2018年人教版高中数学必修四重点知识点归纳总结
(word完整版)高中数学必修4知识点总结,文档
高中数学必修 4 知识点总结第一章:三角函数§1.1.1 、任意角1、正角、负角、零角、象限角的看法.2、与角终边相同的角的会集:2k , k Z .§1.1.2 、弧度制1、把长度等于半径长的弧所对的圆心角叫做 1 弧度的角 .l2、.r3、弧长公式: l n R R. 1804、扇形面积公式: S n R 21lR .3602§ 1.2.1 、任意角的三角函数1、设是一个任意角,它的终边与单位圆交于点P x, y ,那么: siny, cosx,tan y x2、设点A x , y为角终边上任意一点,那么:〔设 r x2y2〕sin y x y x, cos, tan, cotyr r x y T3、sin, cos, tanP 在四个象限的符号和三角函数线的画法.正弦线: MP;余弦线: OM;正切线: ATO M A x 4、特别角 0°, 30°, 45°, 60°,90°, 180°, 270 等的三角函数值 .023324234263sincostan§ 1.2.2 、同角三角函数的根本关系式1、平方关系:sin2cos21.sin.2、商数关系:tancos3、倒数关系:tan cot1§ 1.3 、三角函数的引诱公式〔概括为“奇变偶不变,符号看象限〞 k Z 〕sin 2k sin ,1、 引诱公式一 : cos2k cos , 〔其中: k Z 〕tan 2ktan .sin sin ,2、 引诱公式二 :coscos ,tan tan .sin sin , 3、引诱公式三 :cos cos , tan tan .sin sin ,4、引诱公式四 :cos cos ,tantan .sincos ,5、引诱公式五 :2cossin .2sincos ,6、引诱公式六 :2cossin .2§ 1.4.1 、正弦、余弦函数的图象和性质 1、记住正弦、余弦函数图象:y=sinxy37-5 -2 12 22-4-7o x-3 -2 -3-2 5 342 2-1 22y=cosxy37-5-2 1-3 2- 232x-4-7-2 -3o 2 542 2-1222、能够比较图象讲出正弦、余弦函数的相关性质: 定义域、值域、最大最小值、对称轴、对称中心、奇偶性、单调性、周期性 .3、会用 五点法作图 .y sin x 在 x[0, 2 ] 上的五个要点点为:〔0,0〕〔,,1〕〔, ,0〕〔,3,-1〕〔,2,0〕.2 2§ 1.4.3 、正切函数的图象与性质y y=tanx3--o3- 2222x2、记住余切函数的图象:yy=cotx--2o32x 223、能够比较图象讲出正切函数的相关性质:定义域、值域、对称中心、奇偶性、单调性、周期性.周期函数定义:对于函数 f x ,若是存在一个非零常数T,使适合x取定义域内的每一个值时,都有f x T f x ,那么函数 f x 就叫做周期函数,非零常数T 叫做这个函数的周期 .图表概括:正弦、余弦、正切函数的图像及其性质y sin x y cos xy tan x图象定义域R R{ x | x k, k Z}2值域[-1,1][-1,1]R x2k, k Z时, y max1x2k, k Z时, y max 1最值2无x2k, k Z时, y min1x2k, k Z时, y min12周期性T2T2T奇偶性奇偶奇在[2k, 2k] 上单调递加在 [2 k,2 k] 上单调递加在(k, k)上单调递单调性22k Z322在[2k,2k在 [2 k,2 k] 上单调递减增] 上单调递减22对称性对称轴方程: x k 对称轴方程: x k无对称轴kk Z2对称中心 (k, 0)对称中心 (对称中心 ( k ,0), 0)22§ 1.5 、函数y A sin x的图象1、对于函数:y Asin x B A 0,0有:振幅A2,初相,相位x,频率f T 2.,周期 T12、能够讲出函数y sin x 的图象与y Asin x B 的图象之间的平移伸缩变换关系.①先平移后伸缩:y sin x 平移|| 个单位〔左加右减〕横坐标不变y sin x y Asin x纵坐标变为原来的 A 倍纵坐标不变y Asin x横坐标变为原来的|1|倍平移 | B| 个单位y AsinxB〔上加下减〕② 先伸缩后平移:y sin x横坐标不变y Asin x纵坐标变为原来的 A 倍纵坐标不变y Asin x横坐标变为原来的|1|倍平移个单位〔左加右减〕平移 | B| 个单位y Asin xy Asin x B〔上加下减〕3、三角函数的周期,对称轴和对称中心函数 ysin(x) , x ∈ R 及函数 y cos( x ) ,x ∈ R(A,,为常数,且 2 ;A ≠ 0) 的周期 T||函数 ytan( x) , x k, k Z (A, ω , 为常数,且 ≠ 0) 的周期 T .2| |对于 y Asin( x) 和 yAcos( x) 来说, 对称中心与零点相联系,对称轴与最值点联系. 求函数 yA sin( x) 图像的对称轴与对称中心,只需令 xk( k Z ) 与xk (kZ )2解出 x 即可 . 余弦函数可与正弦函数类比可得.4、由图像确定三角函数的剖析式 利用图像特色: Ay max y min , B y max y min .2 2要依照周期来求 , 要用图像的要点点来求 .§ 1.6 、三角函数模型的简单应用1、 要求熟悉课本例题 .第三章、三角恒等变换§ 3.1.1 、两角差的余弦公式记住 15°的三角函数值:sincostan626223124 41、sin sin cos cos sin2、sin sin cos cos sin3、cos cos cos sin sin4、cos cos cos sin sin5、tantan tan.1 tan tan6、tantan tan.1 tan tan§ 3.1.3 、二倍角的正弦、余弦、正切公式1、sin 22sin cos,sin cos1.变形:2 sin 22、cos2cos2sin 22cos211 2 sin 2.变形以下:升幂公式:1cos22cos 21cos22sin 2cos21(1cos2 )降幂公式:2sin 21(1cos 2)23、tan 22 tan. 1tan24、tansin 21cos2 1cos 2sin 2§ 3.2 、简单的三角恒等变换1、注意正切化弦、平方降次 .2、辅助角公式y a sin x b cosx a 2 b 2 sin(x )〔其中辅助角所在象限由点(a, b) 的象限决定,tan b). a第二章:平面向量§、向量的物理背景与看法1、认识四种常有向量:力、位移、速度、加速度 .2、既有大小又有方向的量叫做向量 .§、向量的几何表示1、带有方向的线段叫做有向线段,有向线段包含三个要素:起点、方向、长度.uuur等于 1 个单位的向量叫做单位向量.3、方向相同或相反的非零向量叫做平行向量〔或共线向量〕. 规定:零向量与任意向量平行.§ 2.1.3 、相等向量与共线向量1、长度相等且方向相同的向量叫做相等向量.§ 2.2.1 、向量加法运算及其几何意义1、三角形加法法那么和平行四边形加法法那么.2、a b ≤ a b .§ 2.2.2 、向量减法运算及其几何意义1、与a长度相等方向相反的向量叫做 a 的相反向量.2、三角形减法法那么和平行四边形减法法那么.§ 2.2.3 、向量数乘运算及其几何意义1、规定:实数与向量a的积是一个向量,这种运算叫做向量的数乘.记作: a ,它的长度和方向规定以下:⑴a a ,⑵当0 时, a 的方向与 a 的方向相同;当0 时, a 的方向与 a 的方向相反.2、平面向量共线定理:向量a a0 与b共线,当且仅当有唯一一个实数,使b a .§ 2.3.1 、平面向量根本定理1、平面向量根本定理:若是e1,e2是同一平面内的两个不共线向量,那么对于这一平面内任向来量 a ,有且只有一对实数1 , 2,使 a 1 e1 2 e2.§ 2.3.2 、平面向量的正交分解及坐标表示1、 a xi y j x, y .§ 2.3.3 、平面向量的坐标运算1、设a x1 , y1 ,b x2 , y2,那么:⑴ a b x 1 x 2 , y 1 y 2 , ⑵ abx 1 x 2 , y 1 y 2 ,⑶ax 1, y 1,⑷ a // bx 1 y 2 x 2 y 1 .2、 设 A x 1 , y 1 , B x 2 , y 2 ,那么:ABx 2 x 1 , y 2 y 1 .§ 2.3.4 、平面向量共线的坐标表示1、设 A x 1, y 1 , B x 2 , y 2 , C x 3 , y 3 ,那么⑴线段 AB 中点坐标为 x 1 2x2 , y12y2,⑵△ ABC 的重心坐标为 x 1 x 2 x 3,y 1 y 2 y 3.33§2.4.1 、平面向量数量积的物理背景及其含义1、a b a b cos.2、 a 在 b 方向上的投影为:a cos.3、 a 22a .a24、a .5、 aba b 0 .§、平面向量数量积的坐标表示、模、夹角1、 设 ax 1 , y 1 ,b x 2 , y 2 ,那么:⑴ a b x 1 x 2 y 1 y 2⑵ ax 12 y 12r r r r⑶ a ba b 0 x 1x 2 y 1 y 2 0r rr r⑷a / /babx 1 y 2 x 2 y 12、 设 A x 1 , y 1 , B x 2 , y 2 ,那么:ABx 2 x 1 2y 2y 12.r ra b x1x2y1 y2cosr rx12y12x22y22a b4、点的平移公式uuurP ( x , y ) 〔新坐标〕,平移向量为 PP 平移前的点为 P( x, y) 〔原坐标〕,平移后的对应点为( h,k ) ,x x h那么y y k.r函数 y f ( x) 的图像按向量 a (h, k ) 平移后的图像的剖析式为y k f ( x h).。
【人教版】数学必修四:知识点精要归纳整理
必修四第一章三角函数一、任意角和弧度1、任意角:正角、负角、零角。
△第几象限角终边相同:S={β|β=α+k∗360°,k∈Z}。
≈57.30°2、弧度制:l=r时,l所对应的圆心角叫做1弧度的角。
[1°=π180rad,1rad=(180π)°]|α|=lr 。
l=αR,S=12αR2,S=12lR。
(0<α<2π)≈0.01745rad二、任意角的三角函数sin0°=0 sin300=12sin45°=√22sin600=√32sin90°=1cos0°=1 cos30°=√32cos45°=√22cos60°=12cos90°=0tan0°=0 tan30°=√33tan450=1 tan60°=√3不存在注:结合平面直角坐标系理解(讲解的时候补上图:sinα、cosα和tanα)sin2α+cos2α=1。
当α≠kπ+π2(k∈Z)时,sinαcosα=tanα。
三、三角函数的诱导公式公式一:sin(α+k∙2π)=sinα,cos(α+k∙2π)=cosα,tan(α+k∙2π)=tanα,其中k∈Z。
公式二:sin(π+α)=−sinα,cos(π+α)=−cosα,tan(π+α)=tanα。
公式三:sin(−α)=−sinα,cos(−α)=cosα,tan(−α)=−tanα。
公式四:sin(π−α)=sinα,cos(π−α)=−cosα,tan(π−α)=−tanα。
公式五:sin(π2−α)=cosα,cos(π2−α)=sinα。
公式六:sin(π2+α)=cosα,cos(π2+α)=−sinα。
四、三角函数的图像与性质(周期函数)(区间、单调性、最大或最小值)1、正弦函数(奇):y=sin x2、余弦函数(偶):y=cos x3、正切函数(奇):y=tan x注:讲解的时候补上各自的函数图象(注意关键点)五、函数y=A sin(ωx+φ)的图象(与不同角合并公式和2倍角公式挂钩)1、y=sin x → y=sin(x+φ)→ y=sin(ωx+φ)→ y=A sin(ωx+φ)左加右减 x变为原来的1ω倍 y变为原来的A倍2、振幅A——最大(小)值(距离)周期T=2πω(时间)频率(次数)f=1T =ω2πωx+φ称为相位,x=0时,φ为初相。
(完整版)人教版高中数学必修4知识点总结(最新整理)
。降幂并非绝对,有时需要升幂,如对无理式
1 cos 常用升幂化为有理式,常用升幂公式有:
;
;
(5)公式变形:三角公式是变换的依据,应熟练掌握三角公式的顺用,逆用及变形应用。
1 tan
如:
_______________ ;
1 tan
______________ ;
27、 合 一 变 形 把 两 个 三 角 函 数 的 和 或 差 化 为 “ 一 个 三 角 函 数 , 一 个 角 , 一 次 方 ” 的
y Asin(x ) B 形式。 A sin cos A2 2 sin ,其中 tan .
A
28、三角变换是运算化简的过程中运用较多的变换,提高三角变换能力,要学会创设条件,灵活运用三角
r
6、弧度制与角度制的换算公式: 2
360 ,1
180
,1
180
57.3 .
7、若扇形的圆心角为 为弧度制 ,半径为 r ,弧长为 l ,周长为 C ,面积为 S ,则 l r , C 2r l ,
S 1 lr 1 r2 . 22
8、 设 是 一 个 任 意 大 小 的 角 , 的 终 边 上 任 意 一 点 的 坐 标 是 x, y , 它 与 原 点 的 距 离 是
2
偶函数
单调 性
2k
2
, 2k
2
在 2k , 2k k
k 上是增函数;在 上是增函数;在2k , 2k
2k
2
,
2k
3 2
k 上是减函数.
R
既无最大值也无最小值
奇函数
在
k
2
, k
2
k 上是增函数.
k 上是减函数.
数学必修4知识点归纳总结
数学必修4知识点归纳总结第一章 三角函数周期现象与周期函数周期函数定义的理解要掌握三个条件,即存在不为0的常数T ;x 必须是定义域内的任意值; f(x +T)=f(x)。
练习:(1)已知函数f(x)对定义域内的任意x 满足:存在非零常数T ,使得f(x +T)=f(x)恒成立。
求:f(x +2T) ,f(x +3T)解:f(x +2T)=f[(x +T)+T]=f(x +T)=f(x), f(x +3T)=f[(x +2T)+T]=f(x +2T)=f(x)(2)已知函数f(x)是R 上的周期为5的周期函数,且f(1)=2005,求f(11) 解:f(11)=f(6+5)=f(6)=f(1+5)=f(1)=2005(3)已知函数f(x)是R 上的奇函数,且f(1)=2,f(x +3)=f(x),求f(8) 解:f(8)=f(2+2×3)=f(2)=f(-1+3)=f(-1)=-f(1)=-2 角的概念的推广1、正角、负角、零角的概念一条射线由原来的位置OA ,绕着它的端点O 按逆时针方向(或顺时针方向)旋转到终止位置OB ,就形成角α.旋转开始时的射线OA 叫做角的始边,OB 叫终边,射线的端点O 叫做叫α的顶点。
规定:按逆时针方向旋转形成的角叫做正角;按顺时针方向旋转形成的角叫做负角;如果一条射线没有作任何旋转,我们认为这时它也形成了一个角,并把这个角叫做零角,如果α是零角,那么α=0°;钟表的时针和分针在旋转时所形成的角总是负角。
过去我们研究了0°~360°(00360α≤<)范围的角。
如果我们将角α=030的终边OB 继续按逆时针方向旋转一周、两周……而形成的角分别得到390°,750°……的角。
角的概念经过这样的推广以后就成为任意角,任意角包括正角、负角和零角. 2.象限角、坐标轴上的角的概念.由于角是一个平面图形,所以今后我们常在直角坐标系内讨论角,我们使角的顶点与原点重合,角的始边与x 轴的非负半轴(包括原点)重合,那么角的终边(除端点外)落在第几象限,我们就说这个角是第几象限角. 300°、-60°角都是第四象限角;585°角是第三象限角。
高中数学必修四知识点总结
高中数学必修四知识点总结高中数学必修四主要包括数列、不等式、三角函数和数学归纳法。
这些知识点在高中数学学习中具有重要的地位,对于学生的数学基础和逻辑推理能力的培养都起着至关重要的作用。
下面将重点总结这些知识点的重点内容。
一、数列数列是由一系列按照一定规律排列的数构成的有序集合。
数列的概念主要包括等差数列、等比数列和通项公式等内容。
在学习数列时,首先需要了解数列的定义和基本概念,有效地掌握数列的表达方法、性质和运算等。
然后,需要掌握等差数列和等比数列的概念和特点,学会使用通项公式和公式的求和公式进行数列的分析和运算。
另外,还需要了解数列极限的概念和性质,学会利用数列极限来研究数列的发散、收敛和趋势等问题。
二、不等式不等式是数学中的一个重要概念,其研究内容主要包括一元一次不等式、一元二次不等式和多元不等式等。
在学习不等式时,首先需要了解不等式的定义和基本性质,包括不等式的解集和解法等。
然后,需要学会解一元一次和一元二次不等式,掌握用图象法、代数法和数线法等不同方法求解不等式的过程和技巧。
另外,还需要了解多元不等式的概念和性质,学会利用多元不等式进行最值求解、不等关系的判断和应用等方面的问题。
三、三角函数三角函数是数学中的一个重要概念,其研究的内容主要包括正弦函数、余弦函数、正切函数和割函数等。
在学习三角函数时,首先需要了解三角函数的定义和基本性质,包括周期性、奇偶性和单调性等。
然后,需要学会应用三角函数的基本关系和公式进行三角函数的简化、求值和运算等。
另外,还需要了解三角函数的图象和性质,学会利用三角函数的图象来研究三角函数的变化规律、相关角关系和应用等问题。
四、数学归纳法数学归纳法是数学中的一种证明方法,通过“归纳假设”和“归纳步骤”来证明某种性质或结论的方法。
在学习数学归纳法时,首先需要了解数学归纳法的基本原理和步骤,包括归纳假设的选择、归纳步骤的构造和结论的推导等。
然后,需要掌握数学归纳法的常见应用,包括证明数列性质、不等式的成立和递推关系等。
高中数学人教版必修4知识点汇总
1”作巧
妙的变形,
1. 3 诱导公式
1、诱导公式(五)
sin(
ห้องสมุดไป่ตู้) cos
2
cos(
) sin
2
2、诱导公式(六)
sin(
) cos
2
总结为一句话:函数正变余,符号看象限
小结:
①三角函数的简化过程图:
cos(
) sin
2
任意负角的 三角函数
公式一或三 任意正角的 三角函数
公式一或二或四 00~3600 间角 的三角函数
..
..
1.1 . 1 任意角
1.角的有关概念: ①角的定义:
角可以看成平面一条射线绕着端点从一个位置旋转到另一个位置所形成的图形.
②角的名称:
始边 B
终边
③角的分类:
O
A
顶点
正角:按逆时针方向旋转形成的角
零角:射线没有任何旋转形成的角
负角:按顺时针方向旋转形成的角
④注意: ⑴在不引起混淆的情况下, “角α ”或“∠α ”可以简化成“α ”; ⑵零角的终边与始边重合,如果α是零角α =0 °; ⑶角的概念经过推广后,已包括正角、负角和零角. 2.象限角的概念: ①定义:若将角顶点与原点重合, 角的始边与 x 轴的非负半轴重合, 那么角的终边 ( 端点除外 ) 在第几象限,我们就说这个角是第几象限角.
tan cot
1(
k ,k
Z) ;
2
③对这些关系式不仅要牢固掌握,还要能灵活运用(正用、反用、变形用) ,如:
cos
1 sin2
,
2
sin
2
1 cos
,
cos
sin 等。
高中数学必修4知识点
高中数学必修4知识点一、函数:1.函数与映射:介绍函数的定义、自变量与因变量的关系,以及函数的图像和性质。
2.常函数与恒等函数:讨论常函数和恒等函数的特点,以及与其他函数的关系。
3.一次函数与二次函数:介绍一次函数和二次函数的定义、性质以及在实际问题中的应用。
4.反比例函数与幂函数:讨论反比例函数和幂函数的特点,以及对应的图像和性质。
5.指数函数与对数函数:介绍指数函数和对数函数的定义、性质,以及与幂函数的关系。
6.三角函数与三角恒等变换:介绍正弦函数、余弦函数和正切函数的定义、图像和性质,以及三角恒等变换的应用。
二、导数与微分:1.函数的导数:讨论导数的定义、几何意义和计算方法,以及导数与函数的关系。
2.导数与函数的性质:介绍导数的可导性、导数的和差积商法则以及与函数图像的关系。
3.高阶导数与导数的应用:讨论高阶导数的定义,以及导数在曲线的拐点、极值和曲率等问题中的应用。
4.微分与微分中值定理:介绍微分的定义、微分中值定理和导数的应用,包括泰勒公式等。
三、立体几何:1.空间向量与坐标系:讨论空间向量的定义、线性运算和坐标系的建立。
2.空间几何关系和性质:介绍点、直线、平面在空间中的相对位置和几何性质。
3.平面与直线的位置关系:讨论平面与直线的垂直、平行、相交等几何关系。
4.空间中的位置关系:介绍空间中的位置关系,如两条直线的距离、点到平面的距离等。
5.球和立体的性质:讨论球的性质及球内外的点与球的关系,以及常见立体的体积、表面积的计算。
四、概率与统计:1.概率的基本概念:介绍概率的基本概念,包括事件、样本空间和概率的计算方法。
2.概率的运算:讨论概率的加法定理、乘法定理和全概率定理,以及条件概率和独立事件的计算。
3.随机变量和概率分布:介绍随机变量的定义、离散型和连续型随机变量的概率分布,以及期望和方差的计算。
4.统计与抽样:讨论统计的概念、参数与统计量的关系,以及样本的抽取方法和估计的方法。
数学必修四知识点归纳
数学必修四知识点归纳一、函数与导数1. 函数的概念- 函数的定义- 函数的表示方法:解析式、图像、表格- 函数的域与值域- 函数的奇偶性2. 函数的运算- 函数的四则运算- 复合函数- 反函数3. 常见函数类型- 一次函数、二次函数- 幂函数、指数函数、对数函数- 三角函数4. 导数的概念- 导数的定义- 导数的几何意义- 导数的物理意义5. 导数的运算- 导数的四则运算- 复合函数的导数- 反函数的导数6. 导数的应用- 函数的单调性- 函数的极值与最值 - 曲线的切线与法线二、极限与连续1. 极限的概念- 数列极限的定义 - 函数极限的定义 - 无穷小与无穷大2. 极限的性质- 唯一性、有界性 - 四则运算性质- 夹逼定理3. 连续函数- 连续性的定义- 函数的间断点- 连续函数的性质三、不等式与方程1. 不等式的性质- 不等式的基本性质 - 不等式的解集表示2. 解不等式- 一次不等式- 二次不等式- 绝对值不等式3. 方程的解法- 一元一次方程- 一元二次方程- 高次方程与降次解法四、数列1. 数列的概念- 数列的定义- 数列的通项公式2. 等差数列与等比数列- 等差数列的通项公式与求和公式 - 等比数列的通项公式与求和公式3. 数列的极限- 数列极限的概念- 无穷等比数列的和五、空间几何1. 平面与直线- 平面的方程- 直线的方程- 平面与直线的位置关系2. 空间直线与平面- 空间直角坐标系- 空间向量及其运算- 直线与平面的方程推导3. 空间几何体- 多面体- 旋转体- 空间几何体的表面积与体积计算六、概率与统计1. 随机事件与概率- 随机事件的概念- 概率的定义与性质- 条件概率与独立事件2. 随机变量及其分布- 随机变量的概念- 离散型分布与连续型分布- 期望值与方差3. 统计量与抽样分布- 常见的统计量- 抽样分布的概念- 正态分布的特点与应用七、数学归纳法1. 数学归纳法的原理- 归纳法的基本步骤- 归纳假设与归纳步骤的正确性2. 应用数学归纳法证明- 证明数学命题- 证明与自然数相关的命题以上是数学必修四的知识点归纳,每个部分都包含了该章节的核心概念、性质、公式和应用。
高中必修四数学知识点总结(最新3篇)
高中必修四数学知识点总结(最新3篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如合同协议、条据文书、策划方案、总结报告、党团资料、读书笔记、读后感、作文大全、教案资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as contract agreements, documentary evidence, planning plans, summary reports, party and youth organization materials, reading notes, post reading reflections, essay encyclopedias, lesson plan materials, other sample essays, etc. If you want to learn about different formats and writing methods of sample essays, please stay tuned!高中必修四数学知识点总结(最新3篇)各个科目都有自己的学习方法,但其实都是万变不离其中的,基本离不开背、记,练,数学作为最烧脑的科目之一、也是一样的。
高中数学必修4重点知识点
19、若等差数列 an 的首项是 a1,公差是 d ,则 an a1 n 1 d .
称为 a 与 b 的
20、通项公式的变形:① an am n m d;② a1 an n 1 d ;③ d
an a1
;
n1
④ n an a1 1;⑤ d
d
an am
.
nm
21、若 an 是等差数列,且 m n p q ( m 、 n 、 p 、 q
, cos
, tan
.
12、同角三角函数的基本关系: 1 sin 2 cos2 1
sin2 1 cos2 ,cos2 1 sin 2 ; 2 sin
tan
cos
sin tan cos ,cos sin . tan
y PT
O MA x
13、三角函数的诱导公式:
1 sin 2k
sin , cos 2k
cos , tan 2k
,k
2
2
3
性
2k
, 2k 2
2
2k ,2 k
k 上是增函数.
k 上是减函数.
k 上是减函数.
对称中
对 k ,0 k
称
对
称
性
xk
k
2
心对
称
中
k
,0 k
轴
2
对称轴 x k k
16、向量:既有大小,又有方向的量.
心对 称 中 心 k ,0 k 2
无对称轴
数量:只有大小,没有方向的量.
有向线段的三要素:起点、方向、长度.
tan k .
2 sin
sin , cos
cos , tan
tan .
数学必修4知识点总结
数学必修4知识点总结一、函数与导数1. 函数的概念与性质- 函数定义:描述变量间依赖关系的一种数学表达方式。
- 函数的域与范围:自变量的取值集合称为函数的定义域,因变量的取值集合称为函数的值域。
- 函数的奇偶性:奇函数满足f(-x) = -f(x),偶函数满足f(-x) = f(x)。
2. 函数的极限与连续性- 极限定义:描述函数值趋近某一点的行为。
- 连续函数:在定义域内任意一点都连续的函数。
3. 导数与微分- 导数定义:描述函数在某一点处的变化率。
- 微分:函数在某一点的线性主部,用于近似计算函数值的变化。
- 常见函数的导数公式:如多项式、指数函数、对数函数、三角函数的导数。
4. 高阶导数- 高阶导数:对一阶导数再次求导得到的导数。
- 常见高阶导数的计算方法。
二、一元函数微积分1. 不定积分- 不定积分的概念:求函数原函数的过程。
- 基本积分表:掌握常见的积分公式。
- 积分技巧:换元积分法、分部积分法等。
2. 定积分- 定积分的概念:计算曲线与x轴之间的有界区域的面积。
- 定积分的性质:对称性、可加性等。
- 定积分的应用:物理、几何问题中的计算。
3. 微分方程- 微分方程的概念:含有未知函数及其导数的方程。
- 常微分方程的解法:分离变量法、常数变易法等。
- 偏微分方程简介:涉及多个自变量的函数的导数问题。
三、向量代数与空间解析几何1. 向量的运算- 向量的加法、数乘、数量积(点积)和向量积(叉积)。
- 向量的坐标表示与线性运算。
2. 平面解析几何- 平面直角坐标系中的曲线方程:圆、椭圆、双曲线、抛物线等。
- 圆锥曲线的性质和方程。
3. 空间解析几何- 空间直角坐标系与向量表示。
- 直线与平面的方程。
- 常见立体图形的体积与表面积计算。
四、概率论与数理统计1. 随机事件与概率- 随机事件的定义与分类。
- 概率的计算:加法公式、条件概率、独立事件等。
- 贝叶斯定理。
2. 随机变量及其分布- 随机变量的定义:将随机事件映射到实数轴上的变量。
人教版高中数学必修四常见公式及知识点总结(完整版)
必修四常考公式及高频考点第一部分 三角函数与三角恒等变换考点一 角的表示方法 1.终边相同角的表示方法:所有与角α终边相同的角,连同角α在内可以构成一个集合:{β|β= k ·360 °+α,k ∈Z } 2.象限角的表示方法:第一象限角的集合为{α| k ·360 °<α<k ·360 °+90 °,k ∈Z }第二象限角的集合为{α| k ·360 °+90 °<α<k ·360 °+180 °,k ∈Z } 第三象限角的集合为{α| k ·360 °+180 °<α<k ·360 °+270 °,k ∈Z } 第四象限角的集合为{α| k ·360 °+270 °<α<k ·360 °+360 °,k ∈Z } 3.终边在某条射线、某条直线或两条垂直的直线上(如轴线角)的表示方法:(1)若所求角β的终边在某条射线上,其集合表示形式为{β|β= k ·360 °+α,k ∈Z },其中α为射线与x 轴非负半轴形成的夹角(2)若所求角β的终边在某条直线上,其集合表示形式为{β|β= k ·180 °+α,k ∈Z },其中α为直线与x 轴非负半轴形成的任一夹角(3)若所求角β的终边在两条垂直的直线上,其集合表示形式为{β|β= k ·90 °+α,k ∈Z },其中α为直线与x 轴非负半轴形成的任一夹角 例:终边在y 轴非正半轴上的角的集合为{α|α= k ·360 °+270 °,k ∈Z }终边在第二、第四象限角平分线上的集合为{α|α= k ·180 °+135 °,k ∈Z } 终边在四个象限角平分线上的角的集合为{α|α= k ·90 °+45 °,k ∈Z } 易错提醒:区别锐角、小于90度的角、第一象限角、0~90、小于180度的角 考点二 弧度制有关概念与公式 1.弧度制与角度制互化π=︒180,1801π=︒,1弧度︒≈︒=3.57180π2.扇形的弧长和面积公式(分别用角度制、弧度制表示方法)弧长公式:R Rn l απ==180, 其中α为弧所对圆心角的弧度数 扇形面积公式:lR R n S 213602==π=12 R 2|α|, 其中α为弧所对圆心角的弧度数 易错提醒:利用S=12R 2|α|求解扇形面积公式时,α为弧所对圆心角的弧度数,不可用角度数规律总结:“扇形周长、面积、半径、圆心角”4个量,“知二求二”,注意公式选取技巧考点三 任意角的三角函数 1.任意角的三角函数定义设α是一个任意角,它的终边与单位圆交于点()y x P ,,那么sin y r α=,cos x r α=,tan y x α=(22||r OP x y ==+);化简为xyx y ===αααtan ,cos ,sin . 2.三角函数值符号规律总结:利用三角函数定义或“一全正、二正弦、三正切、四余弦”口诀记忆象限角或轴线角的三角函数值符号. 3.特殊角三角函数值SIN15º=SIN(60º-45º)=SIN60ºCOS45º-SIN45ºCOS60º=(√6-√2)/4 COS15º=COS(60º-45º)=COS60ºCOS45º+SIN60ºSIN45º=(√6+√2)/4除此之外,还需记住150、750的正弦、余弦、正切值 4.三角函数线经典结论: (1)若(0,)2x π∈,则sin tan x x x <<(2)若(0,)2x π∈,则1sin cos 2x x <+≤(3)|sin ||cos |1x x +≥考点四 三角函数图像与性质y OxyOxα终边yOx yOx P M A TPM A T正弦线余弦线 正切线PP MA TP MA T α终边α终边α终边sin y x =cos y x = tan y x =图象定义域R R,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭值域[]1,1-[]1,1-R最值当22x k ππ=+()k ∈Z 时,max 1y =;当22x k ππ=-()k ∈Z 时,min1y=-.当()2x k k π=∈Z 时,max 1y =;当2x k ππ=+()k ∈Z 时,min 1y =-.既无最大值也无最小值周期性 2π2ππ奇偶性奇函数偶函数奇函数单调性在2,222k k ππππ⎡⎤-+⎢⎥⎣⎦()k ∈Z 上是增函数; 在32,222k k ππππ⎡⎤++⎢⎥⎣⎦()k ∈Z 上是减函数.在[]()2,2k k k πππ-∈Z 上是增函数; 在[]2,2k k πππ+()k ∈Z 上是减函数.在,22k k ππππ⎛⎫-+⎪⎝⎭()k ∈Z 上是增函数.对称性对称中心()(),0k k π∈Z对称轴()2x k k ππ=+∈Z 对称中心(),02k k ππ⎛⎫+∈Z⎪⎝⎭对称轴()x k k π=∈Z对称中心(),02k k π⎛⎫∈Z⎪⎝⎭无对称轴考点五 正弦型(y=Asin(ωx +φ))、余弦型函数(y=Acos(ωx +φ))、正切性函数(y=Atan(ωx +φ))图像与性质 1.解析式求法字母 确定途径 说明A 由最值确定 A =最大值-最小值2B 由最值确定B =最大值+最小值2ω 由函数的周期确定相邻的最高点与最低点的横坐标之差的绝对值为半个周期,最高点(或最低点)的横坐标与相邻零点差的绝对值为0.25个周期φ由图象上的特殊点确定可通过认定特殊点是五点中的第几个关键点,然后列方程确定;也可通过解简单三角方程确定A 、B 通过图像易求,重点讲解φ、ω求解思路: ①φ求解思路:函数性质代入图像的确定点的坐标.如带入最高点),(11y x 或最低点坐标),(22y x ,则)(221Z k k x ∈+=+ππϕω或)(2232Z k k x ∈+=+ππϕω,求ϕ值. 易错提醒:y=Asin(ωx+φ),当ω>0,且x=0时的相位(ωx+φ=φ)称为初相.如果不满足ω>0,先利用诱导公式进行变形,使之满足上述条件,再进行计算.如y=-3sin(-2x+600)的初相是-600②ω求解思路:利用三角函数对称性与周期性的关系,解ω.相邻的对称中心之间的距离是周期的一半;相邻的对称轴之间的距离是周期的一半;相邻的对称中心与对称轴之间的距离是周期的四分之一. 2.“一图、两域、四性” “一图”:学好三角函数,图像是关键。
高中数学必修4知识点总结
必修4第一章三角函数一、任意角和弧度制1.任意角(1)角的概念:平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形叫做角,射线的起始位置叫做角的始边,终止位置叫做角的终边.按逆时针方向旋转形成的角叫做正角,按顺时针方向旋转形成的角叫做负角,如果射线没有作任何旋转,则形成零角.在坐标系内,使角的顶点与原点重合,角的终边与x轴的正半轴重合,则角的终边在第几象限,就说这个角是第几象限角.(2)终边相同的角:所有与α终边相同的角,连同α在内,可构成一个集合ββα{360}S k,k Z==⋅+∈(3)坐标轴上的角:2.弧度制(1)定义:长度等于半径的圆弧所对的圆心角叫做1弧度的角.(2)计算:如果半径为r的圆的圆心角α所对弧的长为l,那么角α弧度数的绝对值是=l rα其中,α的正负由角α的终边的旋转方向决定.注意:弧长公式: =l r α.扇形面积公式: 21122==S lr r α. (3)换算:360°=2π180°=π1001745180π≈=. 1801=()5730≈.π说明:①1800=π是所有换算的关键,如ππ====,18018030456644;②πmn形式的角当n =2,3,4,6时都是特殊角.二、任意角的三角函数1.任意角三角函数的定义(1)定义:设P (x , y )是角α终边上任意一点, =>OP r 0,则有sin α=y rcos α=x r tan α=yx(2)三角函数值的符号:口诀:一全二正弦,三切四余弦.注:一二三四指象限,提到的函数为正值,未提到的为负值. 2.同角三角函数的基本关系sin 2α+cos 2α=1sin tan cos αα=α三、三角函数的诱导公式1.诱导公式sin(2)sin cos(2)cos tan(2)tan +=+=+=k k k πααπααπααsin()cos 2cos()sin 2+=+=-πααπαα口诀2:函数名改变,符号看象限.四、三角函数的图象与性质1.正、余弦函数的图象2.正、余弦函数的性质(2)最值①y =sin x :当22=+x k ππ时,取得最大值1,当322=+x k ππ时,取得最小值-1. ②y =cos x :当x =2kπ时,取得最大值1,当x =2kπ+π时,取得最小值-1.(3)对称性①y =sin x :对称轴:2=+x k ππ,对称中心:(kπ , 0).②y =cos x :对称轴:x = kπ,对称中心:(,0)2+k ππ.3.正切函数的图象与性质 (1)图象如右图.(2)性质定义域:.2≠+x k ππ值域:R. 奇偶性:奇函数周期性:最小正周期为π 单调性:在(,)22-+k k ππππ上是增函数.五、y =A sin(ωx + φ)图象与性质1.图象 (1)图象变换注:x 值不需记忆,针对具体问题计算即可,但应注意五个值成等差数列. 2.性质定义域:R 值域:[,]-A A 周期:2=T πω振幅:A频率:12==f T ωπ. 相位:ωx +φ 初相:φ 单调性:将ωx +φ当成一个整体,利用y =sin x 的单调区间求出.第二章 平面向量一、平面向量基本概念(1)既有大小又有方向的量叫做向量.(2)向量可以用有向线段表示.向量AB 的大小,也就是向量AB 的长度(或称模),记作AB .长度为0的向量叫做零向量,记作0.长度等于1个单位的向量,叫做单位向量.(3)方向相同或相反的非零向量叫做平行向量,也叫共线向量. 规定:零向量与任一向量平行.长度相等且方向相同的向量叫做相等向量.2.减法(1)与a 长度相等,方向相反的向量,叫做a 的相反向量,记作-a .零向量的相反向量仍是零向量.(2)任一向量与其相反向量的和是零向量,即a +(- a )=(- a )+a =0. (3)定义:a -b =a +(-b ),即减去一个向量相当于加上这个向量的相反向量.(4)已知a ,b ,在平面内任取一点O ,作=OA a ,=OB b ,则=-BA a b ,即-a b 可以表示为从向量b 的终点指向向量a 的终点的向量,这是向量减法的几何意义.3.数乘(1)定义:我们规定实数λ与向量a 的积是一个向量,这种运算叫做向量的数乘,记作λa ,它的长度与方向规定如下:①|λa |=|λ||a |;②当λ>0时,λa 的方向与a 的方向相同;当λ<0时,λa 的方向与a 的方向相反. (2)运算律设λ、μ为实数,那么 ①λ(μa )=(λμ)a ; ②(λ+μ)a =λa +μa ; ③λ(a +b )=λa +λb . (3)向量共线条件a ,b 共线(a ≠0)⇔有且只有一个实数λ,使b =λa .a =xi +yj,我们把有序数对(x , y )叫做向量a 的(直角)坐标,记作a =(x , y ). (2)平面向量的坐标运算①设a =(x 1 , y 1),b =(x 2 , y 2),则有a +b =(x 1+x 2 , y 1+y 2) a -b =(x 1-x 2 , y 1-y 2) λa =(λx 1 , λy 1)②设A (x 1 , y 1),B (x 2 , y 2),则有2121(,)AB x x y y =--) ③向量共线的坐标表示设a=(x1 ,y1),b=(x2 ,y2),则有a,b共线12210x y x y⇔-=.④中点公式设A (x 1 , y 1),B (x 2 , y 2),P 为AB 中点,则对任一点O ,有 12121(),.222x x y y OP OA OB ++⎛⎫=+= ⎪⎝⎭四、平面向量的数量积1.定义:已知两个非零向量a ,b ,我们把数量|a ||b |cos θ叫做a 与b 的数量积(或内积).2.坐标表示:设a =(x 1 , y 1),b =(x 2 , y 2),则a ·b =x 1x 2+y 1y 2.3.垂直条件:设a ,b 为非零向量,则121200.a b a b x x y y ⊥⇔⋅=⇔+=第三章 三角恒等变换一、两角和与差的三角函数sin(α+β)=sin α cos β+cos α sin βsin(α-β)=sin α cos β-cos α sin βcos(α+β)=cos α cos β-sin α sin βcos(α-β)=cos α cos β+sin α sin βtan tan tan()1tan tan αβαβαβ++=-tan tan tan()1tan tan αβαβαβ--=+二、二倍角的三角函数sin2α=2sin α cos αcos2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α 22tan tan21tan ααα=- 补充公式:温馨提示:最好仔细阅读后才下载使用,万分感谢!。
高中数学必修四知识点总结(合集20篇)
高中数学必修四知识点总结(合集20篇)篇1:高中数学必修四知识点总结高中数学必修四知识点总结高中数学必修四知识点总结角的概念的推广弧度制任意角的三角函数同角三角函数的基本关系正余弦诱导公式两角和与差二倍角的正弦、余弦、正切正余弦函数的.图像和性质函数y=Asin(ωx+φ)的图像正切函数的图像和性质已知三角函数值求角平面向量的基本概念向量的加法与减法实数与向量的积平面向量的坐标计算线段的定比分点平面向量的数量积与运算律平面向量数量积得坐标表示平移篇2:高中数学必修知识点总结一、平面的基本性质与推论1、平面的基本性质:公理1如果一条直线的两点在一个平面内,那么这条直线在这个平面内;公理2过不在一条直线上的三点,有且只有一个平面;公理3如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。
2、空间点、直线、平面之间的位置关系:直线与直线―平行、相交、异面;直线与平面―平行、相交、直线属于该平面(线在面内,最易忽视);平面与平面―平行、相交。
3、异面直线:平面外一点A与平面一点B的连线和平面内不经过点B的直线是异面直线(判定);所成的角范围(0,90)度(平移法,作平行线相交得到夹角或其补角);两条直线不是异面直线,则两条直线平行或相交(反证);异面直线不同在任何一个平面内。
求异面直线所成的角:平移法,把异面问题转化为相交直线的夹角二、空间中的平行关系1、直线与平面平行(核心)定义:直线和平面没有公共点判定:不在一个平面内的一条直线和平面内的一条直线平行,则该直线平行于此平面(由线线平行得出)性质:一条直线和一个平面平行,经过这条直线的平面和这个平面相交,则这条直线就和两平面的交线平行2、平面与平面平行定义:两个平面没有公共点判定:一个平面内有两条相交直线平行于另一个平面,则这两个平面平行性质:两个平面平行,则其中一个平面内的直线平行于另一个平面;如果两个平行平面同时与第三个平面相交,那么它们的交线平行。
高中数学必修四知识点总结
高中数学必修四知识点总结1500字高中数学必修四知识点总结高中数学必修四是中学数学的基础,其中包含了数学的基本概念、常用方法和基础技巧。
下面是对高中数学必修四的知识点进行了总结:1. 数列与数列的运算:数列是按照一定规律排列的一系列数,常见的有等差数列和等比数列。
数列的求和公式和通项公式是数列相关题目的常用技巧。
2. 函数与函数的运算:函数是自变量与因变量之间的关系,常见的函数有一次函数、二次函数、指数函数和对数函数。
函数的平移、翻折和缩放是函数图象的常用变换方式。
函数的复合运算和反函数是函数运算的重要内容。
3. 三角比与三角函数的图象与性质:三角比是指三角函数中的正弦、余弦和正切,它们可以描述平面上的角度和直线之间的关系。
三角函数的图象、周期、奇偶性和单调性是理解三角函数性质的关键。
4. 平面向量:平面向量是由大小和方向确定的有向线段,可以表示平面上的位移、速度和力等物理量。
平面向量的加法、减法和数量积是平面向量运算的基本操作。
5. 空间几何与矩阵:空间几何是研究空间中的点、直线、平面和立体图形等几何概念的学科。
空间几何的坐标表示和向量表示是研究空间几何的基本手段。
矩阵是数学中一个重要的工具,用于表示线性方程组和线性变换等。
矩阵的运算和特征值特征向量是矩阵的常用操作和性质。
6. 概率与统计:概率是用来研究随机事件发生可能性的数学分支。
概率的计算和事件的独立性是概率理论的核心内容。
统计学是研究收集、整理和分析数据的学科。
统计数据的处理和统计图的绘制是统计学的基本方法。
以上是高中数学必修四的主要知识点总结。
通过学习这些知识点,可以帮助学生建立起扎实的数学基础,为学习更高级的数学提供了良好的基础。
数学是一门需要持续努力和实践的学科,希望学生能够通过不断的学习和练习,掌握好这些知识点,提高数学解题的能力和思维能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版高中数学必修四知识点归纳总结.1 任意角1.角的有关概念: ①角的定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形. ②角的名称:③角的分类:④注意:⑴在不引起混淆的情况下,“角α ”或“∠α ”可以简化成“α ”; ⑵零角的终边与始边重合,如果α是零角α =0°; ⑶角的概念经过推广后,已包括正角、负角和零角. 2.象限角的概念:①定义:若将角顶点与原点重合,角的始边与x 轴的非负半轴重合,那么角的终边(端点除外)在第几象限,我们就说这个角是第几象限角.1.1.2弧度制(一)1.定 义我们规定,长度等于半径的弧所对的圆心角叫做1弧度的角;用弧度来度量角的单位制叫做弧度制.在弧度制下, 1弧度记做1rad .在实际运算中,常常将rad 单位省略.弧度制的性质:①半圆所对的圆心角为 ②整圆所对的圆心角为③正角的弧度数是一个正数. ④负角的弧度数是一个负数. ⑤零角的弧度数是零. ⑥角α的弧度数的绝对值|α|=4.角度与弧度之间的转换: ①将角度化为弧度: ; ;;.②将弧度化为角度: ;;;.5.常规写法:① 用弧度数表示角时,常常把弧度数写成多少π 的形式, 不必写成小数. ② 弧度与角度不能混用.正角:按逆时针方向旋转形成零角:射线没有任何旋转形成的角负角:按顺时针方向旋转形成的角边顶点A7.弧长公式弧长等于弧所对应的圆心角(的弧度数)的绝对值与半径的积.4-1.2.1任意角的三角函数(三)1. 三角函数的定义2. 诱导公式当角的终边上一点的坐标满足时,有三角函数正弦、余弦、正切值的几何表示——三角函数线。
1.有向线段:坐标轴是规定了方向的直线,那么与之平行的线段亦可规定方向。
规定:与坐标轴方向一致时为正,与坐标方向相反时为负。
有向线段:带有方向的线段。
2.三角函数线的定义:设任意角的顶点在原点,始边与轴非负半轴重合,终边与单位圆相交与点,由四个图看出:当角的终边不在坐标轴上时,有向线段,于是有 , ,我们就分别称有向线段为正弦线、余弦线、正切线。
说明:(1)三条有向线段的位置:正弦线为的终边与单位圆的交点到轴的垂直线段;余弦线在轴上;正切线在过单位圆与轴正方向的交点的切线上,三条有向线段中两条在单位圆内,一条在单位圆外。
(2)三条有向线段的方向:正弦线由垂足指向的终边与单位圆的交点;余弦线由原点指向垂足;正切线由切点指向与的终边的交点。
(3)三条有向线段的正负:三条有向线段凡与轴或轴同向的为正值,与轴或轴反向的为负值。
(4)三条有向线段的书写:有向线段的起点字母在前,终点字母在后面。
(Ⅳ)(Ⅲ)4-1.2.1任意角的三角函数(1)1.三角函数定义在直角坐标系中,设α是一个任意角,α终边上任意一点(除了原点)的坐标为,它与原点的距离为,那么(1)比值叫做α的正弦,记作,即; (2)比值叫做α的余弦,记作,即; (3)比值叫做α的正切,记作,即; (4)比值叫做α的余切,记作,即;说明:①α的始边与轴的非负半轴重合,α的终边没有表明α一定是正角或负角,以及α的大小,只表明与α的终边相同的角所在的位置;②根据相似三角形的知识,对于确定的角α,四个比值不以点在α的终边上的位置的改变而改变大小;③当时,α的终边在轴上,终边上任意一点的横坐标都等于, 所以无意义;同理当时,无意义;④除以上两种情况外,对于确定的值α,比值、、、分别是一个确定的实数,正弦、余弦、正切、余切是以角为自变量,比值为函数值的函数,以上四种函数统称为三角函数。
2.三角函数的定义域、值域注意:(1)在平面直角坐标系内研究角的问题,其顶点都在原点,始边都与x 轴的非负半轴重合.(2) α是任意角,射线OP 是角α的终边,α的各三角函数值(或是否有意义)与ox 转了几圈,按什么方向旋转到OP 的位置无关.(3)sin 是个整体符号,不能认为是“sin ”与“α”的积.其余五个符号也是这样. (4)任意角的三角函数的定义与锐角三角函数的定义的联系与区别:锐角三角函数是任意角三角函数的一种特例,它们的基础共建立于相似(直角)三角形的性质,“r ”同为正值. 所不同的是,锐角三角函数是以边的比来定义的,任意角的三角函数是以坐标与距离、坐标与坐标、距离与坐标的比来定义的,它也适合锐角三角函数的定义.实质上,由锐角三角函数的定义到任意角的三角函数的定义是由特殊到一般的认识和研究过程.(5)为了便于记忆,我们可以利用两种三角函数定义的一致性,将直角三角形置于平面直角坐标系的第一象限,使一锐角顶点与原点重合,一直角边与x 轴的非负半轴重合,利用我们熟悉的锐角三角函数类比记忆. 3.例题分析例1.求下列各角的四个三角函数值: (通过本例总结特殊角的三角函数值) (1); (2); (3). 解:(1)因为当时,,,所以, , , 不存在。
(2)因为当时,,,所以函数定 义 域 值 域,,,不存在,(3)因为当时,,,所以,,不存在,,例2.已知角α的终边经过点,求α的四个函数值。
解:因为,所以,于是;;;.例3.已知角α的终边过点,求α的四个三角函数值。
解:因为过点,所以,当;;当;;.4.三角函数的符号由三角函数的定义,以及各象限内点的坐标的符号,我们可以得知:①正弦值对于第一、二象限为正(),对于第三、四象限为负();②余弦值对于第一、四象限为正(),对于第二、三象限为负();③正切值对于第一、三象限为正(同号),对于第二、四象限为负(异号).说明:若终边落在轴线上,则可用定义求出三角函数值。
5.诱导公式由三角函数的定义,就可知道:终边相同的角三角函数值相同。
即有:,,其中.,这组公式的作用是可把任意角的三角函数值问题转化为0~2π间角的三角函数值问题.4-1.2.2同角三角函数的基本关系(一)同角三角函数的基本关系式:1.由三角函数的定义,我们可以得到以下关系:2.(1)商数关系:(2)平方关系:说明:①注意“同角”,至于角的形式无关重要,如等;②注意这些关系式都是对于使它们有意义的角而言的,如;③对这些关系式不仅要牢固掌握,还要能灵活运用(正用、反用、变形用),如:,,等。
总结:1.已知一个角的某一个三角函数值,便可运用基本关系式求出其它三角函数值。
在求值中,确定角的终边位置是关键和必要的。
有时,由于角的终边位置的不确定,因此解的情况不止一种。
2.解题时产生遗漏的主要原因是:①没有确定好或不去确定角的终边位置;②利用平方关系开平方时,漏掉了负的平方根。
小结:化简三角函数式,化简的一般要求是:(1)尽量使函数种类最少,项数最少,次数最低;(2)尽量使分母不含三角函数式;(3)根式内的三角函数式尽量开出来;(4)能求得数值的应计算出来,其次要注意在三角函数式变形时,常将式子中的“1”作巧妙的变形,1.3诱导公式1、诱导公式(五)2、诱导公式(六)总结为一句话:函数正变余,符号看象限小结:①三角函数的简化过程图:②三角函数的简化过程口诀:负化正,正化小,化到锐角就行了.1.4.1正弦、余弦函数的图象1、用单位圆中的正弦线、余弦线作正弦函数、余弦函数的图象(几何法):为了作三角函数的图象,三角函数的自变量要用弧度制来度量,使自变量与函数值都为实数(1)函数y=sinx的图象第一步:在直角坐标系的x轴上任取一点,以为圆心作单位圆,从这个圆与x轴的交点A起把圆分成n(这里n=12)等份.把x轴上从0到2π这一段分成n(这里n=12)等份.(预备:取自变量x值—弧度制下角与实数的对应).第二步:在单位圆中画出对应于角,,,…,2π的正弦线正弦线(等价于“列表”).把角x的正弦线向右平行移动,使得正弦线的起点与x轴上相应的点x重合,则正弦线的终点就是正弦函数图象上的点(等价于“描点”).第三步:连线.用光滑曲线把这些正弦线的终点连结起来,就得到正弦函数y=sinx,x ∈[0,2π]的图象.根据终边相同的同名三角函数值相等,把上述图象沿着x轴向右和向左连续地平行移动,每次移动的距离为2π,就得到y=sinx,x∈R的图象.把角x的正弦线平行移动,使得正弦线的起点与x轴上相应的点x重合,则正弦线的终点的轨迹就是正弦函数y=sinx的图象.(2)余弦函数y=cosx的图象根据诱导公式,可以把正弦函数y=sinx的图象向左平移单位即得余弦函数y=cosx的图象.正弦函数y=sinx的图象和余弦函数y=cosx的图象分别叫做正弦曲线和余弦曲线.2.用五点法作正弦函数和余弦函数的简图(描点法):正弦函数y=sinx,x∈[0,2π]的图象中,五个关键点是:(0,0) (,1) (,0) (,-1) (2,0)余弦函数y=cosx x[0,2]的五个点关键是哪几个(0,1) (,0) (,-1) (,0) (2,1)1.4.2正弦、余弦函数的性质(一)1.周期函数定义:对于函数f (x),如果存在一个非零常数T,使得当x取定义域内的每一个值时,都有:f (x+T)=f (x)那么函数f (x)就叫做周期函数,非零常数T叫做这个函数的周期。
问题:(1)对于函数,有,能否说是它的周期(2)正弦函数,是不是周期函数,如果是,周期是多少(,且)(3)若函数的周期为,则,也是的周期吗为什么(是,其原因为:)2、说明:1周期函数x定义域M,则必有x+T M, 且若T>0则定义域无上界;T<0则定义域无下界;2“每一个值”只要有一个反例,则f (x)就不为周期函数(如f (x0+t) f (x))3T往往是多值的(如y=sinx 2,4,…,-2,-4,…都是周期)周期T中最小的正数叫做f (x)的最小正周期(有些周期函数没有最小正周期)y=sinx, y=cosx的最小正周期为2(一般称为周期)从图象上可以看出,;,的最小正周期为;判断:是不是所有的周期函数都有最小正周期(没有最小正周期)说明:(1)一般结论:函数及函数,(其中为常数,且,)的周期;(2)若,如:①;②;③,.则这三个函数的周期又是什么一般结论:函数及函数,的周期1.4.2(2)正弦、余弦函数的性质(二)1.奇偶性(1)余弦函数的图形当自变量取一对相反数时,函数y取同一值。
(2)正弦函数的图形2.单调性从y=sinx,x∈[-]的图象上可看出:当x∈[-,]时,曲线逐渐上升,sinx的值由-1增大到1.当x∈[,]时,曲线逐渐下降,sinx的值由1减小到-1.结合上述周期性可知:正弦函数在每一个闭区间[-+2kπ,+2kπ](k∈Z)上都是增函数,其值从-1增大到1;在每一个闭区间[+2kπ,+2kπ](k∈Z)上都是减函数,其值从1减小到-1.余弦函数在每一个闭区间[(2k-1)π,2kπ](k∈Z)上都是增函数,其值从-1增加到1;在每一个闭区间[2kπ,(2k+1)π](k∈Z)上都是减函数,其值从1减小到-1.3.有关对称轴观察正、余弦函数的图形,可知y=sinx 的对称轴为x= k ∈Z y=cosx 的对称轴为x= k ∈Z1.4.3正切函数的性质与图象1.正切函数的定义域 2.正切函数是周期函数 ,∴是的一个周期。