工程流体力学
工程流体力学公式
![工程流体力学公式](https://img.taocdn.com/s3/m/dd4edb7482c4bb4cf7ec4afe04a1b0717ed5b376.png)
工程流体力学公式1.流体静力学公式在静止的流体中,压力与深度成正比,且密度为常数。
流体静压力可以由以下公式计算:P = ρgh其中,P为压力,ρ为流体的密度,g为重力加速度,h为流体的深度。
2.法向应力与切向应力流体内部的法向应力和切向应力分别由以下公式给出:法向应力:τ=-P切向应力:τ = μ(dv/dy + du/dx)其中,τ为应力,P为压力,μ为流体的动力粘度,dv/dy和du/dx 分别为流体速度分量在y和x轴上的偏导数。
3.应力张量应力张量用于描述流体内部的各种应力分量。
在笛卡尔坐标系下,应力张量的一般形式为:σ = [σxx σxy σxz][σyx σyy σyz][σzx σzy σzz]其中,σij表示在i方向上对j方向上的应力。
4.流量公式流量是描述流体通过单位时间内通过其中一区域的总量。
流量公式可以通过以下公式计算:Q=Av其中,Q为流量,A为流体通过区域的横截面积,v为流体的速度。
5.流体连续性方程流体的连续性方程用于描述流体的质量守恒。
在稳态条件下,流体的连续性方程可以表示为:div(ρv) = 0其中,div表示散度运算符,ρ为流体的密度,v为流体的速度。
6.流体动量方程流体的动量方程用于描述流体的运动状况。
在稳态条件下,流体的动量方程可以表示为:ρv·grad(v) = -grad(P) + μΔv + ρg其中,grad表示梯度运算符,P为流体的压力,μ为流体的动力粘度,Δv为流体速度的拉普拉斯算子,g为重力加速度。
以上介绍了几个常用的工程流体力学公式,这些公式在工程实践中起到了重要的作用。
通过应用这些公式,可以更好地理解和解决与流体力学相关的问题。
工程流体力学讲义
![工程流体力学讲义](https://img.taocdn.com/s3/m/de17b3f0d4bbfd0a79563c1ec5da50e2534dd155.png)
强制涡
r r0
ω
复合涡
自由涡
1.速度分布
前面已讨论过涡核内外的速度分布:
涡内:
与半径成正比如图
。由于
Hale Waihona Puke 这部分流体有旋。涡外:
与半径r成反比。
在时
当 不变 处 的 为常数
2、压力分布: 自由涡:由于是无旋流动,在自由涡中 任取一点与无穷远处写伯努利方程:
忽略位能
若
则
将
代入
在自由涡中 p与r 成平方关系,(抛物线)
3.点源的压力分布 在源上任取一点与无穷远处写能量方程
将 , 代入
有
p
P与r成抛物线正比。r
p;r p
r r0
三、点涡
点涡:无限长的直 线涡束所形成的平 面流动。除涡线本 身有旋外涡线外的 流体绕涡线做等速 圆周运动且无旋。
这种流动也称纯环流。若设点涡的强度
为
则在半径r处由点涡所诱导的速
度为 而
例2:求有间断面的平行流的速度环量 Γ=?
4
3
b
1L 2
u1 u2
例3:龙卷风的速度分布为 时
时
试根据 stokes law 来判断是否为有 旋流动。
如图,当
,流体以ω象刚体一样转
动,称风眼或强迫涡(涡核)。
在
区域,流体绕涡核转动,流体
质点的运动轨迹是圆但本身并没有旋转
称之为自由涡或势涡。
强制涡
y
d
c
vu
a
b
c’ d’
Δα
b’
a’ Δβ
定义:单位时间内ab、cd转过的平均角度
称角变形速度,用 θ表示。 由定义有:
工程流体力学课件-第一章
![工程流体力学课件-第一章](https://img.taocdn.com/s3/m/110afa00a6c30c2259019e13.png)
二、流体力学在石油化工工业中的应用
流体力学是一门重要的工程学科,它的应用几乎遍及国民经济的各个部门, 尤其在石油工程和石油化工工业中,流体力学是其重要的理论核心之一。
在石油工业中 ,用到流体力学原理分析流体在管内的流动规律,压力、阻 力、流速和输量的关系,据此设计管径,校核管材强度,布置管线及选择泵的类 型和大小,设计泵的安装位置等;在校核油罐和其他储液容器的结构强度,估算 容器、油槽车、油罐的装卸时间,解释气蚀、水击等现象 。
实验方法的优点是能直接解决生产中的复杂问题,能发现流动中的新现象。
它的结果往往可作为检验其他方法是否正确的依据。这种方法的缺点是对不同 情况,需作不同的实验,也即所得结果的普适性较差。
3 、数值计算方法
数值计算方法是按照理论分析方法建立数学模型,在此基础上选择合理 的计算方法,如有限差分法、特征线法、有限元法、边界元法、谱方法等,将 方程组离散化,变成代数方程组,编制程序,然后用计算机计算,得到流动问 题的近似解。数值计算方法是理论分析法的延伸和拓展。
两板间流体沿y方向的速度呈线性分布。
上面的现象说明,当流体中发生了层与层之间的相对运动时,速度快的流层对 速度慢的流层产生了一个拉力使它加速,而速度慢的流层对速度快的流层就有 一个阻止它向前运动的阻力,拉力和阻力是大小相等方向相反的一对力,分别 作用在两个流体层的接触面上,这就是流体黏性的表现,这种力称为内摩擦力 或黏性力。
体积弹性模量:在工程上流体的压缩性也常用p的倒数即体积弹性模量来描述
E 1 dp
p dV /V
2.可压缩流动与不可压缩流动
流体的压缩性及相应的体积弹性模量是随流体的种类、温度和压力而变化 的。当压缩性对所研究的流动影响不大,可以忽略不计时,这种流动成为不可 压缩流动,反之称为可压缩流动。通常,液体的压缩性不大,所以工程上一般 不考虑液体的压缩性,把液体当作不可压缩流体来处理。当然,研究一个具体 流动问题时,是否考虑压缩性的影响不仅取决于流体是气体还是液体,而更主 要是由具体条件来决定。
(完整版)工程流体力学
![(完整版)工程流体力学](https://img.taocdn.com/s3/m/a8eaa94cf12d2af90242e652.png)
➢ Offshore structures, coastal structures, harbors, ports, …
➢ Ships, submarines, remote-operated vehicles,
Engineering Applications
Bernoulli
(1667-1748)
Euler
(1707-1783)
Navier
(1785-1836)
Stokes
(1819-1903)
Reynolds
(1842-1912)
Prandtl
(1875-1953)
Taylor
(1886-1975)
流体力学在生活中
• 无处不在
– 天气和气候 – 运输工具: 汽车, 火车, 船和飞机. – 环境 – 生物工程和医学 – 运动和休闲 – 人体内的流体 – ………………………………
• 秦朝在公元前256—公元前210年修建了我国历史上 的三大水利工程(都江堰、郑国渠、灵渠)——明 渠水流、堰流。
• 古代的计时工具“铜壶滴漏”——孔口出流。
• 清朝雍正年间,何梦瑶在《算迪》一书中提出流量 等于过水断面面积乘以断面平均流速的计算方法。
• 隋朝(公元587—610年)完成的南北大运河。
Water sports
运动和休闲
Cycling
Offshore racing
Auto racing
Surfing
What fluids are needed to run your
car?
➢ Gasoline (fuel) ➢ Air (air/fuel mixture,
工程流体力学
![工程流体力学](https://img.taocdn.com/s3/m/f4b32850fe00bed5b9f3f90f76c66137ee064fe3.png)
详细描述
随着智能化技术的发展,智能流体控制与调节系统的研 究逐渐成为工程流体力学的前沿领域。通过引入人工智 能、大数据等技术,实现对流体系统的实时监测、预测 和控制,提高流体系统的稳定性和可靠性,为工程实际 提供更好的技术支持。
THANKS FOR WA点一
实验设备
风洞、水槽、压力容器等,用于模拟流体流动和测试流体 动力性能。
要点二
测量技术
压力传感器、流量计、速度计等,用于测量流体的压力、 流量和速度等参数。
数值模拟方法与软件
数值模拟方法
有限元法、有限差分法、边界元法等,通过数值计算 来模拟流体流动。
数值模拟软件
ANSYS Fluent、CFX、SolidWorks Flow Simulation等,用于进行流体动力学分析和模拟。
流体流动的动量方程
一维动量方程
描述流体在一维流动过程中的动量守恒,包括流体的速度、压力 和阻力等。
二维动量方程
描述流体在二维流动过程中的动量守恒,包括流体的速度、压力 和阻力等。
三维动量方程
描述流体在三维流动过程中的动量守恒,包括流体的速度、压力 和阻力等。
流体流动的湍流模型
雷诺平均模型
通过引入雷诺应力来描述湍流中流体的动量交换, 用于模拟湍流流动。
工程流体力学实验与模拟的应用
航空航天
飞机和航天器的空气动力学性能测试和优化 设计。
汽车工程
汽车车身和发动机的流体动力学性能测试和 优化设计。
能源工程
风力发电机叶片和核反应堆冷却系统的流体 动力学性能测试和优化设计。
环境工程
污水处理和排放系统的流体动力学性能测试 和优化设计。
06 工程流体力学前沿研究与 展望
工程流体力学知识点总结
![工程流体力学知识点总结](https://img.taocdn.com/s3/m/a2522bbf760bf78a6529647d27284b73f24236eb.png)
工程流体力学知识点总结一、工程流体力学的内容1.流体力学的基本概念工程流体力学是一门重要的工程学科,它是研究运动的流体分布特性、流动过程的动力学特征、流体受力的控制机理以及提供理论支持的工程应用理论。
它综合了物理学、数学、材料学和力学等知识,它包括流体动力学、传热传质、流体力学和流体机械等方面的研究内容。
2.流体动力学流体动力学是流体运动的力学理论,它研究的是流体中的物理量,如流速、压力、密度等的变化和流体运动的规律。
它是流体物理学的基本内容,是工程流体力学的基础理论。
它的研究内容主要包括流体的静力学、流体的流变力学、流体的流动特性、流体的热力学性质、流体的动力学和流体的流动特性等。
3.传热传质传热传质是研究流体在传热和传质的过程中热量和物质的传递机理的一门学科。
它包括流体的热传导、热对流和热辐射、物质的传质、物质输运等方面的内容。
4.流体力学流体力学是一门综合学科,是研究流体的能量、动量和位置变化的动力学特性及其应用的学科。
流体力学研究的内容包括流体的流量和压力、流体的质量和动量、流体的流速、流体的流动特性等。
它主要研究的是流体受力的特性和运动特性,是工程流体力学中最重要的学科之一。
5.流体机械的理论流体机械是研究利用流体动力驱动转子的机械装置的科学,包括机械装置的流体的传动特性、涡轮机械和泵的流量控制、流体中的变频调速以及比热容与流场等。
它是工程流体力学中的重要内容,也是工程设计的重要基础。
二、工程流体力学的应用工程流体力学的基本理论可以应用于各种工程中,如机械制造、空气动力学、海洋技术、热能技术、新能源技术、能源储存和节能技术、化工反应技术等。
它在社会经济建设中发挥着重要作用,可以为社会生产提供良好的环境保护技术手段,也可以为工程设计和技术开发提供依据。
工程流体力学课件:流体动力学
![工程流体力学课件:流体动力学](https://img.taocdn.com/s3/m/c29bee8e18e8b8f67c1cfad6195f312b3169ebd2.png)
t V V p R d 0
对于支教坐标系,其三个分量形式为
Vx
d
t
X d
V V dA p cos n, i dA
Y d
V V dA p cos n, i dA
时间而变化,则适用的连续方程为
D
d 0
Dt
利用雷诺运输公式,可把式 变成如下形式
d
t
d V dA
t
A
或
式(5-17)
这就是适用于控制体的积分形式的连续方程,它说明控制
体内流体质量的增加率等于通过控制面A进出的流体净流入率
。对于定常流,由于 / t 0 ,则连续方程变为
新占有的区域部分τ1 ,又设从τ(t)空出区域部分为τ3 ,故有
(t t ) 1 2 1 ( 2 3 ) 3 1 3
式中, τ2+ τ3即为体积τ,于是相应的体积分为
I (t t ) I1 (t t ) I (t t ) I 3 (t t )
念,讨论雷诺数是无意义的。
§5-1 雷诺输运定理
三、雷诺运输方程
设在某时刻的流场中,单位体积流体的物理量分布函数值
为 f (r , t ) ,则t时刻在流体域τ上的流体所具有的总物理量为I(t)
,即
I (t )
f (r , t )d
(t )
设t时刻体积在空间τ(t)的位置
工程流体力学
![工程流体力学](https://img.taocdn.com/s3/m/ee70d4e4aeaad1f346933fa8.png)
§1.1 流体的定义
一、流体特征(续)
液体与气体的区别 液体的流动性小于气体; 液体具有一定的体积,并取容器的形状; 气体充满任何容器,而无一定体积。
流体的定义
流体是一种受任何微小的剪切力作用时,都 会产生连续变形的物质。 流动性是流体的主要特征。
§1.2 连续介质假说
微观:流体是由大量作无规则热运动的分子所组成, 分子间存有空隙,在空间上是不连续的。
在通常情况下,一个很小的体积内流体的分子数量极多;
例如,在标准状态下,1mm3体积内含有2.69×1016个气体分 子,分子之间在10-6s内碰撞1020次。
宏观:流体力学研究流体的宏观机械运动,研究的是 流体的宏观特性,即大量分子的平均统计特性。 结论:不考虑流体分子间的间隙,把流体视为由无 数连续分布的流体微团组成的连续介质。
1686年牛顿(Newton,I.)发表了名著《自然哲学的数学原理》 对普通流体的黏性性状作了描述,即现代表达为黏性切应力 与速度梯度成正比—牛顿内摩擦定律。为了纪念牛顿,将黏 性切应力与速度梯度成正比的流体称为牛顿流体。 18世纪~ 19世纪,流体力学得到了较大的发展,成为独立的一门学科。 古典流体力学的奠基人是瑞士数学家伯努利(Bernoulli,D.) 和他的亲密朋友欧拉(Euler,L.)。1738年,伯努利推导出了 著名的伯努利方程,欧拉于17 55年建立了理想流体运动微分 方程,以后纳维(Navier,C .-L.-M.-H.)和斯托克斯(Stokes, G.G.)建立了黏性流体运动微分方程。拉格朗(Lagrange)、 拉普拉斯(Laplace)和高斯(Gosse)等人,将欧拉和伯努利所 开创的新兴的流体动力学推向完美的分析高度。但当时由于 理论的假设与实际不尽相符或数学上的求解困难,有很多疑 不能从理论上给予解决。
《工程流体力学》试题及答案
![《工程流体力学》试题及答案](https://img.taocdn.com/s3/m/28d916050a1c59eef8c75fbfc77da26924c5960a.png)
《工程流体力学》试题及答案一、选择题(每题3分,共15分)1. 下列哪个选项不是流体力学的分支?A. 流体静力学B. 流体动力学C. 流体力学实验D. 流体力学数值模拟答案:C2. 下列哪种流体是不可压缩流体?A. 水蒸气B. 液体C. 气体D. 所有流体答案:B3. 下列哪个方程描述了流体运动的基本规律?A. 连续性方程B. 动量方程C. 能量方程D. 上述都是答案:D4. 在伯努利方程中,流速增加时,压力会?A. 增加B. 减少C. 不变D. 无法确定答案:B5. 下列哪个因素对流体流动的影响最小?A. 流体的粘度B. 流体的密度C. 流体的温度D. 流体的流速答案:C二、填空题(每题3分,共15分)1. 流体力学研究的对象是______。
答案:流体2. 流体的连续性方程表达了______与______之间的关系。
答案:流量,流速3. 流体力学中的动量方程是由______和______推导得出的。
答案:牛顿第二定律,动量定理4. 在伯努利方程中,流速与压力之间的关系为:流速越______,压力越______。
答案:大,小5. 流体力学实验中,常用的测量流体流速的仪器是______。
答案:流速仪三、计算题(每题20分,共60分)1. 已知一圆柱形管道,直径为0.2米,管道中水流速度为2米/秒,水的密度为1000千克/立方米,水的粘度为0.001帕·秒。
求管道中的压力分布。
解答:首先,根据连续性方程,计算管道中的流量Q:Q = A v = π (d/2)^2 v = π (0.2/2)^2 2 = 0.0628 m^3/s然后,根据伯努利方程,计算管道中的压力分布:P1 + 1/2 ρ v1^2 + ρ g h1 = P2 + 1/2 ρ v2^2 + ρ g h2由于管道为水平管道,h1 = h2,所以可以简化为:P1 + 1/2 ρ v1^2 = P2 + 1/2 ρ v2^2代入已知数据,得到:P1 + 1/2 1000 2^2 = P2 + 1/2 1000 2^2解得:P1 = P2所以,管道中的压力分布为均匀分布。
工程流体力学知识整理
![工程流体力学知识整理](https://img.taocdn.com/s3/m/17fdbf9fc850ad02df804134.png)
流体:一种受任何微小剪切力作用,都能产生连续变形的物质。
流动性:当某些分子的能量大到一定程度时,将做相对的移动改变它的平衡位置。
流体介质:取宏观上足够小、微观上足够大的流体微团,从而将流体看成是由空间上连续分布的流体质点所组成的连续介质压缩性:流体的体积随压力变化的特性称为流体的压缩性。
膨胀性:流体的体积随温度变化的特性称为流体的膨胀性。
粘性:流体内部存在内摩擦力的特性,或者说是流体抵抗变形的特性。
牛顿流体:将遵守牛顿内摩擦定律的流体称为牛顿流体,反之称为非牛顿流体。
理想流体:忽略流体的粘性,将流体当成是完全没有粘性的理想流体。
表面张力:液体表面层由于分子引力不均衡而产生的沿表面作用于任一界线上的张力。
表面力:大小及表面面积有关而且分布作用在流体微团表面上的力称为表面力。
质量力:所有流体质点受某种力场作用而产生,它的大小及流体的质量成正比。
压强:把流体的内法线应力称作流体压强。
流体静压强:当流体处于静止或相对静止时,流体的压强称为流体静压强。
流体静压强的特性:一、作用方向总是沿其作用面的内法线方向。
二、任意一点上的压强及作用方位无关,其值均相等(流体静压强是一个标量)。
绝对压强:以完全真空为基准计量的压强。
相对压强:以当地大气压为基准计量的压强。
真空度:当地大气压-绝对压强液体的相对平衡:指流体质点之间虽然没有相对运动,但盛装液体的容器却对地面上的固定坐标系有相对运动时的平衡。
压力体:曲面上方的液柱体积。
等压面:在平衡流体中,压力相等的各点所组成的面称为等压面。
特性一、在平衡的流体中,过任意一点的等压面,必及该点所受的质量力互相垂直。
特性二、当两种互不相混的液体处于平衡时,它们的分界面必为等压面。
流场:充满运动流体的空间称为流场。
定常流动:流场中各空间点上的物理量不随时间变化。
缓变流:当流动边界是直的,且大小形状不变时,流线是平行(或近似平行)的直线的流动状态为缓变流。
急变流:当流边界变化比较剧烈,流线不再是平行的直线,呈现出比较紊乱的流动状态称为急变流。
工程流体力学中的流体力学模型建立与验证
![工程流体力学中的流体力学模型建立与验证](https://img.taocdn.com/s3/m/0d1b994eba68a98271fe910ef12d2af90342a87d.png)
工程流体力学中的流体力学模型建立与验证工程流体力学是研究流体在工程领域中运动与力学行为的学科。
在工程实践中,建立合适的流体力学模型是设计、优化和验证工程系统的关键。
本文将介绍工程流体力学中的流体力学模型的建立与验证方法。
一、流体力学模型的建立1. 宏观层面的模型建立在工程流体力学中,通常采用连续介质假设,即将流体看作是连续均匀的介质。
根据质量、动量和能量守恒定律,可以得到流体力学模型的基本方程组,包括连续性方程、动量方程和能量方程。
这些方程描述了流体的质量守恒、动量守恒和能量守恒。
2. 微观层面的模型建立在某些情况下,宏观层面的流体力学方程无法准确描述流体行为。
在这种情况下,可以采用微观模型,如分子动力学模型或格子气模型,来模拟流体的微观行为。
通过统计力学的方法,可以得到微观模型的动力学方程,并从中推导出宏观流体力学方程。
3. 边界条件的设定在建立流体力学模型时,还需要根据实际情况设置边界条件。
边界条件包括入口条件、出口条件和壁面条件。
合理设置边界条件可以使流体力学模型更加贴近实际情况。
二、流体力学模型的验证1. 数值模拟验证数值模拟是流体力学模型验证的重要手段之一。
通过利用计算流体力学软件进行数值模拟,可以计算得到流体在复杂边界条件下的流动行为。
与理论分析对比,可以验证流体力学模型的准确性。
2. 实验验证实验验证是另一种常用的流体力学模型验证方法。
通过在实验室建立相应的流体力学实验装置,测量流体的动态行为,并与流体力学模型的计算结果进行对比。
实验验证不仅可以验证流体力学模型的准确性,还可以提供实际工程应用中的参数参考。
3. 对比分析验证对比分析验证是将流体力学模型的结果与已有的实验数据或经验值进行对比分析。
如果模型的计算结果能够与实验数据或经验值相吻合,那么就可以说明流体力学模型的准确性。
4. 灵敏度分析验证灵敏度分析验证是通过调整模型中的参数或边界条件,观察模型结果的变化情况。
如果模型的结果对参数或边界条件的变化非常敏感,那么可以说明流体力学模型的准确性。
工程流体力学
![工程流体力学](https://img.taocdn.com/s3/m/eb68c86469eae009581bec8d.png)
vx v y vz 0 x y z div v 0 v 0
定常
不可压缩 vx v y vz 0 x y z div v 0 v 0
例题1(p49,例3-3)船用真空泵利用海水流经喷嘴 时所形成的真空来抽取空气.进口截面直径 d1=5cm,出口直径d=2cm.进口va1=6.2m/s, 求出口va2.
(2)数学表达式
2.流线 在某一瞬时,在某一曲线上任意一点的切线方向与流体在该点
(1)定义 的速度方向一致。 (2)数学表达式 (3)特点
dx dy dz vx x, y, z, t vy ( x, y, z, t ) vz ( x, y, z, t )
二.流管与过水段面
1.流管 在流场中作一条本身不是流线又不相交的封闭曲线,通过这
1.流量
单位时间内通过某一空间表面的流体的量,称为经过该表面的流量。
2.平均流速
是指流体流经某一空间表面流速大小的平均值。
3.例题3-2:
流体流经半径r0的直圆管时,其速度分布对称于r=0 的轴线,为抛物线分布 vx=vxmax(1-(r/r0)2).式中vx为 流体在横截面上的最大速度,为已知,求体积流量和平均流 速.
(1)vx ax 2 by 2 cz 2 , v y dxy eyz fzx y2 z2 x2 z 2 (2)vx ln 2 2 , v y sin 5 连续方程
一.微元流束与总流的连续方程
1.总流连续方程的形式 2.具有分支的管流计算 3.方程推导
(1)微元流束连续方程的推导 (2)总流连续方程的推导
二.直角坐标系中的连续方程
工程流体第一章
![工程流体第一章](https://img.taocdn.com/s3/m/853dc9bdf121dd36a32d821e.png)
考核方法、学习要求、答疑 考核方法、学习要求、
考核方法: 1. 平时考勤、作业成绩占20%; 考核方法: 平时考勤、作业成绩占20% 2. 期末考试占80%。 期末考试占80% 学习要求: 学习要求: 1. 重点掌握 : 基础流体力学的基本概念 、 基本 重点掌握:基础流体力学的基本概念、 方程、 方程、基本应用 2. 按时 、 独立 、 认真完成作业 。 作业要求画图 , 按时、 独立、 认真完成作业。 作业要求画图, 代入数据。 代入数据。 答疑:1. 随时、随地欢迎同学们交流; 答疑: 随时、随地欢迎同学们交流; 2.主楼F613热工教研室; 主楼F613热工教研室 热工教研室; 3.Tel:61772472(O) Tel:61772472(O) 12 4.Email:lwy@ Email:lwy@.
7
4、我国水利事业的历史: 我国水利事业的历史:
4000多年前的 大禹治水”的故事——顺水之性,治 顺水之性, 4000多年前的 “大禹治水”的故事 顺水之性 水须引导和疏通 秦朝在公元前256 前210年修建了我国历史上的三大 秦朝在公元前256—前210年修建了我国历史上的三大 256 水利工程(都江堰、郑国渠、灵渠) 水利工程(都江堰、郑国渠、灵渠)-明渠水流和堰流 古代的计时工具“铜壶滴漏” 古代的计时工具“铜壶滴漏”——孔口出流 孔口出流 清朝雍正年间,何梦瑶在《算迪》一书中提出流量等 清朝雍正年间,何梦瑶在《算迪》 于过水断面面积乘以断面平均流速的计算方法。 于过水断面面积乘以断面平均流速的计算方法。 隋朝(公元587 610年 587—610 隋朝(公元587 610年)完成的南北大运河 隋朝工匠李春在冀中蛟河修建(公元605—617 隋朝工匠李春在冀中蛟河修建(公元605 617年)的 605 617年 赵州石拱桥——拱背的4个小拱,既减压主拱的负载, 拱背的4 赵州石拱桥 拱背的 个小拱,既减压主拱的负载, 又可宣泄洪水。 又可宣泄洪水。 8
工程流体力学公式
![工程流体力学公式](https://img.taocdn.com/s3/m/9659a4ad0875f46527d3240c844769eae109a35f.png)
工程流体力学公式1.流体静力学公式:(1) 压强公式:P = ρgh,其中P为压强,ρ为流体密度,g为重力加速度,h为液面高度。
(2)压力公式:P=F/A,其中P为压力,F为作用力,A为受力面积。
2.流体力学基本方程:(1)质量守恒方程:∂(ρ)/∂t+∇·(ρv)=0,其中ρ为密度,t为时间,v为速度矢量。
(2) 动量守恒方程:∂(ρv)/∂t + ∇·(ρvv) = -∇P + ∇·τ +ρg,其中P为压力,τ为应力张量,g为重力加速度。
(3) 能量守恒方程:∂(ρe)/∂t + ∇·(ρev) = -P∇·v +∇·(k∇T) + ρg·v,其中e为单位质量的总能量,T为温度,k为热传导系数。
3.流体动力学方程:(1)欧拉方程:∂v/∂t+(v·∇)v=-∇(P/ρ)+g,其中v为速度矢量,P为压力,ρ为密度,g为重力加速度。
(2)再循环方程:∂v/∂t+(v·∇)v=-∇(P/ρ)+g+F/M,其中F为体积力,M为质量。
4.流体阻力公式:(1) 粘性流体的阻力公式:F = 6πμrv,其中F为阻力,μ为粘度,r为流体直径,v为速度。
(2)粘性流体在管道中的流量公式:Q=(π/8)ΔP(R^4)/(Lμ),其中Q为流量,ΔP为压差,R为半径,L为管道长度,μ为粘度。
5.流体力学定律:(1) Pascal定律:在封闭的液体容器中,施加在液体上的外力将均匀传递到液体的每一个点。
(2) Bernoulli定律:沿着流体流动方向,速度增大则压力减小,速度减小则压力增大。
除了上述公式之外,还有许多与特定问题相关的公式,如雷诺数、流体阻力系数、泵和液力传动公式等。
这些公式是工程流体力学研究和设计的基础,可以帮助工程师分析和解决与流体运动和相互作用有关的问题。
工程流体力学-课件全集
![工程流体力学-课件全集](https://img.taocdn.com/s3/m/8adbeea50722192e4436f64a.png)
四、流体力学的分支:
工程流体力学、稀薄气体力学、磁流体力学、非牛顿流体 力学、生物流体力学、物理-化学流体力学。
五、流体力学的任务 解决科学研究和工农业生产中遇到的有关流体流动的问
题。 涉及的技术部门:航空、水利、机械、动力、航海、冶
金、建筑、环境。 例如:动力工程中流体的能量转换 机械工程中润滑液压传动气力传输 船舶的行波阻力(水,风的阻力) 高温液态金属在炉内或铸模内的流动 市政工程中的通风通水 高层建筑受风的作用(风载计算) 铁路,公路隧道中心压力波的传播(空气阻力) 汽车的外形与阻力的关系(流线型) 燃烧中的空气动力学特征 血液在人体内的流动 污染物在大气中的扩散
表示单位质量流体占有的体积
流体的密度与温度和压强有关,温度或压强变化时都会引
起密度的变化。
.
dρ P dP T dT
四.等温压缩系数,体积压缩系数
密度的相对变化律.
d 1
1
P dP T dT KdP TdT
K-等温压缩系数:表示在温度不变的情况下,增加单位压强所引起的 密度变化率.也称 K ---体积压缩系数:表示压强增加时,体积相对 减小,密度增加.
一:流体力学的定义
研究流体在外力作用下平衡和运动规律的一门学科,是力学的一个分支.
二:
物体
固体 : 在静止状态时能抵抗一定数量的拉力,压力和剪切力。
流体(包括液体和气体) : 不能抵抗抗力和剪切力.流体在剪切力的 作用下将发生连续不断的变形运动,直至剪切力消失为止。
流体的这种性质称为易流动性。
三:流体力学的发展
1653年,帕斯卡原理:静止液体的压强可以均匀的传遍整个流场.
工程流体力学水力学
![工程流体力学水力学](https://img.taocdn.com/s3/m/ff09507683d049649a66580e.png)
且垂直于AB线,如下图。在AB线上H 各点的每一点
上各绘亦垂直AB线的γhi线γhi 段,等于各该点上的 静压强,这些线段的终点将处在一条直线AC上。
三角形ABC图就是铅垂线AB上的静压强分布图。
事实上,由式〔1-9〕C 知,当液B 体重度γ为常数
时,静压强p只是随淹没深γH度h而变化,两者成直
线关系。因此,在绘制静压图 1-强5 分布图时,只需在
单位重量流体从某一基准面算起所具有的位能,
因为对重量而言,所以称单位位能。的物理意义
是:单位重量流体所具有的压能,称单位压能。 因此流体静力学根本方程的物理意义是:在静止
❖ 流体中任以点的单位位能与单位压能之和,亦即 单位势能为常数。对于气体来说,因为重度γ值 较小,常忽略不计。由上式可知,气体中任意两 点的静压强,在两点间高差不大时,可认为相等。 对于液体来说,因为自由外表上的静压强p0常为 大气压强,是的。所以由上式可知液体中任一点 的静压强p为
止流体中任一点上流体静压强的大小与其作用面的方
位无关,即同一点上各个方向的静压强大小均相等
❖
2.重力作用下的流体平衡方程
❖
在实际工程中,静止流体所受的质量力只有重力。
这种流体通常称静止重力流体,因此,对于静止不可
压缩均质流体来说,总有一平衡方程式:
❖
(1-12)
z p c
❖ 对于静止流体中任意两点来说,上式可写为:
❖ 〔二〕质量•密度
❖ 流体和其它物质一样,具有质量。流体单位
体积内所具有的质量称密度,以ρ表示。对于均
质流体,设体积为V的流体具有的质量为m,那
么密度ρ为
❖
m
V
❖ 密度的单位为kg/m3。
〔1-1〕
工程流体力学经典教材
![工程流体力学经典教材](https://img.taocdn.com/s3/m/a93a07f668dc5022aaea998fcc22bcd127ff4256.png)
工程流体力学经典教材
工程流体力学的经典教材有很多,以下是一些具有代表性的教材:
《流体力学(第二版)》,刘鹤年主编,中国建筑工业出版社出版。
《流体力学(第2版)》,庄礼贤、尹协远、马晖扬编著,中国科学技术大学出版社出版。
《流体力学(第二版)》,张鸿雁等编著,科学出版社出版。
《工程流体力学》,丁祖荣编著,高等教育出版社出版。
此外,还有《流体力学(第2版)(英文版)》,由,著,世界图书出版公司出版。
这些教材涵盖了工程流体力学的基本概念、原理和方法,可供相关专业的研究生和从事教学、科研及工程技术的人员参考。
具体选择哪一本教材,可以根据个人的学习需求和兴趣来决定。
工程流体力学
![工程流体力学](https://img.taocdn.com/s3/m/e9ed8ed080eb6294dc886c06.png)
流体:在任何微小剪切力的持续作用下能够连续不断变形的物质。
流体的密度ρ:单位体积流体所具有的质量,ρ=m/V。
流体的压缩性和膨胀性:随着压强的增加,体积缩小;温度增高,体积膨胀。
流体压缩性用体积压缩系数k来表示。
表示温度保持不变时,单位压强增量引起流体体积的相对缩小量。
不可压缩流体:在大多数情况下,可忽略压缩性的影响,认为液体的密度是一个常数。
可压缩流体:密度随温度和压强变化的流体。
通常把气体看成是可压缩流体,即它的密度不能作为常数,而是随压强和温度的变化而变化的。
把液体看作是不可压缩流体,气体看作是可压缩流体,都不是绝对的。
在实际工程中,要不要考虑流体的压缩性,要视具体情况而定。
流体的黏性:是流体抵抗剪切变形的一种属性。
流体具有内摩擦力的特性。
运动的流体所产生的内摩擦力(切向力) F 的大小与垂直于流动方向的速度梯度du/dy成正比,与接触面的面积A成正比,并与流体的种类有关,而与接触面上压强P 无关。
流层间单位面积上的内摩擦力称为切向应力,则τ=F/A=μdu/dy。
动力黏度(黏性系数)μ:在通常的压强下,压强对流体的黏性影响很小,可忽略。
高压下,流体的黏性随压强升高而增大。
液体黏性随温度升高而减小,气体黏性随温度升高而增大。
运动黏度ν:动力黏度与密度的比值,ν=μ/ρ。
理想流体:不具有黏性的流体,,实际流体都是具有黏性的。
在流体力学中,总是先研究理想流体的流动,而后再研究黏性流体的流动。
作用在流体上的力可以分为两大类,表面力和质量力。
表面力:作用在流体中所取某部分流体体积表面上的力,即该部分体积周围的流体或固体通过接触面作用在其上的力。
可分解成与流体表面垂直的法向力和与流体表面相切的切向力。
质量力:指作用在流体某体积内所有流体质点上并与这一体积的流体质量成正比的力,又称体积力。
在均匀流体中,质量力与受作用流体的体积成正比。
流体的压强:在流体内部或流体与固体壁面所存在的单位面积上的法向作用力,当流体处于静止状态时,流体的压强称流体静压强p,单位为Pa。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
c1
c2
c3
dim x2 L T M
a2 b2
dim x3 L T M
a3 b3
若x1、x2和x3可以组成一个无量纲的量,则
1 dim x x x
k1 1 k2 2 k3 3
L T
a1
b1
M
c1 k1
L
a2
T M
b2
c2 k 2
L
a3
T M
b3
c3 k 3
。只有两个同类型的物理量才能相加减,否
则是没有意义的。例如
p1 V12 p2 V22 z1 z2 hj 2g 2g
在量纲和谐的方程式中,一般来讲系数和 常数应该是无量纲量。经验公式在没有理论分 析的情况下,根据部分实验数据回归出来的公 式,常含带量纲的的系数,这类经验公式的量 纲是不和谐的,在使用这些公式时必须用规定 的单位。
工程流体力学
主讲: 冯 进
长江大学机械工程学院
§8 量纲分析和相似原理
对于复杂的实际工程问题,目前求解流体 运动的基本方程在数学上存在困难。因此,在 求解流体力学问题时,经常借助量纲分析和相 似原理来建立实际工程问题有关的各物理量之 间的关系,并通过实验方法进行研究,获得一 定范围内符合实际的经验公式。所以,量纲分 析和相似原理是发展流体力学理论,解决实际 工程问题的有力工具。
若k1、k2、k3不全为零,系数行列的值必为零,即
a1 b1 c1
a2 b2 c2
a3 b3 0 c3
说明任意一个物理量可以用另外两个物理量导 出,这与假设相矛盾。因此,x1、x2和x3 量纲 独立的条件是:
a1 b1 c1 a2 b2 c2 a3 b3 0 c3 a1 b1 b2 b3 c1 c2 0 c3
1 L
c
(4)由量纲和谐原理,求各指数 L:-a+b-2c=3 T:-a-2c=-1 解得a=-1 , b=4 , c=1 (5)代入指数乘积形式,得
R 4 p Qk l
M:a+c=1
二、π定理
1.基本物理量的判断方法 若x1、x2和x3是基本物理量,它们的量纲 为:
dim x1 L T M
方向:
n
m
时间比例尺: t
速度比例尺:
tn tm
n Ln / tn L m Lm / tm t
an n tn L 2 加速度比例尺: a am m tm t t
3.动力相似 流体运动和它所受到的力有着密切的关系, 为了保证流动的力学相似,除了几何相似和运 动相似之外,还应该有动力相似。所谓动力相 似是指原型流动与模型流动对应受到的同种外 力作用,而且对应点上作用力成一定比例且方 向相同。设原型流在某点受到的作用力为Fn, 模型对点受到的作用力为Fm , 则:
p Q k a R b l
c
(3)选择基本量纲L、T和M,表示各物理量 的量纲
LT
3 1
k ML1T 1 L ML2T 2
a b
MLT k L2
2
b MLT T L L2
c
a
2
D f Re d 2 2 8
f Re
d 2 2
4 2
Cd A
2
2
例4:已知输送液体的压力管路的压降Δp与流体 的物理性质(密度ρ和动力黏度μ)、几何特性 (管长l、管径d、粗糙度k)和运动特征(流 动速度υ)有关,试用建立的表达式。
解:(1)根据已知条件,建立函数关系
ML T ML
1
1
3 a2
L LT
b2
1 c 2
L:-3a2+b2+c2=3 T:c2=1 M:a2=1 解得a2=1 , b2=1 , c2=1
1 2 d Re
(5)写出无量纲方程
D 1 F 2 2 , 0 d Re
m n1
根据量纲和谐原理,确定待定指数a、b、 c、……、m,可求得该物理过程的方程式, 式中的待定系数k必须通过实验和分析加以确 定。
例1:已知作用在作圆周运动物体上的离 心力F与物体的质量m、速度υ和圆周半径r有 关,试用瑞利法给出离心力的表达式。 解:(1)根据已知条件,建立函数关系
F f m, , r
dim x L T 。 M
3.单位 单位是度量各种物理量数值大小的标准, 同一物理量因单位的不同,其数值大小也不同。 例如长度为1m,也可表示为100cm或1000mm 等不同的单位,但量纲一样,都是长度量纲L。 单位和量纲都关于量度的概念,单位决定 量度的数量,而量则纲表示量度的性质。
或
a2 a3
2. π 定理 若某一物理过程与n个物理量有关,可表 示为如下函数
f x1 , x2 ,, xn 0
其中有m个基本物理量(一般m≤3),其余 (n-m)个物理量可表达为(n-m)个无量纲 量:
xm 1 1 a1 b1 m1 x1 x2 xm
xm 2 2 a 2 b2 m x1 x2 xm 2
k 4 a 4 b4 c 4 d
(4)根据量纲和谐原理,有
ML T ML L LT 解得a1=1 , b1=0 , c1=2
1 2 3 a1 b1
1 c1
1
p
2
ML T
1
1
ML
3 a2
L LT
b2
1 c 2
解得a2=1 , b2=1 , c2=1
二、无量纲量
当物理量x的量纲
dim x 1
时,有
dim x L T M
式中α =β =γ =0,物理量x称为无量纲量或无 因次量。
无量纲量有两个特点:(1)无量纲量的数 值大小与采用的单位制无关;(2)无量纲量可 进行超越函数(对数、指数、三角函数等)运算。
三、量纲和谐原理
凡是正确反映客观规律的物理方程,其各 项的量纲都必须相同,这就是量纲和谐原理
这样自然产生了模拟的运动和被模拟的运 动之间的相似问题,分析模型与实物(原型) 间的相似关系的基本理论。 相似理论:若两个流动之间相互对应的流 动参量(与流动相关的物理量,如密度,速度, 压力,粘度)间的比值保持一定的比例关系, 并按照同样的规律运动,则称这两个流动为相 似的流动。相似条件:几何相似,运动相似, 动力相似。
f p, , , l , d , k , 0
(2)在流体物性、几何特性和运动特性三方面 选择基本物理量,即ρ、d和υ作为基本物理量 (3)n-3=7-3=4,列出4无量纲量
1
p a1 d b1 c1
2
a db c
2 2 2
l 3 a3 b3 c3 d
a1k1 a2 k2 a3k3 0 b1k1 b2 k2 b3k3 0 c1k1 c2 k2 c3k3 0
a1 b 1 c1
a2 b2 c2
a3 k1 0 b3 k 2 0 c3 k3 0 1 2 来自D a1 d b1 c1
a db c
2 2 2
(4)根据量纲和谐原理,有
MLT
2
ML
3 a1
L LT
b1
1 c1
L:-3a1+b1+c1=3 T:-c1=-2 M:a1=1 解得a1=1 , b1=2 , c1=2
D 1 2 2 d
一、力学相似
1.几何相似 几何相似要求模型流动与实物流动有相似 的边界形状,一切对应的线性尺寸对应成比例 且为一定常数,实物夹角与模型夹角对应相等。 设原型边界上任一线段长度为Ln ,模型边界 对应线段长度为Lm,则:
方向:
n m
Ls Lm
线段比: L
An L2 面积比: A A L2n L2 m m
nm
xn a( nm ) b( nm ) m x1 x2 xm ( nm )
描述该物理过程的(n-m)个无量纲量组合量 所表达的关系为:
F 1, 2 ,, nm 0
例3:已知绕球体的流阻力D与流体的物理性 质(密度ρ和动力黏度μ)、球体直径d和流动 速度υ有关,试用建立D的表达式。 解:(1)根据已知条件,建立函数关系
§8.2 量纲分析法
一、瑞利法
瑞利法的基本原理是某物理过程与n个物 理量有关,即
f x1 , x2 ,, xn 0
其中某个物理量xi可表示为其它物理量的指数 乘积形式,即
b m xi kx1a x2 xn1
用量纲形式为:
dimxi k dim x x x
a 1 b 2
(2)将物理量m 、 υ 、 r和写成指数乘积形式
F km r
a b
c
(3)选择基本量纲L、T和M,表示各物理量 的量纲
MLT 2 kM a LT 1 Lc
b
(4)由量纲和谐原理,求各指数 L:b+c=1 T:-b=-2 解得a=1 , b=2 , c=-1 M:a=1
(5)代入指数乘积形式,得
F km
2
r
例2:由实验可知流体在圆管作层流运动时, 通过的流量Q与流体的动力粘度μ、管道半径R、 管道长度l和管段两端的压差Δp有关。试用瑞 利法给出流量的表达式。 解:(1)根据已知条件,建立函数关系
p Q f , R, l
(2)将物理量μ、Δp/l和R写成指数乘积形
f D, , , d , 0