《统计与概率》测试题

合集下载

高中数学统计与概率测试题

高中数学统计与概率测试题

高中数学统计与概率测试题高中数学统计与概率测试题选择题1.某校期末考试后,为了分析该校高一年级1000名学生的研究成绩,从中随机抽取了100名学生的成绩单。

以下说法中正确的是()A。

1000名学生是总体B。

每名学生是个体C。

每名学生的成绩是所抽取的一个样本D。

样本的容量是1002.某班级在一次数学竞赛中为全班同学生设置了一等奖、二等奖、三等奖以及参与奖,各个奖品的单价分别为:一等奖20元、二等奖10元、三等奖5元,参与奖2元,获奖人数的分配情况如图。

以下说法不正确的是()A。

获得参与奖的人数最多B。

各个奖项中三等奖的总费用最高C。

购买奖品的费用平均数为9.25元D。

购买奖品的费用中位数为2元3.XXX为了调查消费者对滴滴打车出行的真实评价,采用系统抽样方法从2000人中抽取100人做问卷调查。

为此将他们随机编号1,2,⋯,2000,适当分组后在第一组采用简单随机抽样的方法抽到的号码为9,抽到的100人中,编号落入区间[1,820]的人做问卷A,编号落入区间[821,1520]的人做问卷B,其余的人做问卷C,则抽到的人中,做问卷C的人数为()A。

23B。

24C。

25D。

264.为了解城市居民的环保意识,某调查机构从一社区的120名年轻人、80名中年人、60名老年人中,用分层抽样方法抽取了一个容量为n的样本进行调查,其中老年人抽取3名,则n=()A。

13B。

12C。

10D。

95.A、B、C、D四位妈妈相约各带一个小孩去观看花卉展,她们选择共享电动车出行,每辆车只能带一大人和一小孩,其中孩子们表示都不坐自己妈妈的车,则A的小孩坐C妈妈或D妈妈的车概率是A。

1/15B。

C。

D。

6.如图,海水养殖厂进行某水产品的新旧网箱养殖方法产量对比,收获时各随机抽取了100个网箱,测量各箱水产品产量(单位:kg),其频率分布直方图如图。

根据频率分布直方图,下列说法正确的是①新网箱产量的方差的估计值高于旧网箱产量的方差的估计值②新网箱产量中位数的估计值高于旧网箱产量中位数的估计值③新网箱产量平均数的估计值高于旧网箱产量平均数的估计值④新网箱频率最高组的总产量的估计值接近旧网箱频率最高组总产量估计值的两倍A。

中考数学专题冲刺《统计与概率》练习题含答案

中考数学专题冲刺《统计与概率》练习题含答案

专题八统计与概率【专题分析】统计与概率在中考中的常考点有数据的收集方法,平均数、众数和中位数的计算与选择,方差和标准差的计算和应用,统计图的应用及信息综合分析;事件的分类,简单事件的概率计算,画树状图或列表求概率,对频率和概率的理解等.统计与概率在中考中一般以客观题的形式进行考查,选择题、填空题较多,同时考查多个考点的综合性题目一般以解答题的形式进行考查;统计与概率在中考中所占的比重约为6%~12%.【解题方法】解决统计与概率问题常用的数学思想是方程思想和分类讨论思想;常用的数学方法有分类讨论法,整体代入法等.【知识结构】【典例精选】为了解某社区居民的用电情况,随机对该社区10户居民进行了调查,下表是这10户居民2014年4月份用电量的调查结果.居民(户)132 4月用电量(千瓦时/户)40505560误的是( )A.中位数是55 B.众数是60C.方差是29 D.平均数是54【思路点拨】根据众数、中位数、方差、平均数的定义及计算公式分别进行计算,即可得出答案.答案:C规律方法:解决此类题目的关键是准确掌握各个统计量的概念及计算方法,分别计算直接选择或排除.若一组数据1,2,x,4的众数是1,那么这组数据的方差是32 .【思路点拨】根据众数的定义求出x的值,再根据平均数的计算公式求出这组数据的平均数,再根据方差公式进行计算即可.【解析】根据众数的意义得到x=1,这组数据的平均数x=1+2+1+44=2,所以这组数据的方差是S2=14[(1-2)2+(2-2)2+(1-2)2+(4-2)2]=14×6=32.规律方法:为了准确而快速地记忆方差的计算公式,可以用下面12个字来理解性的记忆,即“先平均、再作差、平方后、再平均”,也就是说,先求出一组数据的平均数,再将每一个数据都与平均数作差,然后将这些差进行平方,最后求这些差的平方的平均数,其结果就是这组数据的方差.作为宁波市政府民生实事之一的公共自行车建设工作已基本完成,某部门对今年4月份中的7天进行了公共自行车日租车量的统计,结果如下:宁波市4月份某一周公共自行车日租车量统计图(1)求这7天日租车量的众数、中位数和平均数;(2)用(1)中的平均数估计4月份(30天)共租车多少万车次;(3)市政府在公共自行车建设项目中共投入9 600万元,估计2014年共租车3 200万车次,每车次平均收入租车费0.1元,求2014年租车费收入占总投入的百分率(精确到0.1%).【思路点拨】(1)根据众数、中位数和平均数的定义即可求出; (2)4月份天数与平均数的积;(3)租车的次数与每次的租车费的积为租车收入,由租车收入与投入的比即可求出百分率.【自主解答】解:(1)8,8,8.5.(2)30×8.5=255(万车次).(3)3 200×0.1÷9 600=1÷30≈3.3%.答:2014年租车费收入占总投入的3.3%.某中学要在全校学生中举办“中国梦·我的梦”主题演讲比赛,要求每班选一名代表参赛.九年级一班经过投票初选,小亮和小丽票数并列班级第一,现在他们都想代表本班参赛.经班长与他们协商决定,用他们学过的掷骰子游戏来确定谁去参赛(胜者参赛).规则如下:两人同时随机各掷一枚完全相同且质地均匀的骰子一次,向上一面的点数都是奇数,则小亮胜;向上一面的点数都是偶数,则小丽胜;否则,视为平局.若为平局,继续上述游戏,直至分出胜负为止.如果小亮和小丽按上述规则各掷一次骰子,那么请你解答下列问题:(1)小亮掷得向上一面的点数为奇数的概率是多少?(2)该游戏是否公平?请用列表或画树状图的方法说明理由.(骰子:六个面上分别刻有1,2,3,4,5,6个小圆点的小正方体)【思路点拨】(1)由题意得,掷一枚质地均匀的骰子,向上一面的点数的等可能的情况共有6种,其中点数为奇数的情况有3种,所以P=36=12;(2)判断游戏是否公平,利用画树状图或列表法表示出所有等可能的情况,求出两人胜出的概率,若概率相同,则游戏公平,否则游戏不公平.【自主解答】解:(1)所求概率P=36=12.(2)游戏公平.理由如下:由上表可知,共有36种等可能的结果,其中小亮、小丽获胜各有9种结果,∴P(小亮胜)=936=14,P(小丽胜)=936=14.∴该游戏是公平的.规律方法:解决判断游戏是否公平的问题,首先应分别计算出两人获胜的概率,然后比较两个概率的大小,若相同则公平,若不相同则不公平.【能力评估检测】一、选择题1.下列事件是随机事件的是( D )A.明天太阳从东方升起B.任意画一个三角形,其内角和是360°C.通常温度降到0 ℃以下,纯净的水结冰D.射击运动员射击一次,命中靶心2.某校为纪念世界反法西斯战争70周年,举行了主题为“让历史照亮未来”的演讲比赛,其中九年级的5位参赛选手的比赛成绩(单位:分)分别为8.6,9.5,9.7,8.7,9,则这5个数据的中位数和平均分分别是( C )A.9.7,9.1 B.9.5,9.1C.9,9.1 D.8.7,93.甲、乙两名同学某学期的四次数学测试成绩(单位:分)如下表:S甲=17,S乙=25,下列说法正确的是()A.甲同学四次数学测试成绩的平均数是89分B.甲同学四次数学测试成绩的中位数是90分C.乙同学四次数学测试成绩的众数是80分D.乙同学四次数学测试成绩较稳定答案:B4.一个袋子中装有6个黑球和3个白球,这些球除颜色外,形状、大小、质地等完全相同,在看不到球的条件下,随机从这个袋子中摸出一个球,摸到白球的概率是( B ) A. 19 B. 13 C. 12 D. 235.如图,在一长方形内有对角线长分别为2和3的菱形、边长为1的正六边形和半径为1的圆,则一点随机落在这三个图形内的概率较大的是( B )A .落在菱形内B .落在圆内C .落在正六边形内D .一样大6.小李是9人队伍中的一员,他们随机排成一列队伍,从1开始按顺序报数,小李报到偶数的概率是( B )A. 23B. 49C. 12D. 197.为积极响应创建“全国卫生城市”的号召,某校 1 500名学生参加了卫生知识竞赛,成绩记为A ,B ,C ,D 四等.从中随机抽取了部分学生的成绩进行统计,绘制成如下两幅不完整的统计图,根据图中信息,以下说法不正确的是( )A .样本容量是200B .D 等所在扇形的圆心角为15°C .样本中C 等所占百分比是10%D .估计全校学生成绩为A 等的有900人答案: B8.某公司欲招聘一名公关人员,对甲、乙、丙、丁四位候选人进行了面试和笔试,他们的成绩如下表所示: 候选人 甲 乙 丙 丁测试成绩 (百分制) 面试 86 92 90 83笔试 90 83 83 92如果公司认为,作为公关人员面试的成绩应该比笔试的成绩更重要,并分别赋予它们6和4的权.根据四人各自的平均成绩,公司将录取( B )A .甲B .乙C .丙D .丁9.在一个不透明的布袋中,红球、黑球、白球共有若干个,除颜色外,形状、大小、质地等完全相同,小新从布袋中随机摸出一球,记下颜色后放回布袋中,摇匀后再随机摸出一球,记下颜色……如此大量摸球实验后,小新发现其中摸出红球的频率稳定于20%,摸出黑球的频率稳定于50%,对此实验,他总结出下列结论:①若进行大量摸球实验,摸出白球的频率稳定于30%;②若从布袋中任意摸出一个球,该球是黑球的概率最大;③若再摸球100次,必有20次摸出的是红球.其中说法正确的是( B )A .①②③B .①②C .①③D .②③10.若十位上的数字比个位上的数字、百位上的数字都大的三位数叫做中高数.如796就是一个“中高数”.若十位上的数字为7,则从3,4,5,6,8,9中任选两个数,与7组成“中高数”的概率是( C )A. 12B. 23C. 25D. 35二、填空题11.一组正整数2,3,4,x 从小到大排列,已知这组数据的中位数和平均数相等,那么x 的值是5 .12.如图,一个圆形转盘被等分成五个扇形区域,上面分别标有数字1,2,3,4,5,转盘指针的位置固定,转动转盘后任其自由停止.转动转盘一次,当转盘停止转动时,记指针指向标有偶数所在区域的概率为P (偶数),指针指向标有奇数所在区域的概率为 P (奇数),指针落在线上时重转,则P (偶数)< P (奇数)(填“>”“<”或“=”).13.“服务社会,提升自我.”凉山州某学校积极开展志愿者服务活动,来自九年级的5名同学(三男两女)成立了“交通秩序维护”小分队,若从该小分队中任选两名同学进行交通秩序维护,则恰是一男一女的概率是35.三、解答题14.要从甲、乙两名同学中选出一名,代表班级参加射击比赛,如图是两人最近10次射击训练成绩的折线统计图.(1)已求得甲的平均成绩为8环,求乙的平均成绩;(2)观察图形,直接写出甲、乙这10次射击成绩的方差S甲,S乙哪个大;(3)如果其他班级参赛选手的射击成绩都在7环左右,本班应该选7环参赛更合适;如果其他班级参赛选手的射击成绩都在9环左右,本班应该选9环参赛更合适.解:(1)乙的平均成绩:(8+9+8+8+7+8+9+8+8+7)÷10=8(环).(2)根据图象可知,甲的波动小于乙的波动,则S甲<S乙.(3)如果其他班级参赛选手的射击成绩都在7环左右,本班应该选乙参赛更合适;如果其他班级参赛选手的射击成绩都在9环左右,本班应该选甲参赛更合适.15.在某电视台的一档选秀节目中,有三位评委,每位评委在选手完成才艺表演后,出示“通过”(用√表示)或“淘汰”(用×表示)的评定结果.节目组规定:每位选手至少获得两位评委的“通过”才能晋级.(1)请用树状图列举出选手A获得三位评委评定的各种可能的结果;(2)求选手A晋级的概率.解:(1)根据题意画树状图如下:由树状图可知,选手A一共获得8种可能的结果,这些结果的可能性相等.(2)P(A晋级)=48=12.16.为推进“传统文化进校园”活动,某校准备成立“经典诵读”、“传统礼仪”、“民族器乐”和“地方戏曲”等四个课外活动小组.学生报名情况如图(每人只能选择一个小组).(1)报名参加课外活动小组的学生共有30人,将条形图补充完整;(2)扇形图中m=25,n=108;(3)根据报名情况,学校决定从报名“经典诵读”小组的甲、乙、丙、丁四人中随机安排两人到“地方戏曲”小组,甲、乙恰好都被安排到“地方戏曲”小组的概率是多少?请用列表或画树状图的方法说明.解:(1)∵由两种统计图可知,报名参加“地方戏曲”小组的有13人,占13%,∴报名参加课外活动小组的学生共有13÷13%=100(人),参加“民族乐器”小组的有100-32-25-13=30(人).(2)∵m%=25100×100%=25%.∴m=25.n=30100×360=108.(3)画树状图如下:∵共有12种等可能的结果,恰好选中甲、乙的有2种,∴P(选中甲、乙)=212=16.。

《统计与概率》高考模拟

《统计与概率》高考模拟

《统计与概率》高考模拟一、选择题(本大题共12小题,每小题5分,共60分)1.(2019·成都统考)某工厂生产,,A B C 三种不同型号的产品,产品数量之比为:5:3k ,现用分层抽样的方法抽出个容量为120的样本,已知A 型号产品抽取了24件,则C 型号产品抽取的件数为( ) A.24 B.30 C.36 D.402.(2019·菏泽模拟)在样本频率分布直方图中,共有9个小长方形,若某个小长方形的面积等于其他8个小长方形的面积和的25,且样本容量为140,则该组的频数为( ) A.28 B.40 C.56 D.603.(2019·河南八市高一联考)如图所示的茎叶图记录了甲、乙两名同学在10次英语听力比赛中的成绩(单位:分),已知甲得分的中位数为76分,乙得分的平均数是75分,则下列结论正确的是( )A.76x =甲B.甲数据中3x =,乙数据中6y =C.甲数据中6x =,乙数据中3y =D.乙同学成绩较为稳定4.在5件产品中,有4件正品,从中任取2件,2件都是正品的概率是( )A.4 5B.1 5C.3 5D.2 55.有一个容量为200的样本,其频率分布直方图如图所示,根据样本的频率分布直方图估计,样本数据落在区间[10,12)内的频数为()A.18B.36C.54D.726.(2019·辽宁实验中学月考)甲盒中有200个螺杆,其中有x个A型的,乙盒中有240个螺母,其中有y个A型的.今从甲、乙两盒中各任取一个,不能配成A型螺栓的概率为25,则恰可配成A型螺栓的概率为()A.1 20B.15 16C.3 5D.19 207.(2019·绵阳中学高一期末)口袋中有100个大小相同的红球、白球、黑球,其中红球45个,从口袋中摸出一个球,摸出白球的概率为0.23,则摸出黑球的概率为()A.0.45B.0.67C.0.64D.0.328.随机猜测“选择题”的答案,每道题猜对的概率为0.25,则两道选择题至少猜对一道的概率为()A.7 16B.1 16C.9 16D.3 89.(2019·绵阳中学高一期末)现有10道题,其中6道甲类题,4道乙类题,小明同学从中任取3道题解答.已知所取的3道题中有2道甲类题,1道乙类题.若小明同学答对每道甲类题的概率都是35,答对每道乙类题的概率都是45,且各题答对与否相互独立.则小明同学至少答对2道题的概率为()A.12 25B.57 125C.36 125D.93 12510.设矩形的长为a,宽为b,其比满足1:0.6182b a=≈,这种矩形给人以美感,称为黄金矩形.黄金矩形常应用于工艺品设计中,下面是某工艺品厂随机抽取两个批次的初加工矩形宽度与长度的比值样本甲批次:甲批次:0.598 0.625 0.628 0.595 0.639乙批次:0.618 0.613 0.592 0.622 0.620根据上述两个样本来估计两个批次的总体平均数,与标准值0.618比较,正确结论是()A.甲批次的总体平均数与标准值更接近B.乙批次的总体平均数与标准值更接近C.两个批次总体平均数与标准值接近程度相同D.两个批次总体平均数与标准值接近程度不能确定11.从甲、乙两个城市分布随机抽取14台自动售货机,对其销售额进行统计,统计数据用茎叶图表示(如图),设甲、乙两组数据的平均数分别为,x x 甲乙,中位数分别为,m m 甲乙,则( )A.,x x m m <>甲乙甲乙B.,x x m m <<甲乙甲乙C.,x x m m >>甲乙甲乙D.,x x m m ><甲乙甲乙12.(2019·武昌模拟)学校要从甲、乙、丙三名同学中选取两名去参加物理竞赛,因为他们的水平相当,所以准备采取抽签的方式决定.学校制作了三个签,其中两个写有“参赛”,一个写有“不参赛”.抽签时,由甲先抽,然后乙抽,最后丙抽.记事件A :甲抽中“参赛”,事件B :乙抽中“参赛”,则( ) A.()()P A P B =且事件,A B 独立 B.()()P A P B =且事件,A B 不独立 C.()()P A P B >且事件,A B 独立 D.()()P A P B >且事件,A B 不独立二、填空题(本大题共4小题,每小题5分,共20分)13.(2019·南阳检测)为了调查某野生动物保护区内某种野生动物数量,调查人员逮到这种动物1200只,作过标记后放回,一星期后,调查人员再次逮到该种动物1000只,其中作过标记的有100只,估计保护区有这种动物______只. 14.(2019·郑州一中期末)用两种不同的颜色给图中三个矩形随机涂色,每个矩形只涂一种颜色,则相邻两个矩形涂不同颜色的概率是_________.15.(2019沈阳质检)某工厂生产,A B两种元件,先从一批产品中随机抽取这两种元件各5件进行检测,检测结果记录如下:由于表格被污损,数据,x y看不清,统计员只记得,A B两种元件的检测数据的平均数相等,方差也相等,则xy ________.16.两台机床同时生产直径为10的零件,为了检验产品质量,质量检验员从两台机床生产的产品中各抽出4件进行测量,结果如下:如果你是质量检验员,在收集到上述数据后,你将通过运算来判断哪台机床生产的零件质量更好、更符合要求,那么你的判断是_________.三、解答题(本大题共6小题,共70分)17.(2019·武汉二中月考)(10分)一个地区共有5个乡镇,人口3万人,其中人口比例为3:2:5:2:3.从3万人中抽取一个300人的样本,分析某种疾病的发病率,已知这种疾病与不同的地理位置及水土有关,问应采取什么样的抽样方法?并写出具体过程.18.(2019·海口一中质检)(12分)随机抽取某中学甲、乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图所示.(1)根据茎叶图判断哪个班的平均身高较高; (2)计算甲班的样本方差.19.(2019·育才中学期中)(12分)一个口袋内装有大小相同的1个白球和已编有号码的3个黑球,从中摸出2个球. (1)共有多少种不同的结果?(2)2个球均为黑球有多少种不同结果? (3)2个球均为黑球的概率是多少?20.(2019·北京十一中学期中)(12分)某校进入高中数学竞赛复赛的学生中,高一年级有6人,高二年级有12人,高三年级有24人,现采用分层抽样的方法从这些学生中抽取7人进行采访. (1)求应从各年级分别抽取的人数;(2)若从抽取的7人中再随机抽取2人做进一步了解(注高一学生记为i A ,高二学生记为i B ,高三学生记为1,2,3,i C i =⋅⋅⋅,). ①列出所有可能的抽取结果;②求抽取的2人均为高三年级学生的概率.21.(2019·济南模拟)(12分)现有甲、乙、丙三名学生参加某大学的自主招生考试,考试分两轮,第一轮笔试,第二轮面试,只有第一轮笔试通过才有资格进入第二轮面试,面试通过就可以在高考录取中获得该校的优惠加分,两轮考试相互独立.根据以往多次的模拟测试,甲、乙、丙三名学生能通过笔试的概率分别为0.4,0.8,0.5,能通过面试的概率分别为0.8,0.4,0.64.根据这些数据我们可以预测:(1)甲、乙、丙三名学生中至少有两名学生通过第一轮笔试的概率 (2)甲、乙、丙三名学生恰有2人获得该校优惠加分的概率.22.(2019·长沙八校联考)(12分)某医药公司研发一种新的保健产品,从生产的一批产品中抽取200盒作为样本,测量产品的一项质量指标值,该指标值越高越好,由测量结果得到如图所示的频率分布直方图:(1)求a,并试估计这200盒产品的该项指标的平均值;(2)国家有关部门规定每盒产品该项指标值不低于150均为合格,且按指标值的从低到高依次分为合格、优良、优秀三个等级,其中(185,215)为优良,不高于185为合格,不低于215为优秀.用样本的该项质量指标值的频率代替产品的该项质量指标值的概率.①求产品该项指标值的优秀率;②现从这批产品中随机抽取3盒,求其中至少有1盒该项质量指标值为优秀的概率.参考答案 1. 答案:C 解析:由2453120k k =++得2k =,故C 型号产品抽取的件数为312036253⨯=++.2.答案:B解析:设该小长方形的面积为x ,则2(1)5x x =-,解得27x =,即该组的频率为27,所以频数为2140407⨯=.3. 答案:C解析:因为甲得分的中位数为76分,所以6x =,所以75x =甲,故A 、B 错误;因为乙得分的平均数是75分,所以5668687072(70)808688897510y ++++++++++=,解得3y =,故C 正确;由茎叶图中甲、乙成绩的分布可知D 错误. 4. 答案:C 解析: 5. 答案:B解析:从左到右四个矩形的面积分别为0.04、0.1、0.3、0.38,所以第五个矩形的面积为10.040.10.30.380.18----=,即样本数据落在区间[10,12)内的频率为0.18,所以样本数据落在区间[10,12)内的频数为2000.1836⨯=. 6. 答案:C 解析: 7. 答案:D 解析:答案:A解析:每道题猜对的概率为10.254=,则猜错的概率为34,由独立事件概率的计算公式得:两道选择题都猜错的概率为3394416⨯=,所以至少猜对一道的概率为9711616-=.故选A. 9. 答案:D解析:设小明同学答对题的个数为X ,则23134257(2)255555125P X ⎛⎫==⨯+⨯⨯⨯= ⎪⎝⎭,23436(3)55125P X ⎛⎫==⨯=⎪⎝⎭,故93(2)(2)(3)125P X P X P X ==+==≥.则小明同学至少答对2道题的概率为93125.选D. 10. 答案:A 解析:0.5980.6250.6280.5950.6390.6175x ++++==甲,0.6180.6130.5920.6220.6200.6135x ++++==乙,故选A.11. 答案:A解析:由题中茎叶图可得56101014182225303038414348170147x +++++++++++++==甲, 88101220222323313234344243171147x +++++++++++++==乙, 23.5,23m m ==甲乙,故,x x m m <>甲乙甲乙,故选A. 12. 答案:B解析:因为221122(),()332323P A P B ==⨯+⨯=,所以()()P A P B =,但211()323P AB =⨯=,从而()()()P AB P A P B ≠,故,A B 相互不独立.答案:12000解析:设保护区内有这种动物x 只,每只动物被逮到的概率是相同的,所以12001001000x =,解得12000x =. 14. 答案:14解析:由于只有两种颜色,不妨将其标注为1和2.若只用一种颜色,则有111,222,共2种情况;若用两种颜色,则有122,212,221,211,121,112,共6种情况.所以基本事件共有8个,其中相邻两个矩形颜色不同的事件有2个,故所求概率2184P ==. 15. 答案:72解析:因为1(777.599.5)8,5A B x x =⨯++++==1(68.58.5)5x y ⨯++++,所以由A B x x =,得17x y +=.①因为21(110.251 2.25) 1.15A s =⨯++++=,22214(8)0.250.25(8)5B s x y ⎡⎤=⨯+-+++-⎣⎦,所以由22A B s s =,得22(8)(8)1x y -+-=.②由①②,解得72xy =. 16. 答案:乙解析:先计算平均直径:1(109.810 10. 2) 104x =+++=甲;1(10.1109.910)104z x =+++=.由于x x =甲乙,因此,平均直径不能反映两台机床生产的零件的质量优劣.再计算方差:222221(1010)(9.810)(1010)(10.210)0.024s ⎡⎤=-+-+-+-=⎣⎦甲; 222221(10.110)(1010)(9.910)(1010)0.0054s ⎡⎤=-+-+-+-=⎣⎦乙.由于22s s <乙甲,这说明乙机床生产出的零件直径波动小.因此,从产品质量稳定性的角度考虑,乙机床生产的零件质量更好、更符合要求.17.答案:见解析解析:因为疾病与地理位置和水土均有关系,所以不同乡镇的发病情况差异明显,因而采用分层抽样的方法,具体过程如下:①3万人分为5层,其中一个乡镇为一层.②按照样本容量的比例随机抽取各乡镇应抽取的样本.33006015⨯=(人),23004015⨯=(人),530010015⨯=(人),23004015⨯=(人),33006015⨯=(人),因此各乡镇抽取人数分别为60人、40人、100人、40人、60人.③将抽取的300人组到一起,即得到一个300人的样本.18.答案:见解析解析:(1)甲、乙两班同学的平均身高分别为:170,171.1x x ==甲乙,所以乙班同学的平均身高较高.(2)甲班的样本方差为:22221[(158170)(162170)(163170)10s =-+-+-+甲222222(168170)(168170)(170170)(171170)(179170)(179170)-+-+-+-+-+-2(182170)]57.2+-=.19.答案:见解析解析:(1)设已编号的3个黑球分别为黑1、黑2黑3,则从中摸出2个球,共有6种不同的结果,分别为(黑1,黑2)、(黑1,黑3)、(黑2,黑3)、(白,黑1)、(白,黑2)、(白,黑3).(2)由(1)知,2个球均为黑球有3种不同的结果.(3)由于6种结果是等可能的,其中2个球均为黑球(记为事件A )有3种不同的结果,31()62P A ∴==. 20.答案:见解析解析:(1)由分层抽样的特征,得61271;726122461224⨯=⨯=++++;247461224⨯=++,所以应从高一年级抽取1人,高二年级抽取2人,高三年级抽取4人.(2)由(1)知,高一年级有1人,记为1A ,高二年级有2人,记为12,B B ,高三年级有4人,记为1234,,,C C C C .①从中抽取2人,所有可能的结果为:11121112131412,,,,,,A B A B AC AC AC AC B B , 1112131421222324121314232434,,,,,,,,,,,,,B C B C B C B C B C B C B C B C C C C C C C C C C C C C ,共21种.②由①知,共有21种情况,抽取的2人均为高三年级学生的可能结果为:121314232434,,,,,C C C C C C C C C C C C ,共6种,所以抽取的2人均为高三年级学生的概率62217P ==. 21.答案:见解析解析:(1)记事件A :甲通过第一轮笔试,事件B :乙通过第一轮笔试,事件C :丙通过第一轮笔试,事件D :至少有两名学生通过第一轮笔试,则()0.4P A =,()0.8,()0.5P B P C ==.()()()()()()()()()()()P D P ABC P ABC P ABC P ABC P A P B P C P A P B P C =+++=+()()()()()()0.40.80.50.40.20.50.60.80.5P A P B P C P A P B P C ++=⨯⨯+⨯⨯+⨯⨯0.40.80.50.6+⨯⨯=,所以至少有两名学生通过第一轮笔试的概率为0.6.(2)因为甲、乙、丙三名学生中每个人获得优惠加分(两轮都通过)的概率均为0.32,故恰有2人获得优惠加分的概率为230.320.680.208896⨯⨯=. 22.答案:见解析解析:(1)由10(20.0020.0080.0090.0220.024)1a ⨯⨯+++++=,解得0.033a =. 设平均值为x ,则0.021700.091800.221900.332000.24x =⨯+⨯+⨯+⨯+⨯ 2100.082200.02230200+⨯+⨯=,即产品的该项指标的平均值为200.(2)①由直方图知该指标值不低于215包括直方图中的最后2个长方形区域,由互斥事件的概率公式可得该项指标值的优秀率10(0.0080.002)0.1P =⨯+=.②设抽取的3盒中恰好有X 盒该项质量指标值为优秀,由①可得随机抽取1盒不是优秀的概率为10.10.9-=,则由独立事件的概率可得,抽取的3盒该项质量指标值均不是优秀的概率为30.90.729=,由对立事件的概率可得,抽取的3盒中至少有1盒该项质量指标值为优秀的概率为10.7290.271-=.。

中考数学高频考点《统计与概率》专题训练-带答案

中考数学高频考点《统计与概率》专题训练-带答案

中考数学高频考点《统计与概率》专题训练-带答案一.选择题(共15小题)1.(2024•新华区二模)已知三个数﹣3、5、7,若添加一个数组成一组新数据,且这组新数据唯一的众数与中位数相等,则这个新数据为( )A .3B .4C .5D .72.(2024•新华区二模)某校八年级学生参加每分钟跳绳的测试,并随机抽取部分学生的成绩制成了频数分布直方图(如图),若取每组的组中值作为本小组的均值,则抽取的部分学生每分钟跳绳次数的平均数(结果取整数)为( )A .87次B .110次C .112次D .120次3.(2024•长安区二模)班主任邀请甲、乙、丙三位同学参加圆桌会议.如图,班主任坐在D 座位,三位同学随机坐在A 、B 、C 三个座位,则甲、乙两位同学座位相邻的概率是( )A .23B .13C .14D .12 4.(2024•桥西区二模)如图,某十字路口有交通信号灯,在东西方向上,红灯开启27秒后,紧接着绿灯开启30秒,再紧接着黄灯开启3秒,然后接着又是红灯开启27秒…按这样的规律循环下去,在不考虑其他因素的前提下,当一辆汽车沿东西方向随机行驶到该路口时,遇到绿灯开启的概率是( )A .920B .1019C .13D .12 5.(2024•裕华区二模)为深入开展全民禁毒宣传教育,某校举行了禁毒知识竞赛,嘉嘉说:“我们班100分的同学最多,一半同学成绩在96分以上”,嘉嘉的描述所反映的统计量分别是( )A .众数和中位数B .平均数和中位数C .众数和方差D .众数和平均数6.(2024•裕华区二模)某班开展了两次跳绳比赛,从班级里随机抽取了20名学生两次跳绳的成绩(单位:个/分钟),并对数据进行整理、描述和分析.如图是这些学生第一次和第二次比赛成绩情况统计图,设每名学生两次跳绳的平均成绩是x 个/分钟,落在130<x ⩽140的范围内的数据有( )A .6个B .5个C .4个D .3个7.(2024•石家庄二模)一个不透明盒子里,共装有10个白球,5个红球,5个黄球,这些球仅颜色不同.小明从中任取一球,下列说法错误的是( )A .摸到白球的可能性最大B .摸到红球和黄球的可能性相同C .摸到白球的可能性为12D .摸到白球、红球、黄球的可能性都为13 8.(2024•藁城区二模)从分别写有“大”“美”“江”“汉”汉字的四张卡片中,随机抽出两张,抽出的卡片上的汉字能组成“江汉”的概率是( )A .18B .16C .14D .12 9.(2024•新华区二模)2024年河北省初中学业水平体育与健康科目考试的抽考项目包含①②③④共四项,由各市教育行政部门抽签决定.某市教育行政部门从四个项目中随机抽取一项,抽到项目①的概率为( )A .12B .13C .14D .15 10.(2024•新乐市二模)在一次体育课上,小明随机调查了30名同学投篮20次投中的次数,数据如表所示:投篮20次投中的次数67 9 12人数 6 7 10 7 则投篮20次投中的次数的中位数和众数分别是( )A .8,9B .10,9C .7,12D .9,911.(2024•裕华区二模)七位评委对参加普通话比赛的选手评分,比赛规则规定要去掉一个最高分和一个最低分,然后计算剩下了5个分数的平均分作为选手的比赛分数,规则“去掉一个最高分和一个最低分”一定不会影响这组数据的( )A .平均数B .中位数C .极差D .众数12.(2024•新华区二模)掷两枚质地均匀的骰子,下列事件是随机事件的是( )A .点数的和为1B .点数的和为6C .点数的和大于12D .点数的和小于1313.(2024•新华区二模)如图,桌面上有3张卡片,1张正面朝上.任意将其中1张卡片正反面对调一次后,这3张卡片中出现2张正面朝上的概率是( )A .1B .23C .13D .19 14.(2024•桥西区二模)有数字4,5,6的三张卡片,将这三张卡片任意摆成一个三位数,摆出的三位数是5的倍数的概率是( )A .16B .14C .13D .12 15.(2024•石家庄二模)下列说法正确的是( )A .了解一批灯泡的使用寿命,应采用抽样调查的方式B .如果某彩票的中奖概率是1%,那么一次购买100张这种彩票一定会中奖C .若甲、乙两组数据的平均数相同,S 甲2=2.5,S 乙2=8.7,则乙组数据较稳定D .“任意掷一枚质地均匀的骰子,掷出的点数是7”是必然事件二.填空题(共2小题)16.(2024•平山县二模)已知一个不透明的袋子中装有4个只有颜色不同的小球,其中1个白球,3个红球.(1)从袋子中随机摸出1个小球是红球的概率是 ;(2)若在原袋子中再放入m 个白球和m 个红球(m >1),搅拌均匀后,使得随机从袋子中摸出1个小球是白球的概率为25,则m 的值为 . 17.(2024•石家庄二模)经过某T 字路口的汽车,可能向左转或向右转,如果两种可能性大小相同,则两辆汽车经过这个T 字路口时,“行驶方向相同”的概率是 .三.解答题(共14小题)18.(2024•石家庄二模)为了解甲、乙两个茶园种植的“龙井”茶叶的品质,现从两个茶园里分别随机抽取了20份茶叶样本,对它们的品质进行评分(满分100分,分数越高代表品质越好)评分用x 表示,共分为四组,A 组:60≤x <70,B 组:70≤x <80,C 组:80≤x <90,D 组:90≤x ≤100.甲茶园20份茶叶的评分从小到大分别为:65,68,72,75,78,80,82,85,85,88,90,90,90,92,95,95,95,95,98,100;乙茶园20份茶叶中有3份的评分为100分,评分在C 组中的数据是:85,88,80,85,82,83. 甲、乙两茶园随机抽取的茶叶评分数据统计分析如下表所示,乙茶园抽取的茶叶评分扇形统计图如图所示:甲茶园 乙茶园 平均数 85.9 87.6中位数89 b众数a95根据以上信息解答下列问题:(1)直接写出统计表中a,b的值;(2)若甲、乙两茶园的茶叶总共有2400份,请估计甲、乙两茶园评分在D组的茶叶共有多少份;(3)本次抽取的40份茶叶样本中,评分为100分的视为“精品茶叶”.茶农要在“精品茶叶”中任选两份参加茶叶展销会,用列表法(或画树状图)求这两份茶叶全部来自乙茶园的概率.19.(2024•裕华区二模)某中学为了解初三同学的体育中考准备情况,随机抽取该年级某班学生进行体育模拟测试(满分30分),根据测试成绩(单位:分)绘制成两幅不完整的统计图(如图1和图2),已知图2中得28分的人数所对圆心角为90°,回答下列问题:(1)条形统计图有一部分污损了,求得分27分的人数;直接写出所调查学生测试成绩中位数和众数.(2)一同学因病错过考试,补测后与之前成绩汇总,发现中位数变大了,求该名同学的补测成绩.(3)已知体育测试的选考项目有:①足球运球绕杆:②篮球运球绕杆;③排球正面双手垫球,求小明和小亮选择同一项目的概率.20.(2024•石家庄二模)某班组织开展课外体育活动,在规定时间内,进行定点投篮,对投篮命中数量进行了统计,并制成下面的统计表和如图不完整的折线统计图(不含投篮命中个数为0的数据).投篮命中数量/个 1 2 3 4 5 6学生人数 1 2 3 7 6 1 根据以上信息,解决下面的问题:(1)在本次投篮活动中,投篮命中的学生共有人,并求投篮命中数量的众数和平均数;(2)补全折线统计图;(3)嘉淇在统计投篮命中数量的中位数时,把统计表中相邻两个投篮命中的数量m,n错看成了n,m (m<n)进行计算,结果错误数据的中位数与原数据的中位数相比发生了改变,求m,n的值.21.(2024•新华区二模)“惜餐为荣,敛物为耻.”为了解落实“光盘行动”的情况,某校调研了七、八年级部分班级某一天的厨余垃圾质量,并作出如下统计分析.【收集数据】七、八年级各随机抽取10个班厨余垃圾质量的数据(单位:kg).【整理数据】进行整理和分析(厨余垃圾质量用x表示,共分为四个等级:A.x<1;B.1≤x<1.5;C.1.5≤x<2;D.x≥2).【描述数据】下面给出了部分信息,绘制如下统计图:七年级10个班厨余垃圾质量:0.6,0.7,0.7,0.7,1.3,1.3,1.6,1.7,2,2.4.八年级10个班厨余垃圾质量中B等级包含的所有数据为:1.1,1.1,1.1,1.3.【分析数据】七、八年级抽取的班级厨余垃圾质量统计表如下:年级平均数中位数众数方差A等级所占百分比七年级 1.3 1.3 a0.352 40%八年级 1.3 b 1.1 0.24 m%根据以上信息,解答下列问题:(1)填空:a=,b=,m=;(2)该校八年级共有30个班,估计八年级这一天厨余垃圾质量符合A等级的班级数;(3)根据以上信息,请你任选一个统计量,分析在此次“光盘行动”中,该校七、八年级的哪个年级落实得更好?并说明理由.22.(2024•桥西区二模)小亮所在的学校共有900名初中学生,小亮同学想了解本校全体初中学生的年龄构成情况、他从全校学生中随机选取了部分学生,调查了他们的年龄(单位:岁),绘制出如图所示的学生年龄扇形统计图.(1)直接写出m的值,并求全校学生中年龄不低于15岁的学生大约有多少人;(2)利用该扇形统计图,你能求出样本的平均数、众数和中位数中的哪些统计量?请直接写出相应的结果;(3)小红认为无法利用该扇形统计图求出样本的方差.你认同她的看法吗?若认同,请说明理由;若不认同,请求出方差.23.(2024•裕华区二模)2024年3月20日,天都一号、二号通导技术试验星由长征八号遥三运载火箭在中国文昌航天发射场成功发射升空,卫星作为深空探测实验室的首发星,将为月球通导技术提供先期验证!临邑县某中学为了解学生对航天知识的掌握情况,学校随机抽取了部分学生进行问卷调查,并将调查结果绘制成了下列两幅统计图(不完整),请根据图中信息,解答下列问题:(1)本次调查一共抽取了名学生,扇形统计图中“比较了解”所对应的圆心角度数是.(2)请你将条形统计图补充完整;(3)若该学校共有1200名学生,根据抽样调查的结果,请问该学校选择“不了解”项目的学生约有多少名?(4)在本次调查中,张老师随机抽取了4名学生进行感悟交流,其中“非常了解”的1人,“比较了解”的2人,“了解”的1人.若从这4人中随机抽取2人,请用画树状图或列表法,求抽取的2人全是“比较了解”的概率.24.(2024•正定县二模)某市教育局以“学习强国”学习平台知识内容为依托,要求市直辖学校利用“豫事办”手机客户端开展“回顾二十大”全民知识竞赛活动,市教育局随机抽取了两所学校各10名教师进行测试(满分10分),并对相关数据进行了如下整理:收集数据:一中抽取的10名教师测试成绩:9.1,7.8,8.5,7.5,7.2,8.4,7.9,7.2,6.9,9.5二中抽取的10名教师测试成绩:9.2,8.0,7.6,8.4,8.0,7.2,8.5,7.4,7.5,8.2分析数据:两组数据的相关统计量如下(规定9.0分及其以上为优秀):平均数中位数方差优秀率一中8.0 7.85 0.666 c二中8.0 b0.33 10%问题解决:根据以上信息,解答下列问题:(1)若绘制分数段频数分布表,则一中分数段0≤x<8.0的频数a=;(2)填空:b=,c=;(3)若一中共有教师280人,二中共有教师350人,估计这两个学校竞赛成绩达到优秀的教师总人数为多少人?(4)根据以上数据,请你对一、二中教师的竞赛成绩做出分析评价.(写出两条即可)25.(2024•新华区二模)在“书香进校园”读书活动中,为了解学生课外读物的阅读情况,随机调查了部分学生的课外阅读量.绘制成不完整的扇形统计图(图1)和条形统计图(图2),其中条形统计图被墨汁污染了一部分.(1)条形统计图中被墨汁污染的人数为人.“8本”所在扇形的圆心角度数为°;(2)求被抽查到的学生课外阅读量的平均数和中位数;(3)随后又补查了m名学生,若已知他们在本学期阅读量都是10本,将这些数据和之前的数据合并后,发现阅读量的众数没改变,求m的最大值.26.(2024•平山县二模)某班进行中考体育适应性练习,球类运动可以在篮球、足球、排球中选择一种.该班体委将测试成绩进行统计后,发现选择足球的同学测试成绩均为7分、8分、9分、10分中的一种(满分为10分),并依据统计数据绘制了如下不完整的扇形统计图(如图1)和条形统计图(如图2).(1)该班选择足球的同学共有人,其中得8分的有人;(2)若小宇的足球测试成绩超过了参加足球测试的同学半数人的成绩,则他的成绩是否超过了所有足球测试成绩的平均分?通过计算说明理由.27.(2024•裕华区二模)为了保护学生视力,防止学生沉迷网络和游戏,促进学生身心健康发展,某学校团委组织了“我与手机说再见”为主题的演讲比赛,根据参赛同学的得分情况绘制了如图所示的两幅不完整的统计图(其中A表示“一等奖”,B表示“二等奖”,C表示“三等奖”,D表示“优秀奖”).请你根据统计图中所提供的信息解答下列问题:(1)获奖总人数为人,m=,A所对的圆心角度数是°;(2)学校将从获得一等奖的4名同学(其中有一名男生,三名女生)中随机抽取两名参加全市的比赛,请利用树状图或列表法求抽取同学中恰有一名男生和一名女生的概率.28.(2024•藁城区二模)甲、乙两个不透明的袋子中,分别装有大小材质完全相同的小球,其中甲口袋中小球编号分别是1、2、3、4,乙口袋中小球编号分别是2、3、4,先从甲口袋中任意摸出一个小球,记下编号为m,再从乙袋中摸出一个小球,记下编号为n.(1)请用画树状图或列表的方法表示(m,n)所有可能情况;(2)规定:若m、n都是方程x2﹣5x+6=0的解时,小明获胜;m、n都不是方程x2﹣5x+6=0的解时,小刚获胜,请说明此游戏规则是否公平?29.(2024•新华区二模)如图,A,B两个带指针的转盘分别被分成三个面积相等的扇形,转盘A上的数字分别是﹣6,﹣1,5,转盘B上的数字分别是6,﹣7,4(两个转盘除表面数字不同外,其他完全相同).小聪和小明同时转动A,B两个转盘,使之旋转(规定:指针恰好停留在分界线上,则重新转一次).(1)转动转盘,转盘A指针指向正数的概率是;(2)若同时转动两个转盘,转盘A指针所指的数字记为a,转盘B指针所指的数字记为b,若a+b>0,则小聪获胜;若a+b<0,则小明获胜;请用列表法或树状图法说明这个游戏是否公平.30.(2024•新乐市二模)打造书香文化,培养阅读习惯.崇德中学计划在各班建图书角,开展“我最喜欢的书籍”为主题的调查活动,学生根据自己的爱好选择一类书籍(A:科技类,B:文学类,C:政史类,D:艺术类,E:其他类).张老师组织数学兴趣小组对学校部分学生进行了问卷调查,根据收集到的数据,绘制了两幅不完整的统计图(如图所示).根据图中信息,请回答下列问题;(1)条形图中的m=,n=,文学类书籍对应扇形圆心角等于度;(2)若该校有2000名学生,请你估计最喜欢阅读政史类书籍的学生人数;(3)甲同学从A,B,C三类书籍中随机选择一种,乙同学从B,C,D三类书籍中随机选择一种,请用画树状图或者列表法求甲乙两位同学选择相同类别书籍的概率.31.(2024•桥西区二模)为加强体育锻炼,某校体育兴趣小组,随机抽取部分学生,对他们在一周内体育锻炼的情况进行问卷调查,根据问卷结果,绘制成如下统计图.请根据相关信息,解答下列问题:某校学生一周体育锻炼调查问卷以下问题均为单选题,请根据实际情况填写(其中0~4表示大于等于0同时小于4)问题:你平均每周体育锻炼的时间大约是A.0~4小时B.4~6小时C.6~8小时D.8小时及以上问题2:你体育锻炼的动力是_____E.家长要求F.学校要求G.自己主动H.其他(1)参与本次调查的学生共有人,选择“自己主动”体育锻炼的学生有人;(2)已知该校有2600名学生,若每周体育锻炼8小时以上(含8小时)可评为“运动之星”,请估计全校可评为“运动之星”的人数;(3)请写出一条你对同学体育锻炼的建议.参考答案与试题解析一.选择题(共15小题)1.(2024•新华区二模)已知三个数﹣3、5、7,若添加一个数组成一组新数据,且这组新数据唯一的众数与中位数相等,则这个新数据为()A.3 B.4 C.5 D.7【解答】解:∵﹣3<5<7∴若添加一个数组成一组新数据,且这组新数据唯一的众数与中位数相等,则这个新数据为5.故选:C.2.(2024•新华区二模)某校八年级学生参加每分钟跳绳的测试,并随机抽取部分学生的成绩制成了频数分布直方图(如图),若取每组的组中值作为本小组的均值,则抽取的部分学生每分钟跳绳次数的平均数(结果取整数)为()A .87次B .110次C .112次D .120次【解答】解:x =62×2+87×8+112×12+137×6+162×22+8+12+6+2≈110次 故选:B .3.(2024•长安区二模)班主任邀请甲、乙、丙三位同学参加圆桌会议.如图,班主任坐在D 座位,三位同学随机坐在A 、B 、C 三个座位,则甲、乙两位同学座位相邻的概率是( )A .23B .13C .14D .12【解答】解:画树状图如下:共有6种等可能的结果,其中甲、乙两位同学座位相邻的结果有4种,即AB 、BA 、BC 、CB ∴甲、乙两位同学座位相邻的概率为46=23故选:A .4.(2024•桥西区二模)如图,某十字路口有交通信号灯,在东西方向上,红灯开启27秒后,紧接着绿灯开启30秒,再紧接着黄灯开启3秒,然后接着又是红灯开启27秒…按这样的规律循环下去,在不考虑其他因素的前提下,当一辆汽车沿东西方向随机行驶到该路口时,遇到绿灯开启的概率是()A.920B.1019C.13D.12【解答】解:由题意得,当一辆汽车沿东西方向随机行驶到该路口时,遇到绿灯开启的概率是3027+30+3= 12.故选:D.5.(2024•裕华区二模)为深入开展全民禁毒宣传教育,某校举行了禁毒知识竞赛,嘉嘉说:“我们班100分的同学最多,一半同学成绩在96分以上”,嘉嘉的描述所反映的统计量分别是()A.众数和中位数B.平均数和中位数C.众数和方差D.众数和平均数【解答】解:在一组数据中出现次数最多的数是这组数据的众数,中位数即位于中间位置的数故选:A.6.(2024•裕华区二模)某班开展了两次跳绳比赛,从班级里随机抽取了20名学生两次跳绳的成绩(单位:个/分钟),并对数据进行整理、描述和分析.如图是这些学生第一次和第二次比赛成绩情况统计图,设每名学生两次跳绳的平均成绩是x个/分钟,落在130<x⩽140的范围内的数据有()A .6个B .5个C .4个D .3个【解答】解:观察统计图,可以发现两次活动平均成绩在130<x ⩽140的范围内的数据有5个 故选:B .7.(2024•石家庄二模)一个不透明盒子里,共装有10个白球,5个红球,5个黄球,这些球仅颜色不同.小明从中任取一球,下列说法错误的是( ) A .摸到白球的可能性最大 B .摸到红球和黄球的可能性相同 C .摸到白球的可能性为12D .摸到白球、红球、黄球的可能性都为13【解答】解:∵一个不透明盒子里,共装有10个白球,5个红球,5个黄球 ∴共有20个球 ∴摸到白球的概率为1020=12,摸到红球的概率为520=14,摸到黄球的概率为520=14∵12>14∴摸到白球的可能性最大,摸到红球和黄球的可能性相同,摸到白球的可能性为12故选:D .8.(2024•藁城区二模)从分别写有“大”“美”“江”“汉”汉字的四张卡片中,随机抽出两张,抽出的卡片上的汉字能组成“江汉”的概率是( ) A .18B .16C .14D .12【解答】解:列表如下:大 美 江 汉 大 美大 江大 汉大 美 大美 江美 汉美 江 大江 美江 汉江 汉大汉美汉江汉由表知,共有12种等可能结果,其中抽出的卡片上的汉字能组成“江汉”的有2种结果 所以抽出的卡片上的汉字能组成“江汉”的概率为212=16故选:B .9.(2024•新华区二模)2024年河北省初中学业水平体育与健康科目考试的抽考项目包含①②③④共四项,由各市教育行政部门抽签决定.某市教育行政部门从四个项目中随机抽取一项,抽到项目①的概率为( ) A .12B .13C .14D .15【解答】解:∵市教育行政部门从四个项目中随机抽取一项的可能结果共有4种,抽到项目①的可能结果只有1种∴抽到项目①的概率为14.故选:C .10.(2024•新乐市二模)在一次体育课上,小明随机调查了30名同学投篮20次投中的次数,数据如表所示:投篮20次投中的次数 679 12人数67 10 7 则投篮20次投中的次数的中位数和众数分别是( ) A .8,9B .10,9C .7,12D .9,9【解答】解:将这30人投篮20次投中的次数从小到大排列后,处在之间位置的两个数的平均数为9+92=9(次),因此中位数是9次这30人投篮20次投中的次数是9次的出现的次数最多,共有10人,因此众数是9次 综上所述,中位数是9,众数是9故选:D .11.(2024•裕华区二模)七位评委对参加普通话比赛的选手评分,比赛规则规定要去掉一个最高分和一个最低分,然后计算剩下了5个分数的平均分作为选手的比赛分数,规则“去掉一个最高分和一个最低分”一定不会影响这组数据的( ) A .平均数B .中位数C .极差D .众数【解答】解:去掉一个最高分和一个最低分一定会影响到平均数、极差,可能会影响到众数 一定不会影响到中位数 故选:B .12.(2024•新华区二模)掷两枚质地均匀的骰子,下列事件是随机事件的是( ) A .点数的和为1 B .点数的和为6 C .点数的和大于12D .点数的和小于13【解答】解:A 、两枚骰子的点数的和为1,是不可能事件,故不符合题意;B 、两枚骰子的点数之和为6,是随机事件,故符合题意;C 、点数的和大于12,是不可能事件,故不符合题意;D 、点数的和小于13,是必然事件,故不符合题意;故选:B .13.(2024•新华区二模)如图,桌面上有3张卡片,1张正面朝上.任意将其中1张卡片正反面对调一次后,这3张卡片中出现2张正面朝上的概率是( )A .1B .23C .13D .19【解答】解:∵任意将其中1张卡片正反面对调一次,有3种对调方式,其中只有对调反面朝上的2张卡片才能使3张卡片中出现2张正面朝上 ∴P =23 故选:B .14.(2024•桥西区二模)有数字4,5,6的三张卡片,将这三张卡片任意摆成一个三位数,摆出的三位数是5的倍数的概率是( )A .16B .14C .13D .12【解答】解:三位数有6个,是5的倍数的三位数是:465,645; 三位数是5的倍数的概率为:26=13;故选:C .15.(2024•石家庄二模)下列说法正确的是( ) A .了解一批灯泡的使用寿命,应采用抽样调查的方式B .如果某彩票的中奖概率是1%,那么一次购买100张这种彩票一定会中奖C .若甲、乙两组数据的平均数相同,S 甲2=2.5,S 乙2=8.7,则乙组数据较稳定 D .“任意掷一枚质地均匀的骰子,掷出的点数是7”是必然事件【解答】解:A .了解一批灯泡的使用寿命,应采用抽样调查的方式,是正确的,因此选项A 符合题意;B .如果某彩票的中奖概率是1%,那么一次购买100张这种彩票也不一定会中奖,因此选项B 不符合题意;C .若甲、乙两组数据的平均数相同,S 甲2=2.5,S 乙2=8.7,则甲组数据较稳定,因此选项C 不符合题意;D .“任意掷一枚质地均匀的骰子,掷出的点数是7”是不可能事件,因此选项D 不符合题意;故选:A .二.填空题(共2小题)16.(2024•平山县二模)已知一个不透明的袋子中装有4个只有颜色不同的小球,其中1个白球,3个红球.(1)从袋子中随机摸出1个小球是红球的概率是34;(2)若在原袋子中再放入m 个白球和m 个红球(m >1),搅拌均匀后,使得随机从袋子中摸出1个小球是白球的概率为25,则m 的值为 3 .【解答】解:(1)由题意可得从袋子中随机摸出1个小球是红球的概率是31+3=34故答案为:34;(2)由题意可得1+m 1+m +3+m =25解得m =3 故答案为:3.17.(2024•石家庄二模)经过某T 字路口的汽车,可能向左转或向右转,如果两种可能性大小相同,则两辆汽车经过这个T 字路口时,“行驶方向相同”的概率是 12.【解答】解:画树状图为:共有4种等可能的结果数,其中行驶方向相同的有2种 ∴“行驶方向相同”的概率是 24=12故答案为:12.三.解答题(共14小题)18.(2024•石家庄二模)为了解甲、乙两个茶园种植的“龙井”茶叶的品质,现从两个茶园里分别随机抽取了20份茶叶样本,对它们的品质进行评分(满分100分,分数越高代表品质越好)评分用x 表示,共分为四组,A 组:60≤x <70,B 组:70≤x <80,C 组:80≤x <90,D 组:90≤x ≤100.甲茶园20份茶叶的评分从小到大分别为:65,68,72,75,78,80,82,85,85,88,90,90,90,92,95,95,95,95,98,100;乙茶园20份茶叶中有3份的评分为100分,评分在C 组中的数据是:85,88,80,85,82,83. 甲、乙两茶园随机抽取的茶叶评分数据统计分析如下表所示,乙茶园抽取的茶叶评分扇形统计图如图所示:甲茶园乙茶园平均数85.9 87.6中位数89 b众数a95根据以上信息解答下列问题:(1)直接写出统计表中a,b的值;(2)若甲、乙两茶园的茶叶总共有2400份,请估计甲、乙两茶园评分在D组的茶叶共有多少份;(3)本次抽取的40份茶叶样本中,评分为100分的视为“精品茶叶”.茶农要在“精品茶叶”中任选两份参加茶叶展销会,用列表法(或画树状图)求这两份茶叶全部来自乙茶园的概率.【解答】解:(1)由题意可得,a=95.由扇形统计图可知,乙茶园评分在A组有20×10%=2(份),在B组有20×20%=4(份).将乙茶园评分按照从小到大的顺序排列,排在第10和11的分数为85分和85分∴b=(85+85)÷2=85.(2)乙茶园评分在D组的茶叶有(1﹣10%﹣20%﹣30% )×20=8(份)甲茶园评分在D组的茶叶有10份∴估计甲、乙两茶园评分在D组的茶叶共约有2400×8+1020+20=1080(份).(3)由题意知,甲茶园评分为100分的有1个,乙茶园评分为100分的有3个.将甲茶园“精品茶叶”记为a,乙茶园“精品茶叶”分别记为b,c,d列表如下:a b c da(a,b)(a,c)(a,d)b(b,a)(b,c)(b,d)。

《统计与概率过关检测密卷》(试题)六年级下册数学北师大版

《统计与概率过关检测密卷》(试题)六年级下册数学北师大版

《统计与概率过关检测密卷》一、填空。

1.在下面()里填上“一定”“可能”“不可能”。

(1)明天()下雨。

(2)太阳从西边落下是()的。

(3)李明的管理能力很棒,他()当选为班长。

(4)哥哥比妹妹小是()的。

2.只表示数量的多少,一般绘制()统计图;要表示讯期水库的水位变化情况,最好绘制成()统计图。

3.在一幅条形统计图里,用1.5厘米长的直条表示10吨,用()厘米长的直条表示40吨,用9厘米长的直条表示()吨。

4.六(1)班体育测试成绩优秀的有15人,占全班人数的25%,制成扇形统计图时,扇形的圆心角是()度;若表示成绩良好的同学的扇形圆心角是72度,则有()人成绩良好。

5.条形统计图、折线统计图都是用一个()表示一定的数量。

6.某商场为推销1000台电视机,设计了一种刮刮奖,共1000张,号码是000~999。

奖项:666是一等奖,后两位是33的是二等奖,个位上是5的是三等奖,请填下表。

奖项一等奖二等奖三等奖合计中奖率某旅馆一次买了100台这样的电视机,因此得了100张刮刮奖。

()刮到一等奖,()刮到二等奖。

(选填“一定”“可能”“不可能”)7.右图是某蔬菜种植基地三种蔬菜的种植面积统计图。

(1)已知青菜园的面积为126平方米,三种蔬菜的总面积是()平方米。

(2)黄瓜园的面积是()平方米,西红柿园比青菜园少()%。

(3)如果黄瓜园的面积减少27平方米,那么表示黄瓜园面积的扇形圆心角是()。

8.口袋里有8个红球和2个黄球,从中拿出一个球,拿出()球的可能性大些。

9.口袋里有1个白球和2个黄球,任意摸一个球,有()种可能。

10.某班一次数学测验,男生的平均分是92.4分,女生的平均分是84分,全班的平均分是87.5分。

这个班女生与男生人数的最简整数比是()。

二、选择。

(把正确答案的序号填在括号里)1.同时掷两个骰子,若向上的点数之和是7,则贝贝胜;若向上的点数之和是2,则甜甜胜,()获胜的可能性大。

2020小升初数学专题训练《统计与概率》(通用含详解)

2020小升初数学专题训练《统计与概率》(通用含详解)

专题训练《统计与概率》一、单选题(共10题;共24分)1.某地要反映出1999年至2002年降水量的上升和下降的情况,应绘制()统计图.A. 条形B. 扇形C. 折线2.小华应选择()表示有、良、及格参加的人数与班级人数的关系。

A. 折线统计图B. 扇形统计图C. 条形统计图3.爸爸把家庭每月各种支出情况绘制成扇形统计图,是为了()。

A. 能直观地看出每项支出的多少B. 能看出每项支出的变化趋势C. 能直观地看出每项支出与月总支出的关系D. 形象、美观4.六年级一班有40名学生,选举班长的得票数为:小何20票,小赵10票,小邓6票,小李4票。

下面三幅图中,( )图准确地表示了这一结果。

A. B. C.5.玲玲生病了,医生要记录玲玲一天24小时的体温变化情况,用()统计图表示体温的变化情况比较直观.A. 条形B. 折线C. 扇形D. 三种都行6.投掷3次硬币,有2次正面朝上,1次反面朝上,那么投掷第4次反面朝上的可能性是()。

A. 1B.C.D.7.要统计我国几座名山主峰的海拔高度,最好选用()A. 条形统计图B. 折线统计图C. 扇形统计图8.六(1)班5位同学参加1分钟拍球比赛,他们所拍的个数各不相同,平均成绩是85个。

如果其中拍得最少的是80个,那么他们中拍得最多的人的成绩不超过( )个。

A. 90B. 95C. 99D. 1059.一条直线上有5个点,那么以其中任意两个点为端点的线段有()条.A. 4B. 6C. 10D. 1510.下面的资料各用哪种统计图比较合适?(1)统计学校各年级的学生人数用()A. 条形统计图B. 折线统计图C. 扇形统计图(2)反映某超市各种商品销售额的比例情况用()A. 条形统计图B. 折线统计图C. 扇形统计图(3)反映某城市2月~8月旅游人数的变化情况用()A. 条形统计图B. 折线统计图C. 扇形统计图二、判断题(共10题;共20分)11.下面是五年级一班上学期期末美术成绩记分单.从表中看出,得“中”的人数最多.()12.条形统计图可以直观地表示数量的多少()13.盒子里有红、黄、蓝、绿四种颜色的球各1个,小聪从盒子里只摸出1个球.小聪摸出的可能是红球.()14.从折线统计图中既能看出数量的多少,又能清楚地看出数量增减变化的情况。

2021年数学统计与概率真题(附解析)

2021年数学统计与概率真题(附解析)

2021年数学统计与概率真题(附解析)一、选择题(共14小题;共70分)1. 小明调查了本班每位同学最喜欢的颜色,并绘制了不完整的扇形图及条形图(柱的高度从高到低排列).条形图不小心被撕了一块,图中”应填的颜色是A. 蓝B. 粉C. 黄D. 红2. 为了保护环境加强环保教育,某中学组织学生参加义务收集废旧电池的活动,下面是随机抽取名学生对收集废旧电池的数量进行的统计:请根据学生收集到的废旧电池数,判断下列说法正确的是A. 样本为名学生B. 众数是节C. 中位数是节D. 平均数是节3. 已知一组数据:,,,,,则这组数据的中位数是A. B. C. D.4. 一组数据:,,,,若添加一个数据,则不发生变化的统计量是A. 平均数B. 中位数C. 众数D. 方差5. 某校男子足球队的年龄分布如下表:则这些队员年龄的众数和中位数分别是A. ,B. ,C. ,D. ,6. 高尔基说:“书,是人类进步的阶梯”.阅读可以丰富知识,拓展视野,充实生活,给我们带来愉快.英才中学计划在各班设立图书角,为合理搭配各类书籍,学校团委以“我最喜爱的书籍”为主题,对全校学生进行抽样调查,收集整理喜爱的书籍类型(.科普,.文学,.体育,.其他)数据后,绘制出两幅不完整的统计图,则下列说法错误的是A. 样本容量为B. 类型所对应的扇形的圆心角为C. 类型所占百分比为D. 类型的人数为人7. 某校九年级进行了次数学模拟考试,甲、乙、丙三名同学的平均分为及方差如表所示,那么这三名同学数学成绩最稳定的是A. 甲B. 乙C. 丙D. 无法确定8. 如图,有张形状大小质地均相同的卡片,正面印有速度滑冰、冰球、单板滑雪、冰壶四种不同的图案,背面完全相同,现将这张卡片洗匀后正面向下放在桌子上,从中随机抽取一张,抽出的卡片正面恰好是冰壶项目图案的概率是D.9. 以下调查中,最适合用来全面调查的是A. 调查柳江流域水质情况B. 了解全国中学生的心理健康状况C. 了解全班学生的身高情况D. 调查春节联欢晚会收视率10. 现有张卡片,正面图案如图所示,它们除此之外完全相同,把这张卡片背面朝上洗匀,从中随机抽取两张,则这两张卡片正面图案恰好是“天问”和“九章”的概率是C. D.11. 以下命题是假命题的是A. 的算术平方根是B. 有两边相等的三角形是等腰三角形C. 一组数据:,,,,的中位数是D. 过直线外一点有且只有一条直线与已知直线平行12. 为增强学生的环保意识,共建绿色文明校园,某学校组织“废纸宝宝旅行记”活动.经统计,七年级个班级一周回收废纸情况如表:则每个班级回收废纸的平均重量为13. 同时抛掷两枚质地均匀的硬币,则一枚硬币正面向上、一枚硬币反面向上的概率是14. 经过某路口的汽车,可能直行,也可能左拐或右拐.假设这三种可能性相同,现有两车经过该路口,恰好有一车直行,另一车左拐的概率为A. B. C. D.二、填空题(共6小题;共30分)15. 有两把不同的锁和四把钥匙,其中两把钥匙分别能打开这两把锁,另外两把钥匙不能打开这两把锁.随机取出一把钥匙开任意一把锁,一次打开锁的概率是.16. 一组数据,,,,的众数为.17. 一个小球在如图所示的方格地砖上任意滚动,并随机停留在某块地砖上,每块地砖的大小、质地完全相同,那么该小球停留在黑色区域的概率是.18. 如图所示是某校初中数学兴趣小组年龄结构条形统计图,该小组年龄最小为岁,最大为岁,根据统计图所提供的数据,该小组组员年龄的中位数为岁.19. 东方红学校举行“学党史,听党话,跟党走”讲故事比赛,七位评委对其中一位选手的评分分别为:,,,,,,.则这组数据的中位数为.20. 某外贸公司要出口一批规格为克/盒的红枣,现有甲、乙两个厂家提供货源,它们的价格相同,品质也相近.质检员从两厂产品中各随机抽取盒进行检测,测得它们的平均质量均为克,每盒红枣的质量如图所示,则产品更符合规格要求的厂家是(填“甲”或“乙”).三、解答题(共13小题;共169分)21. “此生无悔入华夏,来世再做中国人!”自疫情暴发以来,我国科研团队经过不懈努力,成功地研发出了多种“新冠”疫苗,并在全国范围内免费接种.截止年月日,全球接种“新冠”疫苗的比例为;中国累计接种亿剂,占全国人口的.以下是某地甲、乙两家医院月份某天各年龄段接种疫苗人数的频数分布表和接种总人数的扇形统计图:(1)根据上面图表信息,回答下列问题:①填空:,,;②在甲、乙两医院当天接种疫苗的所有人员中,周岁年龄段人数在扇形统计图中所占圆心角为;(2)若,,三人都于当天随机到这两家医院接种疫苗,求这三人在同一家医院接种的概率.22. 为庆祝中国共产党成立周年,某校举行党史知识竞赛活动,赛后随机抽取了部分学生的成绩,按得分划分为,,,四个等级,并绘制了如下不完整的统计表和统计图.根据图表信息,回答下列问题:(1)表中;扇形统计图中,等级所占的百分比是;等级对应的扇形圆心角为度;若全校共有名学生参加了此次知识竞赛活动,请估计成绩为等级的学生共有人;(2)若分以上的学生有人,其中甲、乙两人来自同一班级,学校将从这人中随机选出两人参加市级比赛,请用列表或树状图法求甲、乙两人至少有人被选中的概率.23. 为庆祝中国共产党建党周年,某校拟举办主题为“学党史跟党走”的知识竞赛活动.某年级在一班和二班进行了预赛,两个班参加比赛的人数相同,成绩分为,,,四个等级,其等级对应的分值分别为分、分、分、分,将这两个班学生的最后等级成绩分析整理绘制成了如图的统计图.(1)这次预赛中,二班成绩在等及以上的人数是多少?(2)分别计算这次预赛中一班成绩的平均数和二班成绩的中位数;(3)已知一班成绩等的人中有两个男生和个女生,二班成绩等的都是女生,年级要求从这两个班等的学生中随机选人参加学校比赛,若每个学生被抽取的可能性相等,求抽取的人中至少有个男生的概率.24. 年是中国共产党建党周年华诞.“五一”后某校组织了八年级学生参加建党周年知识竞赛,为了了解学生对党史知识的掌握情况,学校随机抽取了部分同学的成绩作为样本,把成绩按不及格、合格、良好、优秀四个等级分别进行统计,并绘制了如下不完整的条形统计图与扇形统计图:请根据图中提供的信息解答下列问题:(1)根据给出的信息,将这两个统计图补充完整(不必写出计算过程);(2)该校八年级有学生人,请估计成绩未达到“良好”及以上的有多少人?(3)“优秀”学生中有甲、乙、丙、丁四位同学表现突出,现从中派人参加区级比赛,求抽到甲、乙两人的概率.25. 为庆祝建党周年,让同学们进一步了解中国科技的快速发展,东营市某中学九()班团支部组织了一次手抄报比赛.该班每位同学从.“北斗卫星”;.“时代”;.“东风快递”;.“智轨快运”四个主题中任选一个自己喜欢的主题.统计同学们所选主题的频数,绘制成不完整的统计图,请根据统计图中的信息解答下列问题:(1)九()班共有名学生;(2)补全折线统计图;(3)D所对应扇形圆心角的大小为.(4)小明和小丽从A,B,C,D 四个主题中任选一个主题,请用列表或画树状图的方法求出他们选择相同主题的概率.26. 高尔基说:“书,是人类进步的阶梯.”阅读可以启智增慧,拓宽视野,为了解学生寒假阅读情况,开学初学校进行了问卷调查,并对部分学生假期(天)的阅读总时间作了随机抽样分析.设被抽样的每位同学寒假阅读的总时间为(小时),阅读总时间分为四个类别:,,,,将分类结果制成两幅统计图(尚不完整).根据以上信息,回答下列问题:(1)本次抽样的样本容量为;(2)补全条形统计图;(3)扇形统计图中的值为,圆心角的度数为;(4)若该校有名学生,估计寒假阅读的总时间少于小时的学生有多少名?对这些学生用一句话提一条阅读方面的建议.27. 年,黄冈、咸宁、孝感三市实行中考联合命题,为确保联合命题的公平性,决定采取三轮抽签的方式来确定各市选派命题组长的学科.第一轮,各市从语文、数学、英语三个学科中随机抽取一科;第二轮,各市从物理、化学、历史三个学科中随机抽取一科;第三轮,各市从道德与法治、地理、生物三个学科中随机抽取一科.(1)黄冈在第一轮抽到语文学科的概率是;(2)用画树状图或列表法求黄冈在第二轮和第三轮抽签中,抽到的学科恰好是历史和地理的概率.28. 为了防控新冠疫情,某地区积极推广疫苗接种工作,卫生防疫部门对该地区八周以来的相关数据进行收集整理,绘制得到图表:该地区每周接种疫苗人数统计表根据统计表中的数据,建立以周次为横坐标,接种人数为纵坐标的平面直角坐标系,并根据以上统计表中的数据描出对应的点,发现从第周开始这些点大致分布在一条直线附近,现过其中两点,作一条直线(如图所示,该直线的函数表达式为),那么这条直线可近似反映该地区接种人数的变化趋势.请根据以上信息,解答下列问题:(1)这八周中每周接种人数的平均数为万人;该地区的总人口约为万人.(2)若从第周开始,每周的接种人数仍符合上述变化趋势.①估计第周的接种人数约为万人;②专家表示:疫苗接种率至少达,才能实现全民免疫.那么,从推广疫苗接种工作开始,最早到第几周,该地区可达到实现全民免疫的标准?(3)实际上,受疫苗供应等客观因素,从第周开始接种人数将会逐周减少()万人,为了尽快提高接种率,一旦周接种人数低于万人时,卫生防疫部门将会采取措施,使得之后每周的接种能力一直维持在万人.如果,那么该地区的建议接种人群最早将于第几周全部完成接种?29. 圆周率是无限不循环小数.历史上,祖冲之、刘徽、韦达、欧拉等数学家都对有过深入的研究.目前,超级计算机已计算出的小数部分超过万亿位.有学者发现,随着小数部分位数的增加,这个数字出现的频率趋于稳定接近相同.(1)从的小数部分随机取出一个数字,估计数字是的概率为;(2)某校进行校园文化建设,拟从以上位科学家的画像中随机选用幅,求其中有一幅是祖冲之的概率.(用画树状图或列表方法求解)30. 为迎接中国共产党建党周年,某校开展了以“不忘初心,缅怀先烈”为主题的读书活动,学校政教处对本校七年级学生五月份“阅读该主题相关书籍的读书量”(下面简称“读书量”)进行了随机抽样调查,并对所有随机抽取学生的“读书量”(单位:本)进行了统计,如图所示:(1)补全下面图的统计图;(2)本次所抽取学生五月份“读书量”的众数为;(3)已知该校七年级有名学生,请你估计该校七年级学生中,五月份“读书量”不少于本的学生人数.31. 年月,教育部印发《关于进一步加强中小学生睡眠管理工作的通知》,明确要求初中生每天睡眠时间应达到小时.某初级中学为了解学生睡眠时间的情况,从本校学生中随机抽取名进行问卷调查,并将调查结果用统计图描述如下.调查问卷.近两周你平均每天睡眠时间大约是小时.如果你平均每天睡眠时间不足小时,请回答第个问题.影响你睡眠时间的主要原因是(单选).A.校内课业负担重B.校外学习任务重C.学习效率低D.其他平均每天睡眠时间(时)分为组:①;②;③;④;⑤.根据以上信息,解答下列问题:(1)本次调查中,平均每天睡眠时间的中位数落在第(填序号)组,达到小时的学生人数占被调查人数的百分比为;(2)请对该校学生睡眠时间的情况作出评价,并提出两条合理化建议.32. 为庆祝中国共产党成立周年,在中小学生心中厚植爱党情怀,我市开展“童心向党”教育实践活动,某校准备组织学生参加唱歌,舞蹈,书法,国学诵读活动,为了解学生的参与情况,该校随机抽取了部分学生进行“你愿意参加哪一项活动”(必选且只选一种)的问卷调查.根据调查结果绘制了条形统计图和扇形统计图,部分信息如下:(1)这次抽样调查的总人数为人,扇形统计图中“舞蹈”对应的圆心角度数为;(2)若该校有名学生,估计选择参加书法的有多少人?(3)学校准备从推荐的位同学(两男两女)中选取人主持活动,利用画树状图或表格法求恰为一男一女的概率.33. 九()班准备从甲、乙两名男生中选派一名参加学校组织的一分钟跳绳比赛,在相同的条件下,分别对两名男生进行了八次一分钟跳绳测试.现将测试结果绘制成如下不完整的统计图表,请根据统计图表中的信息解答下列问题:(1)求,的值;(2)若九()班选一位成绩稳定的选手参赛,你认为应选谁,请说明理由;(3)根据以上的数据分析,请你运用所学统计知识,任选两个角度评价甲乙两名男生一分钟跳绳成绩谁优.答案第一部分1. D2. D【解析】A.样本为名学生收集废旧电池的数量,此选项错误;B.众数是节和节,此选项错误;C.中位数为(节),此选项错误;D.平均数为(节).3. C【解析】将这组数据重新排列为,,,,,所以这组数据的中位数为.4. B【解析】A、原来数据的平均数是,添加数字后平均数为,故不符合题意;B、原来数据的中位数是,添加数字后中位数仍为,故符合题意;C、原来数据的众数是,添加数字后众数为和,故不符合题意;D、原来数据的方差,添加数字后的方差,故方差发生了变化,故不符合题意;故选:B.5. D【解析】根据图表数据,同一年龄人数最多的是岁,共人,所以众数是;根据图表数据可知共有名队员,按照年龄从小到大排列,第名队员与第名队员的年龄都是岁,所以,中位数是.6. C【解析】(人),样本容量为,故A正确,,类型所对应的扇形的圆心角为,故B正确,,类型所占百分比为,故C错误,(人),类型的人数为人,故D正确,说法错误的是C.7. A【解析】因为,,,且平均数相等,所以,所以这三名同学数学成绩最稳定的是甲.8. A【解析】有张形状、大小、质地均相同的卡片,冰壶项目图案的有张,从中随机抽取一张,抽出的卡片正面恰好是冰壶项目图案的概率是.9. C【解析】A.调查柳江流域水质情况,适合抽样调查,故本选项不合题意;B.了解全国中学生的心理健康状况,适合抽样调查,故本选项不合题意;C.了解全班学生的身高情况,适合普查,故本选项符合题意;D.调查春节联欢晚会收视率,适合抽样调查,故本选项不合题意.10. A【解析】把张卡片分别记为:,,,,画树状图如图:共有种等可能的结果,两张卡片正面图案恰好是“天问”和“九章”的结果有种,两张卡片正面图案恰好是“天问”和“九章”的概率为.11. A【解析】A.的算术平方根是,原命题是假命题,符合题意;B.有两边相等的三角形是等腰三角形,是真命题,不符合题意;C.一组数据:,,,,的中位数是,原命题是真命题,不符合题意;D.过直线外一点有且只有一条直线与已知直线平行,原命题是真命题,不符合题意.12. C【解析】每个班级回收废纸的平均重量为.13. C【解析】画树形图得:由树形图可知共种等可能的结果,一枚硬币正面向上,一枚硬币反面向上的有种结果,一枚硬币正面向上,一枚硬币反面向上的的概率为.14. A【解析】画树状图为:共有种等可能的结果数,其中恰好有一车直行,另一车左拐的结果数为种,恰好有一车直行,另一车左拐的概率第二部分【解析】由题意得,共有种等可能情况,其中能打开锁的情况有种,.16.【解析】这组数据,,,,中出现次数最多的是,共出现次,因此众数是.17.【解析】若将每个方格地砖的面积记为,则图中地砖的总面积为,其中阴影部分的面积为,该小球停留在黑色区域的概率是18.【解析】根据题意排列得:,,,,,,,,,,,,,,,,,,则该小组组员年龄的中位数为(岁).19.【解析】将这组数据重新排列为:,,,,,,,所以这组数据的中位数为.20. 甲【解析】从图中折线可知,乙的起伏大,甲的起伏小,乙的方差大于甲的方差,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,产品更符合规格要求的厂家是甲.第三部分21. (1)①;;②【解析】①在甲医院接种人数为:(人),,,在乙医院的接种人数为:(人),.②在甲、乙两医院当天接种疫苗的所有人员中,周岁年龄段人数为:(人),周岁年龄段人数在扇形统计图中所占圆心角为:.(2)画树状图如图:共有种等可能的结果,,,三人在同一家医院接种的结果有种,三人在同一家医院接种的概率为.22. (1);;;【解析】抽取的学生人数为:(人),,等级所占的百分比是,等级对应的扇形圆心角为:,估计成绩为等级的学生共有:(人).(2)分以上的学生有人,其中甲、乙两人来自同一班级,其他两人记为丙、丁,画树状图如图:共有种等可能的结果,甲、乙两人至少有人被选中的结果有种,甲、乙两人至少有人被选中的概率为.23. (1)由条形图可知,一班比赛的人数为:(人),两个班参加比赛的人数相同,二班参赛人数为人,这次预赛中,二班成绩在等及以上的人数为:(人).(2)一班成绩的平均数为:(分),由题意得:二班成绩的中位数为分.(3)二班成绩等的都是女生,二班成绩等的人数为:(人),把一班成绩等的个男生分别记为,,其他成绩等的个女生分别记为,,,,画树状图如图:共有种等可能的结果,抽取的人中至少有个男生的结果有种,抽取的人中至少有个男生的概率为.24. (1)将两个统计图补充完整如下:【解析】抽取的学生人数为:(人),则达到“良好”的学生人数为:(人),达到“合格”的学生所占的百分比为:,达到“优秀”的学生所占的百分比为:.(2)(人),答:估计成绩未达到“良好”及以上的有人.(3)画树状图如图:共有种等可能的结果,抽到甲、乙两人的结果有种,所以抽到甲、乙两人的概率为.25. (1)【解析】九()班共有学生人数为:(名).(2) D的人数为:(名),补全折线统计图如下:(3)【解析】D所对应扇形圆心角的大小为:.(4)画树状图如图:共有种等可能的结果,小明和小丽选择相同主题的结果有种,小明和小丽选择相同主题的概率为.26. (1)【解析】本次抽样的人数为(人),样本容量为,故答案为;(2)组的人数为(人),统计图如下:(3);【解析】组所占的百分比为,的值为,,故答案为,.(4)总时间少于小时的学生的百分比为,全校寒假阅读的总时间少于小时的学生估计有(名),建议:读书是人类文明进步的阶梯,建议每天读书至少小时.27. (1)【解析】黄冈在第一轮抽到语文学科的概率是(2)列表如下:由表可知共有种等可能结果,其中抽到的学科恰好是历史和地理的只有种结果,28. (1);【解析】(万人),这八周中每周接种人数的平均数为万人.(万人),该地区的总人口约为万人.(2)①②疫苗接种率至少达,实现全民免疫所需的接种人数为(万人).设最早到第周,该地区可达到实现全民免疫的标准,则由题意可得接种的总人数为..化简得:.当时,,最早到第周,该地区可达到实现全民免疫的标准.【解析】①当时,,估计第周的接种人数约为万人.(3)由题意得:第周的接种人数为(万).第周的接种人数为,第周的接种人数为,第周的接种人数为,设第周接种人数不低于万人,即:,.解得:.当周时,接种人数不低于万人,当周时,低于万人;从第周开始周接种人数,当时,总接种人数为:.解得:.当为周时全部完成接种.29. (1)【解析】因为随着小数部分位数的增加,这个数字出现的频率趋于稳定,所以从的小数部分随机取出一个数字共有种等可能结果,其中出现数字的只有种结果,所以从的小数部分随机取出一个数字,估计是数字的概率为.(2)将祖冲之、刘徽、韦达、欧拉四位数学家分别记作甲、乙、丙、丁,列表如下:因为共有种等可能的情况,其中有一幅是祖冲之的有种结果,所以其中有一幅是祖冲之的概率为.30. (1)抽样调查的学生总数为:(人),“读书量”本的人数所占的百分比是,“读书量”本的人数有:(人),补全图的统计图如下,(2)【解析】根据统计图可知众数为.(3)根据题意得,(人),答:估计该校七年级学生中,五月份“读书量”不少于本的学生有人.31. (1)③;【解析】由统计图可知,抽取的这名学生平均每天睡眠时间的中位数为第个和第个数据的平均数,故落在第③组;睡眠达到小时的学生人数占被调查人数的百分比为:.(2)答案不唯一,言之有理即可.例如:该校大部分学生睡眠时间没有达到通知要求;建议①:该校各学科授课老师精简家庭作业内容,师生一起提高在校学习效率;建议②:建议学生减少参加校外培训班,校外辅导机构严禁布置课后作业.32. (1);【解析】这次抽样调查的总人数为:(人),则参加舞蹈”的学生人数为:(人),扇形统计图中“舞蹈”对应的圆心角度数为:.(2)(人),即估计选择参加书法有人.(3)画树状图如图:共有种等可能的结果,恰为一男一女的结果有种,恰为一男一女的概率为.33. (1)甲的成绩从小到大排列为:,,,,,,,,甲的中位数,出现了次,出现的次数最多,众数是,故,.(2)应选乙,理由:乙的方差为:,乙的方差小于甲的方差,所以乙的成绩比甲的稳定.(3)乙的方差为:,①从平均数和方差相结合看,乙的成绩比较稳定;②从平均数和中位数相结合看,甲的成绩好些.。

第5章 统计与概率 单元测试-【新教材】2020-2021学年人教B版(2019)高中数学必修第二册

第5章 统计与概率 单元测试-【新教材】2020-2021学年人教B版(2019)高中数学必修第二册

第五章:统计与概率测试题考试时间:90分钟,总分:100分一、选择题:(每小题4分,共40分) 1.随机事件A 发生的频率mn满足( )。

A .0m n = B .1m n = C .01m n << D .01m n≤≤ 2.一组数据中的每一个数都减去80,得到一组新数据。

若求得新数据的平均 数为1.2,方差为4.4,则原来数据的平均数和方差分别是( )。

A 、81.2,4.4 B 、78.8,4.4 C 、81.2,84.4 D 、78.8,75.63.为了了解某地区高三学生的身体发育情况,抽查了该地区100名年龄为17.5~18岁的男生体重,得到频率分布直方图如下:根据上图可得这100名学生中体重在[56.5,64.5]的学生人数是( )。

A.20 B.30 C.40 D.50 4.在一次歌手大奖赛上,七位评委为某歌手打出的分数如下: 9.4 8.4 9.4 9.9 9.6 9.4 9.7去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为( )。

A 、9.4和0.484 B 、9.4和0.016 C 、9.5和0.04 D 、9.5和0.016 5.一个容量为35的样本数据,分组后各组频数如下:[)510,,5个,[)1015,,12个,[)1520,,7个,[)2025,,5个,[)2530,,4个,[)3035,,2个。

则样本在区间[)20+∞,上的频率约为( )。

A 、20% B 、69% C 、31% D 、27%6.随机抽取某中学甲、乙两班各11名同学的数学成绩,获得分数的数据茎叶图如下图。

则下列结论正确的是( )。

A 、甲班的平均水平高B 、乙班的中位数为93C 、甲班的样本方差比乙班大D 、乙班的样本方差比甲班大7. 某人将一枚硬币连掷了10次,正面朝上的情形出现了6次。

若用A 表示正面朝上这一事件,则A 的( )。

A 、概率为53 B 、频率为53C 、频率为6D 、概率接近0.6 8.从数字1,2,3,4,5中任取两个不同的数字构成一个两位数,则这个两位数大于40的概率为( )。

数的概率与统计练习题

数的概率与统计练习题

数的概率与统计练习题一、选择题1. 在一副扑克牌中,红桃的数量是黑桃的两倍,方块的数量是梅花的三倍,那么在这副扑克牌中,梅花的数量是黑桃的几倍?A. 1倍B. 2倍C. 3倍D. 4倍2. 如图所示,一个骰子的每个面上都标有1至6的数字。

若一个人掷这个骰子两次,那么两次掷骰子赢的概率是多少?A. 1/12B. 1/6C. 1/4D. 1/23. 甲、乙、丙、丁四名学生依次从一堆石子中取球,每次可以取1个、2个或3个。

最后一颗石子由谁取到就算谁赢。

如果甲先取球,那么乙获胜的概率是多少?A. 3/8B. 1/4C. 3/16D. 1/84. 一张卡片标有字母A、B、C、D、E,从中随机抽取一张卡片。

抽到辅音字母的概率是多少?A. 1/5B. 1/2C. 2/5D. 4/55. 某班有35个学生,其中15个学生喜欢唱歌,20个学生喜欢跳舞,并且5个学生既喜欢唱歌又喜欢跳舞。

现从这班学生中随机抽取一个学生,抽到既喜欢唱歌又喜欢跳舞的概率是多少?A. 1/7B. 1/5C. 1/6D. 1/4二、填空题1. 一袋中有8个红球和4个蓝球,现从袋中连续取球3次,取到的都是红球的概率是多少?答案:7/332. 一种水果篮中有5个苹果、3个橙子和2个香蕉,现从篮子中随机取出3个水果,取出的水果中至少有1个橙子的概率是多少?答案:13/183. 有3个红桃、4个黑桃和5个方块,现从中随机取出2个扑克牌,取到两者都是红桃的概率是多少?答案:1/224. 一组数据中,35%的数小于12,40%的数大于16,那么这组数据中小于12或大于16的概率是多少?答案:75%5. 一副扑克牌中有52张牌,其中4张是红桃A和4张是黑桃A。

现从中随机抽取2张牌,抽到两张A的概率是多少?答案:1/221三、解答题1. 班级有40个学生,其中25个学生擅长语文,30个学生擅长数学。

假设每个学生只擅长其中一门学科,那么至少有多少个学生既擅长语文又擅长数学?答案:15个学生2. 一个正方形瓷砖被分成了9个小正方形,并且每个小正方形中都标有一个数字(1至9)。

初中数学统计与概率专题训练50题含参考答案

初中数学统计与概率专题训练50题含参考答案

初中数学统计与概率专题训练50题含参考答案一、单选题1.统计得到的一组数据有80个.其中最大值为141,最小值为50,取组距为10,可以分()A.10组B.9组C.8组D.7组2.下列说法正确的是()A.方差越大,数据的波动越大B.某种彩票中奖概率为1%,是指买100张彩票一定有1张中奖C.旅客上飞机前的安检应采用抽样调查D.掷一枚硬币,正面一定朝上3.到了劳动课时,刚好是小明和小聪两位同学值日,教室里有两样劳动工具:扫把和拖把,小明与小聪用“剪刀,石头,布”的游戏方法决定谁胜了就让谁使用扫把,则小明出“剪刀”后,能胜出的概率是()A.12B.13C.16D.194.小思去延庆世界园艺博览会游览,如果从永宁瞻胜、万芳华台、丝路花雨、九州花境四个景点中随机选择一个进行参观,那么他选择的景点恰为丝路花雨的概率为()A.12B.14C.18D.1165.2022年深圳市有11.2万名学生参加中考,为了了解这些考生的数学成绩,从中抽取200名考生的数学成绩进行统计分析,在这个问题中,下列说法:①这11.2万名考生的数学成绩是总体;①每个考生是个体;①200名考生是总体的一个样本;①样本容量是200,其中说法正确的有()A.4个B.3个C.2个D.1个6.下列说法正确的是()A.“打开电视,正在播放新闻联播”是必然事件B.对某批次手机防水功能的调查适合用全面调查(普查)方式C.某种彩票的中奖率是8%是指买8张必有一张中奖D.对某校九(2)班学生肺活量情况的调查适合用全面调查(普查)方式7.如下电路图中,任意关闭a、b、c三个开关中的两个,灯泡发亮的概率为().A.310B.13C.16D.238.下列说法正确的是()A.“任意画一个三角形,其内角和为360°”是随机事件B.已知某篮球运动员投篮投中的概率为0.6,则他投10次可投中6次C.抽样调查选取样本时,所选样本可按自己的喜好选取D.检测某城市的空气质量,采用抽样调查法9.在一个不透明的盒子中装有红、白两种除颜色外完全相同的球,其中有a个白球和3个红球,若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a的值约为()A.9B.12C.15D.1810.下列调查中,适宜采用全面调查的是()A.对某班学生制作校服前的身高调查B.对某品牌灯管寿命的调查C.对浙江省居民去年阅读量的调查D.对现代大学生零用钱使用情况的调查11.钉钉打卡已经成为一种工作方式,老师利用钉钉调查了全班学生平均每天的阅读时间,统计结果如下表,在本次调查中,全班学生平均每天阅读时间的中位数和众数分别是()A.2,1.5B.1,1.5C.1,2D.1,112.从1~9这九个自然数中任取一个,是2的倍数或是3的倍数的概率是()A.19B.29C.23D.4913.下列诗句所描述的事件中,是不可能事件的是()A.黄河入海流B.锄禾日当午C.手可摘星辰D.大漠孤烟直14.2021年7月24日,宁波小将杨倩取得了东京奥运会气步枪首枚金牌,使得射击运动在各校盛行起来.某班有甲、乙、丙、丁四名学生进行了射击测试,每人10次射击成绩的平均数⎺x(单位:环)及方差s2(单位:环2)如下表所示:根据表中数据,要从中选择一名成绩好且发挥稳定的学生参加比赛,应选择()A.甲B.乙C.丙D.丁15.下列说法中不正确的是()A.抛掷一枚硬币,硬币落地时正面朝上是随机事件B.把3个球放入两个抽屉中,有一个抽屉中至少有2个球是必然事件C.任意打开九年级下册数学教科书﹐正好是97页是确定事件D.一只盒子中有白球3个,红球6个(每个球除了颜色外都相同).如果从中任取两个球.不一定可以取到红球16.甲袋里有红、白两球,乙袋里有红、红、白三球,两袋的球除颜色不同外都相同,分别往两袋里任摸一球,则同时摸到红球的概率是()A.13B.14C.15D.1617.如果一组数据1,2,3,4,5的方差是2,那么一组新数据101,102,103,104,105的方差是()A.2B.4C.8D.1618.某班抽取6名同学参加体能测试,成绩如下:75,95,85,80,90,85. 下列表述不正确的是().A.众数是85B.中位数是85C.平均数是85D.方差是15 19.对于数据:1,7,5,5,3,4,3.下列说法中错误的是()A.这组数据的平均数是4B.这组数据的众数是5和3C.这组数据的中位数是4D.这组数据的方差是2220.某学习小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如下的表格,则符合这一结果的实验最有可能的是()A.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃B.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”C.抛一个质地均匀的正六面体骰子,向上的面点数是5D.抛一枚硬币,出现反面的概率二、填空题21.一组数据2,6,5,2,4,则这组数据的平均数是__________.22.数据1,2,2,5,8的众数是_____.23.某校开展为“希望小学”捐书活动,以下是5名同学捐书的册数:2,3,5,7,2,则这组数据的中位数是_____.24.一个不透明的口袋中装有6个红球,4个黄球,这些球除了颜色外无其他差别.从袋中随机摸取一个小球,它是黄球的概率______.25.已知样本1,3,9,a,b的众数是9,平均数是6,则中位数为__.26.九年级某同学6次数学小测验的成绩分别为:100,112,102,105,112,110,则该同学这6次成绩的众数是_____.27.某校在七年级的一次模拟考试中,随机抽取40名学生的数学成绩进行分析,其中有10名学生成绩达90分以上,据此估计该校七年级640名学生中这次模拟考试成绩达90分以上的约有____名学生.28.数据3,4,5,6,7的平均数是___________.29.某校为了举办“迎国庆”的活动,调查了本校所有学生,调查的结果被整理成如图所示的扇形统计图.如果全校学生人数是1200人,根据图中给出的信息,这所学校赞成举办演讲比赛的学生有________人.30.下表列出了某地农作物生长季节每月的降雨量(单位:mm):其中有______个月的降雨量比这6个月平均降雨量大.31.有一组数据:3,a,4,8,9,它们的平均数是6,则a是_______.32.从2,3,4,6中任意选两个数,记作a和b,且a≠b,那么点(a,b)在函数8=图象上的概率是_______.yx33.若a、b、c的方差为3,则23b+、23a+、23c+的方差为________.34.已知一包糖果共有5种颜色(糖果只有颜色差别),如图是这包糖果分布百分比的统计图,在这包糖果中任意取一粒,则取出糖果的颜色为绿色或棕色的概率是_________.35.如图,共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分,现从其余的小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的概率是_________.36.如图所示的两个圆盘中,指针落在每一个数上的机会均等,那么两个指针同时落在偶数上的概率是___________.37.一个不透明的袋子中装有黑、白小球各两个,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球后,放回并摇匀,再随机摸出一个小球,则两次摸出的小球都是白球的概率为_______.38.数字2018、2019 、2020 、2021 、2022的方差是__________;39.一组数据:9、12、10、9、11、9、10,则它的方差是_____.40.某校七年级开展“阳光体育”活动,对爱好乒乓球、足球、篮球、羽毛球的学生人数进行统计,得到如图所示的扇形统计图.若爱好羽毛球的人数是爱好足球的人数的4倍,若爱好篮球的人数是14人,则爱好羽毛球的人数为________.三、解答题41.射箭时,新手成绩通常不太稳定,小明和小华练习射箭,第一局12支箭射完后,两人的成绩如图所示,请根据图中信息估计小明和小华谁是新手,并说明你这样估计的理由.42.某旅游景区上山的一条小路上,有一些断断续续的台阶,下图是其中的甲、乙两段台阶的示意图,图中的数字表示每一级台阶的高度(单位:cm),请你用所学过的有关统计的知识回答下列问题:(1)分别求甲、乙两段台阶路的高度平均数;(2)哪段台阶路走起来更舒服?为什么?(3)为方便游客行走,需要重新整修上山的小路,对于这两段台阶路,在总高度及台阶数不变的情况下,请你提出合理的整修建议.43.某校在八年级开展环保知识问卷调查活动,问卷一共10道题,八年级(三)班的问卷得分情况统计图如下图所示:a______________;(1)扇形统计图中,(2)根据以上统计图中的信息,①问卷得分的极差是_____________分;①问卷得分的众数是____________分;①问卷得分的中位数是______________分;(3)请你求出该班同学的平均分.44.西昌市数科科如局从2013年起每年对全市所有中学生进行“我最喜欢的阳光大课间活动”抽样调查(被调查学生每人只能选一项),并将抽样调查的数据绘制成图1、图2两幅统计图,根据统计图提供的信息解答下列问题:(1)年抽取的调查人数最少;年抽取的调查人数中男生、女生人数相等;(2)求图2中“短跑”在扇形图中所占的圆心角α的度数;(3)2017年抽取的学生中,喜欢羽毛球和短跑的学生共有多少人?(4)如果2017年全市共有3.4万名中学生,请你估计我市2017年喜欢乒乓球和羽毛球两项运动的大约有多少人?45.“垃圾分类,从我做起”,垃圾一般可分为:可回收垃圾、厨余垃圾、有害垃圾、其它垃圾.现小明提了一袋垃圾,小聪提了两袋垃圾准备投放.(1)直接写出小明所提的垃圾恰好是“厨余垃圾”的概率;(2)求小聪所提的两袋垃圾不同类的概率.46.王老师将1个黑球和若干个白球放入一个不透明的口袋并搅匀,让若干学生进行摸球实验,每次摸出一个球(有放回),下表是活动进行中的一组统计数据.(1)补全上表中的有关数据,根据上表数据估计从袋中摸出一个球是黑球的概率是(精确到0.1),并说明理由.(2)估算袋中白球的个数.47.为了调查A、B两个区的初三学生体育测试成绩,从两个区各随机抽取了1000名学生的成绩(满分:40分,个人成绩四舍五入向上取整数)A区抽样学生体育测试成绩的平均分、中位数、众数如下:B区抽样学生体育测试成绩的分布如下:请根据以上信息回答下列问题(1)m=;(2)在两区抽样的学生中,体育测试成绩为37分的学生,在(填“A”或“B”)区被抽样学生中排名更靠前,理由是;(3)如果B区有10000名学生参加此次体育测试,估计成绩不低于34分的人数.48.为庆祝建校60周年,某校组织七年级学生进行“方阵表演”.为了整齐划一,需了解学生的身高,现随机抽取该校七年级学生进行抽样调查,根据所得数据绘制出如下计图表:根据图表提供的信息,回答下列问题:(1)这次抽样调查,一共抽取学生 人;(2)扇形统计图中,扇形E 的圆心角度数是 ; (3)请补全频率分布直方图;(4)已知该校七年级共有学生360人,请估计身高在160170x <的学生约有多少人?49.为了从小华和小亮两人中选拔一人参加射击比赛,现对他们的射击水平进行测试,两人在相同条件下各射击6次,命中的环数如下(单位:环): 小华:7,8,7,8,9,9; 小亮:5,8,7,8,10,10. (1)填写下表:(2)根据以上信息,你认为教练会选择谁参加比赛,理由是什么? (3)若小亮再射击2次,分别命中7环和9环,则小亮这8次射击成绩的方差 .(填“变大”、“变小”、“不变”)50.(2011湖北鄂州,17,6分)为了加强食品安全管理,有关部门对某大型超市的甲、乙两种品牌食用油共抽取18瓶进行检测,检测结果分成“优秀”、“合格”、“不合格”三个等级,数据处理后制成以下折线统计图和扇形统计图. ①甲、乙两种品牌食用油各被抽取了多少瓶用于检测?①在该超市购买一瓶乙品牌食用油,请估计能买到“优秀”等级的概率是多少?参考答案:1.A【分析】根据组数=(最大值-最小值)÷组距计算,注意小数部分要进位.【详解】解:在样本数据中最大值为141,最小值为50,它们的差是141-50=91,已知组距为10,那么由于91÷10=9.1,故可以分成10组.故选:A.【点睛】本题考查的是组数的计算,根据组数的定义来解即可.2.A【详解】A、方差越大,数据的波动越大,正确;B、某种彩票中奖概率为1%,是指买100张彩票可能有1张中奖,错误;C、旅客上飞机前的安检应采用全面调查,错误;D、掷一枚硬币,正面不一定朝上,错误,故选A.3.B【详解】画树状图为:共有3种等可能的结果数,其中小明出“剪刀”后,能胜出的结果数为1,所以小明出“剪刀”后,能胜出的概率=13.故选B.4.B【分析】根据概率公式直接解答即可.【详解】①共有四个景点,分别是永宁瞻胜、万芳华台、丝路花雨、九州花境,①他选择的景点恰为丝路花雨的概率为14;故选:B.【点睛】本题考查了概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.5.C【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象,从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】解:由题意可知,这11.2万名考生的数学成绩是总体;每一名考生的数学成绩是个体;抽取的200名考生的数学成绩是总体的一个样本;样本容量为200;故①是正确的;①错误;①错误;①是正确的.故选:C.【点睛】本题考查了总体、个体、样本、样本容量的概念,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.6.D【分析】根据必然事件、随机事件、概率的意义,以及全面调查与抽样调查的定义判断即可.【详解】解:A、“打开电视,正在播放新闻联播”是随机事件,不符合题意;B、对某批次手机放水功能的调查适合用抽样调查方式,不符合题意;C、某种彩票的中奖率是8%是指买8张可能一张中奖,不符合题意;D、对某校九(2)班学生肺活量情况的调查适合用全面调查(普查)方式,符合题意.故选:D.【点睛】本题主要考查了概率的意义,掌握全面调查与抽样调查、随机事件的定义是解本题的关键.7.D【分析】用概率公式即可求解.【详解】由图可知,使得灯泡亮的组合有ab,ac这两种,总的可能情况有ab、ac、bc这3种情况,则让灯泡亮的概率为:2÷3=23,故选:D.【点睛】本题考查了用概率公式求解概率的知识,关键是要找全所有的可能情况和使灯泡亮的情况.8.D【详解】试题解析:A、“任意画一个三角形,其内角和为360°”是不可能事件,故A错误;B、已知某篮球运动员投篮投中的概率为0.6,则他投十次可能投中6次,故B错误;C、抽样调查选取样本时,所选样本要具有广泛性、代表性,故C错误;D、检测某城市的空气质量,采用抽样调查法,故D正确;故选D.【点睛】本题考查了概率的意义,概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生,机会小也有可能发生.9.B【详解】由频率的定义知,320%3a=+,解得a=12.10.A【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】A.对某班学生制作校服前的身高调查,适宜采用全面调查,故此选项符合题意;B.对某品牌灯管寿命的调查,具有破坏性,应采用抽样调查,故此选项不合题意;C.对浙江省居民去年阅读量的调查,工作量大,应采用抽样调查,故此选项不合题意D.对现代大学生零用钱使用情况的调查,人数众多,应采用抽样调查,故此选项不合题意.故选:A.【点睛】本题考查了抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.11.B【分析】根据表格中的数据可知全班人数共有30人,从而可以求得全班学生平均每天阅读时间的中位数和众数,本题得以解决;【详解】班级学生=8+9+10+3=30(人),阅读量1.5h的人有10个,人数最多,①众数是1.5h.阅读量从小到大排列为0.5h的有8个,1h的有9个,1.5h的人有10个,2h的有3个,所以中间的是第15、16个数分别是1h、1h,①中位数=1+1=12h.故选:B.【点睛】本题主要考查了中位数和众数的求解,准确计算是解题的关键.12.C【分析】从1到9这9个自然数中任取一个有9种可能的结果,其中是2的倍数或是3的倍数的有2,3,4,6,8,9共计6个.【详解】解:从1到9这9个自然数中任取一个有9种可能的结果,是2的倍数或是3的倍数的有6个结果,因而概率是23.故选:C.【点睛】用到的知识点为:概率 所求情况数与总情况数之比.正确写出是2的倍数或是3的倍数的数有哪些是本题解决的关键.13.C【分析】根据必然事件、随机事件、不可能事件的意义结合具体问题情境进行判断即可.【详解】解:A.“黄河入海流”是必然事件,因此选项A 不符合题意;B.“锄禾日当午”是随机事件,因此选项B不符合题意;C.“手可摘星辰”是不可能事件,因此选项C 符合题意;D.“大漠孤烟直”是随机事件,因此选项D不符合题意;故选:C.【点睛】本题考查了必然事件、随机事件、不可能事件,理解必然事件、随机事件、不可能事件的意义是正确判断的前提.14.A【分析】观察表格中的数据,甲、丙、丁的平均数相等且大于乙的平均数,从方差来看,甲的方差最小,根据方差的意义,方差小的发挥稳定,据此即可求解.【详解】解:甲、丙、丁的平均数相等且大于乙的平均数,甲的方差最小,①要从中选择一名成绩好且发挥稳定的学生参加比赛,应选择甲.故选A.【点睛】本题考查了平均数,方差,掌握方差的意义是解题的关键.15.C【分析】随机事件是在随机试验中,可能出现也可能不出现,其发生概率在0%至100%之间,必然事件是一定会发生的事件,其发生概率是100%,确定事件是必然事件和不可能事件的统称,不可能事件发生的概率是0,据此逐项分析解题即可.【详解】A.抛一枚硬币,硬币落地时正面朝上是随机事件,故A.不符合题意;B.把4个球放入三个抽屉中,其中一个抽屉中至少有2个球是必然事件,故B.不符合题意;C.任意打开九年级数学教科书,正好是97页是随机事件,故C.符合题意;D.一只盒子中有白球3个,红球6个(每个球除了颜色外都相同),从中任取2个球,不一定取到红球是随机事件,故D.不符合题意故选:C【点睛】本题考查随机事件、必然事件、确定事件等知识,是基础考点,难度较易,掌握相关知识是解题关键.16.A【分析】先画树状图求出任摸一球的组合情况总数,再求出同时摸到红球的数目,利用概率公式计算即可.【详解】画树状图如下:分别往两袋里任摸一球的组合有6种:红红,红红,红白,白红,白红,白白;其中红红的有2种,所以同时摸到红球的概率是21 63 .故选A.【点睛】本题考查了用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.17.A【详解】解:由题意知,新数据是在原来每个数上加上100得到,原来的平均数为x ,新数据是在原来每个数上加上100得到,则新平均数变为x +100,则每个数都加了100,原来的方差s 12= 1n [(x 1﹣x )2+(x 2﹣x )2+…+(x n ﹣x )2]=2,现在的方差s 22=1n[(x 1+100﹣x ﹣100)2+(x 2+100﹣x ﹣100)2+…+(x n +100﹣x ﹣100)2]=1 n[(x 1﹣x )2+(x 2﹣x )2+…+(x n ﹣x )2]=2,方差不变.故选A .【点睛】方差的计算公式:s 2=1n [(x 1﹣x )2+(x 2﹣x )2+…+(x n ﹣x )2] 18.D【详解】分析:本题考查统计的有关知识.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.利用平均数和方差的定义可分别求出.详解:这组数据中85出现了2次,出现的次数最多,所以这组数据的众数位85; 由平均数公式求得这组数据的平均数位85,将这组数据按从大到校的顺序排列,第3,4个数是85,故中位数为85. 方差()()()()()()222222217585958585858085908585856S ⎡⎤=-+-+-+-+-+-⎣⎦, 125.3= 所以选项D 错误.故选D.点睛:考查中位数,算术平均数,众数,方差,掌握它们的概念是解题的关键.19.D【详解】由平均数公式可得这组数据的平均数为4;在这组数据中5和3都出现了2次,其他数据均出现了1次,所以众数是5和3; 将这组数据从小到大排列为:1、3、3、4、5、5、7,可得其中位数是4;其方差S 2=1n[(x 1-x¯)2+(x 2-x¯)2+…+(x n -x¯)2]=227,所以D 错误.故选D . 20.B【详解】试题分析:根据利用频率估计概率得到实验的概率在0.33左右,再分别计算出四个选项中的概率,然后进行判断.解:A、一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃的概率为,不符合题意;B、在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”的概率是,符合题意;C、抛一个质地均匀的正六面体骰子,向上的面点数是5的概率为,不符合题意;D、抛一枚硬币,出现反面的概率为,不符合题意,故选B.考点:利用频率估计概率.21.19 5【分析】直接根据算术平均数的定义进行求解.【详解】这组数据的平均数265241955++++==,故答案为:195.【点睛】本题考查算术平均数,熟练掌握算术平均数的计算公式是解题的关键.22.2【分析】众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【详解】解:在这一组数据中2是出现次数最多的,故众数是2.故答案为:2.【点睛】本题为统计题,考查了众数的定义,是基础题型.23.3【分析】根据中位数的定义解答即可.【详解】解:①2,2,3,5,7在中间位置的是3,①这组数据的中位数是3.故答案为3.【点睛】本题考查中位数的概念,将数据按照从小到大排列,在最中间位置的数或最中间的两个数的平均数就是中位数.24.25##0.4【分析】直接利用概率公式求解即可求得答案.【详解】解:①一个不透明的口袋中装有6个红球,4个黄球,这些球除了颜色外无其他差别,①从中随机摸出一个小球,恰好是黄球的概率为:4412 645==+.故答案为:25.【点睛】本题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.25.8【分析】先根据众数的定义判断出a,b中至少有一个是9,再用平均数求出a+b=17,即可得出结论.【详解】解:①样本1,3,9,a,b的众数是9,①a,b中至少有一个是9,①样本1,3,9,a,b的平均数为6,①(1+3+9+a+b)÷5=6,①a+b=17,①a,b中一个是9,另一个是8,①这组数为1,3,9,8,9,即1,3,8,9,9,①这组数据的中位数是8.故答案为:8.【点睛】本题考查了众数、平均数和中位数的知识,解答本题的关键是能根据众数的定义得出a,b中至少有一个是9.26.112【分析】根据众数的出现次数最多的特点从数据中即可得到答案.【详解】解:在这组数据中出现次数最多的是112,所以这组数据的众数为112,故答案为:112.【点睛】此题重点考查学生对众数的理解,掌握众数的定义是解题的关键.27.160【详解】分析:先求出随机抽取的40名学生中成绩达到90分以上的所占的百分比,再乘以640,即可得出答案.详解:①随机抽取40名学生的数学成绩进行分析,有10名学生的成绩达90分以上,①七年级640名学生中这次模拟考数学成绩达90分以上的约有640×1040=160(名);故答案为160.点睛:此题主要考查了用样本估计总体,求出样本中符合条件的百分比是解题关键,比较简单.28.5【分析】根据平均数的的计算公式列出算式,进行计算即可.【详解】解:这组数据的平均数=(3+4+5+6+7)÷5=5,故答案是:5.【点睛】主要考查了平均数,用到的知识点是平均数的计算公式,熟记算术平均数公式是解题的关键.29.300【分析】根据扇形统计图中的数据和题目中的数据,可以计算出这所学校赞成举办演讲比赛的学生人数.【详解】解:由统计图可得,这所学校赞成举办演讲比赛的学生有:1200(140%35%)120025%300⨯--=⨯=(人),故答案为:300.【点睛】本题考查扇形统计图,解答本题的关键是明确题意,利用数形结合的思想解答.30.3【分析】首先运用求平均数的公式得出这六个月平均每月的降雨量,然后进行比较即可.【详解】解:平均每月的降雨量=(20+55+82+135+116+90)÷6=83.3mm,所以有三个月的降雨量比这六个月平均降雨量大.故答案为3.【点睛】本题主要考查的是样本平均数的求法.熟记公式是解决本题的关键.31.6【详解】【分析】根据平均数的定义进行求解即可得.【详解】由题意得:38495a++++=6,解得:a=6,故答案为6.。

统计与概率初三练习题

统计与概率初三练习题

统计与概率初三练习题在初三学习统计与概率时,练习题是非常重要的一部分。

通过做题,我们可以巩固所学知识,提高解决问题的能力。

本文将提供一些统计与概率的初三练习题,并给出详细解析,希望对同学们的学习有所帮助。

一、统计题1. 某班有60名学生,他们的身高数据如下(单位:cm):155, 165, 160, 165, 155, 170, 160, 155, 170, 165, 160, 155, 155, 165, 160, 160, 155, 165, 160, 165, 170, 155, 165, 170, 165, 160, 155, 160, 170, 160, 155, 155, 165, 160, 160, 165, 155, 160, 170, 165, 160, 155, 155, 165, 160, 165, 160, 170, 155, 165, 160, 155, 160, 155, 170, 165, 155, 165, 160, 165请计算这60名学生的平均身高和中位数。

解析:要计算平均身高,只需要将所有学生的身高加起来,然后除以学生人数。

平均身高 = (155 + 165 + 160 + 165 + 155 + 170 + 160 + 155 + 170 + 165 + 160 + 155 + 155 + 165 + 160 + 160 + 155 + 165 + 160 + 165 + 170 + 155 + 165 + 170 + 165 + 160 + 155 + 160 + 170 + 160 + 155 + 155 + 165 + 160 + 160 + 165 + 155 + 160 + 170 + 165 + 160 + 155 + 155 + 165 + 160 + 165 + 160 + 170 + 155 + 165 + 160 + 155 + 160 + 155 + 170 + 165 + 155 + 165 + 160 + 165) / 60中位数是指将所有数据按照大小顺序排列,取中间的数。

《概率论与数理统计》考试练习题及参考答案

《概率论与数理统计》考试练习题及参考答案

《概率论与数理统计》考试练习题及参考答案一、单选题1. 设X~N(2,9),Y~N(2,1),E(XY)=6,则D(X-Y)之值为A 、14B 、6C 、12D 、4答案:B2. 设X,Y的方差存在,且不等于0,则D(X+Y)=DX+DY是X,YA 、不相关的充分条件,但不是必要条件B 、独立的必要条件,但不是充分条件C 、不相关的必要条件,但不是充分条件D 、独立的充分必要条件答案:B3. 已知P(A)=0.3 ,P(B)=0.5 ,P(A∪B)=0.6,则P(AB)=A 、0.2B 、0.1C 、0.3D 、0.4答案:A4. 已知随机变量X服从二项分布,且EX=2.4,DX=1.44,则二项分布中的参数n,p的值分别为A 、n=4 ,p=0.6B 、n=6 ,p=0.4C 、n=8 ,p=0.3D 、n=24 ,p=0.1答案:B5. 若随机变量X与Y的方差D(X), D(Y)都大于零,且E(XY)=E(X)E(Y),则有A 、X与Y一定相互独立B 、X与Y一定不相关C 、D(XY)=D(X)D(Y)D 、D(X-Y)=D(X)-D(Y)答案:B6. 同时抛掷3枚硬币,则至多有1枚硬币正面向上的概率是A 、1/8B 、1/6C 、1/4D 、1/2答案:D7. 将长度为1的木棒随机地截成两段,则两段长度的相关系数为A 、1B 、1/2C 、2D 、-1答案:D8. 假设一批产品中一、二、三等品各占60% 、30% 、10%,今从中随机取一件产品,结果不是三等品,则它是二等品的概率为A 、1/3B 、1/2C 、2/3D 、1/4答案:A9. 袋中有50个乒乓球,其中20个黄球,30个白球,甲、乙两人依次各取一球,取后不放回,甲先取,则乙取得黄球的概率为A 、2/5B 、3/5C 、1/5D 、4/5答案:A10. 设随机变量X服从正态分布N(1 ,4) ,Y服从[0 ,4]上的均匀分布,则E(2X+Y )=A 、1B 、2C 、3D 、4答案:D11. 某电路由元件A 、B 、C串联而成,三个元件相互独立,已知各元件不正常的概率分别为:P(A)=0.1 ,P(B)=0.2 ,P(C)=0.3,求电路不正常的概率A 、0.496B 、0.7C 、0.25D 、0.8答案:A12. 一套五卷选集随机地放到书架上,则从左到右或从右到左卷号恰为1 ,2 ,3 ,4 ,5顺序的概率为A 、1/120B 、1/60C 、1/5D 、1/2答案:B13. 设随机变量X与Y独立同分布,记随机变量U=X+Y ,V=X-Y,且协方差Cov(U.V)存在,则U和V必然A 、不相关B 、相互独立C 、不独立D 、无法判断答案:A14. 设P(A)>0,P(B)>0,则下列各式中正确的是A 、P(A-B)=P(A)-P(B)B 、P(AB)=P(A)P(B)C 、P(A+B)=P(A)+P(B)D 、P(A+B)=P(A)+P(B)-P(AB)答案:D15. 随机变量X的所有可能取值为0和x ,且P{X=0}=0.3,E(X)=1,则x=A 、10/7B 、4/5C 、1D 、0答案:A16. 已知人的血型为O 、A 、B 、AB的概率分别是0.4;0.3;0.2;0.1。

数据统计与概率的抽样方法测试题

数据统计与概率的抽样方法测试题

数据统计与概率的抽样方法测试题一、选择题请根据所给的情境选择最合适的答案。

1. 在对一批土豆进行质量检验时,工作人员从整批土豆中随机挑选了100个进行称重。

这个过程中,工作人员采用的是什么抽样方法?A. 简单随机抽样B. 系统抽样C. 整群抽样D. 分层抽样2. 一家电视台想要调查电视剧观众对某部新剧的喜好程度。

他们通过电话随机抽取了1000名观众进行调查。

这个过程中,电视台采用的是什么抽样方法?A. 简单随机抽样B. 系统抽样C. 整群抽样D. 分层抽样3. 在一项社会调查中,调查人员想要了解某市民对政府工作的评价。

他们在市民中随机抽取了10个小组,然后在每个小组中随机选择了10名市民进行调查。

这个过程中,调查人员采用的是什么抽样方法?A. 简单随机抽样B. 系统抽样C. 整群抽样D. 分层抽样4. 一家快餐连锁店想要了解顾客对新推出的汉堡包的满意度。

他们在店内连续的三天中,每天的午餐时段随机选择了50名顾客进行调查。

这个过程中,快餐连锁店采用的是什么抽样方法?A. 简单随机抽样B. 系统抽样C. 整群抽样D. 分层抽样二、判断题请根据所给情境,判断下列说法的真实性(√表示正确,×表示错误)。

5. 具有相同概率的抽样方法中,均匀随机抽样是最简单的抽样方法。

6. 随机抽样是确保得到代表性样本的唯一方法。

7. 非概率抽样是在概率抽样的基础上进一步发展的一种抽样方法。

三、简答题请简要回答下列问题。

8. 请解释什么是简单随机抽样。

简单举例说明其中的步骤和应用场景。

9. 什么是分层抽样?请举例说明其应用场景。

10. 请解释什么是非概率抽样。

举例说明其中的一个非概率抽样方法及其应用场景。

参考答案:1. A2. A3. D4. B5. ×6. √7. √8. 简单随机抽样是指从总体中随机选取若干个样本,且每个样本具有相同的机会被选中。

步骤包括:确定总体、给总体编号、确定样本量、通过随机数或随机选择方法选取样本、进行调查或研究。

初中数学九年级专题八《统计与概率》试卷含答案

初中数学九年级专题八《统计与概率》试卷含答案

专题八《统计与概率》试卷含答案(考试时间120分钟,试卷满分120分)一、选择题1、在某次体育测试中,九年级三班6位同学的立定跳远成绩(单位:m)分别为:1.71,1.85,1.85,1.96,2.10,2.31.则这组数据的众数和极差分别是()A.1.85和0.21B.2.11和0.46C.1.85和0.60D.2.31和0.602.某市五月份连续五天的日最高气温分别为23、20、20、21、26(单位:°C),这组数据的中位数和众数分别是()A. 22°C,26°CB. 22°C,20°CC. 21°C,26°CD. 21°C,20°C3.有13位同学参加学校组织的才艺表演比赛.已知他们所得的分数互不相同,共设7个获奖名额.某同学知道自己的比赛分数后,要判断自己能否获奖,在下列13名同学成绩的统计量中只需知道一个量,它是()A.方差B.平均数C.众数D.中位数4、某校为了了解九年级学生的体能情况,随机抽查了其中的30名学生,测试了1分钟仰卧起座的次数,并绘制成如图所示的频数分布直方图,请根据图示计算,仰卧起座次数在15~20次之间的频率是()A.0.1 B.0.17 C.0.33 D.0.45.某企业1~5月分利润的变化情况图所示,以下说法与图中反映的信息相符的是()A)1~2月分利润的增长快于2~3月分利润的增长B)1~4月分利润的极差于1~5月分利润的极差不同C)1~5月分利润的的众数是130万元D)1~5月分利润的的中位数为120万元6、要反映乌鲁木齐市一天内气温的变化情况宜采用()A.条形统计图B.扇形统计图C.频数分布直方图D.折线统计图7、为了参加市中学生篮球运动会,一支校篮球队准备购买10双运动鞋,各种尺码统计如下表:尺码(厘米)25 25.5 26 26.5 27 购买量(双) 1 2 3 2 2则这10双运动鞋尺码的众数和中位数分别为( )A 、25.5厘米,26厘米B 、26厘米,25.5厘米C 、25.5厘米,25.5厘米D 、26厘米,26厘米8.某班体育委员记录了第一小组七位同学定点投篮(每人投10个)的情况,投进篮框的个数为6,10,5,3,4,8,4,这组数据的中位数和极差分别是A .4,7B .7,5C .5,7D .3,79.甲、乙两人在相同的条件下,各射靶10次,经过计算:甲、乙射击成绩的平均数都是8环,甲的方差是1.2,乙的方差是1.8.下列说法中不一定正确的是( )A .甲、乙射中的总环数相同B .甲的成绩稳定C .乙的成绩波动较大D .甲、乙的众数相同10.如图,有三条绳子穿过一片木板,姊妹两人分别站在木板的左、右两边,各选该边的一段绳子.若每边每段绳子被选中的机会相等,则两人选到同一条绳子的概率为A . 21B . 31C . 61 D . 91 11.小明的讲义夹里放了大小相同的试卷共12页,其中语文4页、数学2页、英语6页,他随机地从讲义夹中抽出1页,抽出的试卷恰好是数学试卷的概率为( )A .21B .31C .61D .121 12.在 6张完全相同的卡片上分别画上线段、等边三角形、平行四边形、直角梯形、正方形和圆. 在看不见图形的情况下随机摸出1张,这张卡片上的图形是中心对称图形的概率是( )A .61 B .31 C .21 D .3213.小明要给刚结识的朋友小林打电话,他只记住了电话号码的前5位的顺序,后3位是3,6,8三个数字的某一种排列顺序,但具体顺序忘记了,那么小明第一次就拨通电话的概率是( )A .121B .61C .41 D .31 二、填空题14、妈妈做了一份美味可口的菜品,为了了解菜品的咸淡是否适合,于是妈妈取了一点品尝,这应该属于 .(填普查或抽样调查)15、甲、乙两位同学参加跳高训练,在相同条件下各跳10次,统计各自成绩的方差得22S S 乙甲,则成绩较稳定的同学是___________.(填“甲”或“乙”)16.在一个不透明的布袋中,有黄色、白色的乒乓球共10个,这些球除颜色外都相同.小刚通过多次摸球实验后发现其中摸到黄球的频率稳定在60%,则布袋中白色球的个数很可能是 个.17.在一个不透明的袋子中有2个黑球、3个白球,它们除颜色外其他均相同.充分摇匀后,先摸出1个球不放回,再摸出1个球,那么两个球都是黑球的概率为 .18.一个口袋中装有10个红球和若干个黄球.在不允许将球倒出来数的前提下,为估计口袋中黄球的个数,小明采用了如下的方法:每次先从口袋中摸出10个球,求出其中红球数与10的比值,再把球放回口袋中摇匀.不断重复上述过程20次,得到红球数与10的比值的平均数为0.4.根据上述数据,估计口袋中大约有 个黄球.19.现有点数为2,3,4,5的四张扑克牌,背面朝上洗匀,然后从中任意抽取两张,这两张牌上的数字之和为偶数的概率为______________.20.某校举行以“保护环境,从我做起”为主题的演讲比赛.经预赛,七、八年级各有一名同学进入决赛,九年级有两名同学进入决赛.前两名都是九年级同学的概率是 .21.有三张大小、形状完全相同的卡片,卡片上分别写有数字1、2、3,从这三张卡片中随机同时抽取两张,用抽出的卡片上的数字组成两位数,这个两位数是偶数的概率是 .22.在如图所示的矩形纸片上作随机扎针实验,则针头扎在阴影区域的概率为___ _____.23.在猜一商品价格的游戏中,参与者事先不知道该商品的价格,主持人要求他从如图的四张卡片中任意拿走一张,使剩下的卡片从左到右连成一个三位数,该数就是他猜的价格.若商品的价格是360元,那么他一次就能猜中的概率是.三、解答题24.我国是世界上严重缺水的国家之一.为了倡导“节约用水从我做起”,小刚在他所在班的50名同学中,随机调查了10名同学家庭中一年的月均用水量(单位:t),并将调查结果绘成了如下的条形统计图.(Ⅰ)求这10个样本数据的平均数、众数和中位数;(Ⅱ)根据样本数据,估计小刚所在班50名同学家庭中月均用水量不超过7 t的约有多少户.25.从车站到书城有A1、A2、A3、A4四条路线可走,从书城到广场有B1、B2、B3三条路线可走,现让你随机选择一条从车站出发经过书城到达广场的行走路线.画树状图分析你所有可能选择的路线.你恰好选到经过路线B1的概率是多少?26.市种子培育基地用A、B、C三种型号的甜玉米种子共1500粒进行发芽试验,从中选出发芽率高的种子进行推广,通过试验知道,C型号种子的发芽率为80%.根据试验数据绘制了下面两个不完整的统计图(图1、图2):(1)C型号种子的发芽数是_________粒;(2)通过计算说明,应选哪种型号的种子进行推广?(精确到1%)(3)如果将所有已发芽的种子放到一起,从中随机取出一粒,求取到C型号发芽种子的概率.27.小莉的爸爸买了今年七月份去上海看世博会的一张门票,她和哥哥两人都很想去观看,可门票只有一张,读九年级的哥哥想了一个办法,拿了八张扑克牌,将数字为1,2,3,5的四张牌给小莉,将数字为4,6,7,8的四张牌留给自己,并按如下游戏规则进行:小莉和哥哥从各自的四张牌中随机抽出一张,然后将抽出的两张扑克牌数字相加,如果和为偶数,则小莉去;如果和为奇数,则哥哥去.(1)请用数状图或列表的方法求小莉去上海看世博会的概率;(2)哥哥设计的游戏规则公平吗?若公平,请说明理由;若不公平,请你设计一种公平的游戏规则.专题八 统计与概率一、选择题1、C 2.D 3. D 4、A 5. C 6、D 7、D 8.C 9.D 10.B11.C 12.D 13.B二、填空题14、抽样调查 15、甲 16.4 17.101 18.15 19.31 20.61 21.31 22.41 23.41 三、解答题24.解:(Ⅰ)观察条形图,可知这组样本数据的平均数是 62 6.54717.5281 6.810x ⨯+⨯+⨯+⨯+⨯==.∴ 这组样本数据的平均数为6.8. ∵ 在这组样本数据中,6.5出现了4次,出现的次数最多,∴ 这组数据的众数是6.5.∵ 将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是6.5,有6.5 6.5 6.52+=, ∴ 这组数据的中位数是6.5.(Ⅱ)∵ 10户中月均用水量不超过7 t 的有7户,有 7503510⨯=. ∴ 根据样本数据,可以估计出小刚所在班50名同学家庭中月均用水量不超过7 t 的约有35户.25.解(1)(2)从车站到书城共有12条路线,经过B 1的路线有4条. ∴P (经过B 1)=124=31. 26.解:(1)480.(2)A 型号种子数为:1500×30%=450,发芽率=450420×100%≈93%.B 型号种子数为:1500×30%=450,发芽率=450370×100%≈82%.C 型号种子数发芽率是80%. ∴选A 型号种子进行推广.(3)取到C 型号发芽种子的概率=480370420480++=12748.27.解:(1)所有可能的结果如有表:一共有16种结果,每种结果出现的可能性相同.和为偶数的概率为83166= ,所以小莉去上海看世博会的概率为83 , (2)由(1)列表的结果可知:小莉去的概率为83,哥哥去的概率为85,所以游戏不公平,对哥哥有利.游戏规则改为:若和为偶数则小莉得5分,若和为奇数则哥哥得3分,则游戏是公平的.。

概率与统计初步测试题3份

概率与统计初步测试题3份

测试一一、填空题:(每空 4分,共 32 分)1.设,表示两个随机事件,,分别表示它们对立事件,用,和,表示,恰有一个发生的式子为2.从一批乒乓球中任取 4 只检验,设表示“取出的 4 只至少有 1 只是次品”,则对立事件表示3.甲、乙两人同时各掷一枚硬币观察两枚硬币哪面向上。

这个随机试验的样本空间为4.____________________________________ 掷一颗骰子,出现 4点或 2 点的概率等于___________________________________ .5.____________________________________ 甲、乙两个气象合同时作天气预报,如果它们预报准确的概率分别是 0.8 和 0.7,那么在一次预报中,两个气象台都预报准确的概率是___________________________ (设两台独立作预报) .6._______________________________________________ 标准正态变量(0,1)在区间(- 2, 2)内取值的概率为_____________________ .7.作统计推断时,首先要求样本为随机样本,要得到简单随机样本,必须遵从的条件是8.已知随机变量的分布列为则()=_____ .二、选择题:(每小题 5 分,共 25 分)9.在掷一颗骰子的试验中,下列事件和事件为互斥事件的选项是()( A )= {1 ,2} ={1,3,5} (B)={ 2,4, 6}= {1}(C)= {1,5} ={3,5,6} (D)={2,3,4,5}={1,2}10.下面给出的表,可以作为某一随机变量的分布列的是11.对某项试验,重复做了次,某事件出现了次,则下列说法正确的一个是()( A )就是( B )当很大时,与有较大的偏差C )随着试验次数的增大,稳定于( D )随着试验次数的无限增大,与的偏差无限变小。

人教版六年级数学下册期末专项复习统计与概率 测试卷

人教版六年级数学下册期末专项复习统计与概率 测试卷

统计与概率一、仔细审题,填一填。

(每空1分,共25分)1.根据所要描述的情况,填写合适的统计图。

(1)为了直观地看出我国几大河流——长江、黄河、黑龙江、松花江、珠江的长度,应绘制()统计图。

(2)描述小明从一年级到六年级身高变化情况,应绘制()统计图。

(3)描述花园里各种花卉种植面积占总面积的百分比情况,应绘制()统计图。

2.盒子里有大小、形状相同的红球、黄球共20个,任意摸1个球,要摸到红球的可能性大,红球至少要有()个。

3.在92、93、95、93、90、98、94、93、96、91中,平均数是()。

4.晨晨、莹莹、萍萍玩“手心、手背”的游戏,一共有()种可能,三人同时出“手心”的可能性是()。

5.某少年篮球比赛于5月3日开始,第一阶段小组赛中,每小组有5支球队,采用单循环制进行比赛,全小组一共要赛()场。

6. 在一幅条形统计图里,用1厘米长的直条表示20万元,用()厘米长的直条表示30万元,用5厘米长的直条表示()万元。

7.把空气的主要成分按照其体积所占的百分比情况绘制成扇形统计图。

在100升空气中含有()升氧气,()升氮气,含有的氮气比氧气多()升。

8.下面是某地区3月份~9月份水位情况统计图。

(1)该地区3月份~9月份水位最高是()cm,最低是()cm。

8月份的水位是()cm。

(2)7月份以后水位情况的整体变化趋势是()。

(3)()月份至()月份水位持续上涨。

9.思思站在一个路口统计半小时各种车辆通过的数量,并制成了下面的条形统计图,请你根据图中的数据填空:(1)这个路口平均每分钟通过()辆车。

(2)半小时内通过的机动车(包括汽车和摩托车)比非机动车多()%。

10.用“ 一定” “可能”或“不可能”填空。

(1)实心铁球放入水中()会下沉。

(2)如图,平行四边形的高是8 cm,它的面积()是56 cm2,()是80 cm2。

(3)今天开家长会,家长到会率()是110%。

二、火眼金睛,判对错。

专题63 统计与概率专题训练(新高考地区专用)(解析版)

专题63 统计与概率专题训练(新高考地区专用)(解析版)

专题63 统计与概率专题训练一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.小笼包在生活中非常常见,不同地方做出来的小笼包有不同的特色,无锡有一家商铺制作一种一笼有8个且是8种口味的小笼包,这8种口味分别为蟹粉味、鹅肝味、墨鱼味、芝士味、麻辣味,蒜香味、人参味,酱香味,将这样的一笼小包取出,排成一排,则人参味小笼包既与蟹粉味小包相邻又与墨鱼味小笼包相邻的概率为( )。

A 、281B 、161C 、81 D 、72 【答案】A【解析】将这8种口味的小笼包排成一排有88A 种排法,人参味小笼包既与蟹粉味小包相邻又与墨鱼味小笼包相邻有6622A A ⋅种排法,故所求概率为281886622=⋅A A A ,故选A 。

2.组数1a 、2a 、3a 、…、n a 的平均数是x ,方差是2s ,则另一组数121-a 、122-a 、123-a 、…、12-n a 的平均数和方差分别是( )。

A 、12-x ,2sB 、12-x ,22sC 、x 2,2sD 、12-x ,12222++s s 【答案】C【解析】由题意可知,x a E n =)(,2)(s a D n =,+∈N n ,根据数学期望与方差的公式得:121)(2)12(-=-=-x a E a E n n ,222)()2()12(s a D a D n n ==-,故选C 。

3.某校欲从高三年级学生编排的4个歌舞节目和2个小品节目中随机选出3个节目,参加学校举行的”迎新春”文艺汇演,则所选的3个节目中至少有1个是小品节目的概率为( )。

A 、51B 、52 C 、53 D 、54 【答案】D【解析】从6个节目中任选3个共有2036=C 种选法, 至少含有1个小品节目的共有1614222412=⋅+⋅C C C C 种选法, 故所选的3个节目中至少有1个是小品节目的概率为542016=,故选D 。

初中数学统计与概率专题训练50题(含答案)

初中数学统计与概率专题训练50题(含答案)

初中数学统计与概率专题训练50题含参考答案一、单选题1.红河州博物馆拟招聘一名优秀讲解员,其中小华笔试、试讲、面试三轮测试得分分别为90分、94分、92分.综合成绩中笔试占30%、试讲占50%、面试占20%,那么小华的最后得分为()A.92分B.92.4分C.90分D.94分2.一个足球队23名队员的年龄统计结果如下表所示,这个足球队队员年龄的众数,中位数分别是()A.14,15B.14,14C.15,13D.15,153.我校四名跳远运动员在前的10次跳远测试中成绩的平均数相同,方差s2如下表示数,如果要选出一名跳远成绩最稳定的选手参加抚顺市运动会,应选择的选手是()A.甲B.乙C.丙D.丁4.盒子中有白色乒乓球和黄色乒乓球若干个,某同学进行了如下实验:每次摸出一个乒乓球记下它的颜色,如此重复360次,摸出白色乒乓球90次,由此估计摸白色乒乓球的概率为()A.14B.12C.13D.345.下列数据是2019年3月一天某时公布的中国六大城市的空气污染指数情况:则这组数据的中位数和众数分别是()A.162和155B.169和155C .155和162D .102和1556.下列调查中,适合采用全面调查方式的是( ) A .对横锦水库水质情况的调查B .新冠疫情期间,对某高危县市居民的体温进行调查C .某厂生产出的口罩进行质量合格率的调查D .春节期间对某类烟花爆竹燃放安全情况的调查 7.以下调查中,适宜全面调查是( ) A .调查某种灯泡的使用寿命 B .调查某班学生的身高情况 C .调查春节联欢晚会的收视率D .调查我市居民日平均用水量8.一个不透明的箱子里装有红色小球和白色小球共4个,每个小球除颜色外其他完全相同,每次把箱子里的小球摇匀后随机摸出一个小球,记下颜色后再放回箱子里,通过大量的重复实验后,发现摸到红色小球的频率稳定于0.75左右.请估计箱子里白色小球的个数是( ) A .1B .2C .3D .49.在一个不透明的袋子中装有2个红球、1个黄球和1个黑球,这些球的形状、大小、质地等完全相同,若随机从袋子里摸出1个球,则摸出红球的概率是( )A .14B .13C .12D .3410.七个人并成一排照相,如果a 表示甲、乙两人相邻的可能性,b 表示甲、乙两人不相邻的可能性,则( ) A .a b >B .a b <C .a b =D .无法确定11.8名学生的鞋码(单位:原米)由小到大是21,22,22,22,23,23,24,25,则这组数据的众数和中位数是( ) A .23,22B .23,22.5C .22,22D .22,22.512.以下问题,不适合采用全面调查方式的是(). A .调查全班同学对“商合杭”高铁的了解程度 B .春运期间检查旅客的随身携带物品 C .学校竞选学生会干部,对报名学生面试D .了解全市中小学生对“2019年海军阅兵”的知晓程度13.若一组数据1,1,2,3,x 的平均数是2,则这组数据的众数是( ) A .1B .1和3C .1和2D .314.河南省旅游资源丰富,2013~2017年旅游收入不断增长,同比增速分别为:15.3%,12.7%,15.3%,14.5%,17.1%.关于这组数据,下列说法正确的是( )A .中位数是12.7%B .众数是15.3%C .平均数是15.98%D .方差是015.下列说法正确的是( )A .为了解一批电池的使用寿命,应采用全面调查的方式B .数据1x ,2x ,...,n x 的平均数是5,方差是0.2,则数据12x +,22x +,...,2n x +的平均数是7,方差是2.2C .通过对甲、乙两组学生数学成绩的跟踪调查,整理计算得到甲、乙两组数据的方差为20.3s =甲,20.5s =乙,则乙数据较为稳定D .为了解官渡区九年级8000多名学生的视力情况,从中随机选取500名学生的视力情况进行分析,则选取的样本容量为50016.下列结论中:①ABC 的内切圆半径为r ,ABC 的周长为L ,则ABC 的面积是12Lr ;①同时抛掷两枚质地均匀的硬币,两枚硬币全部正面向上的概率为12;①圆内接平行四边形是矩形;①无论p 取何值,方程()()2320x x p ---=总有两个不等的实数根.其中正确的结论有( ) A .4个B .3个C .2个D .1个17.将50个数据分成3组,第一组和第三组的频率之和为0.7,则第二小组的频数是( ) A .0.3B .0.7C .15D .3518.教练准备从甲、乙、丙、丁四个足球队员中选出一个队员去罚点球,四个队员平时训练罚点球的平均命中率x 及方差s 2如表所示:如果要选出一个成绩较好且状态较稳定的队员去执行罚球,那么应选的队员是( )A .甲B .乙C .丙D .丁19.有下列调查:①了解地里西瓜的成熟程度;①了解某班学生完成20道素质测评选择题的通过率;①了解一批导弹的杀伤范围;①了解成都市中学生睡眠情况.其中不适合普查而适合抽样调查的是( )A .①①B .①①①C .①①①D .①①①20.随机掷一枚均匀的硬币两次,至少有一次正面朝上的概率为( ) A .12B .13C .34D .1二、填空题21.为了调查全校学生对购买正版书籍,唱片和软件的支持率,用简单的随机抽样方法,在全校55个班级中抽取8个班级,调查这8个班级所有学生对购买正版书籍,唱片和软件的支持率.在这次调查中,总体是_____,样本是_____,样本容量是_____,抽样方法 _____(填“合理”或“不合理”).22.下表记录了甲、乙、丙、丁四名同学最近几次数学考试成绩的平均数与方差:要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择___________. 23.为完成下列任务,你认为用什么调查方式更合适?(选填“全面调查”或“抽样调查”)(1)了解一批圆珠笔芯的使用寿命________. (2)了解全班同学周末时间是如何安排的________. (3)了解我国八年级学生的视力情况________. (4)了解中央电视台春节联欢晚会的收视率________. (5)了解集贸市场出售的蔬菜中农药的残留情况________.(6)了解里约奥运会100米决赛参赛运动员兴奋剂的使用情况________.24.我市11月份30天的最高气温变化情况如图所示,将1日-15日气温的方差记为21S ,15日-30日气温的方差记为22S .观察统计图,比较21S ,22S 的大小:21S ______22S (填“>、=、<”)25.小张手机月基本费用为18元,某月,他把手机费中各项费用的情况制成扇形统计图(如图),则他该月的基本话费为________元.26.某校为了解学生课外阅读情况,随机调查了50名学生,得到某一天各自课外阅读所用时间,结果如图.根据条形图估计这一天该校学生平均课外阅读时间为______小时.27.甲、乙两名同学投掷实心球,每人投10次,平均成绩为18米,方差分别为S甲2=0.1,S2=0.04,成绩比较稳定的是__(填“甲”或“乙”).乙28.某社区开展“节约每一滴水”活动,为了解开展活动的一个月以来节约用水的情况,从该小区的1000个家庭中选出20个家庭统计了解一个月的节水情况,见下表①请你估计这1000个家庭一个月节约用水的总量大约是________m3.29.某射击运动员在同一条件下的射击结果如下表:根据频率的稳定性,估计这名运动员射击一次时击中靶心的概率是______(结果保留小数点后两位).30.一组数据-3,-2,1,3,6,x的中位数是1,那么这组数据的众数是___________.31.袋中装有大小相同的2个红球和3个绿球,从袋中摸出1个球摸到绿球的概率为___________.32.甲乙两班举行一分钟跳绳比赛,参赛学生每分钟跳绳次数的统计结果如表:某同学分析如表后得到如下结论:①甲,乙两班学生平均成绩相同;①乙班优秀人数多于甲班优秀人数(每分钟跳绳≥110次为优秀);①甲班成绩的波动比乙班大,则正确结论的序号是____.33.质地均匀的正四面体骰子的四个面上分别写有数字:2,3,4,5.投掷这个正四面体两次,则第一次底面上的数字能够整除第二次底面上的数字的概率是________ 34.一组数据为5,7,3,x,6,4. 若这组数据的众数是5,则该组数据的平均数是______.35.转盘中6个扇形的面积相等,任意转动转盘一次,当转盘停止转动,指针落在扇形中的数小于5的概率是________.36.数据-5,3,4,0,1,8,2的极差为_______.37.从1-,23-,0,23,1这五个数字中,随机抽取一个数记为a,则使得关于x的方程213axx+=-的解为正数的概率是______.38.如图,某校根据学生上学方式的一次抽样调查结果,绘制出一个未完成的扇形统计图,若该校共有学生1000人,则根据此估计步行上学的有________人.39.一组数据3,2,3,4,x的平均数是3,则它的方差是_____.40.从如图所示的四个带圆圈的数字中,任取两个数字(既可以是相邻也可以是相对的两个数字)相互交换它们的位置,交换一次后能使①,①两数在相对位置上的概率是________.三、解答题41.某中学举行“校园好声音”歌手大赛,初、高中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校比赛.两个队选出的五名选手的决赛成绩如图所示.(1)根据图示,填写下表:(2)结合两个队的成绩的平均数和中位数,分析哪个队的决赛成绩较好;(3)计算两队成绩的方差,并判断哪一个代表队选手成绩较稳定.42.质量检查员准备从一批产品中抽取10件进行检查,如果是随机抽取,为了保证每件产品被检的机会均等;(1)请采用计算器模拟实验的方法,帮质量检查员抽取被检产品;(2)如果没有计算器,你能用什么方法抽取被检产品?43.某市在,,,,A B C D E五处客流中心存放共享单车,并陆续投放至城区.在D处客流中心存放了甲、乙、丙三种型号的单车,其中甲型号单车500辆.根据单车存放数量绘制了如图1的条形统计图和图2的扇形统计图.图1图2(1)补全条形统计图1,该市在五处客流中心存放共享单车共______辆,这五处客流中心单车存放量的中位数是________千辆;(2)在客流中心D处有_________辆乙型号单车;(3)张华和姐姐准备一起从所住小区每人骑一辆单车去书店.小区门口停放着甲型单车两辆,乙型和丙型单车各一辆,张华认为自己随机选中乙型单车,同时姐姐选中甲型单车的概率是13.张华的说法是否正确?请通过列树状图的方法说明理由.44.为庆祝中国共产党建党100周年,某中学开展“学史明理、学史增信、学史崇德、学史力行”知识竞赛,现随机抽取部分学生的成绩按“优秀”、“良好”、“及格”、“不及格”四个等级进行统计,并绘制了如图所示的扇形统计图和条形统计图(部分信息未给出),根据以上提供的信息,解答下列问题:(1)本次调查共抽取了名学生?(2)①请补全条形统计图;①扇形统计图中表示“及格”的扇形的圆心角度数为°(3)若该校有2400名学生参加此次竞赛,估计这次竞赛成绩为“优秀”和“良好”等级的学生共有多少名?45.小明和小聪最近5次数学测验的成绩如下:小聪:76,84,80,87,73;小明:78,82,79,80,81.哪位同学的数学成绩比较稳定?46.在一个不透明的口袋中装有4个红球,3个白球,2个黄球,每个球除颜色外都相同.(1)请判断下列事件是不确定事件、不可能事件还是必然事件,填写在横线上.①从口袋中任意摸出1个球是白球;①从口袋中任意摸出4个球全是白球;①从口袋中任意摸出1个球是红球或黄球;①从口袋中任意摸出8个球,红、白、黄三种颜色的球都有;(2)请求出(1)中不确定事件的概率.47.佳佳调查了初一600名学生选择课外兴趣班的情况,根据调查结果绘制了统计图的一部分如下:(1)补全条形统计图;(2)求扇形统计图中表示“书法”的扇形圆心角的度数;(3)估计在3000名学生中选择音乐兴趣班的学生人数.48.钟南山院士谈到防护新型冠状病毒肺炎时说:“我们需要重视防护,但也不必恐慌,尽量少去人员密集的场所,出门戴口罩,在室内注意通风,勤洗手,多运动,少熬夜.”某社区为了加强社区居民对新型冠状病毒肺炎防护知识的了解,通过微信群宣传新型冠状病毒肺炎的防护知识,并鼓励社区居民在线参与作答年新型冠状病毒防治全国统一考试全国卷试卷满分100分,社区管理员随机从有400人的某小区抽取40名人员的答卷成绩,根据他们的成绩数据绘制了如下的表格和统计图:根据上面提供的信息,回答下列问题: .a,b=,c=;(1)统计表中的=(2)请补全条形统计图;(3)根据抽样调查结果,请估计该小区答题成绩为“C级”的有多少人?49.在学校组织的迎接建党100周年知识竞赛中,每班参加比赛的人数相同,成绩分为A,B,C,D四个等级,其中相等级的得分依次记为100分,90分,80分,70分.学校将九年级一班和二班的成绩整理并绘制成统计图.(1)根据统计图,求出在此次竞赛中二班成绩为C的人数.(2)①请完成下面的表格:①结合以上统计量,请你从不同角度分析两个班级的成绩.50.某学校八年级举行“垃圾分类,人人有责”的知识测试活动,现从中随机抽取20名学生的测试成绩(满分10分,6分及6分以上为合格)进行整理,得到条形统计图如下:(1)求抽取的学生测试成绩的平均数、众数和中位数;(2)该校八年级共有600名学生参加此次测试活动,试估计八年级参加此次测试的学生成绩合格的人数.参考答案:1.B【分析】根据加权平均数的定义列式计算即可.【详解】解:小华的最后得分为90×30%+94×50%+92×20%=92.4(分),故选:B.【点睛】本题主要考查了加权平均数,解题的关键是掌握加权平均数的定义.2.D【分析】中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),众数是一组数据中出现次数最多的数据,据此判断即可.【详解】解:这组数据中出现次数最多的是15,所以这组数据的众数是15,这组数据中第12个数据是15,所以这组数据的中位数是15,故选:D.【点睛】本题主要考查了众数、中位数的含义和求法,要熟练掌握,解答此题的关键是要明确:将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数,众数是一组数据中出现次数最多的数据.3.D【分析】根据方差的意义进行判断即可.【详解】解:由题意知:丁的方差最小,所以丁的成绩最稳定,应选择的选手是丁,故D 正确.故选:D.【点睛】本题主要考查了方差和平均数,关键是掌握方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.4.A【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,利用概率公式解答即可.【详解】解:估计摸白色乒乓球的概率为901 3604,故选A.【点睛】此题考查利用频率估计概率,解答此题的关键是要计算出口袋中白色球所占的比例即白球的概率.5.A【分析】根据众数和中位数的定义求解即可.一组数据中,出现次数最多的数就叫这组数据的众数.把一组数据按从小到大的数序排列,在中间的一个数字(或两个数字的平均值)叫做这组数据的中位数.【详解】解:由图可得出这组数据中155出现的次数最多,因此,这组数据的众数是155;把这一组数据按从小到大的数序排列,在中间的两个数字是155、169,因此,这组数据的中位数是1691551622+=.故选:A.【点睛】本题考查的知识点是众数以及中位数,掌握众数以及中位数的定义是解此题的关键.6.B【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【详解】解:A、对横锦水库水质情况的调查,适合抽样调查,故本选项不合题意;B、新冠疫情期间,对某高危县市居民的体温进行调查,适合全面调查,故本选项符合题意;C、某厂生产出的口罩进行质量合格率的调查,适合抽样调查,故本选项不合题意;D、春节期间对某类烟花爆竹燃放安全情况的调查,适合抽样调查,故本选项不合题意.故选:B.【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.7.B【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.【详解】解:A、调查某种灯泡的使用寿命,适宜抽样调查,故本选项不符合题意;B、调查某班学生的身高情况,适宜全面调查,故本选项符合题意;C、调查春节联欢晚会的收视率,适宜抽样调查,故本选项不符合题意;D、调查我市居民日平均用水量,适宜抽样调查,故本选项不符合题意;故选:B【点睛】本题考查的是抽样调查和全面调查的区别,熟练掌握选择普查还是抽样调查要根据所要考查的对象的特征灵活选用是解题的关键.一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.8.A【分析】用球的总个数乘以摸到白球的频率即可.【详解】解:估计箱子里白色小球的个数是4(10.75)⨯-=1(个),故选:A.【点睛】本题主要考查利用频率估计概率,大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.9.C【分析】由袋子中装有2个红球,1个黄球,1个黑球,随机从袋子中摸出1个球,这个球是黄球的情况有1种,根据概率公式即可求得答案.【详解】解:①袋子中装有2个红球,1个黄球,1个黑球共2+1+1=4个球,①摸到这个球是红球的概率是1÷2=12.故选:C.【点睛】本题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.10.B【分析】可分析特定情况下a,b的值,比较即可.【详解】若甲站在一排最左边的位置,那么第二个位置可有6个人选择,是乙的只有1种,故a<b.故选B.【点睛】易错点是得到特定情况下两人相邻的情况数和不相邻的情况数.11.D【分析】根据中位数和众数的概念求解即可.【详解】解:数据按从小到大的顺序排列为21,22,22,22,23,23,24,25,所以中位数是22232=22.5;数据22出现了3次,出现次数最多,所以众数是22.故选:D.【点睛】本题考查众数与中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.12.D【分析】根据全面调查和抽样调查的特点对每个选项进行判断即可.【详解】A、调查全班同学对“商合杭”高铁的了解程度,适合采用全面调查,故A项错误;B、春运期间检查旅客的随身携带物品,适合采用全面调查,故B项错误;C、学校竞选学生会干部,对报名学生面试,适合采用全面调查,故C项错误;D、了解全市中小学生对“2019年海军阅兵”的知晓程度,不适合采用全面调查,故D项正确;故选:D.【点睛】本题考查了全面调查和抽样调查的区别,掌握这两种调查方式的特点是解题关键.13.B【分析】先根据算术平均数的定义列出关于x的方程,解之求出x的值,从而还原这组数据,再利用众数的概念求解可得.【详解】解:①数据1,1,2,3,x的平均数是2,①1+1+2+3+x=5×2,解得x=3,则这组数据为1,1,2,3,3,①这组数据的众数为1和3,故选:B .【点睛】本题主要考查众数和算术平均数的求法,解题的关键是掌握算术平均数和众数的概念.14.B【详解】分析:直接利用方差的意义以及平均数的求法和中位数、众数的定义分别分析得出答案.详解:A 、按大小顺序排序为:12.7%,14.5%,15.3%,15.3%,17.1%,故中位数是:15.3%,故此选项错误;B 、众数是15.3%,正确;C 、15(15.3%+12.7%+15.3%+14.5%+17.1%)=14.98%,故选项C 错误; D 、①5个数据不完全相同,①方差不可能为零,故此选项错误.故选B .点睛:此题主要考查了方差的意义以及平均数的求法和中位数、众数的定义,正确把握相关定义是解题关键.15.D【分析】根据普查与抽样调查的区别判断A ,根据平均数的计算方法和方差的计算方法可得出B ,根据方差的意义可得出C ,最后根据样本容量的含义进行分析即可.【详解】为了解一批电池的使用寿命,应采用抽样调查,故A 错误; 由题可得125n x x x n+++=可得,125n x x x n +++=, 所以12+25+27n x x x n n n n n +++==; 因为()()()22212-5-5-50.2n x x x n+++=, 所以()()()22212+2-7+2-7+2-7n x x x n+++,()()()22212-5-5-5=0.2n x x x n +++=.故B 错误;根据方差的意义可知,方差越小越稳定,故C错误;题目中的500确实是样本容量,故D正确;故答案选D.【点睛】本题主要考查了平均数和方差的求解,准确的理解方差意义及样本容量的意义是解题的关键.16.B【分析】①如图1,连接圆心和切点,则可得到垂直关系,此时将图形分割成三个三角形,求三个三角形的面积和即为ABC的面积;①用列举法求此种情况的概率即可;①如图3,根据矩形的判定性质:对角线相等,且互相平分的四边形是矩形,判断其是否为矩形;①根据一元二次方程根的判别式性质判断该方程有几个实数根.【详解】①如图1,连接OE,OD,OF;OA,OB,OC;则OE①AB,OF①AC,OD①BC;①S△ABC=12AB·OE+12BC·OD+12AC·OF①OE=OF=OD=r,AB+BC+AC=l,①S△ABC=12AB·r+12BC·r+12AC·r=2r(AB+BC+AC)=12Lr,①①正确.①列举抛掷两枚硬币所能产生的全部结果,它们是:正正,正反,反正,反反,①满足硬币全部正面向上的概率=14,①①错误.①如图3,①平行四边形ABCD为圆内接平行四边形,①OA=OB=OC=OD,且圆心O是对角线的交点,①BD=2OB=2OC=AC ,①平行四边形ABCD 是矩形,①①正确.①①()()2320x x p ---=,即x 2-5x +6-p 2=0,①△=b 2﹣4ac =(-5)2-4(6-p 2),①△=25-24+4 p 2>0,①无论p 取何值,该方程总有两个不相等的实数根,①①正确,故选:B .【点睛】①本小问考查了三角形内切圆的性质,三角形的面积公式,解答本小问的关键是,充分利用已知条件,将问题转化为求几个三角形面积的和;①本小问考查了用列举法求概率,解答本题的关键是列举出所能产生的全部结果,然后再找出题目所要求的结果数量除以全部结果的数量;①本小问考查了圆的性质,矩形的判定,熟练掌握并运用对角线互相平分且相等的四边形是矩形是解题的关键;①本小问考查了一元二次方程根的判别式,熟练掌握并运用一元二次方程根的判别式是解题的关键(①>0时,有两个不同的实数根;①=0时,有两个相等的实数根;①<0时,无实数根).17.C【分析】根据频率的性质,即各组的频率和是1,求得第二组的频率;再根据频率=频数÷总数,进行计算【详解】根据频率的性质,得第二小组的频率是0.3,则第二小组的频数是50×0.3=15.故选C .【点睛】本题考查频率、频数的关系:频率=数据数据总数.注意:各组的频率和是1.18.C【分析】先比较平均数得到乙和丙成绩较好,然后比较方差得到丙的状态稳定,于是可决定选队员丙去参赛.【详解】解:①乙、丙的平均数比甲、丁大,①应从乙和丙中选,①丙的方差比乙的小,①丙的成绩较好且状态稳定,应选的队员是丙;故选:C.【点睛】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.19.C【分析】根据普查适用的范围小,具有适用性,抽样调查具有代表性,机会均等的原则,不具破坏性的特点依次判断即可.【详解】①了解地里西瓜的成熟程度,不适合普查而适合抽样调查;①了解某班学生完成20道素质测评选择题的通过率,适合普查;①了解一批导弹的杀伤范围,不适合普查而适合抽样调查;①了解成都市中学生睡眠情况,不适合普查而适合抽样调查;故选:C.【点睛】此题考查普查与抽样调查的定义,正确理解两者的关系及各自的特点是解题的关键.20.C【分析】先求出两次掷一枚硬币落地后朝上的面的所有情况,再根据概率公式求解.【详解】随机掷一枚均匀的硬币两次,落地后情况如下:至少有一次正面朝上的概率是34,。

统计和概率经典例题(含答案解析和解析)

统计和概率经典例题(含答案解析和解析)

统计与概率经典例题(含答案及解析)1.(本题8分)为了解学区九年级学生对数学知识的掌握情况,在一次数学检测中,从学区2000名九年级考生中随机抽取部分学生的数学成绩进行调查,并将调查结果绘制成如下图表:⑴表中a和b所表示的数分别为:a= .,b= .;⑵请在图中补全频数分布直方图;⑶如果把成绩在70分以上(含70分)定为合格,那么该学区2000名九年级考生数学成绩为合格的学生约有多少名?2.为鼓励创业,市政府制定了小型企业的优惠政策,许多小型企业应运而生,某镇统计了该镇1﹣5月新注册小型企业的数量,并将结果绘制成如下两种不完整的统计图:(1)某镇今年1﹣5月新注册小型企业一共有家.请将折线统计图补充完整;(2)该镇今年3月新注册的小型企业中,只有2家是餐饮企业,现从3月新注册的小型企业中随机抽取2家企业了解其经营状况,请用列表或画树状图的方法求出所抽取的2家企业恰好都是餐饮企业的概率.3.(12分)一个不透明的口袋装有若干个红、黄、蓝、绿四种颜色的小球,小球除颜色外完全相同,为估计该口袋中四种颜色的小球数量,每次从口袋中随机摸出一球记下颜色并放回,重复多次试验,汇总实验结果绘制如图不完整的条形统计图和扇形统计图.根据以上信息解答下列问题:(1)求实验总次数,并补全条形统计图;(2)扇形统计图中,摸到黄色小球次数所在扇形的圆心角度数为多少度?(3)已知该口袋中有10个红球,请你根据实验结果估计口袋中绿球的数量.4.(本题10分)某校为了解2014年八年级学生课外书籍借阅情况,从中随机抽取了40名学生课外书籍借阅情况,将统计结果列出如下的表格,并绘制成如图所示的扇形统计图,其中科普类册数占这40名学生借阅总册数的40%.类别科普类教辅类文艺类其他册数(本)128 80 m 48(1)求表格中字母m的值及扇形统计图中“教辅类”所对应的圆心角a的度数;(2)该校2014年八年级有500名学生,请你估计该年级学生共借阅教辅类书籍约多少本?5.(10分)将如图所示的版面数字分别是1,2,3,4的四张扑克牌背面朝上,洗匀后放在桌面上(“A”看做是“1”)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学综合作业5 年级班学生姓名:家长签名:
一、选择题
1.某校要了解八年级女生的体重,以掌握她们的身体发育情况,从八年级500名女生中抽出
50名称体重,就这个问题来说,下面说法中正确的是()
A. 500名女生是总体
B. 500名女生是个体
C. 500名女生是总体的一个样本
D. 50是样本容量
2.(2011·南京)为了解某初中学校学生的视力情况,需要抽取部分学生进行调查,下列抽取学生的方法最合适的是( )
A.随机抽取该校一个班级的学生 B.随机抽取该校一个年级的学生
C.随机抽取该校一部分男生
D.分别从该校初一、初二、初三年级中各班随机抽取10%的学生
3.(2011·聊城)下列事件属于必然事件是( )
A.在1个标准大气压下,水加热到100℃沸腾 B.明天我市最高气温为56℃
C.中秋节晚上能看到月亮 D.下雨后有彩虹
4.(2011·常德)在某校艺体节的乒乓球比赛中,李东同学顺利进入总决赛,且个人技艺高超,
有同学预测“李东夺冠的可能性是80%”,对该同学的说法理解正确的是( )
A.李东夺冠的可能性较小 B.李东和他的对手比赛10局时,他一定会赢8局C.李东夺冠的可能性较大 D.李东肯定会赢
5.(2011·成都)为了解某小区“全民健身”活动的开展情况,某志愿者对居住在该小区的50名成年人一周的体育锻炼时间进行了统计,并绘制成如图所示的条形统计图,根据图中提供的信息,这50人一周的体育锻炼的时间的众数和中位数分别是( )
A.6小时、6小时 B.6小时、4小时 C.4小时、4小时 D.4小时、6小时
6.(2011·舟山)班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:
本),绘制了如图折线统计图,下列说法正确的是( )
A.极差是47
B.众数是42
C.中位数是58
D.每月阅读数量超过40的有4个月
7.一组数据x1,x2,x3,x4,x5的平均数是x,另一组数据2x1+5,2x2+5,2x3+5,2x4+5,2x5+5
的平均数是()
A. x
B. 2x
C. 2x+5
D. 10x+25
8.(2011·铜仁)某鞋店一天中卖出运动鞋11双,其中各种尺码的鞋的销售量如下表:
则这11A .25,25 B .24.5,25 C .25,24.5 D .24.5,24.5
9.(2011·鸡西)某工厂为了选拔1名车工参加直径为5 mm 精密零件的加工技术比赛,随机抽
取甲、乙两名车工加工的5个零件,现测得的结果如下表,平均数依次为 x -甲、x -乙,方差依次为S 甲2、S 乙2
A.x -甲<x -乙, S 甲2<S 乙2
B.x 甲=x 乙, S 甲2<S 乙2
C.x -甲=x -乙, S 甲2>S 乙2
D.x -甲>x -乙, S 甲2>S 乙2
10.(2011·枣庄)在围棋盒中有x 颗白色棋子和y 颗黑色棋子,从盒中随机取出一颗棋子,取
得白色棋子的概率是25.如果再往盒中放进6颗黑色棋子,取得白色棋子的概率是14
,则原来盒中有白色棋子( )
A .8颗
B .6颗
C .4颗
D .2颗
11.样本方差的计算式S 2=120
[(x 1-30)2+(x 2-30)]2+…+(x n -30)2]中,数字20和30分别表示样本中的( )
A.众数、中位数
B.方差、标准差
C.样本中数据的个数、平均数
D.样本中数据的个数、中位数
12.数据70、71、72、73的标准差是( )
A.2
B. 2
C. 25
D.4
5 13.已知一组数据:-1,x ,0,1,-2的平均数是0,那么,这组数据的方差是( )
B.2
C.4
D.10
二、填空题
14.(2011·菏泽)在一次信息技术考试中,某兴趣小组8名同学的成绩(单位:分)分别是:
7,10,9,8,7,9,9,8,则这组数据的平均数是____________.
15.(2011·南充)某灯具厂从1万件同批次产品中随机抽取了100件进行质检,发现其中有5
件不合格,估计该厂这一万件产品中不.
合格品约为________件. 16.(2011·成都)某校在“爱护地球·绿化祖国”的创建活动中,组织学生开展植树造林活
动.为了解全校学生的植树情况,学校随机抽查了100名学生的植树情况,将调查数据整理如下表:
则这100
查结果估计该校学生的植树总数是__________棵.
17.(2011·怀化)在一次爱心捐款中,某班有40名学生
拿出自己的零花钱,有捐5元、10元、20元、50元的,
右边扇形统计图反映了不同捐款的人数比例,那么这个班的
学生平均每人捐款_________元.
18.(2011·绍兴)为备战2011年4月11日在绍兴举行的第三届全国皮划艇马拉松赛,甲、乙运动员进行了艰苦的训练,他们在相同条件下各10次划艇成绩的平均数相同,方差分别为0.23,0.20,则成绩较为稳定的是__________(选填“甲”或“乙”).
19.(2011·台州)袋子中装有2个黑球和3个白球,这些球的形状、大小、质地等完全相同.随
机地从袋子中摸出一个球是白球的概率是________.
20.(2011·德州)在4张卡片上分别写有1~4的整数,随机抽取一张后放回,再随机地抽取
一张,那么第二次取出的数字能够整除第一次取出的数字的概率是____________.
21.(2011·烟台)在如图所示的矩形纸片上作随机扎针实验,
则针头扎在阴影区域的概率为__________.
22.(2011·黄石)为响应“红歌唱响中国”活动, 某乡镇举行了一场“红歌”歌咏比赛,组委会规定: 任何一名参赛选手的成绩x 满足:60≤x <100, 赛后整理所有参赛选手的成绩如下表: 根据表中提供的信息得到n =___________
21.必然事件的概率为____,不可能事件的概率为______,不确定事件的概率范围_________.
三、解答题
22. (2011·金华)王大伯几年前承办了甲、乙两片荒山,各栽100棵杨梅树,成活98%,现已挂果,经济效益初步显现,为了分析收成情况,他分别从两山上随意各采摘了4棵树上的杨梅,每棵的产量如折线统计图所示.
(1)分别计算甲、乙两山样本的平均数,
并估算出甲、乙两山杨梅的产量总和;
(2)试通过计算说明,哪个山上的杨梅
产量较稳定?
23.(2011·义乌)为了解某市九年级学生学业考试体育成绩,现从中随机抽取部分学生的体育成绩进行分段(A :50分;B :49-45分;C :44-40分;D :39-30分;E :29-0分)统计如下:
学业考试体育成绩(分数段)统计表
根据上面提供的信息,回答下列问题:
(1)在统计表中,a 的值为_______,b 的值为_________,并将统计图补充完整
(2)甲同学说:“我的体育成绩是此次抽样调查所得数据的中位数. ”请问:甲同学的体育成绩应在什么分数段内?________(填相应分数段的字母)
(3)如果把成绩在40分以上(含40分)定为优秀,那么该市今年10440名九年级学生中体育成
绩为优秀的学生人数约有

24.(2011·河南)为更好地宣传“开车不喝酒,喝酒不开车”的驾车理念,某市一家报社设计了如下的调查问卷(单选).
在随机调查了该市全部5 000名司机中的部分司机后,统计整理并制作了如下的统计图:
根据以上信息解答下列问题:
(1)补全条形统计图,并计算扇形统计图中m =________;
(2)该市支持选项B 的司机大约有多少人?
(3)若要从该市支持选项B 的司机中随机选择100名,给他们发放“请勿酒驾”的提醒标志,则支持该选项的司机小李被选中的概率是多少? 分数段
人数(人) 频率 A
48 0.2 B
a 0.25 C
84 0.35 D
36 b E
12 0.05。

相关文档
最新文档