初三数学上册各章节重要知识点概要
初三数学上册课本知识点总结
初三数学上册课本知识点总结第一章实数1.1 有理数- 整数的意义和整数的运算规则- 分数的概念和性质- 分数的四则运算- 分数的大小比较1.2 无理数- 无理数的概念和性质- 无理数的表示方式- 无理数的大小比较1.3 实数- 实数的定义和性质- 实数的运算性质和运算规则- 实数轴及实数的分类第二章代数式与方程2.1 代数式- 代数式的概念和性质- 代数式的加减法和乘法2.2 一元一次方程- 一元一次方程的定义和解法- 一元一次方程的应用2.3 二元一次方程组- 二元一次方程组的定义和解法2.4 不等式- 不等式的概念和解法- 不等式的性质和运算规则第三章图形的认识3.1 图形及其性质- 点、线、面的概念- 线段、射线、直线的概念和性质- 角的概念和性质3.2 平行与垂直- 平行线的定义和性质- 垂线的定义和性质- 平行线与垂线的判定方法第四章分类数据处理4.1 图表与统计- 图表的构造和表示- 图表的分析和应用4.2 数据的整理与分析- 数据的整理方法- 数据的分析和解读第五章平面与立体图形5.1 计算图形的面积- 矩形、平行四边形、三角形、梯形、圆的面积计算- 常见图形的面积关系5.2 计算图形的体积- 立方体、长方体、棱柱、棱锥、棱台的体积计算- 常见图形的体积关系第六章等式与不等式6.1 数字与代数的应用- 速度、质量、长度等量的度量和单位换算- 速度、质量、长度等量的应用问题6.2 二元一次不等式- 二元一次不等式的解法- 二元一次不等式组的解法6.3 变量、常量及其等式- 变量、常量及其等式的概念和性质- 变量与常量的关系第七章数据的收集与分析7.1 调查与统计- 调查和统计的概念和方法- 样本调查和总体统计的关系7.2 数据的处理与分析- 数据的处理方法- 数据的分析和解读第八章折线与解析几何初步8.1 折线和曲线- 折线、封闭折线、简单曲线的概念和性质- 在平面上的折线和曲线的画法和分析8.2 解析几何初步- 解析几何的基本概念和方法- 点、坐标系、坐标的概念和性质第九章角与三角形9.1 角的概念和性质- 角的度量单位及其换算- 角的分类、角的关系和角的和差9.2 三角形的概念和性质- 三角形的分类及其性质- 三角形的重要定理及其应用以上是初三数学上册课本的主要知识点总结,包括实数、代数式与方程、图形的认识、分类数据处理、平面与立体图形、等式与不等式、数据的收集与分析、折线与解析几何、角与三角形等内容。
初三数学上册全部知识点
初三数学上册全部知识点初中数学上册共有八个单元,涵盖了各种数学知识和技能。
下面是每个单元的知识点的概述,以帮助你进行详细的学习和复习。
1.有理数-有理数的概念、表达和性质-有理数的加减乘除运算-有理数的大小比较和绝对值-有理数的混合运算和分数形式-有理数的倒数和数轴的表示2.整式与方程-整式的概念和运算法则-整式的最简、相等与合并-一元一次方程式的概念和解法-一元一次方程式的列式和应用-一元一次方程组的解法3.比与比例-比的概念和比的大小-有理数的比例和比例的性质-比例与百分数的关系-比例线段在图形中的应用-比例方程式和比例的解法4.几何定理-平行线及其性质-三角形内角和定理-直角三角形及其性质-勾股定理和三角形的判定-平行四边形及其性质5.数据图表与统计-数据和统计的概念-数据的收集、整理和表示-数据图表的绘制和分析-数据的平均数、中位数和众数-数据的可变性和相关性6.两步一元一次方程-一元一次方程的概念和解法-两步一元一次方程的解法-几何问题中的一元一次方程-一元一次方程与比例的关系-一元一次方程组的解法和应用7.几何变换-平移、旋转、翻转和对称的概念-平移、旋转、翻转和对称的性质-几何图形的等价判定和构造-几何变换在图形中的应用-几何变换对坐标的影响8.分式-分式的概念和性质-分式的加减乘除运算-分式的最简化和合并-分式的化简和乘法公式-分式在实际问题中的应用希望这些知识点的概述能够帮助你进行复习和学习,但建议你查阅相关的教材和参考书籍来获取更详细和准确的知识。
九年级数学上册各章知识点
九年级数学上册各章知识点九年级数学上册是初中阶段数学学习的关键一年,它涵盖了许多重要的数学知识点。
本文将以探索的方式,介绍九年级数学上册各章的知识点,帮助学生系统了解和巩固数学知识。
一、整式与分式整式与分式是数学中基础而重要的概念。
整式是指只包含整数次幂的代数式,它可以进行四则运算。
分式是指以分数形式表示的代数式,它在求解实际问题中起着重要作用。
二、一元一次方程与不等式一元一次方程与不等式是描述数与数之间关系的数学工具。
学生需要学会如何根据实际问题列方程与不等式,并用解法求解。
三、平面直角坐标系与图形的认识平面直角坐标系是描述平面上点的位置的工具。
学生需要学习如何在坐标系中表示点、直线和图形,并通过坐标关系解决几何问题。
四、实数与平方根实数是数学中最基本的数,包括有理数和无理数。
平方根是指一个数的二次方等于给定数的非负根。
学生需要理解实数和平方根的性质,掌握它们的运算规则。
五、多项式多项式是由若干项组成的代数式。
学生需要了解多项式的定义、系数、次数等基本概念,并掌握多项式的加减乘除等运算。
六、平面几何初步平面几何是研究平面上图形、角等性质的数学学科。
学生需要学习如何计算图形的面积、周长,以及判断图形是否相似、全等等基本技巧。
七、实数的近似数和误差实数的近似数与误差是数学中的实用工具。
学生需要掌握如何利用近似数进行计算,并理解近似数的误差及误差的处理方法。
八、二次根式二次根式是指以根号形式表示的一类代数式。
学生需要学习如何化简、加减乘除以及应用二次根式解决实际问题。
九、平面向量初步平面向量是用于描述平面上有大小和方向的量。
学生需要理解向量的概念、表示方法以及向量的加减法等基本操作。
十、整式的因式分解整式的因式分解是将一个复杂的整式分解为若干个乘积的简单整式。
学生需要学习因式定理、提公因式法等因式分解的方法,并能应用于解题。
通过对九年级数学上册各章的知识点的探索,我们可以看到数学是一个系统构建的学科,各章知识点之间有着密切的联系。
九年级上册数学一到三章知识点
九年级上册数学一到三章知识点在九年级上册的数学课程中,我们将学习数学的一到三章内容。
这些知识点为我们打下了坚实的数学基础,同时也为我们将来的学习奠定了良好的基础。
让我们来一起回顾一下这些重要的数学知识点。
一、有理数在数学的第一章中,我们学习了有理数的概念和运算。
有理数包括整数和分数,它们可以用来表示各种实际生活中的量。
在运算方面,我们学会了有理数的加法、减法、乘法和除法。
同时,我们还学习了数轴的概念,通过数轴可以直观地表示有理数的大小关系。
二、代数式与方程式在第二章中,我们进一步学习了代数式与方程式。
代数式包括常数、变量和运算符号,通过代数式可以表达各种关系式。
我们学习了如何进行代数式的化简和展开,以及如何对代数式进行加法、减法和乘法运算。
方程式是一个等式,其中包含未知数。
我们学习了如何解一元一次方程和解一元一次不等式,并且应用它们解决实际问题。
三、平面直角坐标系与图形的性质在第三章中,我们学习了平面直角坐标系与图形的性质。
平面直角坐标系是一个二维空间,通过x轴和y轴可以唯一确定一个点的位置。
我们学会了如何在平面直角坐标系中表示点的坐标,以及如何计算两点之间的距离。
此外,我们学习了不同类型的图形,包括点、线、线段、射线、角等,以及它们的性质和特点。
以上是九年级上册数学一到三章的主要知识点。
通过对这些知识点的学习,我们不仅扩大了数学的视野,还培养了我们的逻辑思维和问题解决能力。
数学的学习不仅仅是为了应对考试,更重要的是培养我们的数学思维和创造力。
因此,我们要积极主动地参与课堂讨论和思考,将所学的知识应用到实际问题中去。
此外,我们还可以通过参加数学竞赛、解题讨论和辅导班等方式进一步提高数学水平。
数学是一门需要不断思考和实践的科学,只有通过不断地练习和探索,我们才能真正理解数学的本质和魅力。
总结起来,九年级上册的数学课程涵盖了有理数、代数式与方程式以及平面直角坐标系与图形的性质等知识点。
通过对这些知识点的学习,我们将掌握基本的数学概念和运算法则,培养逻辑思维和问题解决能力,并为将来的学习打下坚实的基础。
九年级数学上册知识点总结
2021/11/14
1
第21章 一元二次方程
1.一元二次方程:等号两边都是整式,只含有一个未知数(一元),并且未知 数的最高次数是2(二次).
一般形式:ax2+bx+c=0 (a≠0)
• 二次项:ax2
• 二次项系数:a
• 一次项:bx
• 一次项系数:b
• 常数项:c
2.根:一元二次方程的解
个图形重合,那么就说这两个图形关于这个点对称或中心对称
• 对称中心:O 对称点:旋转后能够重合的对应点 •4
2021/11/14
12
23章 旋转
• 5.中心对称图形:把一个图形绕着某一点O旋转180°,旋转后的图形
能够与原来的图形重合,那么这个图形就是中心对称图形
• 6.关于原点对称的点的坐标
• P(x,y)
减小
增大
<0
向下
y轴
原点
y随x增大而 y随x增大而
增大
减小
2021/11/14
7
22章 二次函数
• 3.y=a(x-h)2+k的图象和性质(与y=ax2具有相同的形状)
a
ห้องสมุดไป่ตู้
开口 h>0
h<0
k>0
k<0
顶点 对称轴 对称轴 对称轴
左侧 右侧
>0
向上 右移 左移 上移 下移 (h,k) x=k
y随x增 y随x增
2021/11/14
20
24章 圆
•
2021/11/14
21
概率初步
•
2021/11/14
22
2021/11/14
数学九年级上册每章知识点
数学九年级上册每章知识点第一章:有理数1. 有理数的概念和分类- 有理数的定义- 正数、负数和零的分类- 有理数的大小比较2. 有理数的加法和减法- 有理数的加法原则- 有理数的减法原则3. 有理数的乘法和除法- 有理数的乘法原则和性质- 有理数的除法原则和性质4. 有理数的运算性质- 加法和减法的交换律、结合律和分配律- 乘法和除法的交换律、结合律和分配律第二章:线性方程和一次不等式1. 变量和代数式- 变量的概念- 代数式的概念和性质2. 一元一次方程- 一元一次方程的定义和基本形式- 解一元一次方程的方法3. 一元一次不等式- 一元一次不等式的定义和基本形式- 解一元一次不等式的方法4. 实际问题与一元一次方程或不等式- 将实际问题转化成一元一次方程或不等式- 解决实际问题的步骤和方法第三章:多项式与因式分解1. 代数式的加减法- 代数式的加法原则和性质- 代数式的减法原则和性质2. 一元多项式- 一元多项式的定义和基本形式- 一元多项式的加减法原则3. 一元多项式的乘法- 一元多项式的乘法原则和性质- 一元多项式的乘法公式4. 因式分解- 因式分解的定义和基本方法- 因式分解的应用第四章:平面直角坐标系与图形初步1. 平面直角坐标系- 平面直角坐标系的概念和构造- 坐标表示和坐标轴上的点2. 点、线和线段- 点的坐标和图形的位置关系- 直线和线段的定义和表示3. 直角和垂线- 直角的概念和判定条件- 垂线的概念和判定条件4. 三角形和四边形- 三角形的分类和性质- 四边形的分类和性质第五章:相似与全等1. 平行线与比例- 平行线的概念和判定条件- 比例的概念和性质2. 相似三角形- 相似三角形的定义和判定条件- 相似三角形的性质和应用3. 全等三角形- 全等三角形的定义和判定条件- 全等三角形的性质和应用4. 相似和全等图形的应用- 利用相似和全等图形求解实际问题- 利用相似和全等图形进行图形的设计以上是数学九年级上册每章的知识点概述。
九年级数学上册每章知识点
九年级数学上册每章知识点九年级数学上册涵盖了许多重要的数学知识点,这些知识将为学生们打下坚实的数学基础,为高中阶段的学习做好准备。
在本文中,我们将对每章的重点知识点进行简要介绍,帮助同学们更好地理解和掌握。
1. 实数与整式本章主要介绍了实数的定义和基本性质,同时讲解了整式的概念和运算法则。
通过对实数和整式的学习,同学们将能够熟练进行实数的加减乘除运算,并能够将复杂的整式进行简化。
2. 一次函数与二次函数这一章的重点是一次函数和二次函数的图像特征和性质。
同学们将学习如何根据给定的函数式绘制函数的图像,并能够通过图像来判断函数的增减性、极值、零点等重要属性。
3. 三角形与相似三角形是几何学中的基本概念,本章将讲解三角形的定义和性质,包括等腰三角形、等边三角形等特殊三角形的特点。
此外,同学们还将学习到相似三角形的判定方法和性质,并能够运用相似三角形的特性解决实际问题。
4. 平行线与比例平行线与比例是几何学中重要的概念,本章将介绍平行线之间的性质和判定方法,以及解决平行线相关问题的技巧。
同时,同学们还将学习比例的定义和性质,并能够应用比例进行解题。
5. 线性方程与不等式这一章主要介绍线性方程和线性不等式的解法和性质。
同学们将学习如何通过加减乘除等运算找到方程的解,并能够应用代入法等方法检验解的正确性。
同时,还将学习如何解决带有绝对值符号的方程和不等式。
6. 图形的旋转与对称本章将讲解平面上的图形在旋转和对称时的变化规律和性质。
同学们将学习如何通过规则的旋转和对称变换将一个图形变成另一个图形,并能够利用变换的特性解决相关的几何问题。
7. 平方根与立方根平方根和立方根是九年级数学中的重要知识点,本章将对平方根和立方根的定义和性质进行详细介绍,并教授同学们如何使用计算器求解平方根和立方根的近似值。
8. 数列与数列求和数列是数学中常见的概念,本章将介绍数列的定义和常见数列的特点,如等差数列、等比数列等。
同时,同学们将学习数列求和的方法,包括等差数列的求和公式和等比数列的部分和公式。
九年级上册数学知识点归纳
九年级上册数学知识点归纳一、代数基础1.1 代数式与多项式•代数式的概念和基本性质•多项式的定义、次数、最高次项、最高次系数和降次1.2 整式运算•基本运算法则(加、减、乘、除)•多项式的因式分解1.3 方程与不等式•一元一次方程的定义、解法及应用一元二次方程的定义、解法及应用•一元一次不等式和一元二次不等式的定义、解法及应用二、平面几何2.1 点、直线、角、三角形•点、直线、射线、线段的定义•角的概念、性质和分类•三角形的定义、分类、性质(三角形角度定理、三角形边长关系定理)2.2 四边形和多边形•四边形的定义、性质(平行四边形、菱形、矩形、正方形、梯形)•多边形的定义和性质(对称性、全等性、相似性)2.3 圆的基本性质•圆的定义、圆心、半径、直径、弦、弧、圆周角•圆的切线和切点的概念和性质三、立体几何3.1 空间图形的概念和性质•空间图形的分类(点、线、面、体)•空间图形的基本性质(包括线段长度、角度大小、面积和体积)3.2 空间坐标系的建立和应用•空间坐标系的建立(右手法则)•空间坐标系中点、距离、中点公式、斜率公式3.3 空间几何体的计算•立体图形的表面积和体积的计算方法(包括长方体、正方体、棱锥、棱台、球)四、数与函数4.1 实数的概念和性质•实数的分类、基本性质(包括代数性质、有序性、完备性)4.2 一次函数的概念和性质•一次函数的定义、函数图像、图像特征、斜率、截距、变化规律和应用4.3 二次函数的概念和性质•二次函数的定义、函数图像、图像特征、参数的关系及其应用•二次函数解析式的确定方法五、统计与概率5.1 数据的收集和整理•数据的收集方法及其优缺点•数据的整理方法(频率分布表、直方图、折线图、饼图)5.2 概率的概念和基本性质•随机性和概率、概率的基本性质•事件及其概率的计算方法、频率和概率5.3 统计量•数值型数据的统计量(包括极差、平均数、中位数、众数、标准差)•统计推断的基本思想和应用(区间估计、假设检验)以上是九年级上学期数学知识点的归纳,希望对大家有所帮助。
浙教版九上数学知识点归纳总结
浙教版九上数学知识点归纳总结# 浙教版九年级上册数学知识点归纳总结## 第一章:数与式### 1.1 整式- 整式的概念:由数和字母的乘积组成的代数式。
- 单项式:只含有一个字母的整式。
- 多项式:由多个单项式相加或相减组成的整式。
### 1.2 因式分解- 提取公因式法:找出多项式中所有项的公共因子并提取出来。
- 公式法:利用已知的代数公式进行因式分解。
### 1.3 分式- 分式的概念:分子和分母都是整式的有理表达式。
- 分式的加减:需要通分后进行。
- 分式的乘除:分子乘分子,分母乘分母。
## 第二章:方程与不等式### 2.1 一元一次方程- 解法:移项、合并同类项、系数化为1。
### 2.2 一元二次方程- 解法:直接开平方法、配方法、公式法、因式分解法。
### 2.3 不等式- 不等式的概念:表达式两边不等关系的数学表达。
- 解法:移项、合并同类项、系数化为1。
## 第三章:函数### 3.1 函数的概念- 函数的定义:对于集合A中的每个元素x,都有集合B中唯一确定的元素y与之对应。
### 3.2 一次函数- 一次函数的表达式:\( y = kx + b \)。
- 图像:一条直线。
### 3.3 二次函数- 二次函数的表达式:\( y = ax^2 + bx + c \)。
- 图像:一个开口向上或向下的抛物线。
## 第四章:几何基础### 4.1 线段与角- 线段的性质:两点之间的最短距离。
- 角的分类:锐角、直角、钝角、平角、周角。
### 4.2 三角形- 三角形的分类:按边分等腰、等边、不等边;按角分锐角、直角、钝角。
### 4.3 四边形- 四边形的分类:平行四边形、矩形、菱形、正方形。
## 第五章:图形的变换### 5.1 平移- 平移的性质:图形的形状和大小不变,位置改变。
### 5.2 旋转- 旋转的性质:图形的形状和大小不变,方向改变。
### 5.3 对称- 对称的性质:图形关于某条直线或点对称。
九年级上册数学全章知识点
九年级上册数学全章知识点数学作为一门重要的学科,是培养学生思维能力和逻辑推理的关键学科之一。
九年级上册的数学课程是学生进一步巩固和拓展其数学基础的阶段。
本文将依次介绍九年级上册的数学知识点,帮助学生更好地掌握这些知识。
一、有理数有理数是整数和分数的统称,包括正整数、负整数、零以及正分数和负分数。
在九年级上册数学中,学生将深入学习有理数的加法、减法、乘法和除法运算,掌握有理数间的大小比较,并通过实际问题应用有理数。
二、比例与比例的应用比例是指两个量之间的关系。
九年级上册的数学中,学生将学习如何求解比例,并应用比例解决实际生活中的问题,如图形的相似、利润的计算等。
三、平面图形的性质九年级上册数学中,学生将深入学习平面图形的性质,包括多边形、圆和角的概念、性质以及计算。
此外,学生还将学习到如何画出简单的几何图形、如何计算图形的面积和周长等。
四、一次函数与方程一次函数是指自变量的最高次数为1的函数。
九年级上册数学中,学生将学习一次函数与方程的概念、性质以及一次函数的图象。
通过解决一次函数与方程相关的实际问题,学生将培养解决实际问题的能力。
五、数据分析数据分析是数学中的重要内容之一,也是九年级上册的数学课程内容。
学生将学习如何整理、统计、分析并呈现数据,如制作简单的柱状图、折线图等。
通过数据分析,学生将了解到数据的规律和背后的趋势。
六、立体图形的性质立体图形指的是有三个维度的图形,如球体、圆柱体、圆锥体等。
九年级上册的数学中,学生将学习立体图形的性质,包括面的数量、边的数量以及顶点的数量等。
通过立体图形的学习,学生将培养空间想象力和几何解决问题的能力。
七、概率与统计概率与统计是数学中的重要分支,也是九年级上册数学的一部分。
学生将学习如何计算概率,并通过统计数据做出合理的判断。
学生将从实际问题中了解到概率与统计的应用和重要性。
八、数列与数学归纳法数列是按照一定规律排列的数的序列。
九年级上册的数学中,学生将学习数列的概念、性质以及求解等。
九年级上册数学知识点总结(最新最全)
九年级上册数学知识点总结(最新最全)单元1:整数- 整数的概念- 整数的比较和运算法则- 整数的加减乘除运算- 整数的乘方运算- 整数的分数和小数的关系单元2:有理数- 有理数的概念- 有理数的相反数和绝对值- 有理数的加减运算法则- 有理数的乘除运算法则- 有理数的幂运算- 有理数的分数和小数的关系单元3:代数式与整式- 代数式与整式的概念- 代数式的运算法则- 整式的合并同类项和提取公因式- 整式的加减运算- 整式的乘除运算单元4:一元一次方程与一次不等式- 一元一次方程的概念- 一元一次方程的解的性质- 列方程解问题- 一元一次不等式的概念- 一元一次不等式的解的性质单元5:图形的基本概念与性质- 平面直角坐标系- 点、线、面的基本概念- 图形的相似形与全等形- 图形的位置关系和判定- 图形的旋转、平移和翻折单元6:图形的表示与变换- 图形的平移和旋转表示- 图形的对称变换表示- 图形的全等判定和性质- 图形变换的综合应用单元7:函数的概念与表示- 函数的概念- 函数的自变量和函数值- 函数的表示方法- 函数的性质- 函数的实际应用单元8:一元一次函数- 一元一次函数的概念- 一元一次函数的函数图象- 一元一次函数的性质- 一元一次函数的应用以上是九年级上册数学的知识点总结,包括整数、有理数、代数式与整式、一元一次方程与一次不等式、图形的基本概念与性质、图形的表示与变换、函数的概念与表示以及一元一次函数。
希望对你的学习有所帮助!。
初三数学上册章节重要知识点总结
初三数学上册章节重要知识点总结初三数学上册章节重要知识点总结在现实学习生活中,看到知识点,都是先收藏再说吧!知识点有时候特指教科书上或考试的知识。
哪些知识点能够真正帮助到我们呢?以下是小编为大家收集的初三数学上册章节重要知识点总结,欢迎阅读,希望大家能够喜欢。
初三数学上册章节重要知识点总结篇1三角形的外心定义:外心:是三角形三条边的垂直平分线的交点,即外接圆的圆心。
外心定理:三角形的三边的垂直平分线交于一点。
该点叫做三角形的外心。
三角形的外心的性质:1、三角形三条边的垂直平分线的交于一点,该点即为三角形外接圆的圆心;2、三角形的外接圆有且只有一个,即对于给定的三角形,其外心是的,但一个圆的内接三角形却有无数个,这些三角形的外心重合;3、锐角三角形的外心在三角形内;钝角三角形的外心在三角形外;直角三角形的外心与斜边的中点重合。
在△ABC中4、OA=OB=OC=R5、∠BOC=2∠BAC,∠AOB=2∠ACB,∠COA=2∠C BA6、S△ABC=abc/4R初三数学上册章节重要知识点总结篇2第21章二次根式1、二次根式:一般地,式子叫做二次根式。
注意:(1)若这个条件不成立,则不是二次根式;(2)是一个重要的非负数,即;≥0。
2、重要公式:3、积的算术平方根:积的算术平方根等于积中各因式的算术平方根的积;4、二次根式的乘法法则:。
5、二次根式比较大小的方法:(1)利用近似值比大小;(2)把二次根式的系数移入二次根号内,然后比大小;(3)分别平方,然后比大小。
6、商的算术平方根:,商的算术平方根等于被除式的算术平方根除以除式的算术平方根。
7、二次根式的除法法则:分母有理化的方法是:分式的分子与分母同乘分母的有理化因式,使分母变为整式。
8、最简二次根式:(1)满足下列两个条件的二次根式,叫做最简二次根式,①被开方数的因数是整数,因式是整式,②被开方数中不含能开的尽的因数或因式;(2)最简二次根式中,被开方数不能含有小数、分数,字母因式次数低于2,且不含分母;(3)化简二次根式时,往往需要把被开方数先分解因数或分解因式;(4)二次根式计算的最后结果必须化为最简二次根式。
初三数学上册章节主要知识点归纳
初三数学上册章节主要知识点归纳初三数学上册章节主要知识点归纳第一章实数一、重要概念1.数的分类及概念数系表:说明:“分类”的原则:1相称不重、不漏2有标准2.非负数:正实数与零的统称。
表为:x≥0性质:若干个非负数的和为0,则每个非负数均为0。
3.倒数:①定义及表示法②性质:A.a≠1/aa≠±1;B.1/a中,a≠0;C.01;a1时,1/a1;D.积为1。
4.相反数:①定义及表示法②性质:A.a≠0时,a≠-a;B.a与-a在数轴上的位置;C.和为0,商为-1。
5.数轴:①定义“三要素”②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。
6.奇数、偶数、质数、合数正整数—自然数定义及表示:奇数:2n-1偶数:2nn为自然数7.绝对值:①定义两种:代数定义:几何定义:数a的绝对值顶的几何意义是实数a在数轴上所对应的点到原点的距离。
②│a│≥0,符号“││”是“非负数”的标志;③数a 的绝对值只有一个;④处理任何类型的题目,只要其中有“││”出现,其关键一步是去掉“││”符号。
二、实数的运算1. 运算法则加、减、乘、除、乘方、开方2. 运算定律五个—加法[乘法]交换律、结合律;[乘法对加法的]分配律3. 运算顺序:A.高级运算到低级运算;B.同级运算从“左”到“右”如5÷ ×5;C.有括号时由“小”到“中”到“大”。
三、应用举例略附:典型例题1. 已知:a、b、x在数轴上的位置如下图,求证:│x-a│+│x-b│=b-a.2.已知:a-b=-2且ab0,a≠0,b≠0,判断a、b的符号。
第二章代数式★重点★代数式的有关概念及性质,代数式的运算☆内容提要☆一、重要概念分类:1.代数式与有理式用运算符号把数或表示数的字母连结而成的式子,叫做代数式。
单独的一个数或字母也是代数式。
整式和分式统称为有理式。
2.整式和分式含有加、减、乘、除、乘方运算的代数式叫做有理式。
九级上册数学知识点总结
九级上册数学知识点总结Let's learn positive psychology to make our life happier.九年级上册数学知识点总结归纳2第二十一章一元二次方程第二十二章二次函数第二十三章旋转第二十四章圆第二十五章概率初步第二十一章一元二次方程知识点1:一元二次方程的概念一元二次方程:只含有一个未知数,未知数的最高次数是2,且系数不为 0,这样的方程叫一元二次方程.一般形式:ax2+bx+c=0a≠0.注意:判断某方程是否为一元二次方程时,应首先将方程化为一般形式.知识点2:一元二次方程的解法1.直接开平方法:对形如x+a2=b b≥0的方程两边直接开平方而转化为两个一元一次方程的方法.X+a=±b∴1x=-a+b2x=-a-b2.配方法:用配方法解一元二次方程:ax2+bx+c=0k≠0的一般步骤是:①化为一般形式;②移项,将常数项移到方程的右边;③化二次项系数为1,即方程两边同除以二次项系数;④配方,即方程两边都加上一次项系数的一半的平方;化原方程为x+a2=b的形式;⑤如果b≥0就可以用两边开平方来求出方程的解;如果b<0,则原方程无解.3.公式法:公式法是用求根公式求出一元二次方程的解的方法.它是通过配方推导出来的.一元二次方程的求根公式是a acbbx24 2-±-=b2-4ac≥0.步骤:①把方程转化为一般形式;②确定a,b,c的值;③求出b2-4ac的值,当b2-4ac≥0时代入求根公式.4.因式分解法:用因式分解的方法求一元二次方程的根的方法叫做因式分解法.理论根据:若ab=0,则a=0或b=0.步骤是:①将方程右边化为0;②将方程左边分解为两个一次因式的乘积;③令每个因式等于0,得到两个一元一次方程乘积的形式,解这两个一元一次方程,它们的解就是原一元二次方程的解.因式分解的方法:提公因式、公式法、十字相乘法.5.一元二次方程的注意事项:⑴在一元二次方程的一般形式中要注意,强调a≠0.因当a=0时,不含有二次项,即不是一元二次方程.⑵应用求根公式解一元二次方程时应注意:①先化方程为一般形式再确定a,b,c的值;②若b2-4ac<0,则方程无解.⑶利用因式分解法解方程时,方程两边绝不能随便约去含有未知数的代数式.如-2x+42 =3x+4中,不能随便约去x+4.⑷注意:解一元二次方程时一般不使用配方法除特别要求外但又必须熟练掌握,解一元二次方程的一般顺序是:开平方法→因式分解法→公式法.6.一元二次方程解的情况⑴b2-4ac≥0⇔方程有两个不相等的实数根;⑵b2-4ac=0⇔方程有两个相等的实数根;⑶b2-4ac≤0⇔方程没有实数根.解题小诀窍:当题目中含有“两不等实数根”“两相等实数根”“没有实数根”时,往往首先考虑用b2-4ac解题.主要用于求方程中未知系数的值或取值范围.知识点3:根与系数的关系:韦达定理对于方程ax 2+bx+c=0a ≠0来说,x1 +x2 =—a b ,x1●x2= a c.利用韦达定理可以求一些代数式的值式子变形,如2122122212)(x x x x x x-+=+21212111x x x x x x +=+.解题小诀窍:当一元二次方程的题目中给出一个根让你求另外一个根或未知系数时,可以用韦达定理. 知识点4:一元二次方程的应用 一、考点讲解:1.构建一元二次方程数学模型,常见的模型如下:⑴ 与几何图形有关的应用:如几何图形面积模型、勾股定理等; ⑵ 有关增长率的应用:此类问题是在某个数据的基础上连续增长降低两次得到新数据,常见的等量关系是a1±x2=b,其中a 表示增长降低前的数据,x 表示增长率降低率,b 表示后来的数据.注意:所得解中,增长率不为负,降低率不超过1.⑶ 经济利润问题:总利润=单件销售额-单件成本×销售数量;或者,总利润=总销售额-总成本.⑷ 动点问题:此类问题是一般几何问题的延伸,根据条件设出未知数后,要想办法把图中变化的线段用未知数表示出来,再根据题目中的等量关系列出方程.2.注重解法的选择与验根:在具体问题中要注意恰当的选择解法,以保证解题过程简洁流畅,特别要对方程的解注意检验,根据实际做出正确取舍,以保证结论的准确性. 一元二次方程与实际问题1、病毒传播问题2、树干问题3、握手问题单循环问题4、贺卡问题双循环问题5、围栏问题6、几何图形道路、做水箱7、增长率、降价率问题8、利润问题注意减少库存、让顾客受惠等字样9、数字问题10、折扣问题第二十二章二次函数一、二次函数概念:1.二次函数的概念:一般地,形如2=++a b cy ax bx ca≠的函数,,,是常数,0叫做二次函数. 这里需要强调:和一元二次方程类似,二次项系数0a≠,而b c,可以为零.二次函数的定义域是全体实数.2. 二次函数2y ax bx c=++的结构特征:⑴等号左边是函数,右边是自变量x的二次式,x的最高次数是2.⑵a b c,,是常数,a是二次项系数,b是一次项系数,c是常数项.二、二次函数的基本形式1. 二次函数基本形式:2=的性质:y axa 的绝对值越大,抛物线的开口越小.2.2y ax c=+的性质: 上加下减.3.()2y a x h =-的性质:左加右减.4. ()2y a x h k=-+的性质:三、二次函数图象的平移 1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k=-+,确定其顶点坐标 ;⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左 右 ,上 下 ”. 方法二:⑴c bx ax y ++=2沿y 轴平移:向上下平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2或m c bx ax y -++=2⑵c bx ax y ++=2沿轴平移:向左右平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2或c m x b m x a y +-+-=)()(2四、二次函数()2y a x h k=-+与2y axbx c =++的比较从解析式上看,()2y a x h k=-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a-⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a-=-=,.五、二次函数2y axbx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,若与x 轴没有交点,则取两组对称轴对称的点. 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.六、二次函数2y axbx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2b x a=-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,. 当2b x a<-时,y 随x 的增大而减小;当2b x a>-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a -.2. 当0a <时,抛物线开口向下,对称轴为2b x a=-,顶点坐标为2424b ac b aa ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而增大;当2bx a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a -.七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++a ,b ,c 为常数,0a ≠; 2. 顶点式:2()y a x h k =-+a ,h ,k 为常数,0a ≠;3. 两根式两点式:12()()y a x x x x =--0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标.注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系 1. 二次项系数a二次函数2y axbx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大;⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小.2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02b a -<,即抛物线的对称轴在y 轴左侧; 当0b =时,02b a -=,即抛物线的对称轴就是y 轴; 当0b <时,02ba->,即抛物线对称轴在y 轴的右侧.⑵ 在0a <的前提下,结论刚好与上述相反,即当0b >时,02b a ->,即抛物线的对称轴在y 轴右侧; 当0b =时,02b a -=,即抛物线的对称轴就是y 轴; 当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧.总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异” 总结:3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正;⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0;⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负.总结起来,c 决定了抛物线与y 轴交点的位置.总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的. 二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大小值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达1. x 轴对称 2y axbx c =++x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+x 轴对称后,得到的解析式是()2y a x h k =---;2. y 轴对称 2y axbx c =++y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+y 轴对称后,得到的解析式是()2y a x h k =++;3. 原点对称 2y axbx c =++原点对称后,得到的解析式是2y ax bx c =-+-;()2y a x h k=-+原点对称后,得到的解析式是()2y a x h k=-+-;4. 顶点对称即:抛物线绕顶点旋转180°2y ax bx c =++顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k=-+顶点对称后,得到的解析式是()2y a x h k=--+.5. 点()m n ,对称()2y a x h k=-+点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线或表达式已知的抛物线的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系二次函数与x 轴交点情况:一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况.图象与x 轴的交点个数: ① 当240bac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-=.② 当0∆=时,图象与x 轴只有一个交点; ③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2'当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <.2. 抛物线2y axbx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程; ⑵ 求二次函数的最大小值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数2y axbx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标.与二次函数有关的还有二次三项式,二次三项式2(0)++≠本身就是所含ax bx c a字母x的二次函数;下面以0a>时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:图像参考:y=-2x22y=3(x+4)2(x-2)2y=3x2y=-2(x-3)2十一、函数的应用二次函数应用⎧⎪⎨⎪⎩刹车距离何时获得最大利润最大面积是多少二次函数考查重点与常见题型1.考查二次函数的定义、性质,有关试题常出现在选择题中,如:已知以x 为自变量的二次函数2)2(22--+-=m m x m y 的图像经过原点, 则m 的值是2-322.综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为选择题,如:如图,如果函数b kx y +=的图像在第一、二、三象限内,那么函数12-+=bx kx y 的图像大致是xA B C D3.考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如:已知一条抛物线经过0,3,4,6两点,对称轴为35=x ,求这条抛物线的解析式.4.考查用配方法求抛物线的顶点坐标、对称轴、二次函数的极值,有关试题为解答题,如:已知抛物线2y axbx c =++a ≠0与x 轴的两个交点的横坐标是-1、3,与y轴交点的纵坐标是-错误!1确定抛物线的解析式;2用配方法确定抛物线的开口方向、对称轴和顶点坐标.5.考查代数与几何的综合能力,常见的作为专项压轴题. 例题经典由抛物线的位置确定系数的符号例1 1二次函数2y axbx c =++的图像如图1,则点),(ac b M 在A .第一象限B .第二象限C .第三象限D .第四象限2已知二次函数y=ax 2+bx+ca ≠0的图象如图2所示,•则下列结论:①a 、b 同号;②当x=1和x=3时,函数值相等;③4a+b=0;④当y=-2时,x 的值只能取0.其中正确的个数是 A .1个 B .2个 C .3个 D .4个1 2点评弄清抛物线的位置与系数a,b,c 之间的关系,是解决问题的关键.例2.已知二次函数y=ax 2+bx+c 的图象与x 轴交于点-2,O 、x 1,0,且1<x 1<2,与y 轴的正半轴的交点在点O,2的下方.下列结论:①a<b<0;②2a+c>O;③4a+c<O;④2a -b+1>O,其中正确结论的个数为 A 1个 B. 2个 C. 3个 D .4个 会用待定系数法求二次函数解析式例3.已知:x 的一元二次方程ax 2+bx+c=3的一个根为x=-2,且二次函数y=ax 2+bx+c 的对称轴是直线x=2,则抛物线的顶点坐标为A2,-3 B.2,1 C2,3 D .3,2例4、如图单位:m,等腰三角形ABC 以2米/秒的速度沿直线L 向正方形移动,直到AB 与CD 重合.设x 秒时,三角形与正方形重叠部分的面积为ym 2.1写出y 与x 的关系式; 2当x=2,时,y 分别是多少 3当重叠部分的面积是正方形面积的一半时, 三角形移动了多长时间求抛物线顶点坐标、对称轴.例5、已知抛物线y=12x 2+x-52.1用配方法求它的顶点坐标和对称轴.2若该抛物线与x 轴的两个交点为A 、B,求线段AB 的长.点评本题1是对二次函数的“基本方法”的考查,第2问主要考查二次函数与一元二次方程的关系.例6.已知:二次函数y=ax 2-b+1x-3a 的图象经过点P4,10,交x 轴于)0,(1x A ,)0,(2x B 两点)(21x x ,交y 轴负半轴于C 点,且满足3AO=OB .1求二次函数的解析式;2在二次函数的图象上是否存在点M,使锐角∠MCO>∠A CO 若存在,请你求出M 点的横坐标的取值范围;若不存在,请你说明理由.1的图象经过点Ac,-2,例7、“已知函数c+=2y+xbx求证:这个二次函数图象的对称轴是x=3.”题目中的矩形框部分是一段被墨水污染了无法辨认的文字.1根据已知和结论中现有的信息,你能否求出题中的二次函数解析式若能,请写出求解过程,并画出二次函数图象;若不能,请说明理由.2请你根据已有的信息,在原题中的矩形框中,填加一个适当的条件,把原题补充完整.点评:对于第1小题,要根据已知和结论中现有信息求出题中的二次函数解析式,就要把原来的结论“函数图象的对称轴是x=3”当作已知来用,再结合条件“图象经过点Ac,-2”,就可以列出两个方程了,而解析式中只有两个未知数,所以能够求出题中的二次函数解析式.对于第2小题,只要给出的条件能够使求出的二次函数解析式是第1小题中的解析式就可以了.而从不同的角度考虑可以添加出不同的条件,可以考虑再给图象上的一个任意点的坐标,可以给出顶点的坐标或与坐标轴的一个交点的坐标等.用二次函数解决最值问题例1 某产品每件成本10元,试销阶段每件产品的销售价x元•与产品的日销售量y 件之间的关系如下表:x元1523…y件2521…若日销售量y是销售价x的一次函数.1求出日销售量y件与销售价x元的函数关系式;2要使每日的销售利润最大,每件产品的销售价应定为多少元•此时每日销售利润是多少元点评解决最值问题应用题的思路与一般应用题类似,也有区别,主要有两点:1设未知数在“当某某为何值时,什么最大或最小、最省”的设问中,•“某某”要设为自变量,“什么”要设为函数;2•问的求解依靠配方法或最值公式,而不是解方程.例2.你知道吗平时我们在跳大绳时,绳甩到最高处的形状可近似地看为抛物线.如图所示,正在甩绳的甲、乙两名学生拿绳的手间距为4 m,距地面均为1m,学生丙、丁分别站在距甲拿绳的手水平距离1m、2.5 m处.绳子在甩到最高处时刚好通过他们的头顶.已知学生丙的身高是1.5 m,则学生丁的身高为建立的平面直角坐标系如右图所示A.1.5 m B.1.625 mC.1.66 m D.1.67 m分析:本题考查二次函数的应用第二十三章旋转一、旋转1、定义把一个图形绕某一点O转动一个角度的图形变换叫做旋转,其中O 叫做旋转中心,转动的角叫做旋转角.2、性质1对应点到旋转中心的距离相等.2对应点与旋转中心所连线段的夹角等于旋转角.二、中心对称1、定义把一个图形绕着某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.2、性质1中心对称的两个图形是全等形.2中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分.3中心对称的两个图形,对应线段平行或在同一直线上且相等.3、判定如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形这一点对称.4、中心对称图形把一个图形绕某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个店就是它的对称中心.考点五、坐标系中对称点的特征 3分1、原点对称的点的特征两个点原点对称时,它们的坐标的符号相反,即点Px,y原点的对称点为P’-x,-y2、x轴对称的点的特征两个点x轴对称时,它们的坐标中,x相等,y的符号相反,即点Px,yx轴的对称点为P’x,-y3、y轴对称的点的特征两个点y轴对称时,它们的坐标中,y相等,x的符号相反,即点Px,yy轴的对称点为P’-x,y第二十四章圆一、知识回顾圆的周长: C=2πr或C=πd、圆的面积:S=πr2圆环面积计算方法:S=πR2-πr2或S=πR2-r2R 是大圆半径,r 是小圆半径二、知识要点 一、圆的概念集合形式的概念: 1、 圆可以看作是到定点的距离等于定长的点的集合;2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的内部:可以看作是到定点的距离小于定长的点的集合 轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;固定的端点O 为圆心.连接圆上任意两点的线段叫做弦,经过圆心的弦叫直径.圆上任意两点之间的部分叫做圆弧,简称弧.2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线;3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线. 二、点与圆的位置关系1、点在圆内 ⇒ d r < ⇒ 点C在圆内;A2、点在圆上⇒d r=⇒点B在圆上;3、点在圆外⇒d r>⇒点A在圆外;三、直线与圆的位置关系1、直线与圆相离⇒d r>⇒无交点;2、直线与圆相切⇒d r=⇒有一个交点;3、直线与圆相交⇒d r<⇒有两个交点;四、圆与圆的位置关系外离图1⇒无交点⇒d R r>+;外切图2⇒有一个交点⇒d R r=+;相交图3⇒有两个交点⇒R r d R r-<<+;内切图4⇒有一个交点⇒d R r=-;内含图5⇒无交点⇒d R r<-;图4图5五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧.推论1:1平分弦不是直径的直径垂直于弦,并且平分弦所对的两条弧;2弦的垂直平分线经过圆心,并且平分弦所对的两条弧; 3平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD中任意2个条件推出其他3个结论. 推论2:圆的两条平行弦所夹的弧相等.即:在⊙O 中,∵AB ∥CD∴弧AC =弧BD六、圆心角定理顶点到圆心的角,叫圆心角.圆心角定理:同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等. 此定理也称1推3定理,即上述四个结论中,BD只要知道其中的1个相等,则可以推出其它的3个结论,即:①AOB DOE ∠=∠;②AB DE =;③OC OF =;④ 弧BA =弧BD七、圆周角定理顶点在圆上,并且两边都与圆相交的角,叫圆周角. 1、圆周角定理:同弧所对的圆周角等于它所对的圆心的角的一半.即:∵AOB ∠和ACB ∠是弧AB 所对的圆心角和圆周角 ∴2AOB ACB ∠=∠2、圆周角定理的推论:推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧是等弧;即:在⊙O 中,∵C ∠、D ∠都是所对的圆周角 ∴C D ∠=∠推论2:半圆或直径所对的圆周角是直角;圆周角是直角所对的弧是半圆,所对的弦是直径.即:在⊙O 中,∵AB 是直径 或∵90C ∠=︒∴90C ∠=︒ ∴AB 是直径BA推论3:若三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形. 即:在△ABC 中,∵OC OA OB ==∴△ABC 是直角三角形或90C ∠=︒注:此推论实是初二年级几何中矩形的推论:在直角三角形中斜边上的中线等于斜边的一半的逆定理.八、圆内接四边形圆的内接四边形定理:圆的内接四边形的对角互补,外角等于它的内对角.即:在⊙O 中,∵四边形ABCD 是内接四边形∴180C BAD ∠+∠=︒ 180B D ∠+∠=︒DAE C ∠=∠九、切线的性质与判定定理1切线的判定定理:过半径外端且垂直于半径的直线是切线; 两个条件:过半径外端且垂直半径,二者缺一不可 即:∵MN OA ⊥且MN 过半径OA外端∴MN 是⊙O 的切线 2性质定理:切线垂直于过切点的半径如上图推论1:过圆心垂直于切线的直线必过切点.BAO推论2:过切点垂直于切线的直线必过圆心. 以上三个定理及推论也称二推一定理:即:①过圆心;②过切点;③垂直切线,三个条件中知道其中两个条件就能推出最后一个.十、切线长定理 切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,这点和圆心的连线平分两条切线的夹角.即:∵PA 、PB 是的两条切线 ∴PA PB = PO 平分BPA ∠十一、圆幂定理1相交弦定理:圆内两弦相交,交点分得的两条线段的乘积相等.即:在⊙O 中,∵弦AB 、CD 相交于点P , ∴PA PB PC PD ⋅=⋅2推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项.即:在⊙O 中,∵直径AB CD ⊥, ∴2CE AE BE =⋅DBA3切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项.即:在⊙O 中,∵PA 是切线,PB 是割线 ∴ 2PA PC PB =⋅4割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等如上图. 即:在⊙O 中,∵PB 、PE 是割线 ∴PC PB PD PE ⋅=⋅十二、两圆公共弦定理圆公共弦定理:两圆圆心的连线垂直并且平分这两个圆的的公共弦. 如图:12O O 垂直平分AB .即:∵⊙1O 、⊙2O 相交于A 、B 两点 ∴12O O 垂直平分AB十三、圆的公切线两圆公切线长的计算公式:1公切线长:12Rt O O C ∆中,221ABCO ==2外公切线长:2CO 是半径之差; 内公切线长:2CO 是半径之和 .十四、圆内正多边形的计算。
九年级上册数学各章节知识点总结(最新最全)
九年级上册数学各章节知识点总结(最新
最全)
1. 有理数与整式有理数与整式
- 有理数的概念及表示方法
- 有理数的大小比较
- 有理数的加法、减法、乘法、除法运算法则
- 整式的定义和基本运算
2. 方程与不等式方程与不等式
- 一元一次方程的概念、解法及应用
- 恒等方程和条件方程
- 一元一次不等式的概念及解法
- 一元一次方程与不等式的综合应用
3. 函数与图像函数与图像
- 函数的概念及表示
- 函数的增减性和奇偶性
- 函数的概率和函数的平移、翻折、对称变换
- 函数图像的特点和简单的函数图像绘制
4. 图形的性质图形的性质
- 平行线与相交线
- 三角形的定义及分类
- 三角形的性质与判定
- 常见四边形的性质及判定
5. 相似与全等相似与全等
- 相似的概念及相似三角形的判定
- 相似比的计算
- 全等的概念及全等三角形的判定
- 全等三角形的性质和应用
6. 三角函数三角函数
- 角的概念及角的度量
- 反义函数、同角三角函数特殊值
- 三角函数的图像
- 三角函数的性质及简单的计算与应用7. 圆圆
- 圆的定义和性质
- 圆上的弧和弦
- 切线与圆的位置关系
- 圆的周长和面积的计算
以上是九年级上册数学各章节知识点的总结,请根据具体情况进行查阅和复习。
初三数学上册知识点汇总(文库)
初三数学上册必背知识点默写版+解析版专题01一元二次方程(解析版)知识点1:一元二次方程的有关概念1.一元二次方程的概念:通过化简后,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程,叫做一元二次方程.2.一元二次方程的一般式:3.一元二次方程的解:使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根.知识要点:判断一个方程是否为一元二次方程时,首先观察其是否是整式方程,否则一定不是一元二次方程;其次再将整式方程整理化简使方程的右边为0,看是否具备另两个条件:①一个未知数;②未知数的最高次数为2.对有关一元二次方程定义的题目,要充分考虑定义的三个特点,不要忽视二次项系数不为0.知识点2:一元二次方程的解法1.基本思想一元二次方程−−−→降次一元一次方程2.基本解法直接开平方法、配方法、公式法、因式分解法.知识要点:解一元二次方程时,根据方程特点,灵活选择解题方法,先考虑能否用直接开平方法和因式分解法,再考虑用公式法.知识点3:一元二次方程根的判别式及根与系数的关系1.一元二次方程根的判别式一元二次方程)0(02≠=++a c bx ax 中,ac b 42-叫做一元二次方程)0(02≠=++a c bx ax 的根的判别式,通常用“∆”来表示,即acb 42-=∆(1)当△>0时,一元二次方程有2个不相等的实数根;(2)当△=0时,一元二次方程有2个相等的实数根;(3)当△<0时,一元二次方程没有实数根.2.一元二次方程的根与系数的关系如果一元二次方程)0(02≠=++a c bx ax 的两个实数根是21x x ,,那么a b x x -=+21,acx x =21.注意它的使用条件为a≠0,Δ≥0.知识要点: 1.一元二次方程的根的判别式正反都成立.利用其可以解决以下问题:(1)不解方程判定方程根的情况;(2)根据参系数的性质确定根的范围;(3)解与根有关的证明题.2.一元二次方程根与系数的应用很多:(1)已知方程的一根,不解方程求另一根及参数系数;(2)已知方程,求含有两根对称式的代数式的值及有关未知数系数;(3)已知方程两根,求作以方程两根或其代数式为根的一元二次方程.知识点4:列一元二次方程解应用题1.列方程解实际问题的三个重要环节:一是整体地、系统地审题;二是把握问题中的等量关系;三是正确求解方程并检验解的合理性.2.利用方程解决实际问题的关键是寻找等量关系.3.解决应用题的一般步骤:审(审题目,分清已知量、未知量、等量关系等);设(设未知数,有时会用未知数表示相关的量);列(根据题目中的等量关系,列出方程);解(解方程,注意分式方程需检验,将所求量表示清晰);验(检验方程的解能否保证实际问题有意义);答(写出答案,切忌答非所问).4.常见应用题型数字问题、平均变化率问题、利息问题、利润(销售)问题、形积问题等.知识要点:列方程解应用题就是先把实际问题抽象为数学问题(列方程),然后由数学问题的解决而获得对实际问题的解决.专题02二次函数(解析版)知识点01:二次函数的定义一般地,如果是常数,,那么叫做的二次函数.知识要点:如果y=ax 2+bx+c(a,b,c 是常数,a≠0),那么y 叫做x 的二次函数.这里,当a=0时就不是二次函数了,但b、c 可分别为零,也可以同时都为零.a 的绝对值越大,抛物线的开口越小.知识点02:二次函数的图象与性质1.二次函数由特殊到一般,可分为以下几种形式:①;②;③;④,其中;⑤.(以上式子a≠0)几种特殊的二次函数的图象特征如下:函数解析式开口方向对称轴顶点坐标当时开口向上当时开口向下(轴)(0,0)(轴)(0,)(,0)(,)()2.抛物线的三要素:开口方向、对称轴、顶点.(1)的符号决定抛物线的开口方向:当时,开口向上;当时,开口向下;相等,抛物线的开口大小、形状相同.(2)平行于轴(或重合)的直线记作.特别地,轴记作直线.3.抛物线20()y ax bx c a =++≠中,,,a b c 的作用:(1)决定开口方向及开口大小,这与中的完全一样.(2)和共同决定抛物线对称轴的位置.由于抛物线的对称轴是直线,故:①时,对称轴为轴;②(即、同号)时,对称轴在轴左侧;③(即、异号)时,对称轴在轴右侧.(3)的大小决定抛物线与轴交点的位置.当时,,∴抛物线与轴有且只有一个交点(0,):①,抛物线经过原点;②,与轴交于正半轴;③,与轴交于负半轴.以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在轴右侧,则.4.用待定系数法求二次函数的解析式:(1)一般式:(a≠0).已知图象上三点或三对、的值,通常选择一般式.(2)顶点式:(a≠0).已知图象的顶点或对称轴,通常选择顶点式.(可以看成的图象平移后所对应的函数.)(3)“交点式”:已知图象与轴的交点坐标、,通常选用交点式:(a≠0).(由此得根与系数的关系:).求抛物线2y ax bx c =++(a≠0)的对称轴和顶点坐标通常用三种方法:配方法、公式法、代入法,这三种方法都有各自的优缺点,应根据实际灵活选择和运用.知识点03:二次函数与一元二次方程的关系函数,当时,得到一元二次方程,那么一元二次方程的解就是二次函数的图象与x 轴交点的横坐标,因此二次函数图象与x 轴的交点情况决定一元二次方程根的情况.(1)当二次函数的图象与x 轴有两个交点,这时,则方程有两个不相等实根;(2)当二次函数的图象与x 轴有且只有一个交点,这时,则方程有两个相等实根;(3)当二次函数的图象与x 轴没有交点,这时,则方程没有实根.通过下面表格可以直观地观察到二次函数图象和一元二次方程的关系:的图象的解方程有两个不等实数解方程有两个相等实数解方程没有实数解知识要点二次函数图象与x轴的交点的个数由的值来确定.(1)当二次函数的图象与x轴有两个交点,这时,则方程有两个不相等实根;(2)当二次函数的图象与x轴有且只有一个交点,这时,则方程有两个相等实根;(3)当二次函数的图象与x轴没有交点,这时,则方程没有实根.知识点04:利用二次函数解决实际问题利用二次函数解决实际问题,要建立数学模型,即把实际问题转化为二次函数问题,利用题中存在的公式、内含的规律等相等关系,建立函数关系式,再利用函数的图象及性质去研究问题.在研究实际问题时要注意自变量的取值范围应具有实际意义.利用二次函数解决实际问题的一般步骤是:(1)建立适当的平面直角坐标系;(2)把实际问题中的一些数据与点的坐标联系起来;(3)用待定系数法求出抛物线的关系式;(4)利用二次函数的图象及其性质去分析问题、解决问题.知识要点常见的问题:求最大(小)值(如求最大利润、最大面积、最小周长等)、涵洞、桥梁、抛物体、抛物线的模型问题等.解决这些实际问题关键是找等量关系,把实际问题转化为函数问题,列出相关的函数关系式.专题03旋转(解析版)知识点01:旋转1.旋转的概念:把一个图形绕着某一点O转动一个角度的图形变换叫做旋转..点O叫做旋转中心,转动的角叫做旋转角(如∠AO A′),如果图形上的点A经过旋转变为点A′,那么,这两个点叫做这个旋转的对应点.知识要点:旋转的三个要素:旋转中心、旋转方向和旋转角度.2.旋转的性质:(1)对应点到旋转中心的距离相等(OA=OA′);(2)对应点与旋转中心所连线段的夹角等于旋转角;''').(3)旋转前、后的图形全等(△ABC≌△A B C知识要点:图形绕某一点旋转,既可以按顺时针旋转也可以按逆时针旋转.3.旋转的作图:在画旋转图形时,首先确定旋转中心,其次确定图形的关键点,再将这些关键沿指定的方向旋转指定的角度,然后连接对应的部分,形成相应的图形.知识要点:作图的步骤:(1)连接图形中的每一个关键点与旋转中心;(2)把连线按要求(顺时针或逆时针)绕旋转中心旋转一定的角度(旋转角);(3)在角的一边上截取关键点到旋转中心的距离,得到各点的对应点;(4)连接所得到的各对应点.知识点02:特殊的旋转—中心对称1.中心对称:把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.这两个图形中的对应点叫做关于中心的对称点.知识要点:(1)有两个图形,能够完全重合,即形状大小都相同;(2)位置必须满足一个条件:将其中一个图形绕着某一个点旋转180°能够与另一个图形重合(全等图形不一定是中心对称的,而中心对称的两个图形一定是全等的).2.中心对称图形:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.知识要点:(1)中心对称图形指的是一个图形;(2)线段,平行四边形,圆等等都是中心对称图形.知识点03:平移、轴对称、旋转平移、轴对称、旋转之间的对比平移轴对称旋转相同点都是全等变换(合同变换),即变换前后的图形全等.不同点定义把一个图形沿某一方向移动一定距离的图形变换.把一个图形沿着某一条直线折叠的图形变换.把一个图形绕着某一定点转动一个角度的图形变换.图形要素平移方向平移距离对称轴旋转中心、旋转方向、旋转角度性质连接各组对应点的线段平行(或共线)且相等.任意一对对应点所连线段被对称轴垂直平分.对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角都等于旋转角.对应线段平行(或共线)且相等.任意一对对应点所连线段被对称轴垂直平分.*对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角,即:对应点与旋转中心连线所成的角彼此相等.专题04圆(解析版)知识点01:圆的定义、性质及与圆有关的角1.圆的定义(1)线段OA绕着它的一个端点O旋转一周,另一个端点A所形成的封闭曲线,叫做圆.(2)圆是到定点的距离等于定长的点的集合.知识要点:①圆心确定圆的位置,半径确定圆的大小;确定一个圆应先确定圆心,再确定半径,二者缺一不可;②圆是一条封闭曲线.2.圆的性质(1)旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心是圆心.在同圆或等圆中,两个圆心角,两条弧,两条弦,两条弦心距,这四组量中的任意一组相等,那么它所对应的其他各组分别相等.(2)轴对称:圆是轴对称图形,经过圆心的任一直线都是它的对称轴.(3)垂径定理及推论:①垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.②平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.③弦的垂直平分线过圆心,且平分弦对的两条弧.④平分一条弦所对的两条弧的直线过圆心,且垂直平分此弦.⑤平行弦夹的弧相等.要点诠释:在垂经定理及其推论中:过圆心、垂直于弦、平分弦、平分弦所对的优弧、平分弦所对的劣弧,在这五个条件中,知道任意两个,就能推出其他三个结论.(注意:“过圆心、平分弦”作为题设时,平分的弦不能是直径)3.两圆的性质(1)两个圆是一个轴对称图形,对称轴是两圆连心线.(2)相交两圆的连心线垂直平分公共弦,相切两圆的连心线经过切点.4.与圆有关的角(1)圆心角:顶点在圆心的角叫圆心角.圆心角的性质:圆心角的度数等于它所对的弧的度数.(2)圆周角:顶点在圆上,两边都和圆相交的角叫做圆周角.圆周角的性质:①圆周角等于它所对的弧所对的圆心角的一半.②同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧相等.③90°的圆周角所对的弦为直径;半圆或直径所对的圆周角为直角.④如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.⑤圆内接四边形的对角互补;外角等于它的内对角.知识要点:(1)圆周角必须满足两个条件:①顶点在圆上;②角的两边都和圆相交.(2)圆周角定理成立的前提条件是在同圆或等圆中.知识点02:与圆有关的位置关系1.判定一个点P是否在⊙O上设⊙O的半径为,OP=,则有点P在⊙O外;点P在⊙O上;点P在⊙O内.知识要点:点和圆的位置关系和点到圆心的距离的数量关系是相对应的,即知道位置关系就可以确定数量关系;知道数量关系也可以确定位置关系.2.判定几个点A1、A2...An在同一个圆上的方法当时,在⊙O上.3.直线和圆的位置关系设⊙O半径为R,点O到直线的距离为.(1)直线和⊙O没有公共点直线和圆相离.(2)直线和⊙O有唯一公共点直线和⊙O相切.(3)直线和⊙O有两个公共点直线和⊙O相交.4.切线的判定、性质(1)切线的判定:①经过半径的外端并且垂直于这条半径的直线是圆的切线.②到圆心的距离等于圆的半径的直线是圆的切线.(2)切线的性质:①圆的切线垂直于过切点的半径.②经过圆心作圆的切线的垂线经过切点.③经过切点作切线的垂线经过圆心.(3)切线长:从圆外一点作圆的切线,这一点和切点之间的线段的长度叫做切线长.(4)切线长定理:从圆外一点作圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.5.圆和圆的位置关系设的半径为,圆心距.(1)和没有公共点,且每一个圆上的所有点在另一个圆的外部外离.(2)和没有公共点,且的每一个点都在内部内含(3)和有唯一公共点,除这个点外,每个圆上的点都在另一个圆外部外切.(4)和有唯一公共点,除这个点外,的每个点都在内部内切.(5)和有两个公共点相交.知识点03:三角形的外接圆与内切圆、圆内接四边形与外切四边形1.三角形的内心、外心、重心、垂心(1)三角形的内心:是三角形三条角平分线的交点,它是三角形内切圆的圆心,在三角形内部,它到三角形三边的距离相等,通常用“I”表示.(2)三角形的外心:是三角形三边中垂线的交点,它是三角形外接圆的圆心,锐角三角形外心在三角形内部,直角三角形的外心是斜边中点,钝角三角形外心在三角形外部,三角形外心到三角形三个顶点的距离相等,通常用O表示.(3)三角形重心:是三角形三边中线的交点,在三角形内部;它到顶点的距离是到对边中点距离的2倍,通常用G表示.(4)垂心:是三角形三边高线的交点.知识要点:(1)任何一个三角形都有且只有一个内切圆,但任意一个圆都有无数个外切三角形;(2)解决三角形内心的有关问题时,面积法是常用的,即三角形的面积等于周长与内切圆半径乘积的一半,即(S为三角形的面积,P为三角形的周长,r为内切圆的半径).(3)三角形的外心与内心的区别:名称确定方法图形性质外心(三角形外接圆的圆心)三角形三边中垂线的交点(1)OA=OB=OC;(2)外心不一定在三角形内部内心(三角形内切圆的圆心)三角形三条角平分线的交点(1)到三角形三边距离相等;(2)OA、OB、OC 分别平分∠BAC、∠ABC、∠ACB;(3)内心在三角形内部.2.圆内接四边形和外切四边形(1)四个点都在圆上的四边形叫圆的内接四边形,圆内接四边形对角互补,外角等于内对角.(2)各边都和圆相切的四边形叫圆外切四边形,圆外切四边形对边之和相等.知识点04:圆中有关计算1.圆中有关计算圆的面积公式:,周长.圆心角为、半径为R 的弧长.圆心角为,半径为R,弧长为的扇形的面积.弓形的面积要转化为扇形和三角形的面积和、差来计算.圆柱的侧面图是一个矩形,底面半径为R,母线长为的圆柱的体积为,侧面积为,全面积为.圆锥的侧面展开图为扇形,底面半径为R,母线长为,高为的圆锥的侧面积为,全面积为,母线长、圆锥高、底面圆的半径之间有.(1)对于扇形面积公式,关键要理解圆心角是1°的扇形面积是圆面积的,即。
初中数学必备知识点总结初三数学上册一二章知识点
《初三数学上册一二章知识点总结》一、引言初中数学是一个逐步深入、体系严谨的学科,初三作为初中阶段的关键时期,数学知识的学习和掌握至关重要。
初三数学上册的前两章内容既是对初中数学知识的深化,又为后续学习奠定了基础。
本文将对初三数学上册一二章的知识点进行详细总结,帮助同学们更好地理解和掌握这些重要内容。
二、第一章知识点总结1. 一元二次方程的概念一元二次方程是只含有一个未知数,并且未知数的最高次数是2 的整式方程。
一般形式为\(ax² + bx + c = 0\)(\(a≠0\)),其中\(a\)是二次项系数,\(b\)是一次项系数,\(c\)是常数项。
2. 一元二次方程的解法(1)直接开平方法:对于形如\(x² = p\)或\((ax + b)² = p\)(\(p≥0\))的方程,可以使用直接开平方法求解。
(2)配方法:通过配方将一元二次方程转化为\((x + m)² =n\)的形式,再进行求解。
(3)公式法:一元二次方程\(ax² + bx + c = 0\)(\(a≠0\))的求根公式为\(x=\frac{-b\pm\sqrt{b² - 4ac}}{2a}\)。
(4)因式分解法:将方程左边因式分解为两个一次因式的乘积,从而得到两个一元一次方程,求解这两个方程即可。
3. 一元二次方程根的判别式对于一元二次方程\(ax² + bx + c = 0\)(\(a≠0\)),判别式\(\Delta = b² - 4ac\)。
当\(\Delta>0\)时,方程有两个不相等的实数根;当\(\Delta = 0\)时,方程有两个相等的实数根;当\(\Delta<0\)时,方程没有实数根。
4. 一元二次方程的根与系数的关系(韦达定理)若一元二次方程\(ax² + bx + c = 0\)(\(a≠0\))的两根为\(x_1\),\(x_2\),则\(x_1 + x_2 = -\frac{b}{a}\),\(x_1x_2=\frac{c}{a}\)。
【精品】人教版初三上册数学各章节重要知识点概要
第二十三章旋转
1、概念: 把一个图形绕着某一点 O转动一个角度的图形变换叫做旋转, 点 O叫做旋转中心, 转动的角 叫做旋转角.
旋转三要素:旋转中心、旋转方面、旋转角 2、旋转的性质: ( 1) 旋转前后的两个图形是全等形; ( 2) 两个对应点到旋转中心的距离相等 ( 3) 两个对应点与旋转中心的连线段的夹角等于 旋转角 3 、中心对称:
∴∠ AOB=∠ COD (3),,,,,
3.圆周角定理及推论 :
几何表达式举例:
(1)圆周角的度数等于它所对的弧的度数的一半;
(2)一条弧所对的圆周角等于它所对的圆心角的一半;
( 如图 )
(3)“等弧对等角”“等角对等弧”;
(4)“直径对直角”“直角对直径”; ( 如图 )
(5)如三角形一边上的中线等于这边的一半,那么这个三角形是直
6、一元二次方程的解法 : 一元二次方程的四种解法要求灵活运用,
其中直接开平方法虽然
三、一元二次方程根的判别式 根的判别式:一元二次方程
ax2 bx c 0( a 0) 中, b 2 4ac 叫做一元二次方程
ax 2 bx c 0(a 0) 的根的判别式,通常用“
”来表示,即
b2 4ac 、
Δ> 0 <=> 有两个不等的实根; Δ =0<=> 有两个相等的实根; Δ < 0 <=>无实根; 四、一元二次方程根与系数的关系
做未知数 x,并用 x 代替,则有 x 2 2bx b 2 ( x b)2 。
配方法解一元二次方程的步骤是:①移项、②配方
(写成平方形式 )、③用直接开方法降次、
④解两个一元一次方程、⑤判断 2 个根是不是实数根。
4、公式法:公式法是用求根公式,解一元二次方程的解的方法。
人教版九年级上册数学各单元知识点归纳总结
人教版九年级上册数学各单元知识点归纳总结数学九年级上册共有十个单元,分别是集合与函数、有理数与运算、整式的加减、整式的乘法、一次函数与方程、比例与百分数、线性方程组、平方根与整式的除法、直角三角形与勾股定理、统计与概率。
下面将详细介绍这些单元的知识点。
一、集合与函数:1.集合:元素、属于、不属于、集合的相等、全集、子集、交集、并集、差集、互斥集、余集。
2.函数:自变量、因变量、函数的值、定义域、值域、函数的相等、奇函数、偶函数、函数的和差积商、反函数。
3.函数的图象:平移、伸缩、翻折、求过给定点的直线方程。
二、有理数与运算:1.有理数:整数、分数、有理数的相反数、绝对值、有理数的大小、有理数的加减乘除。
2.小数:有限小数、无限小数、循环小数、无理数、实数。
3.数轴与有理数:数轴上的点、有理数与数轴的对应关系、有理数的大小关系、有理数的加法减法、有理数的乘法除法。
4.分式:分数的性质、带分数、分数的加减乘除。
三、整式的加减:1.代数式:字母、代数式的加减、整式、项、系数、常数项。
2.同类项:同类项的合并与分拆、整式的加法、整式的减法。
四、整式的乘法:1.乘法基本公式:乘法基本公式的应用、平方差公式、差的平方公式、完全平方公式、立方差公式、立方和公式、整式的乘法。
2.因式与倍式:因式分解、互质、最大公因式。
五、一次函数与方程:1.函数与方程:线性函数、一次函数、函数的表示、函数的图象、函数的性质、函数关系、一元一次方程、方程的解。
2.解一次方程:等式的性质、移项变号、等式的逆运算、绝对值不等式。
六、比例与百分数:1.比例:比例的概念、比例的扩大与缩小、比例的性质、四边形的对边比、折线的边长比。
2.百分数:百分数与百分数、百分数与小数、百分数与分数、百分数的运算、平均数、加权平均数。
七、线性方程组:1.二元一次方程组:线性方程组、二元一次方程组、方程组的解、解二元一次方程组。
2.三元一次方程组:解三元一次方程组。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初三数学上册各章节重要知识点概要
第21章二次根式
1.二次根式:一般地,式子叫做二次根式.
注意:(1)若这个条件不成立,则不是二次根式;
(2)是一个重要的非负数,即;≥0.
2.重要公式:(1) ,(2);
3.积的算术平方根:
积的算术平方根等于积中各因式的算术平方根的积;
4.二次根式的乘法法则: .
5.二次根式比较大小的方法:
(1)利用近似值比大小;
(2)把二次根式的系数移入二次根号内,然后比大小;
(3)分别平方,然后比大小.
6.商的算术平方根:,
商的算术平方根等于被除式的算术平方根除以除式的算术平方根.
7.二次根式的除法法则:
(1);(2);
(3)分母有理化的方法是:分式的分子与分母同乘分母的有理化因式,使分母变为整式.
8.最简二次根式:
(1)满足下列两个条件的二次根式,叫做最简二次根式,①被开方数的因数是整数,因式是整式,②被开方数中不含能开的尽的因数或因式;
(2)最简二次根式中,被开方数不能含有小数、分数,字母因式次数低于2,且不含分母;
(3)化简二次根式时,往往需要把被开方数先分解因数或分解因式;
(4)二次根式计算的最后结果必须化为最简二次根式.
10.同类二次根式:几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫做同类二次根式.
12.二次根式的混合运算:
(1)二次根式的混合运算包括加、减、乘、除、乘方、开方六种代数运算,以前学过的,在有理数范围内的一切公式和运算律在二次根式的混合运算中都适用;
(2)二次根式的运算一般要先把二次根式进行适当化简,例如:化为同类二次根式才能合并;除法运算有时转化为分母有理化或约分更为简便;使用乘法公式等.
第22章一元二次方程
1. 一元二次方程的一般形式: a≠0时,ax2+bx+c=0叫一元二次方程的一般形式,研究一元二次方程的有关问题时,多数习题要先化为一般形式,目的是确定一般形式中的a、 b、c;其中a 、 b,、c可能是具体数,也可能是含待定字母或特定式子的代数式.
2. 一元二次方程的解法:一元二次方程的四种解法要求灵活运用,其中直接开平方法虽然简单,但是适用范围较小;公式法虽然适用范围大,但计算较繁,易发生计算错误;因式分解法适用范围较大,且计算简便,是首选方法;配方法使用较少.
3. 一元二次方程根的判别式: 当ax2+bx+c=0 (a≠0)时,Δ=b2-4ac 叫一元二次方程根的判别式.请注意以下等价命题:
Δ>0 <=> 有两个不等的实根;Δ=0 <=> 有两个相等的实根;Δ<0 <=> 无实
根;
4.平均增长率问题--------应用题的类型题之一(设增长率为x):
(1) 第一年为 a , 第二年为a(1+x) , 第三年为a(1+x)2.
(2)常利用以下相等关系列方程:第三年=第三年或第一年+第二年+第三年=总和.
第23章旋转
1、概念:
把一个图形绕着某一点O转动一个角度的图形变换叫做旋转,点O叫做旋转中心,转
第24章圆
二定理:
1.不在一直线上的三个点确定一个圆.
2.任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆. 3.正n边形的半径和边心距把正n边形分为2n个全等的直角三角形.三公式:
1.有关的计算:
(1)圆的周长C=2πR;(2)弧长L= ;(3)圆的面积S=πR2.(4)扇形面积S扇形= ;
(5)弓形面积S弓形=扇形面积S AOB±ΔAOB的面积.(如图)
2.圆柱与圆锥的侧面展开图:
(1)圆柱的侧面积:S圆柱侧=2πrh; (r:底面半径;h:圆柱高)
(2)圆锥的侧面积:S圆锥侧= =πrR.(L=2πr,R是圆锥母线长;r是底面半径)四常识:
1.圆是轴对称和中心对称图形.
2.圆心角的度数等于它所对弧的度数.
3.三角形的外心Û 两边中垂线的交点Û 三角形的外接圆的圆心;
三角形的内心Û 两内角平分线的交点Û 三角形的内切圆的圆心.
4.直线与圆的位置关系:(其中d表示圆心到直线的距离;其中r表示圆的半径)直线与圆相交Û d<r ;直线与圆相切Û d=r;直线与圆相离Û d>r.
5.圆与圆的位置关系:(其中d表示圆心到圆心的距离,其中R、r表示两个圆的半径且R≥r)
两圆外离Û d>R+r;两圆外切Û d=R+r;两圆相交Û R-r<d<R+r;
两圆内切Û d=R-r;两圆内含Û d<R-r.
6.证直线与圆相切,常利用:“已知交点连半径证垂直”和“不知交点作垂直证半径” 的方法加辅助线.
第25章概率
1、必然事件、不可能事件、随机事件的区别
2、概率
一般地,在大量重复试验中,如果事件A发生的频率会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率(probability), 记作P(A)= p.
注意:(1)概率是随机事件发生的可能性的大小的数量反映.
(2)概率是事件在大量重复试验中频率逐渐稳定到的值,即可以用大量重复试验中事件发生的频率去估计得到事件发生的概率,但二者不能简单地等同.
3、求概率的方法
(1)用列举法求概率(列表法、画树形图法)
(2)用频率估计概率:一大面,可用大量重复试验中事件发生频率来估计事件发生的概率.另一方面,大量重复试验中事件发生的频率稳定在某个常数(事件发生的概率)附近,说明概率是个定值,而频率随不同试验次数而有所不同,是概率的近似值,二者不能简单地等同.
(注:可编辑下载,若有不当之处,请指正,谢谢!)。