了函数与方程、分类与整合、化归与转化等数学思想方法,属于难题.。
浙江省杭州市2019届高三高考命题比赛模拟数学试卷15Word版含答案

=5, 3
ξ
1
2
3
P
a
b
c
13. [ 原创 ] 多项式 x 2 2 x x 1 6 的展开式中常数项 _______ ,是 x 6 项的系数是 _______。 14. [ 原创 ] 已知直线 l : mx y 1, 若直线 l 与直线 x my 1 0 平行,则 m 的值为 ________,动直线 l 被圆 x2 2 x y2 24 0 截得的弦长最短为 ________
] (本题满分 15 分)已知正四棱锥
P ABCD 中,底面是边长为 2 的正方形,高为 2 , M 为线段 PC 的中P点。
(1) 求证: PA ∥平面 MDB ;
N
(2) N 为 AP 的中点,求 CN 与平面 MBD 所成角的正弦值。
5. [ 原创 ] 为了得到函数 y sin 3x - cos3x 的图象,可将函数 y 2 sin 3x的图象(
)
A. 左平移 个单位
B.
4
向右平移 个单位
4
C. 向左平移
个单位
D.
12
向右平移
个单位
12
2x 4 y 7,
6. [ 原创 ] 若 x, y 满足约束条件 2x 3y 9, 则 z 10 x 10 y 的最大值是(
x2
y2
a2 的切线,切点为 E ,延长 FE 交双曲线右支于点 P ,若 OP 2OE OF ,则
4
2
双曲线的离心率为
()
A. 10
B
. 10
C
. 10
5
2
D
.2
9. [ 改编自步步高 ] 如图 Rt ABC 中, ACB 90 ,直线 过点 A 且垂直于平面 ABC ,
2019年浙江省普通高中高三新高考统一模拟考试数学试卷及解析

2019年浙江省普通高中高三新高考统一模拟考试数学试卷★祝考试顺利★ (含答案)选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知全集{1,0,1,2,3}U =-,集合{0,1,2}A =,{1,0,1}B =-,则()UA B =A .{1}-B .{0,1}C .{1,2,3}-D .{1,0,1,3}- 2.渐近线方程为0x y ±=的双曲线的离心率是A .2B .1 C.2 D .2 3.若实数,x y 满足约束条件340,340,0,+x y x y x y -+≥⎧⎪--≤⎨⎪≥⎩则32z x y =+的最大值是A. 1-B. 1C. 10D. 12 4.祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不V Sh =柱体,其容异”称为祖暅原理,利用该原理可以得到柱体的体积公式中S 是柱体的底面积,h 是柱体的高.若某柱体的三视图如图所示(单位:cm ),则该柱体的体积(单位:cm 3)是A. 158B.162C. 182D. 324 5.设0,0a b >>,则“4a b +≤”则“4ab ≤”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 6.在同一直角坐标系中,函数1x y a =,1log ()2ay x =+(01)a a >≠,且的图象可能是(第4题图)俯视图侧视图正视图663342A. B. C. D.7.设01a <<.随机变量X 的分布列是则当a 在(0,1)内增大时,A .()D X 增大B .()D X 减小C .()D X 先增大后减小 D .()D X 先减小后增大8.设三棱锥V ABC -的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点).记直线PB 与直线AC 所成的角为α,直线PB 与平面ABC 所成的角为β,二面角P AC B --的平面角为γ,则A. βγ<,αγ<B. βα<,βγ<C. βα<,γα<D. αβ<,γβ<9.设,R a b ∈,函数32,0,()11(1),032x x f x x a x ax x <⎧⎪=⎨-++≥⎪⎩.若函数()y f x ax b =--恰有3个零点,则A .1a <-,0b <B . 1a <-,0b >C .1a >-,0b <D . 1a >-,0b >10.已知,a b ∈R ,数列{}n a 满足1a a =,21n na ab +=+,n ∈*N ,则 A .当12b =时,1010a > B .当14b =时,1010a > C .当2b =-时,1010a > D .当4b =-时,1010a >非选择题部分(共110分)。
2019年浙江省高考模拟训练卷数学(三)

A.
B.
C.
D.
【答案】B
4.函数
的图像可能是( )
()
A.
B.
C.
D.
【答案】C 5.某几何体的三视图如图所示(单位: ),则该几何体的体积(单位: )是( )
A. 2 B.
C.
D.
【答案】D
6.已知 5 辆不同的白颜色和 3 辆不同的红颜色汽车停成一排,则白颜色汽车至少 2 辆停在一起且红颜色的
,当
时,
,所以 在
上
递减,在
上递增,即当
时, 有最小值,又 h(1)=1-2a,
当 a<1 时,h(1) 0,即
在
上恒成立,
又 a<1 时,
,
取 x= ,则
即
,
又在
上递增,而 h(
,由函数零点存在定理知 在
上存在唯一零点,
所以当 a<1 时即存在
,使得方程
在
上有唯一解,即方程
在
上有唯
一解. 【点睛】本题主要考查导数的运算、导数在研究函数中的应用、函数零点等基础知识,考查了推理论证能 力、运算求解能力,考查了函数与方程、分类与整合、化归与转化等数学思想方法,属于难题.
则当 最大时有
.
如图,在 上取一点 ,满足
,
连接 ,则有 则 是二面角
,又因为
,
的平面角,
在 中,OP=1,OE= , ∴PE= , ∴PF=
,
在 中,
,故二面角的余弦值是 .
故答案为 .
,做出二面角
【点睛】本题考查了二面角的作法及求法,考查了平面截圆锥所得的圆锥曲线的
形状,考查了逻辑思维与运算能力,属于难题. 三、解答题 (本大题共 6 小题,共 70 分.解答应写出文字说明、证明过程或演算步骤.)
浙江省2019届高考模拟卷(一)数学试卷(含精品解析)

浙江省2019年高考全真模拟卷(一)数学试卷第Ⅰ卷(选择题部分,共40分)一、选择题:本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则()A. B. C. D.【答案】A【解析】因为,,所以.故选A.2.若复数满足,在复数的虚部为()A. B. 1 C. -1 D.【答案】C【解析】【分析】由复数的除法运算公式可得,从而可求出z的共轭复数,即可得出结果.【详解】由题意可知,,故,所以其虚部为-1.【点睛】本题主要考查复数的四则运算和共轭复数的概念,属于基础题型.3.已知是双曲线渐近线上的点,则双曲线的离心率是()A. 2B.C.D.【答案】A【解析】【分析】由在双曲线的渐近线上,得=,由e=计算可得.【详解】因为双曲线的渐近线方程为y=,在渐近线上,所以=,则e==2.故选:A.【点睛】本题考查了双曲线的离心率求法,也考查了渐近线方程的应用,属于基础题.4.设,满足约束条件,则的最小值是()A. 1B.C.D.【答案】C【解析】【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,把最优解的坐标代入目标函数得结论.【详解】满足约束条件的可行域如图:化为,平移直线,经过可行域的时,目标函数取得最小值,由,解得,则的最小值是,故选C .【点睛】本题主要考查线性规划中,利用可行域求目标函数的最值,属于简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.5.已知圆.设条件,条件圆上至多有个点到直线的距离为,则是的A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】C【解析】解:圆C:(x−1)2+y2=r2(r>0).圆心(1,0)到直线的距离.由条件q:圆C上至多有2个点到直线x−y+3=0的距离为1,则0<r<3.则p是q的充要条件。
浙江省杭州市2019届高三高考命题比赛模拟数学试卷2 Word版含答案

2019年5月2019年浙江省普通高校招生考试模拟卷数学卷双向细目表2019年浙江省普通高校招生考试模拟卷数学试题卷本试题卷分选择题和非选择题两部分.全卷共6页,选择题部分1至3页;非选择题部分3至6页.满分150分.考试用时120分钟. 考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填在试题卷和答题纸规定的位置上.2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效. 参考公式: 如果事件A 、B 互斥,那么 柱体的体积公式 P (A +B )= P (A )+ P (B )V =Sh如果事件A 、B 相互独立,那么其中S 表示柱体的底面积,h 表示柱体的高 P (A •B )= P (A )•P (B )锥体的体积公式如果事件A 在一次试验中发生的概率为p , V =13Sh那么n 次独立重复试验中事件A 恰好发生 其中S 表示锥体的底面积,h 表示锥体的高.k 次的概率 球的表面积公式P n (k )=(1)(0,1,2,,)k k n k n C p p k n --= S =4πR 2 台体的体积公式球的体积公式V =13(S 1+S 2) h V =43πR 3其中S 1、S 2表示台体的上、下底面积, 其中R 表示球的半径 h 表示棱台的高.选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(原创题)已知集合{}3P x x =->,104x Q x x ⎧-⎫=≤⎨⎬+⎩⎭,则()R C P Q =A.(]3,1-B.(],4-∞-C.(]1-∞,D.[)1+∞,【命题意图】本题主要考查集合的交、并、补的运算,检测对基础知识的了解程度. 2.(原创题)抛物线24y x =的焦点坐标 A.()1,0B.()0,1C.1016⎛⎫⎪⎝⎭,D.1016⎛⎫⎪⎝⎭,【命题意图】本题主要考查抛物线的基本概念.3.(原创题)复数z 满足()122i z +=(i 为虚数单位),则z 的虚部是 A.45- B.45i-C.43D.43i 【命题意图】本题主要考查复数的概念及代数运算.4.(原创题)已知{}n a 是公比不为1的等比数列且公比为q ,前n 项和为n S ,则“10a >”是“4652S S S +>” 的 A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【命题意图】本题主要考查充要条件的相关知识以及逻辑推理、判断的思维能力.5.(原创题)函数sin ln 2y x x π⎛⎫=-⋅ ⎪⎝⎭的图像可能是AB高三数学试题卷第1页,共6页CD【命题意图】本题主要考查三角函数的图像与性质,图像的平移变换等.6.(原创题)某几何体的三视图如图所示,则该几何体的体积为A.【命题意图】本题主要考查关于“几何体的三视图”与“三视图的几何体”的相互转化和空间想象能力.7.(改编自2017年清华大学自主招生暨领军计划第30题)已知ξ为随机变量,则下列说法错误的是A.21122P P ξξ⎛⎫⎛⎫≤≤≤ ⎪ ⎪⎝⎭⎝⎭ B.()()()221D D ξξ=-C.()()1D D ξξ=-D.()()()22E E ξξ≤【命题意图】本题主要考查概率、随机变量的分布列、数学期望和方差的概念.8.(原创题)若0,0a b ≥≥,当11x y x y m ≥⎧⎪≥⎨⎪+≤⎩时,恒有1ax by +≤,且以,a b 为坐标点(),P a b 所形成的平面区域的面积为16,则m = A.136B.133C.3D.6【命题意图】本题主要考查数形结合的思想,以及综合运用函数思想解题的能力.113高三数学试题卷第2页,共6页9.(原创题)已知123,,e e e 为空间单位向量,1223311===2e e e e e e ⋅⋅⋅.若空间向量a 满足1233==a e a e ⋅⋅,且 对于任意,x y R ∈,()124a xe ye -+≥,则3a e λ-的最小值为【命题意图】本题考查向量的基本运算、向量的几何意义,以及基本的数学方法.10.(原创题)三棱锥P ABC -中,三个侧面与底面所成角相等,三个侧面的面积分别为12,16,20且底面面积为24,则三棱锥P ABC -的外接球的表面积为 A.193πB.793πC.763πD.3163π【命题意图】本题考查学生的空间想象能力、抽象概括能力.非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分. 11.(原创题)计算:3log = ,93log4log 43+= .【命题意图】本题考查指数和对数的基本运算.12.(原创题)已知()()()sin sin cos sin 0x x x A wx b A ϕ⋅+=++>,则A = ,=b.【命题意图】本题考查三角函数的基本运算和变形能力.13.(原创题)已知多项式()()32234567012345671+12x x x a a x a x a x a x a x a x a x ++=+++++++,则3a =,7a =.【命题意图】本题考查二项式定理的基础概念及运算能力.14.(原创题)在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,若4,3b c ==,3CD BD =,3cos 8A =,则=a ,=AD .高三数学试题卷第3页,共6页【命题意图】本题考查解三角形思想及平面向量的几何意义.15.(原创题)若a 为实数,且关于x的方程x 有实数解,则a 的取值范围是.【命题意图】本题考查函数与方程的相关知识,及利用导数知识来解方程的能力.16.(原创题)某校共开设了六门选修课:物理、化学、生物、政治、历史、地理,要求每名学生选三门课,其中物理、化学、生物中至少要选两门.现有A 、B 、C 三人选课,则任意一名学生与其他两名学生均至少有两门选修课相同的概率为.【命题意图】本题考查概率、排列、组合知识的综合应用,同时考查学生分类讨论思想和解决问题的能力.17.(2018年浙江省新名校第一次联考第17题改编)设函数()2()=,f x x a x b a b R +++∈,当[]2,2x ∈-时,记()f x 的最大值为258,则a 的值为 .【命题意图】本题考查含有绝对值不等式的解法,以及数形结合、等价转化、分类讨论等数学思想和能力.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤. 18.(原创题)(本题满分14分)已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边上有一点P 的坐标是()3,a a ,其中0a ≠. (1)求cos α的值;(2)若()tan 21αβ+=,求tan β的值.【命题意图】本题考查三角函数及其变换、正弦和余弦定理等基础知识,同时考查运算求解能力.高三数学试题卷第4页,共6页19.(原创题)(本题满分15分)如图,已知多面体1111ABCD A B C D -,1111,,,AA BB CC DD 均垂直于平面ABCD ,AD BC ∥,11=2AB BC CD AA CC ====,1=1BB ,14AD DD ==.(1)证明:11AC ⊥平面11CDD C .(2)求直线1BC 与平面111A B C 所成角的正弦值.【命题意图】本题考查空间、点、线、面位置关系,线面角等基础知识,同时考查空间想象能力和运算求解能力.20.(原创题)(本题满分15分)已知数列{}n a 满足2112331++3+332nn n a a a a -⎛⎫++= ⎪⎝⎭(n N *∈),数列{}n b 满足1=1b ,()+1=n n n b a b n N *-∈,n n n a b c =,n S 为数列{}n c 的前n 项和.(1)求数列{}n b 的前2019项和;(2)求32nn nb S -⋅. 【命题意图】本题考查数列的概念及通项公式的求解,前n 项求和问题,同时考查转化与化归、整体思想的能力.21.(原创题)(本题满分15分)已知抛物线C :28y x =的焦点为F ,过F 作直线l 与抛物线C 交于,A B 两点,分别过,A B 作抛物线C 的切线,交y 轴于,M N 两点,且两切线相交于点E .1A 高三数学试题卷第5页,共6页(1)证明:点E 在定直线上,并求该直线方程. (2)求四边形AM NB 面积的最小值.【命题意图】本题考查抛物线的几何性质、直线与抛物线的位置关系 等基础知识,同时考查解+析几何的基本思想方法和综合解题能力.22.(原创题)(本题满分15分)已知函数()()()=11x f x x e +-. (1)求()f x 在点()1,(1)f --处的切线方程;(2)若1a e ≤-,证明:()ln 22f x a x ex ≥+-在[)1,x ∈+∞上恒成立. (3)若方程()f x b =有两个实数根12,x x ,且12x x <,证明:2111311b e ebx x e e ++-≤++--. 【命题意图】本题考查导数在单调性与最值、极值、切线问题中的应用,及不等式性质、恒成立等基础知识,同时考查推理论证能力,分类讨论及分析问题和解决问题的能力.高三数学试题卷第6页,共6页2019年浙江省普通高校招生考试模拟卷数学答题卷选择题1 [ A ] [ B ] [ C ] [ D ] 6 [ A ] [ B ] [ C ] [ D ]2 [ A ] [ B ] [ C ] [ D ] 7 [ A ] [ B ] [ C ] [ D ]3 [ A ] [ B ] [ C ] [ D ] 8 [ A ] [ B ] [ C ] [ D ]4 [ A ] [ B ] [ C ] [ D ] 9 [ A ] [ B ] [ C ] [ D ]5 [ A ] [ B ] [ C ] [ D ] 10 [ A ] [ B ] [ C ] [ D ]非选择题18.(本小题满分14分)高三数学答题卷第1页,共4页21.(本小题满分15分)20.(本小题满分15分)高三数学答题卷第2页,共4页高三数学答题卷第3页,共4页22.(本小题满分15分)2019年浙江省普通高校招生考试模拟卷 数学答案解+析选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.【答案】C 由(]4104,1414x x Q x x ≠-⎧-≤⇒⇒=-⎨-≤≤+⎩,(]=,3R C P -∞-,所以()(]1R C P Q =-∞,,选C. 2.【答案】D24y x =,焦点在y 轴上且焦点坐标为1016⎛⎫⎪⎝⎭,,选D. 3.【答案】A221224241212121455i i i z i i i --==⋅==-++-+,所以虚部为45-,选A.4.【答案】C()()()()41244651112111001a q S S S q a q q a q-+=⋅-=--⇔-->>,所以选C.5.【答案】Dsin ln cos ln 2y x x x x π⎛⎫=-⋅=-⋅ ⎪⎝⎭为偶函数,且0x +→,y →+∞,选D.另解:,0x y π=≠,选D.6.【答案】B如下图所示,该几何体是一个三棱柱截去一个三棱锥.体积2211232332V ⎫⎛⎫=⋅-⋅=⎪ ⎪⎪ ⎪⎝⎭⎝⎭B. 7.【答案】B高三数学答题卷第4页,共4页对于选项A ,由于21122ξξ≤⇒≤,命题正确; 对于选项B ,考虑举反例:取()()1112P P ξξ===-=,则()()()220,10D D ξξ=-≠,命题错误;对于选项C ,()()()()211D D D ξξξ-=-=,命题正确; 对于选项D ,()()()()220E E D ξξξ-=≥,命题正确;8.【答案】C只要()max 1ax by +≤,显然线性目标函数ax by +最大值在可行域的边界取到,有 ()()11111a b m a b a b m ⎧+≤⎪-+≤⎨⎪+-≤⎩,所以点(),P a b 所形成的平面区域为关于y x =轴对称的四边形, ()11111232116S m m m m m =⨯⋅⋅==⇒=--,选C.9.【答案】A由题意123,,e e e 两两夹角为60︒,记123=,,e O Ae O Be O C ==,以O 为原点建立空间直角坐标系,()1233131=,,0,0,1,0,=22e e e ⎛⎫⎛= ⎪⎪⎝⎭⎝⎭,,,设()=,,a x y z 则 1233=33322,2y x a e x a z y a e y ⎧⎧=⋅+⎪⎪⎛⎫⎪⎪⇒= ⎪⎨⎨ ⎪⎝⎭⎪⎪=⋅=⎪⎪⎩⎩. 又()124a xe ye z -+≥=,不妨取333=42a ⎛⎫⎪ ⎪⎝⎭,.则33=a e λ⎛--10.【答案】D设侧面与底面所成角均为θ,由射影面积法知241cos 12162023πθθ==⇒=++,且点P 在底面上的射影恰为ABC 的内心I .又三个侧面的面积分别为12,16,20知高三数学答案解析第1页,共7页ABC三边之比为3:4:5.注意到底面面积为24,所以ABC三边为6,8,10为直角三角形,内切圆半径为2,三棱锥P ABC-的高为设三棱锥P ABC-的外接圆圆心为O,半径为R,且ABC内心I与外心'O由球心在三棱锥P ABC-的外面构成直角三角形易得(2222279316+433R R S Rππ=⇒=⇒==.非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分. 11.【答案】12-,8由对数运算知1231log log32-==-,93333log4log4log2log4log83338++===.12.,12()1cos2sin211 sin sin cos222422x xx x x x A bπ-⎛⎫⋅+=+-+⇒==⎪⎝⎭. 13.【答案】19,2由()()()()()()33333 22222 1+1211+21+121x x x x x x x x x x x x x⎡⎤⎡⎤++=⋅+++=+++++⎣⎦⎣⎦知()()11031002332333233219a C C C C C C C C=+++=,7=2a.14.【答案】42222cos16a b c bc A=+-⋅=,解得4a=;由3144AD AB AC=+,平方得22291331=cos=161684AD ABAC AB AC A++.所以AD=15.【答案】34a≥高三数学答案解析第2页,共7页记(f x x (1x ≥),则'()10f x =>,所以()f x单调递增.当1a ≥时,01f a ≤⇒≥;当1a <时,3(1)014f a ≤⇒≤<.综上,34a ≥. 16.【答案】79250每名学生不同的选法有21333310C C C +=.若三人均选了,,A B C 三门,则选法有1种;若三人恰有两人选了,,A B C 三门,则选法有22133327C C C =种;若三人恰有一人选了,,A B C 三门,则选法有()121121333333135C C C C A C +=种;若三人没有一人选了,,A B C 三门,则选法有11112111313333332333153C C C C C C C C A C ++=种.所以所求概率为31+27+135+15331679==100025010.17.【答案】238a =-记,c a b d a b =+=-,则(){}22max 11max ,=max ,6,,64411662544max ,228f x x x c x x d c c d d c c d d ⎧⎫=++-+-++-++⎨⎬⎩⎭⎧⎫-+++-+++⎪⎪⎪⎪≥=⎨⎬⎪⎪⎪⎪⎩⎭, 所以256=8c +且2568d +=,解得238a =-. 三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤. 18.(本题满分14分)【答案】(1)见解+析;(2)17. (1)当0a >时,点P 在第一象限,cos α==当0a <时,点P 在第三象限,cos α=. 高三数学答案解析第3页,共7页(2)由题意点P 在一三象限,1tan 3α=,所以22tan 3tan 241tan ααα==-. 所以()()()tan 2tan 21tan =tan 22=1tan 2tan 27a αβαβαβαβα+-+-=⎡⎤⎣⎦++⋅. 19.(本题满分15分)【答案】(1)见解+析;(2)14.(1)连接AC ,由于11AA CC ∥且11A C AC ∥,所以四边形11ACC A 为平 行四边形,即1A C AC ∥.又底面ABCD 为等腰梯形,且有AC CD ⊥. 侧棱1C C ⊥平面ABCD ,AC ⊂平面ABCD ,所以1C C AC ⊥. 又1CD CC C =,所以AC ⊥平面11CDD C ,故11AC ⊥平面11CDD C .(2)由题意1BC =延长DC 、11D C 、AB 、11A B 交于点G ,取CG 中点M ,连BM AC 、. 由11BM AC AC ∥∥,BM ⊄平面111A B C ,11AC ⊂平面111A B C ,所以BM ∥平面111A B C . 因此点B 到平面111A B C 的距离和点M 到平面111A B C 的距离相等.由(1)知11AC ⊥平面11CDD C ,又11AC ⊂平面111A B C ,所以平面111A B C ⊥面11CDD C .过点M 作1MH GD ⊥,则M H ⊥平面111A B C ,即点M 到平面111A B C的距离为MH 所以直线1BC 与平面111A B C 所成角为θ,则有11sin 4MH BC θ===.解法二:建系法以O为原点如图建立空间直角坐标系,则()()()()11,4,0,2,,1B A B C . ()12,0,2BC =-,()()11113,3,0,2,0,1AC B C =-=-,设平面111A B C 的法向量为(),,nx y z =由11113020AC n x B C n x z ⎧⋅=-=⎪⎨⋅=-+=⎪⎩,解得,2y z x =.取法向量()1,3,2n =.设直线1BC 与平面111A B C 所成角为θ,则11sin cos ,4BC n θ===. 20.(本题满分15分)【答案】(1)101041134⎛⎫- ⎪⎝⎭;(2)14194n n --⋅.(1)当1n =时,11=2a ;1A1高三数学答案解析第4页,共7页当2n ≥时,2112331++3+332nn n a a a a -⎛⎫++= ⎪⎝⎭,122123131++3+332n n n a a a a ---⎛⎫++= ⎪⎝⎭,两式相减得()1113132222n n n n n a a n --⎛⎫=⋅⇒=≥ ⎪⎝⎭.又11=2a 也符合表达式,所以12n na =. ()()()12201912345201820191242018b b b b b b b b b b b a a a +++=+++++++=++++210091010111411143444⎛⎫=++++=- ⎪⎝⎭(2)由题意2nn n b c =,则 ()()()12212111223121111=+++3223222221111 32221114141 =113494494n n n n n n n n n n n n nn n n b b b b b b b S b b b b b b b b -----⎡⎤⎛⎫⎛⎫-++++-⎢⎥ ⎪ ⎪⋅⎝⎭⎝⎭⎣⎦⎡⎤=+++++++⎢⎥⎣⎦-⎡⎤⎛⎫+++=-= ⎪⎢⎥⋅⎣⎦⎝⎭.21.(本题满分15分)【答案】(1)2x =;(2)12.(1)不妨设点()00,E x y ,则切点弦AB :()004+x x y y =.又切点弦AB 过点()2,0F ,有()004+2=02x x ⇒=-,因此点E 在定直线上2x =上.(2)设()22121212,,,0,088y y A y B y y y ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭><.直线AB : 2x my =+与抛物线C :28y x =联立得212128160+=8,16y my y y m y y --=⇒=-.过点A 的切线方程为()114y y x x =+.令0x =得2111114842M y x y y y y ==⨯=,同理可得22N yy =.过点,A B 分别作y 轴的垂线,垂足分别为11,A B ,则()()111112*********=S 22222AMNB AA B B AMA BNB y yS S S x x y y x x ∆∆⎛⎫--=+--+ ⎪⎝⎭()()()()()()2233121211221212121112432x x y y x y x y y y y y y y ⎡⎤=+---==+---⎣⎦ ()(2212121148836448=12323232y y y y m ⨯⎡=+-+≥⎣. 当且仅当0m =时取等号. 22.(本题满分15分)高三数学答案解析第5页,共7页【答案】(1)()11ey x e-=+;(2)见解+析;(3)见解+析. (1)由()()'21x f x x e =+-知,()'111f e-=-,()1=0f -,所以在点()1,(1)f --处的切线方程为()11ey x e-=+. (2)当[)1,x ∈+∞时,ln 0x ≥,所以()ln 221ln 22a x ex e x ex +-≤-+-. 下先证:()()()()1ln 22=11x e x ex f x x e -+-≤+-. 即证:()()()()=111ln 22x g x x e e x ex +----+. ()()'1212x e g x x e e x-=+---,又()'g x 在[)1,x ∈+∞上单调递增,且()'10g =知()g x 在 [)1,x ∈+∞上单调递增,故()()1=0g x g ≥.因此()()()111ln +22ln +22x x e e x ex a x ex +-≥--≥-,得证.(3)由(1)知()f x 在点()1,(1)f --处的切线方程为()()11es x x e-=+. 构造()()()()1111xe F xf x x x e e e -⎛⎫=-+=+- ⎪⎝⎭,()()'12x F x x e e =+-,()()''3x F x x e =+. 所以()'F x 在(),3-∞-上单调递减,在()3,-+∞上单调递增. 又()'31130F e e -=--<,()'1lim x F x e→-∞=-,()'10F -=,所以()F x 在(),1-∞-上单调递减,在 ()1,-+∞上单调递增.所以()()()()()1101e F x F f x s x x e-≥-=⇒≥=+.设方程()()11=e s x x b e -=+的根'111ebx e=--.又()()()'111b s x f x s x ==≥,由()s x 在R 上单调递减,所以'11x x ≤.另一方面,()f x 在点()1,22e -处的切线方程为()()311t x e x e =---. 构造()()()()()()()11311=13x x G x f x t x x e e x e x e ex e =-=+---+++-+.()()'23x G x x e e =+-,()()''3x G x x e =+.所以()'G x 在在(),3-∞-上单调递减,在()3,-+∞上单调递增. 又()'31330G e e-=--<,()'lim 3x G x e →-∞=-,()'10G =,所以()F x 在(),1-∞上单调递减,在 ()1,+∞上单调递增. 所以()()()()()10311G x G f x t x e x e ≥=⇒≥=---.高三数学答案解析第6页,共7页设方程()()311=t x e x e b =---的根'2131e b x e ++=-.又()()()'222b t x f x t x ==≥,由()t x 在R 上单调递增,所以'22x x ≤. 所以''212111311b e ebx x x x e e ++-≤-=++--,得证.高三数学答案解析第7页,共7页。
2019年浙江省高考数学模拟试卷(含详细解析)

2019年浙江省高考数学模拟试卷一.选择题(共10小题,满分40分,每小题4分)1.(4分)已知全集U={1,2,3,4,5},∁U A={1,3,5},则A=()A.{1,2,3,4,5}B.{1,3,5}C.{2,4}D.∅2.(4分)以下关于双曲线M:x2﹣y2=8的判断正确的是()A.M的离心率为2B.M的实轴长为2C.M的焦距为16D.M的渐近线方程为y=±x3.(4分)某几何体的三视图如图所示,则该几何体的体积是()A.B.C.1D.4.(4分)复数i(i﹣1)的虚部为()A.1B.i C.﹣1D.﹣i5.(4分)函数y=x﹣2sin x的图象大致是()A.B.C.D.6.(4分)“m=﹣3”是“直线(m+1)x+y+1=0与直线2x+(m+2)y+2=0互相平行”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.(4分)在一个箱子中装有大小形状完全相同的4个白球和3个黑球,现从中有放回的摸取5次,每次随机摸取一球,设摸得的白球个数为X,黑球个数为Y,则()A.E(X)>E(Y),D(X)>D(Y)B.E(X)=E(Y),D(X)>D(YC.E(X)>E(Y),D(X)=D(Y)D.E(X)=E(Y),D(X)=D(Y)8.(4分)已知四棱锥S﹣ABCD的底面是正方形,侧棱长均相等,E是线段AB上的点(不含端点).设SE与BC所成的角为θ1,SE与平面ABCD所成的角为θ2,二面角S﹣AB ﹣C的平面角为θ3,则()A.θ1≤θ2≤θ3B.θ3≤θ2≤θ1C.θ1≤θ3≤θ2D.θ2≤θ3≤θ1 9.(4分)已知,,是平面向量,是单位向量.若非零向量与的夹角为,向量满足4•3=0,则||的最小值是()A.1B.1C.2D.210.(4分)定义函数的“拐点”如下:设f′(x)是函数f(x)的导数,f′(x)是函数f (x)的导函数,若方程f''(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”,已知任何三次函数都有对称中心,且“拐点”就是对称中心:若f(x)=x3﹣9x2+20x﹣4,数列{a n}为等差数列,a5=3,则f(a1)+f(a2)+…+f(a9)=()A.44B.36C.27D.18二.填空题(共7小题,满分36分)11.(6分)若关于x的方程3|x﹣2|+k cos(2﹣x)=0只有一个实数解,则实数k的值为.12.(6分)若实数x,y满足约束条件,则的最小值是.13.(6分)在△ABC中,角A、B、C的对边分别为a、b、c,a,a cos B+b sin A=c,则△ABC的面积的最大值为.14.(4分)二项式()8的展开式的常数项是.15.(6分)已知λ∈R,函数f(x),,<,当λ=2时,不等式f(x)<0的解集是.若函数f(x)恰有2个零点,则λ的取值范围是.16.(4分)两位同学分4本不同的书,每人至少分1本,4本书都分完,则不同的分发方式共有种.17.(4分)已知点P(0,1),椭圆y2=m(m>1)上两点A,B满足2,则当m=时,点B横坐标的绝对值最大.三.解答题(共5小题,满分74分)18.(14分)如图,锐角α,β的终边与单位圆的交点分别为A(,)B(,).(I)求tanα;(II)求cos(α﹣β).19.(15分)如图,在四棱锥A﹣BCDE中,AC⊥平面BCDE,∠CDE=∠CBE=90°,BC =CD=2,DE=BE=1,AC,M为AE的中点.(1)求证:BD⊥平面AEC;(2)求直线MB与平面AEC所成角的正弦值.20.(15分)已知等差数列{a n}中,首项a1=1,公差d为整数,且满足a1+1≤a3.a2+3≥a4,数列{b n}满足b n,其前n项和为S n.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若S1,S2,S m(m∈N*)成等比数列,求m的值.。
2019年浙江省高考全真模拟数学试卷及解析

A .{2, 4} B . {0, 2} C. 2. (4分)设i 是虚数单位,{0, 2, 4} D . {x|x=2n , n € N}若.-■■■.■] , x , y € R ,则复数x+yi 的共轭复数A .2 - i B.— 2 - i C. 2+i D .- 2+i 3. A .4.(4分)双曲线x 2- y 2=1的焦点到其渐近线的距离为( 2D .华 2b € R ,贝U “阳| >b| b| ”是 “A b”的(1 B.匚 C. (4分)已知a , A .充分不必要条件 B.必要不充分条件 浙江省高考全真模拟数学试卷(一)一、单选题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选 项中,只有一项是符合题目要求的 1. (4 分)已知集合 A={x| - x 2+4x >0} , 丁 一 . : . -,C={x| x=2n, n €81N},贝U( A U B )n C=( 既不充分也不必要条件C. 充要条件D. 项的乘积是()A- 2 B.- 3 C2 D.7. (4分)如图,矩形ADFE矩形CDFG正方形ABCD两两垂直,且AB=2,若线段DE上存在点P使得GP丄BP,则边CG长度的最小值为()A . 4 B.〔「C. 2 D . 「8. (4 分)设函数 f(x) =1-77^4,g (X )=ln (ax 2 - 2x+1),若对任意的 x i € R , 都存在实数X 2,使得f (x i ) =g (X 2)成立,则实数a 的取值范围为( )A . (0, 1]B . [0, 1] C. (0, 2] D . (-X, 1] 9.(4分)某班有'的学生数学成绩优秀,如果从班中随机地找出5名学生,那4么其中数学成绩优秀的学生数 幼服从二项分布一「,则E (- a 的值为() 4 A . - B.C.匚 D . 4 4 4410. (4 分)已知非零向量 |, b 满足| i| =2|,若函数 f (x ) =..x 3+ | J x 2+"x+1在R 上存在极值,则「I 和〔夹角的取值范围是( ) A .B 「」C ;丁・—1D .—.-、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分11. (6分)某几何体的三视图如图所示,贝U 该几何体的体积为12. (6分)在〉「: 「的展开式中,各项系数之和为 64,则n= ________ ;展开A_______ ,表面积为 ______<__I —►1 1侧视图正视團式中的常数项为________ •13. __________________________________________________ (6分)某人有4把钥匙,其中2把能打开门•现随机地取1把钥匙试着开门,不能开门的就扔掉,问第二次才能打开门的概率是___________________________________ •如果试过的钥匙不扔掉,这个概率又是________ .14. (6分)设函数f (x) J〜,,[4(7(5), x>l①若a=1,则f (x)的最小值为 ________ ;②若f (x)恰有2个零点,则实数a的取值范围是_________ .x+2y-4<015. (4分)当实数x,y满足' 时,ax+y w4恒成立,则实数a的取值范围是_______ .16. (4分)设数列{a n}满足,且对任意的n € N*,满足. 「…,.I ...-…,则a2017= ____________ .17. (4分)已知函数f (x) =ax2 +2x+1,若对任意x€ R, f[ f (x) ] >0恒成立,则实数a的取值范围是________ .三、解答题:本大题共5小题,共74分■解答应写出文字说明、证明过程或演算过程18•已知函数f (x) = _ …一二1,x€ R.(I)求函数f (x)的最小正周期和单调递减区间;(II)在^ ABC中,A,B,C的对边分别为a, b,c,已知c=二,f(C) =1, sinB=2sinA, 求a, b的值.19.如图,在四面体ABCD中,已知/ ABD=Z CBD=60, AB=BC=2 CE!BD于E(I)求证:BD丄AC;(U)若平面ABD丄平面CBD且BD=,求二面角C- AD —B的余弦值.2(I)当a=2,求函数f (x)的图象在点(1, f (1))处的切线方程;(U)当a>0时,求函数f (x)的单调区间.21. 已知曲线C: y2=4x, M : (x- 1) 2+y2=4 (x> 1),直线I与曲线C相交于A, B两点,0为坐标原点.(I)若」 -二,求证:直线I恒过定点,并求出定点坐标;(n)若直线I与曲线M相切,求" -'if.的取值范围.22. 数列{a n}满足a1=1,a2='.+.二,…,a n=\+.-+・ +「(n€ N)(1)求a2,a3,34,a5 的值;(2)求a n与a n-1之间的关系式(n€ N*,n》2);(3)求证:(1+ 一 ) (1+ 一) ••- (1+ 一 )< 3 (n€ N*)a l a2 a n2018年浙江省高考全真模拟数学试卷(一)参考答案与试题解析一、单选题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选 项中,只有一项是符合题目要求的 1. (4 分)已知集合 A={x| - x 2+4x >0} ,, C={x| x=2n, n €81N},贝U( A U B )n C=()A . {2,4}B . {0,2} C. {0,2,4} D . {x|x=2n , n € N} 【解答】 解:A={x| - X +4x > 0} ={x| 0< x < 4},一丄 盲 1"={x|3-4v 3x v 33}={x| - 4V x v 3}, ol则 A U B={x| - 4v x <4}, C={x| x=2n, n € N}, 可得(A U B )n C={0, 2, 4}, 故选C .2. (4分)设i 是虚数单位,若i —, x , y € R ,则复数x+yi 的共轭复数z _i 是( )A . 2 - i B.- 2 - i C. 2+i D .- 2+i得 x+yij .=2+i ,•••复数x+yi 的共轭复数是2 -i . 故选:A .3. (4分)双曲线x 2-y 2=1的焦点到其渐近线的距离为( )A . 1 B. 「C. 2 D.—2【解答】解:由■. [- i -.,5!5! 5i (1-21)【解答】解:根据题意,双曲线的方程为x2- y2=1,其焦点坐标为(± 血,0),其渐近线方程为y=±x,即x±y=0, 则其焦点到渐近线的距离d= :=1;V1+1故选:A.4. (4分)已知a, b€ R,贝U “阳| >b|b| ”是“A b”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解答】解:设f (x)=x| x| ='」A '',[-忆x<0由二次函数的单调性可得函数f (x)为增函数,则若a>b,则f (a)>f (b),即a| a| >b| b|,反之也成立,即“|a| >b|b|”是“>b”的充要条件,故选:C.5. (4分)函数y=2x:- e l x l在[-2, 2]的图象大致为()••• f'(x)=4x- e x=0有解,故函数y=2«-M在[0, 2]不是单调的,故排除C, 故选:D1.+ 0.6. (4分)若数列{a n }满足®}=2, ®+i } _空(n € N *),则该数列的前2017 -J 项的乘积是( )A .-2 B--3C2 D .【解答】解:•••数列 「石〒--:: 1+ Qi -1 •选=.=-3,同理可得:a 3=;,2 --0i +4=a n ,a 1Q 233a 4=1 .•该数列的前2017项的乘积=1504x a 1=2. 故选:C.7. (4分)如图,矩形ADFE 矩形CDFG 正方形ABCD 两两垂直,且AB=2,若 线段DE 上存在点P 使得GP 丄BP,则边CG 长度的最小值为 ( )A . 4 B. : =C. 2 D . 乙【解答】解:以DA, DC, DF 为坐标轴建立空间坐标系,如图所示: 设 CG=a P (x , 0, z ),则曽二,即 z 欝.2 a 2 又 B (2, 2, 0), G (0, 2, a ),• PB = (2-x , 2,-乎),PG = (- x , 2, a (1 -专)), • W (x -2) x+4+=0,a 4」,a 5=2,….J 1_al显然X M0且X M 2,2 1 '…a= 一,••• x€( 0, 2),二2X-X2€( 0, 1],•••当2X-X2=1时,a2取得最小值12,••• a的最小值为2 _;.故选D.8. (4分)设函数f,g(x)=ln(ax2-2x+1),若对任意的X I€ R,都存在实数X2,使得f (X I) =g (X2)成立,则实数a的取值范围为( ) A. (0, 1] B. [0, 1] C. (0, 2] D. (-X, 1]【解答】解:设g ( X) =ln (ax2- 2X+1 )的值域为A,••• f (X) =1 - 「| 在R上的值域为(-X,0],•(-X, 0]? A,又h (0) =1,•实数a需要满足a< 0 或£• h ( X) =a«- 2X+1至少要取遍(0, 1]中的每一个数,解得a< 1.•实数a的范围是(-X,1],故选:D.9. (4分)某班有-的学生数学成绩优秀,如果从班中随机地找出5名学生,那么其中数学成绩优秀的学生数幼服从二项分布b':r.u丄],则E(- a的值为( )A .B. C.匚 D . 4 4 4 4【解答】解:T 幼服从二项分布D ,4 ••• E ( e =5x 1』,4 4••• E (- e =-E ( e =-「. 4故选D .T T __ 1 Q "1 r\10. (4分)已知非零向量1,:满足「|=2|:・|,若函数f (x ) = *+打1&+1,x+1 I . ■ - 1;即.1 I UZ- .: .1 匚-:.-..,1'; •••「—…亠-—一 4 | b | 41 b | 2•••与「夹角的取值范围为—..W故选B .二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分11. (6分)某几何体的三视图如图所示,则该几何体的体积为 ______ ,表面积为 7+二_.在R 上存在极值,则1和•夹角的取值范围是(_B. : C - 解::「:厂• : :‘ I •;在R 上存在极值;=0有两个不同实数根;A . 一【解答】 ••• f (x) •••「( x )【解答】解:由三视图还原原几何体如图:该几何体为组合体,左右两边都是棱长为 1的正方体截去一个角,则该几何体的体积为.;■■ ; 表面积为;i- . :i- ||.4 . . ■ ::i- '■- 十 二.故答案为:「; 二.■J 12. (6分)在工]:的展开式中,各项系数之和为 64,则n= 6 ;展开式A中的常数项为 15 .【解答】解:令x=1,则在 工-:的展开式中,各项系数之和为2n =64,=*1解得n=6,6-3 r则其通项公式为C 6r x,令 6 -3r=0,解得 r=2, 则展开式中的常数项为C 62=15故答案为:6,1513. (6分)某人有4把钥匙,其中2把能打开门.现随机地取1把钥匙试着开 门,侧视團 1 1正视團不能开门的就扔掉,问第二次才能打开门的概率是—.[—•如果试过的钥匙不扔掉,这个概率又是 1 •—纟—【解答】解:第二次打开门,说明第一次没有打开门,故第二次打开门的概率为 4 3 3如果试过的钥匙不扔掉,这个概率为 上X — J ,4 4 4故答案为:1; • 3 4 14. (6 分)设函数 f (x )=::、 4(x-a) (i-2a), ① 若a=1,则f (x )的最小值为 -1 ; ② 若f (x )恰有2个零点,则实数a 的取值范围是—'a < 1或2当 X V 1 时,f (x ) =2x- 1 为增函数,f (x )>- 1,当 x > 1 时,f (x ) =4 (x - 1) (x - 2) =4 (x 2 - 3x+2) =4 (x -色)2- 1, 2当1VXV :;时,函数单调递减,当x > 时,函数单调递增, 2 2故当 x=时,f (x ) min =f () =- 1,厶 £ ② 设 h (x ) =2 - a ,g (x ) =4 (x- a ) (x - 2a )若在x v 1时,h (x ) =与 x 轴有一个交点,所以 a >0,并且当 x=1 时,h (1) =2 - a >0,所以 0v a v 2,而函数g (x ) =4 (x - a ) (x - 2a )有一个交点,所以2a > 1,且a v 1, 所以1 < a v 1,2若函数h (x ) =2x - a 在x v 1时,与x 轴没有交点,则函数g (x ) =4 (x - a ) (x - 2a )有两个交点,当a < 0时,h (x )与x 轴无交点,g (x )无交点,所以不满足题意(舍去),当h (1) =2- a < 0时,即a >2时,g (x )的两个交点满足 *=a , x2=2a ,都是 满足题【解答】 解:①当a=1时, (x )=心 44(x-l) (K -2),意的,综上所述a的取值范围是一三a v 1,或a> 2.2x+2y _4<015. (4分)当实数x, y满足' s-y-l<0时,ax+y w4恒成立,则实数a的取值范围是(-X, ].1—【解答】解:由约束条件作可行域如图联立,解得C (1,色).x+2y-4=0 2联立,解得 B (2,1).b+2y-4=0在x-y- 1=0 中取y=0得 A (1,0).由ax+y< 4 得y w- ax+4要使ax+y w 4恒成立,则平面区域在直线y=- ax+4的下方,若a=0,则不等式等价为y w 4,此时满足条件,若-a>0,即a v 0,平面区域满足条件,若-a v0,即a>0时,要使平面区域在直线y=-ax+4的下方,则只要B在直线的下方即可,即2a+1w4,得0v a w g2综上a w2•••实数a的取值范围是(-X,'].2故答案为:(-X,].16. (4分)设数列{a n}满足'亠,且对任意的n € N*,满足,一•「.』,201T9孤乂—0>5XF,则她恠—飞——.【解答】解:对任意的n€ N*,满足a n+2 - a n< 2n, a n+4- a n>5X 2n,n+2--a n+4 —a n+2 W 2 ,--5 X 2“ W a n+4 —a n+2+a n+2 —a W 2“ 2+2“=5X 2“,--a n+4 —a n=5x 2 ,a20i7= (a20i7 —a20i3)+ (a20i3 —a2009)+••+ (a5 —a i) +a i=5X( 22013+22009+・・+2)丄2_5X2X (1^04百丄2=2如T,T :: ,n20L7故答案为:-3i7. (4分)已知函数f (x) =ax2 +2x+i,若对任意x€ R, f[f (x) ] >0恒成立, 则实数a的取值范围是a》丄1•.2 —【解答】解:当a=0时,函数 f (x) =2x+i,f[f (x) ] =4x+3,不满足对任意x€ R, f[f (x) ] >0恒成立,当a>0 时,f (x)》2一;=i—丄4a af[f (x)]》f (i-丄)=a (i-丄)2+2 (i -丄)+i= a-丄+i,a a a a解a-1 +i》0 得:a w • :' I,或a》_「,a 2 2故a》亠,2当a v 0 时,f (x)w - =1 -丄4a a不满足对任意x€ R, f[f (x) ] >0恒成立,综上可得:a>^'2故答案为:a>—2三、解答题:本大题共5小题,共74分■解答应写出文字说明、证明过程或演算过程18•已知函数f (x)二一—讣…「-x- 1 , x€ R.(I)求函数f (x)的最小正周期和单调递减区间;(II)在^ ABC中,A, B, C的对边分别为a, b, c,已知c=「, f(C) =1, sinB=2sinA 求a, b的值.【解答】解:由..■,,・::,:-■- ,…(2分)(1)周期为T=n,…(3分)因为;,"」:•::■'■::- '■ ! ■..,…(4分)所以——Ik.' -6 3•••函数的单减区间为—1■ 弓bk 兀k€Z ;…(6分)(2)因为< ----:,所以」丄;7 分)所以::: , a2+b2-ab=3,…(9 分)又因为sinB=2sinA 所以b=2a, ••- (10分)解得:a=1 , b=2 ,••• a , b 的值1 , 2.…(12 分)19.如图,在四面体ABCD中 ,已知/ ABD=Z CBD=60 , AB=BC=2 CE!BD于E(I) 求证:BD丄AC;(U)若平面ABD丄平面CBD且BD总,求二面角C- AD- B的余弦值.2【解答】(I)证明:连接AE,••• AB=BC / ABD=Z CBD, BE是公共边,•••△ABE^A CBE•••/ AEBN CEBv CEL BD , A AE丄BD,又AE?平面ACE CE?平面ACE AE G CE=EA BD丄平面ACE,又AC?平面ACEA BD丄AC.A AD= .i「一HI-.',(2)解:过E作EF L AD于F,连接CF,v平面ABD丄平面BCD, CE?平面BCD 平面ABD A平面BCD二BD CE! BD, A CEL 平面ABD ,又AD?平面ABD ,A CEL AD ,又AD L EF,A AD丄平面CEFA Z CFE为二面角C- AD- B的平面角,v AB=BC=2 Z ABD=Z CBD=60 , AE L BD , CEL BD ,A BE=1, AE二CE=「, DE=:,CF 10面角C- AD- B的余弦值为..20•已知函数.:,.(I)当a=2,求函数f (x)的图象在点(1, f (1))处的切线方程;(U)当a>0时,求函数f (x)的单调区间.【解答】解:(I)根据题意,当a=2时,:心:厂:::,-■.,£f (1) =°;•••函教f (X)的图象在点(1, f (1))处的切线方程为:.-—2(n )由题知,函数 f ( x )的定义域为(o , + %), “、a-1 x -ax+ (a~l) (x-1) (x+l-a):.■:-■: -i I - - ,X X X令 f (x) =0,解得X1=1, X2=a- 1 ,①当a>2时,所以a- 1 > 1,在区间(0, 1)和(a- 1, +x)上f (x)>0;在区间(1, a-1) 上f (x)v0,故函数f (x)的单调递增区间是(0, 1 )和(a- 1, +x),单调递减区间是(1, a- 1).②当a=2时,f (x)> =0恒成立,故函数f (x)的单调递增区间是(0, +x).③当1v a v2 时,a- 1v 1,在区间(0, a- 1),和(1, +^) 上f (x)>0;在(a- 1, 1 )上f (x)v 0,故函数f (x)的单调递增区间是(0, a- 1), (1, +x),单调递减区间是(a-1, 1)④当a=1 时,f (x) =x- 1, x> 1 时f (x)> 0, x v 1 时f (x)v 0, 函数f (x)的单调递增区间是(1, +x),单调递减区间是(0, 1)⑤当0v a v 1时,a- 1 v 0,函数f (x)的单调递增区间是(1, +^ 单调递减区间是(0, 1), 综上,①a>2时函数f (x)的单调递增区间是(0, 1)和(a- 1, +^),单调递减区间是(1, a- 1);②a=2时,函数f (x)的单调递增区间是(0, +x);③当0v a v2时,函数f (x)的单调递增区间是(0, a- 1), (1, +^),单调递减区间是(a- 1, 1);④当0v a< 1时,函数f (x)的单调递增区间是(1, +^),单调递减区间是(0,1)21. 已知曲线C: y2=4x, M : (x- 1) 2+/=4 (x> 1),直线I与曲线C相交于A, B两点,O为坐标原点.(I)若门二£二二,求证:直线I恒过定点,并求出定点坐标;(n)若直线I与曲线M相切,求”;的取值范围.【解答】解:(I)由已知,可设I: x=my+ n, A (X1, y。
浙江省2019年高考模拟卷(一)数学试卷

(2) ABC 中,角 A, B, C 所对的边分别为 a, b, c ,满足 b2 ac ,求 f (B) 的取值范围.
19.(本题满分 15 分)四棱锥 P-ABCD 中,PA⊥平面 ABCD,E 为 AD 的中点,ABCE 为菱形,∠BAD=120°,PA=AB,G、F 分别是线 段 CE、PB 的中点. (Ⅰ) 求证:FG∥平面 PDC;
第Ⅰ卷(选择题部分,共 40 分)
一、选择题:本大题共 10 小题,每小题 4 分,共 40 分.在每小题给出的四个选项中,
只有一项是符合题目要求的.
1.已知集合 A={x|x2≤1),B={x|x≤0},则 A∪B=
A.(-∞,1]
B.[-1,+∞)
C.[-1,0]
D.[0,1]
ห้องสมุดไป่ตู้2.若复数 z 满足 1 + i z = 2i,在复数z的虚部为
x [2,3] 时, f (x) 2x2 12x 18 ,若函数 y f (x) loga (| x | 1) 至少有 6 个零 点,则 a 的取值范围是
(0, 2 ) A. 2
(0, 3 ) B. 3
(0, 5 ) C. 5
(0, 6 ) D. 6
10.如图,在ΔABC
中,∠BAC
=
π3 ,AD
2f x + xf' x > x2,则不等式 x + 2018 2f x + 2018 − 4f − 2 > 0 的解集为
A. − 2020,0
B. − ∞, − 2020
C. − 2016,0
D. − ∞, − 2016
9.定义域为 R 的偶函数 f (x) 满足对 x R ,有 f (x 2) f (x) f (1) ,且当
浙江省2019届高考模拟卷(一)数学试题(解析版)

浙江省2019年高考全真模拟卷(一)数学试卷第Ⅰ卷(选择题部分,共40分)一、选择题:本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则()A. B. C. D.【答案】A【解析】因为,,所以.故选A.2.若复数满足,在复数的虚部为()A. B. 1 C. -1 D.【答案】C【解析】【分析】由复数的除法运算公式可得,从而可求出z的共轭复数,即可得出结果.【详解】由题意可知,,故,所以其虚部为-1.【点睛】本题主要考查复数的四则运算和共轭复数的概念,属于基础题型.3.已知是双曲线渐近线上的点,则双曲线的离心率是()A. 2B.C.D.【答案】A【解析】【分析】由在双曲线的渐近线上,得=,由e=计算可得.【详解】因为双曲线的渐近线方程为y=,在渐近线上,所以=,则e==2.故选:A.【点睛】本题考查了双曲线的离心率求法,也考查了渐近线方程的应用,属于基础题.4.设,满足约束条件,则的最小值是()A. 1B.C.D.【答案】C【解析】【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,把最优解的坐标代入目标函数得结论.【详解】满足约束条件的可行域如图:化为,平移直线,经过可行域的时,目标函数取得最小值,由,解得,则的最小值是,故选C .【点睛】本题主要考查线性规划中,利用可行域求目标函数的最值,属于简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.5.已知圆.设条件,条件圆上至多有个点到直线的距离为,则是的A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】C【解析】解:圆C:(x−1)2+y2=r2(r>0).圆心(1,0)到直线的距离.由条件q:圆C上至多有2个点到直线x−y+3=0的距离为1,则0<r<3.则p是q的充要条件。
2019浙江省高考数学模拟试题(有答案)

2019浙江省高考数学模拟试题(有答案)2019年浙江省高考数学模拟试题本试卷分为选择题和非选择题两部分,共6页,其中选择题部分为1-3页,非选择题部分为3-7页。
总分为150分,考试时间为120分钟。
考生注意事项:1.答题前,请务必使用黑色签字笔或钢笔在试题卷和答题纸规定的位置上填写姓名和准考证号。
2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答。
在本试题卷上作答一律无效。
参考公式:如果事件A,B互斥,则球的表面积公式为S=4πR²,P(A+B)=P(A)+P(B)。
如果事件A,B相互独立,则P(AB)=P(A)P(B)。
球的体积公式为V=4/3πR³,其中R表示球的半径。
棱柱的体积公式为V=Sh。
如果事件A在一次试验中发生的概率是p,则n次独立重复试验中恰好发生k次的概率为:(k=1,2.n)C(n,k)P(1-P)^(n-k)棱台的体积公式为V=h(1/3S₁+S₂+S₁S₂/√(S₁S₂))。
选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知A⊆B,A⊆C,B={2,1,8},C={1,9,3,8},则A可以是()A.{1,8}B.{2,3}C.{0}D.{9} (命题意图:考查集合含义及运算)2.复数z=m+ni(i为虚数单位)在复平面上对应的点不可能位于()A.第一象限B.第二象限C.第三象限D.第四象限(命题意图:考查复数概念及复数的运算)3.已知cos(α-)+sinα=π/6+74/3,则s in(α+π)的值是()A.-65/232B.65/232C.-74/555D.74/555 (命题意图:考查诱导公式及三角运算)4.等比数列{an}中,a₁>0,则“a₁<a₄”是“a₃<a₅”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件(命题意图:考查充要条件、等价命题转化)5.若x,y满足约束条件,则z=x+3y的取值范围是()A.[0,9]B.[0,5]C.[9,+∞)D.[5,+∞) (命题意图:考查线性规划最值问题)6.函数g(x)=(x-1)f'(x)二、填空题(本大题共7小题,多空题每小题6分,单空题每小题4分,共32分。
2019年浙江省全国高考高三数学模拟试卷

x1
x2
0
,
x1 x3 0 , x2 x3 0 ,则 f (x1) f (x2 ) f (x3 ) 的值的符号为
A.一定为负
B.一定为正
C. 0
D.可以为正,也可以为负
7.篮球运动员在比赛中每次罚球命中得1分,罚不中得 0 分.已知某运动员罚球命中的概率 为 0.7 ,他罚球 2 次的得分 的数学期望为
A. a 7 ,b 1 28
B. a 7 ,b 1 28
C. a 7 ,b 1
2
8
D. a 7 ,b 1
2
8
非选择题部分(共 110 分)
二、填空题:本大题共 7 小题,多空题每题 6 分,单空题每题 4 分,共 36 分。
11. (2x x)8 的展开式中 x6 的系数为
Hale Waihona Puke A.1.3B. 1.5
C. 1.4
D.1.6
8.在正方体 ABCD A1B1C1D1 中, E 是侧面 ADD1 A1 内的动点,
且 B1E// 平面 BDC1 ,则直线 B1E 与直线 AB 所成角的正弦值
的最小值是
A. 1
B. 3
C. 1
D. 2
3
3
2
2
9.设 为两个非零向量 a,b 的夹角,已知对任意实数 t , b ta 的最小值为1.则
A.3, 4,5
B. 3, 4,5, 6
C. 1, 2,3, 4,5, 6
2.复数 i 的模等于 2+i
A. 5
B. 1
C. 1
D. 5
5
5
25
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019届浙江省高考模拟卷数 学本试题卷共4页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
★祝你考试顺利★注意事项:1、考试范围:高考考查范围。
2、答题前,先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
3、选择题的作答:每个小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非选择题答题区域的一律无效。
4、主观题的作答:用0.5毫米黑色签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非主观题答题区域的一律无效。
5、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案用0.5毫米黑色签字笔写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非选修题答题区域的一律无效。
6、本科目考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。
参考公式:球的表面积公式 锥体的体积公式24S R =π13V Sh =球的体积公式其中S 表示棱锥的底面面积,h 表示棱锥的高 343V R =π台体的体积公式其中R 表示球的半径 1()3a ab b V h S S S S =⋅柱体的体积公式其中S a ,S b 分别表示台体的上、下底面积V =Sh h 表示台体的高其中S 表示棱柱的底面面积,h 表示棱柱的高1.若集合P={y|y ≥0},P ∩Q=Q ,则集合Q 不可能是( ) A .{y|y=x 2,x ∈R}B .{y|y=2x ,x ∈R}C .{y|y=lgx ,x >0}D .∅2.抛物线y=﹣2x 2的准线方程是( ) A .B .C .D .3.一个几何体的三视图如图所示,则该几何体的表面积是( )A .B .C .D .4.若存在实数x ,y 使不等式组与不等式x ﹣2y+m ≤0都成立,则实数m 的取值范围是( )A .m ≥0B .m ≤3C .m ≥lD .m ≥3 5.不等式2x 2﹣x ﹣1>0的解集是( )A .⎭⎬⎫⎩⎨⎧<<-1x 21|xB .{x|x >1}C .{x|x <1或x >2}D .⎭⎬⎫⎩⎨⎧>-<1x 21x |x 或6.在等比数列{a n }中,a 1=2,前n 项和为S n ,若数列{a n +1}也是等比数列,则S n 等于( ) A .2n+1﹣2B .3nC .2nD .3n﹣17.定义在R 上的奇函数f (x )满足在(﹣∞,0)上为增函数且f (﹣1)=0,则不等式x •f (x )>0的解集为( ) A .(﹣∞,﹣1)∪(1,+∞)B .(﹣1,0)∪(0,1)C .(﹣1,0)∪(1,+∞)D .(﹣∞,﹣1)∪(0,1)8.随机变量X 的分布列如下表,且E (X )=2,则D (2X ﹣3)=( ) X0 2 aP p A .2B .3C .4D .59.已知平面α∩平面β=直线l ,点A ,C ∈α,点B ,D ∈β,且A ,B ,C ,D ∉l ,点M ,N 分别是线段AB ,CD 的中点.( )A .当|CD|=2|AB|时,M ,N 不可能重合B .M ,N 可能重合,但此时直线AC 与l 不可能相交 C .当直线AB ,CD 相交,且AC ∥l 时,BD 可与l 相交 D .当直线AB ,CD 异面时,MN 可能与l 平行 10.设k ∈R ,对任意的向量,和实数x ∈,如果满足,则有成立,那么实数λ的最小值为( )A .1B .kC .D .非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。
11.如右图,如果执行右面的程序框图,输入正整数m n ,,满足m n ,那么输出的P 等于 。
12.若x 是实数,y 是纯虚数,且满足212x i y -+=,则_________,_________.x y == 13.复数1i2ia +-(,i a R ∈为虚数单位)为纯虚数,则复数i z a =+的模为 .已知 231(1)()()n x x x n N x*+++∈的展开式中没有常数项,且28n ≤≤,则n = .14.已知角θ的终边过点(4,﹣3),则tan θ= ,= .15.在Rt △ABC 中,∠C=90°,AC=4,BC=2,D 是BC 的中点,那么(﹣)•= ;若E 是AB 的中点,P 是△ABC (包括边界)内任一点.则的取值范围是 .16.冬季供暖就要开始,现分配出5名水暖工去3个不同的居民小区检查暖气管道,每名水暖工只去一个小区,且每个小区都要有人去检查,那么分配的方案共有 种. 17.求函数y=lg (sin 2x+2cosx+2)在上的最大值 ,最小值 .三、解答题:本大题共5小题,共74分。
解答应写出文字说明、证明过程或演算步骤。
18.△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且cos2A=3cos (B+C )+1. (Ⅰ)求角A 的大小;(Ⅱ)若cosBcosC=﹣,且△ABC 的面积为2,求a .19.(本题满分15分)如图四边形PABC 中,90PAC ABC ∠=∠=,23,4PA AB AC ===,现把PAC ∆沿AC 折起,使PA 与平面ABC 成60,设此时P 在平面ABC 上的投影为O 点(O 与B 在AC 的同侧),(1)求证:OB ∥平面PAC ;(2)求二面角P -BC -A 大小的正切值。
20.已知二次函数f(x)=x2+ax+b+1,关于x的不等式f(x)﹣(2b﹣1)x+b2<1的解集为(b,b+1),其中b≠0.(Ⅰ)求a的值;(Ⅱ)令g(x)=,若函数φ(x)=g(x)﹣kln(x﹣1)存在极值点,求实数k的取值范围,并求出极值点.数学参考答案1.【KS5U答案】C【KS5U解析】集合P={y|y≥0},P∩Q=Q,∴Q⊆P∵A={y|y=x2,x∈R}={y|y≥0},满足要求B={y|y=2x,x∈R}={y|y>0},满足要求C={y|y=lgx,x>0}=R,不满足要求D=∅,满足要求故选C2.【KS5U答案】D【KS5U解析】∵y=﹣2x2;∴x2=﹣y;∴2p=⇒=.又因为焦点在Y轴上,所以其准线方程为y=.故选:D.3.【KS5U答案】C【KS5U解析】由已知中的三视图可得该几何体是一个以俯视图为底面的四棱锥,其底面是边长为1m的正方形,故底面积为1m2,侧面均为直角三角形,其中有两个是腰为1m的等腰直角三角形,面积均为: m2,另外两个是边长分别为1m, m, m的直角三角形,面积均为: m2,故几何体的表面积S=,故选:C4.【KS5U答案】B【KS5U解析】作出不等式组表示的平面区域,得到如图的△ABC及其内部,其中A(4,2),B(1,1),C(3,3)设z=F(x,y)=x﹣2y,将直线l:z=x﹣2y进行平移,当l经过点A时,目标函数z达到最大值,可得z最大值=F(4,2)=0当l经过点C时,目标函数z达到最小值,可得z最小值=F(3,3)=﹣3因此,z=x﹣2y的取值范围为[﹣3,0],∵存在实数m,使不等式x﹣2y+m≤0成立,即存在实数m,使x﹣2y≤﹣m成立∴﹣m大于或等于z=x﹣2y的最小值,即﹣3≤﹣m,解之得m≤3故选:B5.【KS5U答案】D【KS5U解析】不等式2x2﹣x﹣1>0,因式分解得:(2x+1)(x﹣1)>0,解得:x>1或x<﹣,则原不等式的解集为,故选:D.【点评】此题考查了一元二次不等式的解法,利用了转化的思想,是高考中常考的基本题型.6.【KS5U答案】C【KS5U解析】因数列{a n}为等比,则a n=2q n﹣1,因数列{a n+1}也是等比数列,则(a n+1+1)2=(a n+1)(a n+2+1)∴a n+12+2a n+1=a n a n+2+a n+a n+2∴a n+a n+2=2a n+1∴a n(1+q2﹣2q)=0∴q=1即a n=2,所以s n=2n,故选C.7.【KS5U答案】A【KS5U解析】根据题意,f(x)为奇函数且在(﹣∞,0)上为增函数,则f(x)在(0,+∞)上也是增函数,若f(﹣1)=0,得f(﹣1)=﹣f(1)=0,即f(1)=0,作出f(x)的草图,如图所示:对于不等式x•f(x)>0,有x•f(x)>0⇔或,分析可得x<﹣1或x>1,即x∈(﹣∞,﹣1)∪(1,+∞);故选:A.8.【KS5U答案】C【KS5U解析】由题意可得:+p+=1,解得p=,因为E(X)=2,所以:,解得a=3.D(X)=(0﹣2)2×+(2﹣2)2×+(3﹣2)2×=1.D(2X﹣3)=4D(X)=4.故选:C.9.【KS5U答案】B【KS5U解析】对于A,当|CD|=2|AB|时,若A,B,C,D四点共面且AC∥BD时,则M,N两点能重合.故A不对;对于B,若M,N两点可能重合,则AC∥BD,故AC∥l,此时直线AC与直线l不可能相交,故B对;对于C,当AB与CD相交,直线AC平行于l时,直线BD可以与l平行,故C不对;对于D,当AB,CD是异面直线时,MN不可能与l平行,故D不对.故选:B.10.【KS5U答案】C【KS5U解析】当向量=时,可得向量,均为零向量,不等式成立;当k=0时,即有=,则有,即为x||≤λ||,即有λ≥x恒成立,由x≤1,可得λ≥1;当k≠0时,≠,由题意可得有 =||,当k>1时,>|﹣|,由|﹣x|≤|﹣|<||,可得:≤1,则有≥1,即λ≥k.即有λ的最小值为.故选:C.11.【KS5U答案】mnA【KS5U解析】第一次循环:1,1,+1k p p n m;第二次循环:2,12k p n m n m;第三次循环:3,123k p n m n m n m;…第m次循环:,12 (1)k m p n m n m n n此时结束循环,输出12...1mnp n m n m n n A故答案为:mnA.思路点拨:分析程序中各变量、各语句的作用,再根据流程图所示的顺序可知:该程序的作用是利用循环计算并输出变量P的值,用表格对程序运行过程中各变量的值进行分析即可.12.1,22x y i ==13.【KS5U答案】5,5【KS5U解析】考点:复数的概念和模的计算公式及二项式定理及运用.14.【KS5U答案】,8.【KS5U解析】∵角θ终边上一点P(4,﹣3),∴由三角函数的定义可得tanθ=,∴===8,故答案为:,8.15.【KS5U答案】2 ,[﹣9,9].【KS5U解析】∵在Rt△ABC中,∠C=90°,AC=4,BC=2,D是BC的中点,那么=, =+=16+4=20.∴====2.以CA所在的直线为x轴,以CB所在的直线为y轴,建立平面直角坐标系,则A的坐标为(4,0),B的坐标为(0,2),由线段的中点公式可得点D的坐标为(0,1),点E的坐标为(2,1),设点P的坐标为(x,y),则由题意可得可行域为△ABC及其内部区域,故有.令t==(﹣4,1)•(x﹣2,y﹣1)=7﹣4x+y,即 y=4x+t﹣7.故当直线y=4x+t﹣7过点A(4,0)时,t取得最小值为7﹣16+0=﹣9,当直线y=4x+t﹣7过点B(0,2)时,t取得最大值为 7﹣0+2=9,故t=的取值范围是[﹣9,9],故答案为 2,[﹣9,9].16.【KS5U答案】150【KS5U解析】根据题意,分配5名水暖工去3个不同的小区,要求5名水暖工都分配出去,且每个小区都要有人去检查,5人可以分为(2,2,1),(3,1,1),分组方法共有+C53=25种,分别分配到3个不同的小区,有A33种情况,由分步计数原理,可得共25A33=150种不同分配方案,故答案为:150.17.【KS5U答案】lg4,lg【KS5U解析】sin2x+2cosx+2=1﹣cos2x+2cosx+2=﹣(cosx﹣1)2+4,∵,∴cosx∈[﹣,1],则当cosx=1时,sin2x+2cosx+2取得最大值4,当cosx=﹣时,sin2x+2cosx+2取得最小值,即当时,函数有意义,设t=sin2x+2cosx+2,则≤t≤4,则lg≤lgt≤lg4,即函数的最大值为lg4,最小值为lg,故答案为:lg4,lg18.【KS5U解析】(Ⅰ)由cos2A=3cos(B+C)+1得,2cos2A+3cosA﹣2=0,即(2cosA ﹣1)(cosA+2)=0,所以,cosA=或cosA=﹣2(舍去),因为A 为三角形内角,所以A=.(Ⅱ)由(Ⅰ)知cosA=﹣cos (B+C )=, 则cosBcosC ﹣sinBsinC=;由cosBcosC=﹣,得sinBsinC=, 由正弦定理,有,即b=,c=, 由三角形的面积公式,得S===,即=2,解得a=4.19.【KS5U 解析】(1)连AO ,因为PO ⊥平面ABC ,得PO CA ⊥。