初中数学一次函数教案-初中数学一次函数课件
《一次函数》数学教学PPT课件(4篇)
这时候的函数图象
这两个函数解析式里
的函数图象呢
有什么性质呢?
?
的k与b有什么共同
点呢?
y
.
..
8
y=-6x
y=-6x+8
6
4
2
-3
-2
-1
1
-2
-4
-6
-8
.
2
3
y=-6x+5
x
一次函数图象
图象变化
趋势
y与x的关
系
从左往
3
右图象
下降趋
势
y随x的
增长而
减小
y
当
k<0
b>0时
图像经
增长而
减小
一次函数图象
当
k<0
b<0时
图像经
过象限
你知道画一次函数
能不能画y= 2x-1
图象找哪两个点比
的函数图象呢?
较方便?
y
8
6
4
2
-3
-2
-1
1
2
3
x
-2
-4
-6
-8
.
x
0
y=2x-1
-1
½
0
y
此时函数解析
你能说出这时
式里的k,b是
候的一次函数
什么情况呢?
性质么?
4
3
2
.
.
1
-3
-2
-1
1
增大
(0,3)
y随x的增大而______
,与y轴交点坐标为_________.
y
一次函数说课课件(共19张PPT)
小结: 这节课的收获:
怎样的函数是一次函数?
一般地,形如y=kx+b(k,b是常数,k≠0) 的函数,叫做一次函数。
当b=0时,y=kx+b就变成了 y=kx(k≠0),所以说正比例函数是一种特 殊的一次函数。
作业
• 完成课本90页练习1、2、3
再 见!
函数关系式 函数 自 变量 变 量
常数
y =-300x+3000 y x 3000 , -300
S=-95t+570 S t 570 , -95
y=8x+9
y x 9,8
y=12x+50 y x 50 , 12
一次函数的概念:
一般地,若两个变量 x、y之间的关系可以表示成: y=kx+b(k,b是常数,k≠0)的形式,则称 y是x的 一次函数。(x为自变量,y为因变量。)
(3)汽车油箱中原有油50升,如果行驶中每小时 用油5升,求油箱中的油量y(单位:升)随行驶 时间x(单位:时)变化的函数关系式.并写出
自变量x的取值范围,y是x的一次函数吗?
解:汽车每小时用油5升,x个小时用油5x升, 因而 y=50-5x (即y=-5x+50) ∵y≥0 ∴0≤x≤10 即自变量x的取值范围是0≤x≤10 (y是x的一次函数,但不是x的正比例函数。)
三、教学重点、难点
• 教学重点:掌握一次函数的概念,学会 如何判断一次函数.
• 教学难点:能结合实际问题中的数量关 系求出一次函数的解析式,即学会做一 次函数有关的应用题.
四、教学过程
• 回顾旧知识 • 创设情境,引入问题 • 新知识讲解 • 反馈练习 • 课堂小结
一﹑
正比例函数的定义:
初中数学一次函数课件
一次函数的表达式
表达式
特殊的 当
,
正比例函数
正比例函数是特殊的一次函数
第四 ,共34 。
一次函数的 像
当
的候,像与y 的交点
当
的候,像与x 的交点
正比例函数: 原点
第五 ,共34 。
一次函数的性
当k>0时,y随x的增大而增大; 当k<0时,y随x的增大而减小。
第七 ,共34 。
正比例函数性
当k>0 ,y随x的增大而增大,
且 像 一、三象限;
当k<0 ,y随x的增大而减小,
且 像 二、四象限。
第八 ,共34 。
两直 位置关系
平行
相交
第九 ,共34 。
求函数的解析式
直接求
第十 ,共34 。
*根据 像求
第十一 ,共34 。
初中数学一次函数 件
第一 ,共34 。
函数的定
一般的在一个 化 程中,如果有两个 量x与y,并且 于x的每一个确定的,y都有唯一确定的 与其 ,那么 我就x是自 量,y是x的函数。
第二 ,共34 。
函数的表示方式
像法 表法 解析式法
第三 ,共34 。
当b>0时,函数的图像与y轴交与正半轴; 当b<0时,函数的图像与y轴交于负半轴。
第六 ,共34 。
当k>0且b>0,函数的像一、二、三象限;
当k>0且b<0,函数的像一、三、四象限; 当k<0且b>0 ,函数的 像 一、二、四象限; 当k<0且b<0 ,函数的 像 二、三、四象限。
第十二 ,共34 。
*两点式
第十三 ,共34 。
初二数学《一次函数》课件
进阶习题
01
A. (4,4) 或 (-4,-4)
02
B. (4,-4) 或 (-4,4)
03
C. (-4,8) 或 (4,-8)
04
D. (-4,-8) 或 (4,8)
高阶习题
1
高阶习题1:已知一次函数 y = kx + b(k≠0) 经过点 (0,2),且与坐标轴围成的三角形的面积为 4,求这个一次函数的解析式.
2
A. y = x + 2 或 y = -x + 2
3
B. y = x - 2 或 y = -x + 2
高阶习题
01
C. y = x + 2 或 y = -x - 2
02
D. 以上都不对
03
高阶习题2:已知一次函数 y = kx + b(k≠0)的图象经过点 P(3,4),它与 x、 y 轴的正半轴分别相交于 A、B 两点,且 OA+OB=15,求此一次函数的解析式 .
详细描述
斜截式为 $y = mx + b$,其中 $m$ 是斜率,$b$ 是截距。这种形式简洁 地表示了直线方程的斜率和截距,便 于理解和计算。
一次函数的点斜式
总结词
点斜式是一次函数的另一种表达方式,用于描述通过某一点的直线方程。
详细描述
点斜式为 $y - y_1 = m(x - x_1)$,其中 $(x_1, y_1)$ 是直线上的一个点,$m$ 是斜率。该形式通过一个已知点和斜率来表示直线方程,具有更强的实际应用价 值。
注重理解而非死记硬背
函数的性质和特点应通过理解来掌握,而不是简单地记忆公式。
多做练习
通过大量的练习,可以更好地掌握一次函数的运用,提高解题能力 。
《一次函数的概念》教学PPT课件 初中数学公开课ppt教学课件
说一说
思考:一次函数与正比例函数有什么关系? (1)当b=0时,y=kx+b 即y=kx(k≠0),此时该 一次函数是正比例函数. (2)正比例函数是一种特殊的一次函数.
例2 已知一次函数 y=kx+b,当 x=1时,y=5; 当x=-1时,y=1.求 k 和 b 的值.
解:∵当x=1时,y=5;当x=-1时,y=1
∴Βιβλιοθήκη k b 5, - k b 1,
解得k=2,b=3.
做一做
已知y与x-3成正比例,当x=4时,y=3. (1)写出y与x之间的函数关系式,并指出它是什么函数; (2)求x=2.5时,y的值. 解 :(1) 设 y=k(x-3)
42
2
∴h是x的一次函数,且 k 3 ,b 0.
2
(2)当h= 3 时,求x的值. (3)求△ABC的面积S与x的函数解析式.S
是x的一次函数吗?
解(: 2)当h= 3 时,有 3 3 x .
2
解得x=2.
(3)∵ S1A D B C 13xx3x2,
2
22 4
即 S 3 x2 , ∴S不是x的一次函数.
课堂小结
一次函数 的概念
形式:y=kx+b(k≠0) 特别地,当b=0时, y=kx(k≠0)是正比例函数
一次函数的简单应用
4
当堂练习
1.下列说法正确的是( D ) A.一次函数是正比例函数 B.正比例函数不是一次函数 C.不是正比例函数就不是一次函数 D.正比例函数是一次函数
2.在函数①y=2-x;②y=8+0.03t;③y=1+x+ 1 ;
初中数学一次函数 PPT课件 图文
两直线位置关系
平行
k1 k2
相交
k1 k2
b 1 b ( 2 此 时 两 条 直 线 交 于 y 轴 同 一 点 )
b 1 b 2(b 1 k 1 ) ( 此 时 两 条 直 线 交 于 x 轴 同 一 点 ) k 1 k 2b 2 k 2
求函数的解析式
直接求
*根据图像求
*两点式
基本性质的考查
*象限问题
*根据图像求范围
*综合
交点问题
图像应用题
找点问题
实际应用题
谢谢! 学妹给我打电话,说她又换工作了,这次是销售。电话里,她絮絮叨叨说着一年多来工作上的不如意,她说工作一点都不开心,找不到半点成就感。 末了,她问我:学姐,为什么想 找一份 自己热 爱的工 作这么 难呢? 我问她上一份工作干了多久,她 说不到 三个月 ,做的 还是行 政助理 的工作 ,工作 内容枯 燥乏味 不说, 还特别 容易得 罪人, 实在不 是自己 的理想 型。 我又问了她前几份工作辞职的原 因,结 果都是 大同小 异,不 是因为 工作乏 味,就 是同事 不好相 处,再 者就是 薪水太 低,发 展前景 堪忧。 粗略估计,这姑娘毕业不到一年 ,工作 却已经 换了四 五份, 还跨了 三个行 业。 但即使如此频繁的跳槽,她也仍 然没有 找不到 自己满 意的工 作。 2 我问她,心目中理想型的工作是 什么样 子的。 她说, 姐,你 知道苏 明玉吗 ?就是 《都挺 好》电 视剧里 的女老 大,我 就喜欢 她样子 的工作 ,有挑 战有成 就感, 有钱有 权,生 活自由 ,如果 给我那 样的工 作,我 会投入 我全部 的热情 。 听她说完,我尴尬的笑了笑。 其实每一个人都向往这样的成功 ,但这 姑娘却 本末倒 置了, 并不是 有了钱 有了权 有了成 就以后 才全力 以赴的
初二数学《一次函数》ppt课件
倾斜度一样(平行)
都经过一、三象限
直线 还经过第二象限
b相同
k不同
都与y轴相交于点(0,2)
都经过一、二、三象限
倾斜度不一样(不平行)
1
-1
2
3
4
5
-4
-3
-2
-5
1
2
3
4
5
-1
-2
-3
-4
-5
0
观察:这些函数的图像 有什么特点?
x
y
在同一个平面直角坐标系中画出下列函数的图象: 1. 2. y=3x y=3x+2
y
x
o
-4
2
7.一个函数图像过点(1,2),且y随x增大而增大,则这个函数的解析式是___
B
如图所示,三峡工程在6月1日至6月10日下阐蓄水期间,水库水位由106米升至135米,高峡平湖初现人间.假设水库水位匀速上升,那么下列图像中,能正确反映这10天水位h(米)随时间t(天)变化的是( )
从图中可以看出: 1.当一次函数的k值相等时,直线互相平行.
2.当一次函数的b值相等时,直线在y轴交于一点.
特殊位置关系—平行
y=3x
y=3x+2
观察函数y=3x和y=3x+2的图象,我 们知道:它们是互相平行的,所以 ,其中 一条直线可以看作是由另一 条直线平移得到的。 你能说出直线y=3x+2是由直线y=3x 向____平移____个单位得到的吗?
3.一次函数y=x+2的图像不经过第____象限
EX
5.一次函数 y 1=kx+b与y 2=x+a的图像如图所示,则下列结论(1)k<0;(2)a>0;(3)当x<3时,y 1<y 2中,正确的有____个
一次函数的教学设计课件
一次函数的教学设计课件教材分析本节课是人民教育出版社八年级数学《第十四章一次函数》2.本节核《14.2一次函数》的第一课时。
函数是初中数学学习的重要内容,二正比例函数是最简单的函数。
通过学习正比例函数,培养学生利用函数解决生活中的实际问题,培养学生的函数思想;通过画正比例函数图像,培养学生的动手画图能力,数形结合的数学思想,通过函数图像研究正比例函数的性质,这些都是初中函数学习是主要目标,也是数学教学的重要目标。
学情分析一、 1、由用描点法画函数图象的认识,学生能接受一次函数的图像是直线,结合“两点确定一条直线”,学生画出一次函数图象。
二、 2、根据学生抽象归纳能力较差,学习直线y=kx+bk、b是常数,k≠0常数k和b的.取值对于直线的位置的影响有难度。
所以教学中应尽可能多的让学生动手操作,突出图像变化特征的探索过程,自主探索出其规律。
3、抓住初中学生的心理特征,运用直观生动的形象,引发学生的兴趣,吸引他们的注意力;另一方面积极创造条件和机会,让学生发表见解,发挥学生的学习的主动性。
教学目标一、知识技能目标:1、理解直线y=kx+b与y=kx之间的位置关系。
2、两点法”画出一次函数的图象。
3、掌握一次函数的性质。
二、过程与方法目标:1、通过操作、观察,培养学生动手和归纳的能力。
2、结合具体情境向学生渗透数形结合的数学思想。
三、情感目标:1、通过动手操作,观察探索一次函数的特征,体验数学研究和发现的过程,逐步培养学生在教学活动中的主动探索的意识和合作交流的习惯。
2、让学生通过直观感知、动手操作去经历、体会规律形成的过程。
教学重点和难点重点:用“两点法”画出一次函数的图象是研究一次函数的性质的基础,是本节课的重点。
难点:直线y=kx+b(k、b是常数,k≠0)常数k和b的取值对于直线的位置的影响,是本节课的难点。
感谢您的阅读,祝您生活愉快。
一次函数课件ppt
点斜式
根据一次函数的定义,通过已知条件确定 函数的解析式。
已知一个点$(x_0, y_0)$和斜率$k$,使用 点斜式$y - y_0 = k(x - x_0)$求函数解析式 。
两点式
截距式
已知两个点$(x_1, y_1)$和$(x_2, y_2)$,使 用两点式$y - y_1 = frac{y_2 - y_1}{x_2 x_1}(x - x_1)$求函数解析式。
的关系。
一次函数与其他数学知识的联系
与线性方程的联系
一次函数可以转化为线性方程的 情势,例如,$y = ax + b$ 可以 转化为 $ax + b = y$。
与几何图形的联系
一次函数的图像是一条直线,可 以通过几何图形来描写其性质和 特点。
04 一次函数的解题方法与技能
一次函数的解题方法
定义法
一次函数的系数
一次函数的斜率为 $a$,表示函数图 像的倾斜程度。
当 $a > 0$ 时,函数图像从左下到右 上倾斜;当 $a < 0$ 时,函数图像从 左上到右下倾斜。
一次函数的应用
一次函数在数学、物理、工程等领域都有广泛应用。
在实际生活中,一次函数可以用来描写一些简单的问题,如速度与时间的关系、 价格与数量的关系等。
一次函数在实际问题中的应用
投资收益
投资者可以通过一次函数猜测投 资收益,例如,假设投资金额和 收益之间的关系可以用一次函数
表示。
人口增长
人口增长可以用一次函数表示, 例如,假设某地区的人口随时间 增长的关系可以用一次函数描写
。
生产效率
在生产进程中,生产效率与时间 的关系可以用一次函数表示,例 如,机器的磨损与生产效率之间
一次函数课件精选
一次函数课件精选一、教学内容本节课的教学内容选自人教版八年级上册数学教材,第四章第二节“一次函数”。
具体内容包括:一次函数的定义、一次函数的图像与性质、一次函数的应用等。
二、教学目标1. 让学生掌握一次函数的定义和性质,能够正确运用一次函数解决实际问题。
2. 培养学生运用数学知识分析问题、解决问题的能力。
3. 培养学生的团队合作意识,提高学生的数学素养。
三、教学难点与重点重点:一次函数的定义、性质和应用。
难点:一次函数图像的特点,一次函数解决实际问题。
四、教具与学具准备教具:多媒体课件、黑板、粉笔。
学具:笔记本、尺子、圆规、直尺。
五、教学过程1. 实践情景引入:让学生观察生活中的一些线性关系,如身高与年龄的关系,温度与海拔的关系等,引导学生发现这些关系都可以用一条直线来表示。
2. 一次函数的定义:通过多媒体课件展示一次函数的定义,引导学生理解一次函数的概念。
3. 一次函数的性质:讲解一次函数的图像特点,如直线、斜率、截距等,并通过例题让学生加深理解。
4. 一次函数的应用:让学生通过实际问题,运用一次函数解决问题,如计算某商品的售价、预测某事件的概率等。
5. 随堂练习:布置一些有关一次函数的练习题,让学生巩固所学知识。
六、板书设计板书内容:一次函数的定义、性质、应用。
七、作业设计1. 作业题目:a. 一次函数的图像一定是直线。
b. 一次函数的斜率可以是负数。
a. 一次函数 y = 2x + 3 的图像是一条()。
A. 斜率为2的直线B. 斜率为3的直线C. 斜率为2,截距为3的直线b. 当 x 增加1时,一次函数 y = x + 1 的值()。
A. 增加1B. 减少1C. 不变2. 答案:(1)判断题:a. 正确b. 正确(2)选择题:a. Cb. A八、课后反思及拓展延伸本节课通过生活中的实际问题引入一次函数的概念,让学生深刻理解了一次函数的定义和性质。
在教学过程中,通过例题和随堂练习,让学生掌握了如何运用一次函数解决实际问题。
一次函数ppt课件免费
参数意义
通过调整$k$和$b$的值, 可以改变函数的形状和位 置。
一次函数的图象法
绘制函数图像
通过描点法,在坐标系中绘制出 一次函数的图像。
图像性质
了解图像的上升或降落趋势、与 坐标轴的交点等。
实际应用
结合实际问题,利用图像直观地 分析函数关系。
一次函数的代数法
方程求解
利用代数方法求解一次函数的相关问题,如求交 点、最值等。
THANKS
感谢观看
,且 $a neq 0$。
$a$ 称为函数的斜率,$b$ 是 y 轴上的截距。
当 $a > 0$ 时,函数是增函数 ;当 $a < 0$ 时,函数是减函
数。
一次函数的图像
图像的斜率由 $a$ 的值决定,斜率为正表示图 像从左下到右上上升,斜率为负表示图像从左
上到右下落落。
可以通过代入不同的 $x$ 值来求得对应的 $y$ 值, 从而在坐标系中描出完全的图像。
一次函数的一般情势为y=kx+b,其 中b为截距。
一次函数的单调性
单调性定义
对于任意x1<x2,若f(x1)<f(x2) ,则称函数在此区间内为增函数 ;若f(x1)>f(x2),则称函数在此
区间内为减函数。
单调性与斜率
增函数的斜率大于0,减函数的斜 率小于0。
单调性应用
在解决实际问题时,可以根据函数 的单调性来判断自变量与因变量之 间的关系,从而作出公道的决策。
一次函数的图像是一条直线。
当 $b = 0$ 时,图像经过原点;当 $b neq 0$ 时,图像与 y 轴交于点 $(0, b)$。
02
一次函数的性质
一次函数的斜率
一次函数课件(共36张PPT)
3 2
∴ 2k+b=0,
1
b=2.
O 1 2 3 x 解得 k=-1,
b=2.
∴y=-x+2.
情景导课
反思小结: 确定正比例函数的解析式需要一个条件,确定 一次函数的解析式需要两个条件.
情景导课
问题1 前面,我们学习了一次函数及其图象和性 质,你能写出两个具体的一次函数解析式吗?如何画出 它们的图象?
19-2.2 一次函数(3) 第 3 课时
待定系数法求一次函数 的解析式
人教版八年级数学下册
情景导课
教材导读
练习展示
反思小结
测评反馈
拓展延伸
阅读教材第93页至95页,明确学习目标
学习目标:
1、学会运用待定系数法和数形结合思想求一次函数解析式;了 解两个条件确定一个一次函数;一个条件确定一个正比例函数, 能根据函数的图象确定一次函数的表达式,培养学生的数形结 合能力. 2、了解分段函数的表示及其图象. 3、能通过函数解决简单的实际问题
下列问题:
y
(1)求出y关于x的函
120
数解析式.
80
(2)根据关系式计算,
小明经过几个月才能存够
40
200元?
O 12 3 4 x
y=20x+40
(1)填写下表.
购买量 0.5 1 1.5 2 2.5 3 3.5 4 …
/kg
付款金额/ 元
2.5
5
7.5
10 12.5 15
17.5 20
…
(2)写出购买量关于付款金额的函数解析式,并画出 函数图象.
分析:从题目可知,种子的价格与 购买种子量 有关。
若购买种子量为0≤x≤2时,种子价格y为: y=5x 。
一次函数教学课件ppt
在匀速直线运动中,速度、时间和距 离之间的关系可以用一次函数表示, 例如计算汽车行驶100公里所需的时 间。
一次函数在数学问题中的应用
线性计划
在资源分配问题中,如最大化利润、最小化成本等,可以通过一次函数表示束缚条件和目标函数。
代数方程的求解
一次函数可以用于求解代数方程,例如将方程转化为一次函数情势,通过找到与x轴交点的方式求解 。
03
已知函数$f(x) = ax + b$,其中$a neq 0$,求当$-1 < x < 1$
时,$f(x)$的最小RY
THANKS
感谢观看
REPORTING
图解法应用
利用图像视察函数的单调性、交点 、最值等性质,解决实际问题。
图解法优缺点
优点是直观、易于理解,缺点是绘 图进程可能存在误差,且不易表示 复杂函数的图像。
一次函数的代数法
代数法定义
通过代数运算来研究一次函数的 性质和求解相关问题。
代数法应用
求解方程、不等式、求最值等。
代数法优缺点
优点是严谨、系统化,缺点是对 于一些复杂问题需要进行大量的
综合练习题
综合练习题1
01
已知函数$f(x) = x^2 + kx + 3$,其中$k in mathbb{R}$,求
当$-1 < x < 1$时,$f(x)$的最小值。
综合练习题2
02
已知函数$f(x) = frac{x + 2}{x}$,求当$-1 < x < 0$时,$f(x)$
的最大值。
综合练习题3
图像性质
当$k > 0$时,函数图像为上升直线; 当$k < 0$时,函数图像为降落直线。 截距$b$决定了函数与y轴的交点。
初中数学一次函数授课课件
这些函数的形式都是自变量的常数倍与一个常数 的和。(表达式都是自变量的一次式)
一次函数:形如y=kx+b(k ≠ 0)的函数叫 做x的一次函数,其中k、b为常数
(x为自变量,y因变量)
当b=0时,称y是x的正比例函数
实际问题中,自变量的 取值往往是有限制的!
一次函数和正比例函数的关系
正比例函数是一种特殊的一次函数
二、已知两点坐标求函数解析式
已知一次函数y=kx+b的图象经过点(-1,1)和
点(1,-5) , 求函数y的解析式. 解:根据题意,得
-k+b=1
k+b=-5 k=-3
解得, b=-2 ∴ 函数的解析式为 y= -3x -2
三、根据图象求解析式
例3:一次函数 的图象如图所示, 求这个一次函数 的解析式
-2=0•k+b,
0=3•k+b.
解这个关于k,b的二元一次方程组,得
k 2, 3
b=-2.
再将 k 2 和b=-2代入y=kx+b,得所求的一次函数的
3
表达式为 y 2 x 2.
3
在本节例3中,通过先设出表达式中的未知 系数,再根据所给条件,利用解方程或方程组 确定这些未知系数.这种方法叫做待定系数法.
1 直线y=kx+b(k≠0)的一般画法:
取(0,b)、(- b/k ,0)两点,作直线即可.
2 正比例函数y=kx (k≠0)的一般画法: 取(0,0)、(1,k)两点,作直线即可.
一次函数的图像
当 x=0 的时候,图像与y轴的交点为 b
当 y=0 的时候,图像与x轴的交点为 b
正比例函数:经过原点
4A
例2 画出函数 y 2x 的4 图象.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学一次函数教案:初中数学一次函数课件
一次函数是初中数学常考的内容之一,下面WTT为你整理了初中数学一次函数教案,希望对你有帮助。
初中一次函数教案
教学目标
1、经历一般规律的探索过程,发展学生的抽象思维能力。
2、理解一次函数和正比例函数的概念,能根据所给条写出简单的一次函数表达式,发展学生的数学应用能力。
教学重点 1、
一次函数、正比例函数的概念及两者之间的关系。
2、
会根据已知信息写出一次函数的表达式。
教学难点一次函数知识的运用教学方法教师引导学生自学法教具准备弹簧一根、课教学过程
一、创设问题情境,引入新课
1、
简单复习函数的概念(设在某一变化过程中有两个变量X和Y,如果
,那么我们称Y是X的函数,其中X是自变量,Y是因变量) 2、
演示弹簧在力的作用下发生形变现象,提出问题:在弹簧长度发生变化过程中,弹簧的长度是哪个变量的函数?为什么?
3、
汽车匀速行驶途中,油箱中的剩余油量与什么有关系?这其中有函数吗?
二、新课学习
1、
做一做。
让学生做书上157页上面两个
题目,使学生在探索一般规律的过程中,发展抽象思维能力。
2、
一次函数、正比例函数的概念学习讨论:刚才写出的两个关系式y=3+0.5x、y=100-0.18x在形式上有什么相同之处?
让学生分析出他们的共同点:①左边都是因变量,右边都是含自变量的代数式;②自变量X与因变量Y的次数都是1;③从形式上看,形式都为y=kx+b,K,b为常数。
问:从自变量的次数上看,这样的函数大家认为可以取个什么名字?引导学生归纳出一次函数的概念:若两个变量x,y间的关系可以表示成y=kx+b(k,b为常数,k≠0)的形式,则称y是x的一次函数(x是自变量,y是因变量)。
问:一次函数y=kx+b中,k可以为0吗?b可以为0吗?引导学生得出正比例函数的概念。
并接着引导学生比较一次函数与正比例函数的关系(用集合的方法比较):一次函包括正比例函数,正比例函数是一次函数的特殊情况。
3、
例题学习
例题1是考察学生对一次函数与正比例函数概念的理解,学生直接进行口答。
例题2是培养学生根据题意列出简单一次函数关系式及利用一次函数解决实际问题的能力。
其中第三问严格地讲应先判断出工资的范围是800
三、随堂练习
1、找出下面的一次函数,并指出其中K、b的值。
若不是一次函数,请说明理由。
A、y=
+x
B、y=-0.8x
C、y=0.3+2x2
D、y=6-
2、已知函数y=(m+1)x+(m2-1),当m
,y是x的一次函数;当m
,y是x的正比例函数。
四、拓展应用
学校组织部分学生去井岗山体验革命历史。
出行方面准备从甲、乙两家旅行社中选择一家代办,已知两家旅行社报价相同,
都是每人200元。
不过,甲旅行社开出的团体(15人以上)优惠办法是返还现金500元作为门票费,乙旅行社的团体优惠是,所有
人员费用均打9折。
设学生人数为x人,两家旅行社的收费分别
为y甲、y乙,解答下列问题:(1)分别写出两家旅行社收费y(元)与学生人数x(人)之间的函数关系式;该关系式是什么函数?(y甲
=200x-500,y乙=180x)(2)如果学生为20人,分别计算两家旅行社收费。
到哪家合算?(y甲=200-20-500=3500(元);y乙=180-
20=3600(元);y甲<
y乙,所以到甲旅行社合算。
)(3)在什么情况下,选择乙旅行社?(依题意得,
y甲- y乙>0,即(200x-500) -180x>0,解不等式得,x>25,所以当学生多于25人时,到乙旅行社合算。
)五、课堂小结让学生归纳本节课学习内容:1、一次函数、正比例函数概念以及它们之间的关系。
2、会根据已知信息写出一次函数的关系式。
六、作业读一读:中国古代漏刻必做题:161页习题6.2第
1、2、3题选做题:161页试一试
一次函数教学反思
“函数及其图象”这一章的重点是一次函数的概念、图象和
性质,一方面,在学生初次接触函数的有关内容时,一定要结合
具体函数进行学习,因此,全章的主要内容,是侧重在具体函数的讲述上的。
另一方面,在大纲规定的几种具体函数中,一次函数是最基本的,教科书对一次函数的讨论也比较全面。
通过一次函数的学习,学生可以对函数的研究方法有一个初步的认识与了解,从而能更好地把握学习二次函数、反比例函数的学习方法。
教学完后,对新教材有了一些更深的认识。
精心备课
备课过程是一种艰苦的复杂的脑力劳动过程,知识的发展、教育对象的变化、教学效益要求的提高,使作为一种艺术创造和再创造的备课是没有止境的,一种最佳教学方案的设计和选择,往往是难以完全使人满意的。
一:教材课时安排过紧有关。
初二教材的教学时间不够,教参函数第一节第二节二节课,第三节一次函数节,课时太少,本节要加一个复习课
二:教学内容不好处理。
“一次函数的性质”中无b对函数的图象的影响,但题中有,要补讲
环节二:概括一次函数图象的性质
一次函数y=kx+b有下列性质:
(1) 当k>0时,y随x的增大而______,这时函数的图象从左到右_____;
(2) 当k<0时,y随x的增大而______,这时函数的图象从左到右_____.
(3)当b>0时,这时函数的图象与y轴的交点在:
(4)当b>0时,这时函数的图象与y轴的交点在:
待定系数法的引入上用“弹簧的长度 y(厘米)”来讲的,太难,要先讲书上的“做一做:“已知一次函数y=kx+b的图象经过点(-1,1)和点(1,-5),”
三:难度不好处理:
如我们在讲一次函数的定义时(第一课时)补充了一个例题:已知函数y= 当m取什么值时,y是x的一次函数?当m取什么值是,y是x的正比例函数。
”
;
学生难以理解,我个人认为太难,超出了学生的理解能力。
反而对一个具体的一次函数y=-2x+3中k,b是多少强调的不多。
满意之笔
一次函数有以下令自己较满意的地方:
一. 结合生活实例,充分调动学生学习的激情,恰当的过渡,点燃其求知的欲望。
在本节课的引入部分采用班级里的真人真事(运用校运动会的具体事例) “在此跑步过程中涉及到哪些量?”“假定每位选手各自都是匀速直线运动的,那速度、时间、路程之间有什么关
系?”“路程是时间的一次函数吗?”等过渡性的问句既复习回顾了上节课的知识又为一次函数图像的概念引出作了铺垫。
二.大胆对教材作大幅度调整、修改
对知识内容的完整性作了补充。
(附一次函数的图象的知识要点:一次函数几何形状:一条直线;一次函数图象的画法;一次函数图象与坐标轴的交点坐标。
)教材对“一次函数图象的画法”阐释得不太完整、详尽。
学习函数的图象需要培养学生数形结合的思想,一次函数图象又是所有函数图象中最简单的一种,是以后学习其他复杂函数的基础,所以整体全面地学习一次函数的图象能为学生以后学习其他复杂函数提供思路样本、节省学习时间。
虽然在课后的习题与作业本中都有涉及到:当一次函数的自变量限制在某一范围时画此一次函数的图象,但在教材中似乎没有涉及到此类问题,对于B班的学生需要教师对此类问题做相关示范解决。
(1)求
y1
关于 x 的函数关系式及自变量x的取值范围;(2)画出上述函数的图像。
图像还是一条直线吗?此题为拓展知识点:当一次函数的自变量限制在某一范围时一次函数的图象是一条射线或线段而特地设计的。
至于快速地画出射线或线段呢,让学生讨论后给出总结:对于射线,取起点与另一个异于起点的任一点画出射线;对于线段,取线段的两个端点然后连接即可。
不足之处
一、时间把握不准。
由于我在原教材的基础上加宽了知识点的面,拓展了知识点的深度,个别环节还需要小组活动或学生个别上台动手操作,而我又想将这所有的内容在一节课内完成,似乎太高估了自己和学生的能力。
所以我想这么多内容可以更宜分开两节课来上。
二、部分内容上处理出现失误:初探索一次函数y=x的画法时,我直接自己硬性规定先取这样五个点:(-2,-2), (-1,-1) , (0,0) , (1,1) , (2,2),而没有先征求学生的意见,看看他们是怎么取的,也没有解释为什么要取这五个点(理由应是:这五个点分布均匀,它们的坐标较简单,有代表性)
在以后的教学工作中,我要再接再厉,以能更好的体现数学课堂教学的有效性。
猜你感兴趣:
1.初中数学一次函数教学设计
2.初中数学函数教学设计
3.人教版一次函数教案
4.八年级数学一次函数的图像和性质教学反思
5.七年级数学上教学设计
6.初中八年级数学因式分解教案人教版。