高三一轮总复习文科数学课件:-不等关系与不等式
《高考数学第一轮复习课件》第41讲 不等式的性质与基本不等式及应用
(4)a>b,c>0 ac>bc ;a>b,c<0 11 ac<bc . 推论1 推论1:a>b>0,c>d>0 12 ac>bd .
13 推论2 推论2:a>b>0 an>bn .
n a > n b . 推论3 推论3:a>b>0 14
3.基本不等式 基本不等式 定理1:如果 、 ∈ 那么 那么a 定理 如果a、b∈R,那么 2+b2≥ 如果 且仅当a=b时取“=”号). 时取“ 且仅当 时取
第41讲 41讲
不等式的性质与基本不等 式及应用
1.了解现实世界与日常生活中的不 了解现实世界与日常生活中的不 等关系,了解不等式(组 的实际背景 的实际背景. 等关系,了解不等式 组)的实际背景 2.掌握并能运用不等式的性质,掌 掌握并能运用不等式的性质, 掌握并能运用不等式的性质 握比较两个实数大小的一般步骤. 握比较两个实数大小的一般步骤 3.掌握基本不等式,会用基本不等 掌握基本不等式, 掌握基本不等式 式解决简单的最大( 值问题. 式解决简单的最大(小)值问题
新课标高中一轮 总复习
理数
第六单元 不等式及不等式选讲
知识体系
考纲解读
1.不等关系 不等关系. 不等关系 了解现实世界和日常生活中的不等关系, 了解现实世界和日常生活中的不等关系, 了解不等式( 的实际背景. 了解不等式(组)的实际背景 2.一元二次不等式 一元二次不等式. 一元二次不等式 (1)会从实际情境中抽象出一元二次不等式 会从实际情境中抽象出一元二次不等式 模型. 模型 (2)通过函数图象了解一元二次不等式与相 通过函数图象了解一元二次不等式与相 应的二次函数、一元二次方程的联系. 应的二次函数、一元二次方程的联系 (3)会解一元二次不等式,对给定的一元二 会解一元二次不等式, 会解一元二次不等式 次不等式,会设计求解的程序框图. 次不等式,会设计求解的程序框图
2015届高三数学(文)第一轮总复习课件 第38讲 不等关系与不等式的性质
学海导航
文数
1 1 1 (3)若 abc=1,则 + + a b c = bc+ ac+ ab≤a+b+c,故是充分条件; 反之,不成立.
27
学海导航
文数
28
学海导航
文数
1.(2013· 北京卷)设 a,b,c∈R,且 a>b,则( D ) A.ac>bc C.a2>b2 1 1 B. < a b D.a3>b3
4
学海导航
文数
2.命题p:x>0,y>0,命题q:xy>0,则p是q的( A ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件
5
学海导航
文数
解析:因为 xy>0 等价于 x>0,y>0 或 x<0,y<0, 所以 p 是 q 的充分不必要条件,故选 A.
6
学海导航
函数,α,β,γ∈R 且 α+β>0,β+γ>0,γ+α>0. 试说明 f(α)+f(β)+f(γ)的值与 0 的关系.
21
学海导航
文数
解析:由 α+β>0,得 α>-β. 因为 f(x)在 R 上是单调减函数,所以 f(α)<f(-β). 又因为 f(x)为奇函数,所以 f(-β)=-f(β). 所以 f(α)<-f(β),所以 f(α)+f(β)<0. 同理 f(β)+f(γ)<0,f(γ)+f(α)<0. 所以 f(α)+f(β)+f(γ)<0.
22
学海导航
文数
【拓展演练3】 (1)设a>b>c,则下列不等式成立的是( D ) A.ab>ac C.|ab|<|bc| B.a|c|>b|c| D.(a-b)|c-b|>0
3-1《不等式与不等关系》课件(共29张PPT)
abab0 a b ab 0 abab0
作差比较法
这既是比较大小(或证明大小)的基本方法,又是推导不等式的性质Байду номын сангаас基础.
作差比较法其一般步骤是:
作差→变形→判断符号→确定大小.
因式分解、配方、 通分等手段
比较两个数(式)的大小的方法:
例2.比较x2-x与x-2的大小.
am a
am a
作差
变形 定符号 确定大小
问题探究(三)不等式的性质的应用
性质1:对称性
a<b
b>a
性质2:传递性
a b,b c a c
性质3:可加性
a b ac bc
性质4:同正可乘性
a b,c 0 ac bc a b,c 0 ac bc
性质5:加法法则 (同向不等式可相加)
故选A.
变式 5、给出下列结论: ①若 ac>bc,则 a>b; ②若 a<b,则 ac2<bc2; ③若1a<1b<0,则 a>b; ④若 a>b,c>d,则 a-c>b-d; ⑤若 a>b,c>d,则 ac>bd. 其中正确结论的序号是________.
[答案] ③
问题探究(四)利用不等式的性质求取值范围
例 6、已知-6<a<8,2<b<3,分别求 2a+b,a-b,ab的取值范围.
分析:欲求 a-b 的取值范围,应先求-b 的取值范围,欲求 ab的取值范围,应先求1b的取值范围.
解析:∵-6<a<8,∴-12<2a<16, 又∵2<b<3,∴-10<2a+b<19. ∵2<b<3,∴-3<-b<-2,∴-9<a-b<6. ∵2<b<3,∴13<1b<12, ∵-6<a<8,∴-2<ab<4.
高三数学一轮复习课件:第33讲 不等关系与不等式
7 ������
7-������ >1,∴77aa>7aa7;当
0<a<7 时,7������>1,7-a>0,则
7 ������
7-������ >1,∴77aa>7aa7.综
上等式的性质
例 2 (1)[2017·淮北一中四模] 若 a<b<0,给出
教学参考
真题再现
■ [2017-2013]课标全国真题再现
[2017·全国卷Ⅰ] 设 x,y,z 为
正数,且 2x=3y=5z,则 ( ) A.2x<3y<5z B.5z<2x<3y C.3y<5z<2x D.3y<2x<5z
[答案] D [解析] 设 2x=3y=5z=t(t>1),则 x=log2t,y=log3t,z=log5t,所以
() A.ab<ac
C.logab<logac
B.ba>ca D.������������ >������������
[答案] (1)D (2)D
[解析] (1)因为 a<b<0,所以 ������ > ������ >0,所
������-������ < 0 ������ < ������.
������ ������
>
1(������
R,������ > 0)
������
> ������(������ R,������ > 0),
(2)作商法
������ = 1
������
������
= ������(������,������ ≠ 0),
一轮复习教案:第7章 第1讲 不等关系与不等式
3≤2x+y≤9
(3)若变量 x,y 满足约束条件
,则 z=x+2y 的最小值为________.
6≤x-y≤9
[解析] (1)∵ab>0,bc-ad>0,
∴c-d=bc-ad>0,∴①正确; a b ab
∵ab>0,又c-d>0,即bc-ad>0,
ab
ab
∴bc-ad>0,∴②正确;
∵bc-ad>0,又c-d>0,即bc-ad>0,
ab
ab
∴ab>0,∴③正确.故选 D.
(2)∵M-N=a1a2-(a1+a2-1)=(a1-1)(a2-1),又∵a1,a2∈(0,1),∴M-N>0,即 M>N, 选 B.
(3)令 z=x+2y=λ(2x+y)+μ(x-y)=(2λ+μ)x+(λ-μ)y,
2λ+μ=1
λ=1
∴
,∴
,∴z=(2x+y)-(x-y),
大.
[正解] 解法一:设 f(-2)=mf(-1)+nf(1)(m,n 为待定系数),则 4a-2b=m(a-b)+n(a+
b),
即 4a-2b=(m+n)a+(n-m)b.
m+n=4,
m=3,
于是得
解得
n-m=-2,
n=1,
∴f(-2)=3f(-1)+f(1).
又∵1≤f(-1)≤2,2≤f(1)≤4,
2.若 a>b>0,c<d<0,则一定有( )
A.a>b cd
C.a>b dc
B.a<b cd
D.a<b dc
答案 D
解析 ∵c<d<0,∴-c>-d>0,
高三数学一轮复习第七章不等式第一节不等关系与不等式课件文
d c cd
故②正确.
∵c<d,∴-c>-d, 又∵a>b,∴a+(-c)>b+(-d), 即a-c>b-d,故③正确. ∵a>b,d-c>0,∴a(d-c)>b(d-c), 故④正确,故选C.
考点三 与不等式有关的求范围问题
典例3 已知实数x,y满足条件-1<x+y<4且2<x-y<3,则z=2x-3y的取值范
> b.
c
d
(iv)0<a<x<b或a<x<b<0⇒ 1
<1
b
x
(2)有关分式的性质
若a>b>0,m>0,则
(i) b <b m; b > b (mb-m>0).
a am a am
(ii) a >a m; a < a (mb-m>0).
b bm b bm
< 1.
a
判断下列结论的正误(正确的打“√”,错误的打“×”)
答案 [5,10] 解析 f(-1)=a-b, f(1)=a+b, f(-2)=4a-2b. 设f(-2)=mf(-1)+nf(1)(m、n为待定系数), 则4a-2b=m(a-b)+n(a+b),即4a-2b=(m+n)a-(m-n)b,
∴
m m
解n得 4 ,
n 2,
m 3,
n
1,
∴f(-2)=3f(-1)+f(1).
2-2 若a>0>b>-a,c<d<0,则下列结论:①ad>bc;② a +b <0;③a-c>b-d;④a
福建省2013届新课标高考文科数学一轮总复习课件:第38讲 不等关系与不等式的性质
【 点 评 】 (1) 作 差 比 较 法 的 依 据 是 “a - b>0 ⇔ a>b”,步骤为:①作差;②变形;③定号;④下结论; 常采用配方,因式分解,有理化等方法变形;
a (2)作商法的依据是“ >1,b>0⇒a>b”,步骤为: b ①作商;②变形;③判断商与 1 的大小;④下结论. (3)特例法,对于选择、填空题可用特例法选出正 确答案.
所以 f(-2)=3f(-1)+f(1). 又因为 1≤f(-1)≤2,2≤f(1)≤4, 所以 5≤3f(-1)+f(1)≤10,故 5≤f(-2)≤10.
a=1[f-1+f1] f-1=a-b 2 【解法 2】 , 即 1 f1=a+b b=2[f1-f-1]
【解析】 (1)因为(3m2-m+1)-(2m2+m-3)=m2-2m+4= (m-1)2+3>0, 所以 3m2-m+1>2m2+m-3.
(2)因为(x2 +y2)(x-y)-(x2 -y2)(x+y)=(x-y)· 2 +y2) [(x -(x+y)2]=-2xy(x-y), 因为 x>y>0,所以-2xy(x-y)<0, 所以(x2+y2)(x-y)<(x2-y2)(x+y).
备选例题
已知函数 f(x)=ax2+bx,且 1≤f(-1)≤2,2≤f(1)≤4, 求 f(-2)的取值范围.
【解法 1】 设 f(-2)=mf(-1)+nf(1)(m、n 为待定系 数),则 4a-2b=m(a-b)+n(a+b). 即 4a-2b=(m+n)a+(n-m)b.
m+n=4 m=3 于是得 ,解得 . n-m=-2 n=1
- aabb aa b a a-b (3)因为 b a= a-b=( ) , a· b b b
高考数学第一轮复习:《不等关系与不等式》
高考数学第一轮复习:《不等关系与不等式》最新考纲1.了解现实世界和日常生活中的不等关系.2.了解不等式(组)的实际背景.3.掌握不等式的性质及应用.【教材导读】1.若a>b,c>d,则a-c>b-d是否成立?提示:不成立,同向不等式不能相减,如3>2,4>1,但3-4<2-1. 2.若a>b>0,则ac>bc是否成立?提示:不成立.当c=0时,ac=bc,当c<0时,ac<bc.3.若a>b,则a n>b n,na>nb是否成立?提示:不一定.当a>b>0,n∈N,n≥2时才成立.1.实数的大小顺序与运算性质之间的关系设a,b∈R,则(1)a>b⇔a-b>0;(2)a=b⇔a-b=0;(3)a<b⇔a-b<0.2.不等式的基本性质性质性质内容注意对称性a>b⇔b<a ⇔传递性a>b,b>c⇒a>c ⇒可加性a>b⇔a+c>b+c ⇔可乘性⎭⎪⎬⎪⎫a>bc>0⇒ac>bcc的符号⎭⎪⎬⎪⎫a>bc<0⇒ac<bc同向可加性⎭⎪⎬⎪⎫a >b c >d ⇒a +c >b +d ⇒同向同正可乘性⎭⎪⎬⎪⎫a >b >0c >d >0⇒ac >bd ⇒可乘方性a >b >0⇒a n >b n (n ∈N ,n ≥2)a ,b 同为正数可开方性a >b >0⇒n a >nb (n ∈N ,n ≥2)(1)倒数性质 ①a >b ,ab >0⇒1a <1b . ②a <0<b ⇒1a <1b . (2)有关分数的性质 若a >b >0,m >0,则 ①真分数的性质b a <b +m a +m ;b a >b -ma -m (b -m >0). ②假分数的性质a b >a +m b +m ;a b <a -mb -m (b -m >0).1.设a +b <0,且b >0,则( ) (A)b 2>a 2>ab (B)b 2<a 2<-ab (C)a 2<-ab <b 2 (D)a 2>-ab >b 2答案:D2.若b <a <0,则下列结论不正确...的是( ) (A)a 2<b 2 (B)ab <b 2 (C)b a +ab >2 (D)|a |-|b |=|a -b | 答案:D3.设a=2,b=7-3,c=6-2,则a,b,c的大小关系是() (A)a>b>c(B)a>c>b(C)b>a>c(D)b>c>aB解析:b=7-3=47+3,c=6-2=46+2.因为7+3>6+2,所以47+3<46+2,所以b<c.因为2(6+2)=23+2>4,所以46+2< 2.即c<a.综上可得b<c<a.故选B.4.若P=a+2+a+5,Q=a+3+a+4(a≥0),则P,Q的大小关系为() (A)P>Q(B)P=Q(C)P<Q(D)由a的取值确定C解析:因为a≥0,P>0,Q>0,所以Q2-P2=2a+7+2a2+7a+12-(2a+7+2a2+7a+10)=2(a2+7a+12-a2+7a+10)>0.所以P<Q.5.已知a>b,ab≠0,则下列不等式中:①1a<1b;②a3>b3;③a2+b2>2ab,恒成立的不等式的个数是________.解析:①取a=2,b=-1,则1a<1b不成立;②函数y=x3在R上单调递增,a>b,所以a3>b3成立;③因为a>b,ab≠0,所以a2+b2-2ab=(a-b)2>0,所以a2+b2>2ab成立.综上可得:恒成立的不等式有两个.答案:2考点一 用不等式(组)表示不等关系(1)某种杂志原以每本2.5元的价格销售,可以售出8万本.根据市场调查,若单价每提高0.1元,销售量就可能相应减少2 000本.若把提价后杂志的定价设为x 元,用不等式表示销售的总收入仍不低于20万元为________.(2)已知4枝郁金香和5枝丁香的价格最多22元,而6枝郁金香和3枝丁香的价格不小于24元,则满足上述所有不等关系的不等式组为________.答案:(1)(8-x -2.50.1×0.2)x ≥20 (2)⎩⎨⎧4x +5y ≤226x +3y ≥24,x ≥0y ≥0【反思归纳】 用不等式(组)表示不等关系 (1)分析题中有哪些未知量.(2)选择其中起关键作用的未知量,设为x 或x ,y 再用x 或x ,y 来表示其他未知量. (3)根据题目中的不等关系列出不等式(组). 提醒:在列不等式(组)时要注意变量自身的范围.【即时训练】 已知甲、乙两种食物的维生素A ,B 含量如表:甲 乙 维生素A(单位/kg) 600 700 维生素B(单位/kg)800400设用甲、乙两种食物各有56 000单位维生素A 和62 000单位维生素B ,则x ,y 应满足的所有不等关系为________.解析:x ,y 所满足的关系为⎩⎪⎨⎪⎧x +y ≤100,600x +700y ≥56 000,800x +400y ≥62 000,x ≥0,y ≥0,即⎩⎪⎨⎪⎧x +y ≤100,6x +7y ≥560,2x +y ≥155,x ≥0,y ≥0.答案:⎩⎨⎧x +y ≤1006x +7y ≥5602x +y ≥155x ≥0,y ≥0考点二 不等式的性质若a >b >0,且ab =1,则下列不等式成立的是( ) (A)a +1b <b2a <log 2(a +b ) (B)b 2a <log 2(a +b )<a +1b (C)a +1b <log 2(a +b )<b 2a (D)log 2(a +b )<a +1b <b2a【命题意图】本题考查不等式的应用,同时考查对数的运算.B 解析:根据题意,令a =2,b =12进行验证,易知a +1b =4,b 2a =18,log 2(a +b )=log 252>1,因此a +1b >log 2(a +b )>b2a .【反思归纳】 判断多个不等式是否成立,需要逐一给出推理判断或反例说明.常用的推理判断需要利用不等式的性质,常见的反例构成方式可从以下几个方面思考:①不等式两边都乘以一个代数式时,所乘的代数式是正数、负数或0;②不等式左边是正数,右边是负数,当两边同时平方后不等号方向不一定保持不变;③不等式左边是正数,右边是负数,当两边同时取倒数后不等号方向不变.【即时训练】 (1)已知a ,b 为非零实数,且a <b ,则下列命题成立的是( ) (A)a 2<b 2 (B)ab 2<a 2b(C)1ab2<1ba2(D)ba<ab(2)若a,b∈R则1a3>1b3成立的一个充分不必要条件是()(A)ab>0 (B)b>a(C)a<b<0 (D)a>b>0答案:(1)C(2)C考点三比较大小(1)比较x6+1与x4+x2的大小,其中x∈R;(2)比较a a b b与a b b a(a,b为不相等的正数)的大小.解析:(1)(x6+1)-(x4+x2)=x6-x4-x2+1=x4(x2-1)-(x2-1)=(x2-1)(x4-1)=(x2-1)(x2-1)(x2+1)=(x2-1)2(x2+1).当x=±1时,x6+1=x4+x2;当x≠±1时,x6+1>x4+x2.(2)a a b ba b b a=a a-b b b-a=⎝⎛⎭⎪⎫aba-b,当a>b>0时,ab >1,a-b>0,∴⎝⎛⎭⎪⎫aba-b>1;当0<a<b时,ab <1,a-b<0,∴⎝⎛⎭⎪⎫aba-b>1.综上所述,总有a a b b>a b b a.【反思归纳】比较大小常用的方法(1)作差法一般步骤是①作差;②变形;③判号;④定论.其中变形是关键,常采用因式分解、配方等方法把差变成积或者完全平方的形式.当两个式子都含有开方运算时,可以先乘方再作差.(2)作商法一般步骤是:①作商;②变形;③判断商与1的大小;④结论.作商比较大小时,要注意分母的符号避免得出错误结论.(3)特值法对于选择题可以用特值法比较大小.【即时训练】(1)(2017崇明县一模)若a<0,b<0,则p=b2a+a2b与q=a+b的大小关系为()(A)p<q(B)p≤q(C)p>q(D)p≥q(2)若a=1816,b=1618,则a与b的大小关系为________.解析:(1)p-q=b2a+a2b-a-b=b2-a2a+a2-b2b=(b2-a2)·1a-1b=(b2-a2)(b-a)ab=(b-a)2(a+b)ab,因为a<0,b<0,所以a+b<0,ab>0,若a=b,则p-q=0,此时p=q,若a≠b,则p-q<0,此时p<q,综上p≤q.故选B.(2)ab=18161618=1816161162=98161216=98216,因为982∈(0,1),所以98216<1,因为1816>0,1618>0,所以1816<1618.即a<b.答案:(1)B(2)a<b不等式变形中扩大变量范围致误设f(x)=ax2+bx,若1≤f(-1)≤2,2≤f(1)≤4,则f(-2)的取值范围是________.解析:法一设f(-2)=mf(-1)+nf(1)(m,n为待定系数),则4a-2b=m(a-b)+n(a+b),即4a-2b=(m+n)a+(n-m)b,于是得⎩⎨⎧ m +n =4,n -m =-2,解得⎩⎨⎧m =3,n =1.所以f (-2)=3f (-1)+f (1). 又因为1≤f (-1)≤2,2≤f (1)≤4,所以5≤3f (-1)+f (1)≤10,即5≤f (-2)≤10. 法二 由⎩⎨⎧f (-1)=a -b ,f (1)=a +b ,得⎩⎪⎨⎪⎧a =12[f (-1)+f (1)],b =12[f (1)-f (-1)].所以f (-2)=4a -2b =3f (-1)+f (1). 又因为1≤f (-1)≤2,2≤f (1)≤4,所以5≤3f (-1)+f (1)≤10,故5≤f (-2)≤10. 法三 由⎩⎨⎧1≤a -b ≤2,2≤a +b ≤4确定的平面区域如图阴影部分,当f (-2)=4a -2b 过点A 32,12时,取得最小值4×32-2×12=5,当f (-2)=4a -2b 过点B (3,1)时, 取得最大值4×3-2×1=10, 所以5≤f (-2)≤10. 答案:[5,10]易错提醒:(1)解决此类问题的一般解法是,先建立待求整体与已知范围的整体关系,最后通过“一次性”使用不等式的运算求得整体范围;(2)此类求范围问题如果多次利用不等式的可加性,有可能扩大变量的取值范围而致误.课时作业基础对点练(时间:30分钟)1.设a ,b ∈R ,则“a >1且b >1”是“ab >1”的( ) (A)充分不必要条件 (B)必要不充分条件 (C)充要条件(D)既不充分也不必要条件A 解析:a >1且b >1⇒ab >1;但ab >1,则a >1且b >1不一定成立,如a =-2,b =-2时,ab =4>1.故选A.2.如果a >b ,则下列各式正确的是( ) (A)a ·lg x >b ·lg x (x >0) (B)ax 2>bx 2 (C)a 2>b 2(D)a ·2x >b ·2xD 解析:两边相乘的数lg x 不一定恒为正,选项A 错误;不等式两边都乘以x 2,它可能为0,选项B 错误;若a =-1,b =-2,不等式a 2>b 2不成立,选项C 错误.选项D 正确.3.已知1a <1b <0,给出下面四个不等式:①|a |>|b |;②a <b ;③a +b <ab ;④a 3>b 3.其中不正确的不等式的个数是( )(A)0 (B)1 (C)2 (D)3C 解析:由1a <1b <0可得b <a <0,从而|a |<|b |,①不正确;a >b ,②不正确;a +b <0,ab >0,则a +b <ab 成立,③正确;a 3>b 3,④正确.故不正确的不等式的个数为2.故选C.4.已知a 1,a 2∈(0,1),记M =a 1a 2,N =a 1+a 2-1,则M 与N 的大小关系是( ) (A)M <N (B)M >N (C)M =N (D)不确定答案:B5.设a <b <0,则下列不等式中不成立的是( ) (A)1a >1b (B)1a -b >1a (C)|a |>-b (D)-a >-b答案:B6.若1a <1b <0,给出下列不等式:①1a +b<1ab ;②|a |+b >0;③a -1a >b -1b ;④ln a 2>lnb 2.其中正确的不等式是( ) (A)①④ (B)②③ (C)①③ (D)②④答案:C7.设a >b >1,c <0,给出下列三个结论:①c a >cb ;②ac <b c ;③log b (a -c )>log a (b -c ).其中所有的正确结论的序号是( )(A)① (B)①② (C)②③ (D)①②③答案:D8.某种饮料分两次提价,提价方案有两种,方案甲:第一次提价p %,第二次提价q %;方案乙:每次都提价p +q2%.若p >q >0.则提价多的方案是________.解析:设原价为a ,方案甲提价后为a (1+p %)(1+q %),方案乙提价后为a ⎝ ⎛⎭⎪⎫1+p +q 2%2,∵⎝ ⎛⎭⎪⎫1+p +q 2%2=⎝⎛⎭⎪⎫1+p %+1+q %22≥((1+p %)(1+q %))2=(1+p %)(1+q %),又∵p >q >0,∴等号不成立,则提价多的为方案乙.答案:乙9.已知f (n )=n 2+1-n ,g (n )=n -n 2-1,φ(n )=12n (n ∈N +,n >2),则f (n ),g (n ),φ(n )的大小关系是________.解析:f (n )=n 2+1-n =1n 2+1+n<12n =φ(n ),g (n )=n -n 2-1=1n +n 2-1>12n =φ(n ),∴f (n )<φ(n )<g (n ).答案:f (n )<φ(n )<g (n )10.已知-1<a +b <3,且2<a -b <4,则2a +3b 的取值范围为____________. 解析:设2a +3b =x (a +b )+y (a -b ),则⎩⎪⎨⎪⎧ x +y =2,x -y =3,解得⎩⎪⎨⎪⎧ x =52,y =-12,因为-52<52(a +b )<152,-2<-12(a -b )<-1,所以-92<52(a +b )-12(a -b )<132,即-92<2a +3b <132.答案:-92,132能力提升练(时间:15分钟)11.有外表一样、重量不同的四个小球,它们的重量分别是a ,b ,c ,d ,已知a +b =c +d ,a +d >b +c ,a +c <b ,则这四个小球由重到轻的排列顺序是( )(A)d >b >a >c(B)b >c >d >a (C)d >b >c >a (D)c >a >d >bA 解析:∵a +b =c +d ,a +d >b +c ,∴2a >2c ,即a >c .因此b <d .∵a +c <b ,∴a <b ,综上可得,c <a <b <d .12.若不等式(-1)n a <2+(-1)n +1n 对于任意正整数n 都成立,则实数a 的取值范围是( )(A)⎣⎢⎡⎭⎪⎫-2,32 (B)⎣⎢⎡⎭⎪⎫-2,32 (C)⎣⎢⎡⎭⎪⎫-3,32 (D)⎝ ⎛⎭⎪⎫-3,32 A 解析:当n 取奇数时,-a <2+1n ,因为n ≥1,故2<2+1n ≤3,所以-a ≤2,所以a ≥-2;当n 取偶数时,a <2-1n ,因为n ≥2,所以32≤2-1n <2,所以a <32,综上,实数a 的取值范围是⎣⎢⎡⎭⎪⎫-2,32,故选A.13.若a ,b ,c ,d 均为正实数,且a >b ,那么四个数b a ,a b ,b +c a +c ,a +d b +d由小到大的顺序是________.解析:∵a >b >0,∴a b >1,a +d b +d >1,b a <1,b +c a +c <1,则a b -a +d b +d =d (a -b )b (b +d )>0, 即a b >a +c b +c ,b a -b +c a +c =c (b -a )a (a +d )<0,即b a <b +c a +c ,所以由小到大的顺序是b a <b +c a +c <a +d b +d <a b答案:b a <b +c a +c <a +d b +d <a b14.某项研究表明:在考虑行车安全的情况下,某路段车流量F (单位时间内经过测量点的车辆数,单位:辆/时)与车流速度v (假设车辆以相同速度v 行驶,单位:米/秒),平均车长l (单位:米)的值有关,其公式为F =76000v v 2+18v +20l. ①如果不限定车型,l =6.05,则最大车流量为______辆/时;②如果限定车型,l =5,则最大车流量比①中的最大车流量增加______辆/时.解析:①当l =6.05时,F =76000v v 2+18v +121=76000v +121v +18≤760002v ·121v+18=7600022+18=1900. 当且仅当v =11米/秒时等号成立,此时车流量最大为1900辆/时.②当l =5时,F =76000v v 2+18v +100=76000v +100v +18≤760002v ·100v +18=7600020+18=2000. 当且仅当v =10米/秒时,车流量最大为2000辆/时比①中最大车流量增加100辆/时.15.建筑学规定,民用住宅的窗户面积必须小于地板面积,但按采光标准,窗户面积与地板面积的比不应小于10%,并且这个比值越大,住宅的采光条件越好,同时增加相等的窗户面积和地板面积,住宅的采光条件是变好了,还是变坏了?请说明理由.解:设原来的窗户面积与地板面积分别为a 、b ,且a b ≥10%,窗户面积和地板面积同时增加的面积为c ,则现有的窗户面积与地板面积分别为a +c ,b +c .于是原来窗户面积与地板面积之比为a b ,面积均增加c 以后,窗户面积与地板面积之比为a +c b +c,因此要确定采光条件的好坏,就转化成比较a b 与a +c b +c的大小,采用作差比较法. a +c b +c -a b =c (b -a )(b +c )b. 因为a >0,b >0,c >0,又由题设条件可知a <b ,故有a b <a +c b +c 成立,即a +c b +c >a b≥10%. 所以同时增加相等的窗户面积和地板面积后,住宅的采光条件变好了.。
2025届高中数学一轮复习课件《不等式与不等关系》ppt
B.2ba<log2(a+b)<a+1b
C.a+1b<log2(a+b)<2ba
D.log2(a+b)<a+1b<2ba
1 解析:令 a=3,b=13,则 a+1b=6,1<log2(a+b)=log2130<2,2ba=233=214,即 a+1b>
log2(a+b)>2ba.故选 B.
解析 答案
高考一轮总复习•数学
第21页
方法二(作商法):∵p=a3a+bb3=a+baa2-b ab+b2, ∴pq=a2-aabb+b2≥2aba-b ab=1, 应用基本不等式:a2+b2≥2ab,当且仅当 a=b 时等号成立. 此题还有另一妙解:p=ba2+ ab2=ba2+a+ab2+b-(a+b)≤2b+2a-(a+b)=a+b=q. 当且仅当 a=b 时等号成立. ∵q<0,∴p≤q.故选 B.
解析 答案
高考一轮总复习•数学
第14页
重难题型 全线突破
高考一轮总复习•数学
第15页
题型 不等式简单性质的理解
典例 1(1)若 a,b 都是实数,则“ a- b>0”是“a2-b2>0”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 (2)已知四个条件:①b>0>a;②0>a>b;③a>0>b;④a>b>0,能推出1a<1b成立 的是________.
解析 答案
高考一轮总复习•数学
4.“a+b>2c”的一个充分条件是( )
A.a>c 或 b>c
B.a>c 且 b<c
C.a>c 且 b>c
D.a>c 或 b<c
第13页
解析:对于 A,a>c 或 b>c,不能保证 a+b>2c 成立,故 A 错误;对于 B,a>c 且 b<c,不能保证 a+b>2c 成立,故 B 错误;对于 C,a>c 且 b>c,由同向不等式相加的 性质,可以推出 a+b>2c,故 C 正确;对于 D,a>c 或 b<c,不能保证 a+b>2c 成立, 故 D 错误.故选 C.
高三数学不等关系与不等式复习PPT优秀课件
性质3: 可加性 如果a>b, 那么a+c>b+c
性质4: 可乘性 如果a>b, c>0, 那么ac>bc; 如果a>b, c<0, 那么ac<bc;
性质5: 同向可加性 如果a>b, c>d, 那么a+c>b+d
性质6: 同向均正可乘性 如果a>b>0, c>d>0, 那么ac>bd
性质7: 同正乘方法则 如果a>b>0, 那么an>bn( n∈N, n≥2)
2021/02/25
10
不等关系与不等式研读教材P72-P74 1.不等式具有哪些性质? 2.哪些性质在运用应特别注意?
不等式的基本性质 性质1: 对称性
如果a>b, 那么b<a;
如果b<a, 那么a>b(即a>b b<a)
性质2: 传递性
如果a>b, b>c, 那么a>c(即a>b, b>c a>c) 如果c<b, b<a, 那么c<a(即c<b, b<a c<a)
性质8: 同正开方法则 如果a>b>0, 那么 n an b( n∈N, n≥2)
运用1. 已a知 b0,c0,求证 cc: ab
运用 2. a b0已 ,c知 d0,eR, 试比e较与e 的大小关系。
ac bd
你有哪些方法解决这个问题?对于实
数a、b、c, 下列命题中真命题有______
(1)若a b,则ac2 bc2; (2)若ac2 bc2,则a b; (3)若c a b0,则 a b ;
ca cb (4)若a b, 1 1,则a 0,b0;
高三数学一轮复习 6.1不等关系与不等式课件
ppt精选
13
6.已知-2<a<-1,-3<b<-2,则a-b的取值范围是
,a2+b2的
取值范围是
.
【解析】因为-2<a<-1,-3<b<-2,所以2<-b<3,
于是0<a-b<2.
又因为1<a2<4,4<b2<9,所以5<a2+b2<13.
答案:(0,2) (5,13)
ppt精选
14
考点1 用不等式(组)表示不等关系 【典例1】(1)已知甲、乙两种食物的维生素A,B含量如下表:
ppt精选
19
【规律方法】用不等式(组)表示不等关系的常见类型及解题策 略 (1)常见类型: ①常量与常量之间的不等关系; ②变量与常量之间的不等关系; ③函数与函数之间的不等关系; ④一组变量之间的不等关系.
ppt精选
20
(2)解题策略:①分析题目中有哪些未知量; ②选择其中起关键作用的未知量,设为x,再用x来表示其他未知 量; ③根据题目中的不等关系列出不等式(组). 提醒:在列不等式(组)时要注意变量自身的范围,解题时极易忽 略,从而导致错解.
可乘性
a c
b
0
⇒_a_c_>_b_c_
a c
b 0
⇒_a_c_<_b_c_
ppt精选
特别提醒 ⇔ ⇒ ⇔
注意c 的符号
4
性质 同向可加性
同向同正 可乘性
可乘方性 可开方性
性质内容
a c
b
d
⇒_a_+_c_>_b_+_d_
a b 0
c
d
高三数学不等关系与不等式课件
对 高 考
考
点
探
【思路点拨】 可以利用等比数列前n项和公式
究 •
挑
将两个式子表示出来,再作差进行比较,但应
战 高
考
注意对公比的分类讨论.
考
向
瞭
望
•
把
脉
高
考
优化方案系列丛书
第6章 不等式与推理证明
双
基
研
习
【解】 当 q=1 时,Sa33=3,Sa55=5,所以Sa33<Sa55;
• 面 对 高 考
当 q>0 且 q≠1 时,
4.(教材习题改编)若a>b,c>d,则下列不等关系
习 • 面
对
中一定成立的是________.
高 考
①a-b&g>b+c
究 •
挑
③a-c>b-c
战 高 考
④a-c<a-d
考
向
答案:①③④
瞭 望
•
把
脉
高
考
优化方案系列丛书
第6章 不等式与推理证明
双
基
研
习
•
面
对
高
5.已知f(x)=3x2-x+1,g(x)=2x2+x-1,x∈R, 考
面 对 高 考
b<ab,②|a|>|b|,③a<b,④ab+ab>2 中,正确的
考 点
探
有个数为( )
究 •
A.1
B.2
挑 战
高
C.3
D.4
考
考 向 瞭 望 • 把 脉 高 考
优化方案系列丛书
第6章 不等式与推理证明
双
基
旧教材适用2023高考数学一轮总复习第七章不等式第1讲不等关系与不等式
第1讲 不等关系与不等式1.比较两个实数的大小两个实数的大小是用实数的运算性质来定义的,有a -b >0⇔□01a >b ;a -b =0⇔□02a =b ;a -b <0⇔□03a <b .另外,若b >0,则有a b >1⇔a >b ;a b =1⇔a =b ;a b<1⇔a <b . 2.不等式的性质(1)对称性:□04a >b ⇔b <a ; (2)传递性:□05a >b ,b >c ⇒a >c ; (3)可加性:a >b ⇔a +c □06>b +c ;a >b ,c >d ⇒□07a +c >b +d ; (4)可乘性:a >b ,c >0⇒□08ac >bc ;a >b ,c <0⇒□09ac <bc ;a >b >0,c >d >0⇒□10ac >bd ; (5)可乘方性:a >b >0⇒□11a n >b n(n ∈N ,n ≥2); (6)可开方性:a >b >0⇒□12n a >nb (n ∈N ,n ≥2).1.a >b ,ab >0⇒1a <1b.2.a <0<b ⇒1a <1b.3.a >b >0,0<c <d ⇒a c >b d. 4.0<a <x <b 或a <x <b <0⇒1b <1x <1a.5.若a >b >0,m >0,则b a <b +m a +m ;b a >b -m a -m (b -m >0);a b >a +m b +m ;a b <a -mb -m(b -m >0).1.设M =x 2,N =-x -1,则M 与N 的大小关系是( ) A .M >N B .M =N C .M <N D .与x 有关答案 A解析 M -N =x 2+x +1=⎝ ⎛⎭⎪⎫x +122+34>0,所以M >N .故选A.2.(2021·天津河北区模拟)已知x ,y ∈R ,且x >y >0,则( )A .1x -1y >0B .sin x -sin y >0C .⎝ ⎛⎭⎪⎫12x-⎝ ⎛⎭⎪⎫12y<0 D .ln x +ln y >0答案 C解析 因为函数y =⎝ ⎛⎭⎪⎫12x 在R 上单调递减,且x >y >0,所以⎝ ⎛⎭⎪⎫12x <⎝ ⎛⎭⎪⎫12y ,即⎝ ⎛⎭⎪⎫12x -⎝ ⎛⎭⎪⎫12y<0. 3.若m <0,n >0且m +n <0,则下列不等式中成立的是( ) A.-n <m <n <-m B .-n <m <-m <n C .m <-n <-m <n D .m <-n <n <-m答案 D解析 (取特殊值法)令m =-3,n =2分别代入各选项检验,可知D 正确.4.(2022·东北育才学校高三模拟)若a ,b ,c ∈R ,a >b ,则下列不等式恒成立的是( ) A .1a <1bB .a 2>b 2C .a |c |>b |c |D .a c 2+1>bc 2+1答案 D解析 对于A ,若a >0>b ,则1a >1b,故A 错误;对于B ,取a =1,b =-2,则a 2<b 2,故B错误;对于C ,若c =0,则a |c |=b |c |,故C 错误;对于D ,因为c 2+1≥1,所以1c 2+1>0,又a >b ,所以a c 2+1>bc 2+1,故D 正确.故选D. 5.已知a ,b ,c ∈R ,有以下命题: ①若1a <1b ,则c a <c b ;②若a c 2<bc2,则a <b ;③若a >b ,则a ·2c>b ·2c.其中正确的是 (请把正确命题的序号都填上). 答案 ②③解析 ①若c ≤0,则命题不成立.②由a c 2<b c 2得a -bc 2<0,于是a <b ,所以命题正确.③由2c>0知命题正确.故正确命题的序号为②③.考向一 不等式的性质例1 (1)已知条件甲:a >0,条件乙:a >b 且1a >1b,则甲是乙的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 答案 B解析 由a >0不能推出a >b 且1a >1b ,故甲不是乙的充分条件.若a >b 且1a >1b ,即a >b 且b -aab>0,则ab <0,所以a >0,b <0.所以由a >b 且1a >1b能推出a >0.故甲是乙的必要条件.所以甲是乙的必要不充分条件.(2)若1a <1b <0,则下列不等式:①1a +b <1ab ;②|a |+b >0;③a -1a >b -1b ;④ln a 2>ln b 2中,正确的是 .答案 ①③解析 解法一:由1a <1b <0,可知b <a <0.①中,因为a +b <0,ab >0,所以1a +b <0,1ab>0.故有1a +b <1ab,即①正确;②中,因为b <a <0,所以-b >-a >0.故-b >|a |,即|a |+b <0,故②错误;③中,因为b <a <0,又1a <1b <0,所以a -1a >b -1b,故③正确;④中,因为b <a <0,根据y =x 2在(-∞,0)上为减函数,可得b 2>a 2>0,而y =ln x 在定义域(0,+∞)上为增函数,所以ln b 2>ln a 2,故④错误.由以上分析,知①③正确.解法二:因为1a <1b<0,故可取a =-1,b =-2.显然|a |+b =1-2=-1<0,所以②错误;因为ln a 2=ln (-1)2=0,ln b 2=ln (-2)2=ln 4>0,所以④错误;因为a +b <0,ab >0,所以1a +b <0,1ab >0.故有1a +b <1ab ,所以①正确;因为b <a <0,又1a <1b <0,所以a -1a >b -1b,所以③正确.解决不等式是否成立问题常用的方法(1)直接利用不等式的性质逐个验证,利用不等式的性质判断不等式是否成立时要特别注意前提条件.(2)利用特殊值法排除错误答案.(3)利用函数的单调性,当直接利用不等式的性质不能比较大小时,可以利用指数函数、对数函数、幂函数等函数的单调性进行判断.1.(2022·长治模拟)下列选项中,a >b 的一个充分不必要条件是( )A .1a >1bB .lg a >lg bC .a 2>b 2D .e a>e b答案 B解析 由函数y =lg x 的单调性知lg a >lg b ⇔a >b >0⇒a >b ,但a >b⇒/lg a >lg b ,如a =1,b =0.故选B.2.(2021·兰州模拟)若a <b <0,给出下列不等式:①a 2+1>b 2;②|1-a |>|b -1|;③1a +b >1a >1b. 其中正确的个数是( ) A .0 B .1 C .2 D .3 答案 D解析 因为a <b <0,所以|a |>|b |>0,所以a 2>b 2,所以a 2+1>b 2,故①正确.又因为-a >-b >0,所以1-a >1-b >0,所以|1-a |>|b -1|,故②正确.因为a +b <a <b <0,所以1a +b >1a >1b,故③正确.所以三个不等式都正确.故选D.精准设计考向,多角度探究突破 考向二 比较两个数(式)的大小 角度作差法例2 (1)已知x <1,则x 3-1与2x 2-2x 的大小关系是 . 答案 x 3-1<2x 2-2x解析 x 3-1-(2x 2-2x )=x 3-2x 2+2x -1=(x 3-x 2)-(x 2-2x +1)=x 2(x -1)-(x -1)2=(x -1)(x 2-x +1)=(x -1)⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫x -122+34,∵x <1,∴x -1<0.又⎝ ⎛⎭⎪⎫x -122+34>0,∴(x -1)⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫x -122+34<0,∴x 3-1<2x 2-2x .(2)已知等比数列{a n }中,a 1>0,q >0,前n 项和为S n ,则S 3a 3与S 5a 5的大小关系为 . 答案S 3a 3<S 5a 5解析 当q =1时,S 3a 3=3,S 5a 5=5,所以S 3a 3<S 5a 5.当q >0且q ≠1时,S 3a 3-S 5a 5=a 1(1-q 3)a 1q 2(1-q )-a 1(1-q 5)a 1q 4(1-q )=q 2(1-q 3)-(1-q 5)q 4(1-q )=-q -1q 4<0,所以S 3a 3<S 5a 5.综上可知,S 3a 3<S 5a 5.角度作商法例3 (1)(2020·全国Ⅲ卷)已知55<84,134<85.设a =log 53,b =log 85,c =log 138,则( ) A .a <b <c B .b <a <c C .b <c <a D .c <a <b 答案 A解析 ∵a ,b ,c ∈(0,1),a b =log 53log 85=lg 3lg 5×lg 8lg 5<1(lg 5)2×⎝ ⎛⎭⎪⎫lg 3+lg 822=⎝ ⎛⎭⎪⎫lg 3+lg 82lg 52=⎝ ⎛⎭⎪⎫lg 24lg 252<1,∴a <b .由b =log 85,得8b =5,由55<84,得85b <84,∴5b <4,可得b <45.由c =log 138,得13c =8,由134<85,得134<135c,∴5c >4,可得c >45.综上所述,a <b <c .故选A.(2)若a >0,且a ≠7,则( ) A .77a a<7a a 7B .77a a =7a a 7C .77a a >7a a 7D .77a a 与7a a 7的大小不确定 答案 C解析 显然77a a>0,7a a 7>0,因为77a a7a a 7=⎝ ⎛⎭⎪⎫7a 7⎝ ⎛⎭⎪⎫a 7a =⎝ ⎛⎭⎪⎫7a 7⎝ ⎛⎭⎪⎫7a -a =⎝ ⎛⎭⎪⎫7a 7-a.当a >7时,0<7a<1,7-a <0,⎝ ⎛⎭⎪⎫7a 7-a >1,当0<a <7时,7a>1,7-a >0,⎝ ⎛⎭⎪⎫7a 7-a>1.综上,知77a a >7a a 7.角度特殊值法例4 (1)若a >b >0,且ab =1,则下列不等式成立的是( ) A .a +1b <b2a <log 2(a +b )B .b 2a <log 2(a +b )<a +1bC .a +1b <log 2(a +b )<b 2aD .log 2(a +b )<a +1b <b 2a答案 B解析 根据题意,令a =2,b =12进行验证,易知a +1b =4,b 2a =18,log 2(a +b )=log 252∈(1,2),因此b 2a <log 2(a +b )<a +1b.(2)已知a >b ,则不等式:①a 2-b 2≥0;②ac >bc ;③|a |>|b |;④2a >2b中,不成立的是 .答案 ①②③解析 ①中,若a =-1,b =-2,则a 2-b 2≥0不成立;当c =0时,②不成立;当0>a >b 时,③不成立.④中,由指数函数的单调性知2a >2b成立.角度中间量法例5 (1)(2022·成都模拟)已知实数a =ln (ln π),b =ln π,c =2ln π,则a ,b ,c的大小关系为( )A .a <b <cB .a <c <bC .b <a <cD .c <a <b 答案 A解析 因为e<π<e 2,所以ln π∈(1,2),即b ∈(1,2).由ln π∈(1,2),得a =ln (ln π)∈(ln 1,ln 2),而ln 2<ln e =1,所以a ∈(0,1).由2ln e<2ln π<2ln e2,得c ∈(2,4).所以a <b <c .故选A.(2)若0<a <b <1,则a b,log b a ,log 1ab 的大小关系是 .答案 log 1ab <a b<log b a解析 ∵0<a <1,∴1a>1.又0<b <1,∴log 1ab <log 1a1=0.∵0<a b <a 0=1,log b a >log b b =1,∴log 1ab <a b<log b a .角度单调性法例6 (1)(2021·安阳模拟)已知实数a ,b ∈(0,1),且满足cos a π<cos b π,则下列关系式成立的是( )A .ln a <ln bB .sin a <sin bC .1a <1bD .a 3<b 3答案 C解析 因为a ,b ∈(0,1),所以a π,b π∈(0,π),而函数y =cos x 在(0,π)上单调递减,cos a π<cos b π,所以a π>b π,即a >b ,由函数y =ln x ,y =sin x ,y =x 3在(0,1)上均为增函数,知只有C 正确.(2)(2022·广西柳州模拟)若b >a >3,f (x )=ln xx,则下列各结论中正确的是( )A .f (a )<f (ab )<f ⎝ ⎛⎭⎪⎫a +b 2B .f (ab )<f ⎝ ⎛⎭⎪⎫a +b 2<f (b )C .f (ab )<f ⎝ ⎛⎭⎪⎫a +b 2<f (a )D .f (b )<f ⎝ ⎛⎭⎪⎫a +b 2<f (ab )答案 D解析 因为b >a >3,所以3<a <ab <a +b2<b .又f ′(x )=1-ln xx2,当x ∈(e ,+∞)时,f ′(x )<0,所以函数f (x )在区间(e ,+∞)上单调递减,又3>e ,则有f (b )<f ⎝ ⎛⎭⎪⎫a +b 2<f (ab )<f (a ),故选D.(1)作差法的步骤:①作差;②变形;③定号;④结论.(2)作商法的步骤:①判断两式同号;②作商;③变形;④判断商与1的大小关系;⑤结论.(3)特殊值法比较大小的思路利用特殊值法比较不等式的大小时需要注意以下问题:选择项两数(式)大小是确定的,如果出现两数(式)大小由某个参数确定或大小不确定的选项,就无法通过特殊值进行检验;赋值应该满足前提条件;当一次赋值不能确定准确的选项,则可以通过二次赋值检验,直至得到正确选项.(4)中间量法比较大小的思路利用中间量法比较不等式大小时要根据已知数、式灵活选择中间变量,指数式比较大小,一般选取1和指数式的底数作为中间值;对数式比较大小,一般选取0和1作为中间值,其实质就是根据对数函数f (x )=log a x 的单调性判断其与f (1),f (a )的大小.(5)①利用函数的性质比较数、式的大小,得到函数的单调区间是问题求解的关键,解题时,指数、对数、三角函数单调性的运用是解题的主要形式;②通过对称性、周期性,可以将比较大小的数、式转化到同一个单调区间,有利于其大小比较;③导数工具的应用,拓宽了这类问题的命题形式,同时增大了解题难度,值得我们关注和重视.3.(2022·西安模拟)设a =log 3π,b =log 23,c =log 32,则( )A .a >b >cB .a >c >bC .b >a >cD .b >c >a 答案 A解析 ∵a =log 3π>log 33=1,b =log 23<log 22=1,∴a >b ,又log 23>0,log 32>0,b c =12log 2312log 32=(log 23)2>1,∴b >c ,故a >b >c .故选A. 4.设α∈⎝ ⎛⎭⎪⎫0,12,T 1=cos(1+α),T 2=cos (1-α),则T 1与T 2的大小关系为 . 答案 T 1<T 2解析 T 1-T 2=(cos 1cos α-sin 1sin α)-(cos 1cos α+sin 1sin α)=-2sin 1sinα<0,所以T 1<T 2.5.已知a >0,b >0,且a ≠b ,试比较a a b b与(ab )a +b2的大小.解 ∵a >0,b >0,a a b b>0,(ab )a +b2>0,若a >b >0,则ab>1,a -b >0.由指数函数的性质,得⎝ ⎛⎭⎪⎫a ba -b2>1;若b >a >0,则0<a b<1,a -b <0.由指数函数的性质,得⎝ ⎛⎭⎪⎫a b a -b2>1. ∴a ab b(ab )a +b 2>1,∴a a b b>(ab ) a +b2. 考向三 不等式性质的应用例7 (1)若角α,β满足-π2<α<β<π2,则2α-β的取值范围是 .答案 ⎝ ⎛⎭⎪⎫-3π2,π2解析 因为-π2<α<β<π2,所以-π2<α<π2,-π2<β<π2,-π2<-β<π2,而α<β,所以-π<α-β<0,所以2α-β=(α-β)+α∈⎝ ⎛⎭⎪⎫-3π2,π2.(2)已知-1<x +y <4且2<x -y <3,则z =2x -3y 的取值范围是 (答案用区间表示).答案 (3,8)解析 解法一:设2x -3y =λ(x +y )+μ(x -y )=(λ+μ)x +(λ-μ)y , 对应系数相等,则⎩⎪⎨⎪⎧λ+μ=2,λ-μ=-3,解得⎩⎪⎨⎪⎧λ=-12,μ=52. ∴2x -3y =-12(x +y )+52(x -y )∈(3,8).解法二:令⎩⎪⎨⎪⎧a =x +y ,b =x -y ,∴⎩⎪⎨⎪⎧x =a +b2,y =a -b 2.∴2x -3y =2⎝⎛⎭⎪⎫a +b 2-3⎝ ⎛⎭⎪⎫a -b 2=-a 2+52b ∈(3,8). 利用不等式的性质求代数式的取值范围由a <f (x ,y )<b ,c <g (x ,y )<d ,求F (x ,y )的取值范围,可利用待定系数法解决,即设F (x ,y )=mf (x ,y )+ng (x ,y )(或其他形式),通过恒等变形求得m ,n 的值,再利用不等式的同向可加和同向同正可乘的性质求得F (x ,y )的取值范围.6.若实数x ,y 满足3≤xy 2≤8,4≤x 2y ≤9,则x 3y4的最大值是 .答案 27解析 解法一:由3≤xy 2≤8,4≤x 2y ≤9,可知x >0,y >0,且18≤1xy 2≤13,16≤x 4y2≤81,得2≤x 3y 4≤27,故x 3y4的最大值是27.解法二:设x 3y 4=⎝ ⎛⎭⎪⎫x 2y m(xy 2)n,则x 3y -4=x2m +n y 2n -m,所以⎩⎪⎨⎪⎧2m +n =3,2n -m =-4,即⎩⎪⎨⎪⎧m =2,n =-1.又16 ≤⎝ ⎛⎭⎪⎫x 2y 2≤81,18≤(xy 2)-1≤13,∴2≤x 3y 4≤27,故x 3y4的最大值为27.7.已知12<a <60,15<b <36,求a -b 与ab的取值范围. 解 ∵15<b <36,∴-36<-b <-15, ∴12-36<a -b <60-15,即-24<a -b <45. ∵15<b <36,∴136<1b <115,∴1236<a b <6015,∴13<a b<4. ∴a -b 和a b 的取值范围分别是(-24,45),⎝ ⎛⎭⎪⎫13,4.1.若a >b >0,c <d <0,则一定有( ) A .a c >b d B .a c <b d C .a d >b cD .a d <b c答案 D解析 由c <d <0⇒1d <1c <0⇒-1d >-1c >0,又a >b >0,故由不等式性质,得-a d >-b c >0,所以ad<b c,故选D.2.(2022·安徽蚌埠开学考试)已知a 1,a 2∈(0,1),记M =a 1a 2,N =a 1+a 2-1,则M 与N 的大小关系是( )A .M <NB .M >NC .M =ND .不确定答案 B解析 M -N =a 1a 2-(a 1+a 2-1)=a 1a 2-a 1-a 2+1=(a 1-1)(a 2-1),又a 1∈(0,1),a 2∈(0,1),∴a 1-1<0,a 2-1<0.∴(a 1-1)(a 2-1)>0,即M -N >0,∴M >N .故选B.3.如果a ,b ,c 满足c <b <a ,且ac <0,那么下列不等式不一定成立的是( )A .ab >acB .c (b -a )>0C .cb 2<ab 2D .ac (c -a )>0答案 C解析 由题意知c <0,a >0,则A ,B ,D 一定正确,若b =0,则cb 2=ab 2.故选C. 4.设a >b >0,下列各数小于1的是( )A .2a -bB .⎝ ⎛⎭⎪⎫a b 12C .⎝ ⎛⎭⎪⎫a b a -bD .⎝ ⎛⎭⎪⎫b a a -b答案 D解析 解法一:(特殊值法)取a =2,b =1,代入验证,可得D 选项中⎝ ⎛⎭⎪⎫b a a -b<1.故选D.解法二:∵a >b >0,∴a -b >0,a b >1,0<b a<1.由指数函数的性质知,2a -b >20=1,⎝ ⎛⎭⎪⎫a b 12>⎝ ⎛⎭⎪⎫a b 0=1,⎝ ⎛⎭⎪⎫a b a -b>⎝ ⎛⎭⎪⎫a b 0=1,⎝ ⎛⎭⎪⎫b a a -b<⎝ ⎛⎭⎪⎫b a 0=1.故选D.5.(2021·四川南充模拟)已知a <0,-1<b <0,那么下列不等式成立的是( ) A .a >ab >ab 2B .ab 2>ab >a C .ab >a >ab 2D .ab >ab 2>a 答案 D解析 由于每个式子中都有a ,故先比较1,b ,b 2的大小.因为-1<b <0,所以b <b 2<1.又因为a <0,所以ab >ab 2>a .故选D.6.设x ,y ∈R ,则“x >y >0”是“x y>1”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 答案 A解析 因为x >y >0,所以1y >0,所以x ·1y >y ·1y ,即x y >1,所以“x >y >0”是“xy>1”的充分条件;当x =-2,y =-1时,x y >1,但x <y <0,所以“x >y >0”不是“x y>1” 的必要条件.故选A.7.(2022·武汉一中月考)若a <b ,d <c ,并且(c -a )(c -b )<0,(d -a )(d -b )>0,则a ,b ,c ,d 的大小关系为( )A .d <a <c <bB .a <d <c <bC .a <d <b <cD .d <c <a <b 答案 A解析 因为a <b ,(c -a )(c -b )<0,所以a <c <b ,因为(d -a )(d -b )>0,所以d <a <b 或a <b <d ,又因为d <c ,所以d <a <b .综上,d <a <c <b .8.(2021·江苏南京建邺区中华中学模拟)若非零实数a ,b 满足a <b ,则下列不等式成立的是( )A .a b<1 B .b a +a b>2 C .1ab 2<1a 2bD .a 2+a <b 2+b答案 C解析 当a =-4,b =-2时,满足a <b ,A 显然不成立;当a =-4,b =2时,满足a <b ,B 显然不成立;因为1ab2-1a 2b =a -b a 2b 2<0,所以1ab 2<1a 2b,C 成立;a 2+a -b 2-b =(a -b )(a +b )+(a -b )=(a -b )(a +b +1)符号不确定,D 不成立.故选C.9.有下列命题:①若ab >0,bc -ad >0,则c a -db>0; ②若ab >0,c a -d b>0,则bc -ad >0; ③若bc -ad >0,c a -d b>0,则ab >0. 其中正确命题的个数是( ) A .0 B .1 C .2 D .3 答案 D解析 ∵ab >0,bc -ad >0,∴c a -d b =bc -ad ab >0,∴①正确;∵ab >0,c a -d b >0,即bc -adab>0,∴bc -ad >0,∴②正确;∵bc -ad >0,c a -db>0,即bc -adab>0,∴ab >0,∴③正确.故选D. 10.(2021·长春模拟)已知x =log 23-log 23,y =log 0.5π,z =0.9-1.1,则x ,y ,z 的大小关系为( )A .x <y <zB .z <y <xC .y <z <xD .y <x <z答案 D解析 显然0<x =log 23<log 22=1,y =log 0.5π<log 0.51=0,z =0.9-1.1>0.90=1,所以y <x <z ,故选D.11.下面四个条件中,使a >b 成立的充要条件是( ) A .|a |>|b | B .1a >1bC .a 2>b 2D .2a>2b答案 D解析 a >b ⇒/ |a |>|b |,如a =2,b =-5,故A 错误;a >b ⇒/ 1a >1b,如a =2,b =1,故B 错误;a >b ⇒/ a 2>b 2,如a =1,b =-3,故C 错误;∵y =2x 是单调增函数,∴a >b ⇔2a >2b.故选D.12.(2022·合肥模拟)已知a =x 2+x +2,b =lg 3,c =e -12,则a ,b ,c 的大小关系为( )A .a <b <cB .c <a <bC .c <b <aD .b <c <a 答案 D解析 a =x 2+x +2=⎝ ⎛⎭⎪⎫x +122+2-14>1,b =lg 3<lg 10=12,c =e -12=1e ∈⎝ ⎛⎭⎪⎫12,1.所以b <c <a .故选D.13.若1a <1b<0,则下列不等式:①a +b <ab ;②|a |>|b |;③a <b ;④ab <b 2中,正确的是 .答案 ①④ 解析 因为1a <1b<0,所以b <a <0,a +b <0,ab >0,所以a +b <ab ,|a |<|b |,在b <a 两边同时乘以b ,因为b <0,所以ab <b 2.因此正确的是①④.14.(2021·河南三市三模)已知0<a <1,x =log a 2+log a 3,y =12log a 5,z =log a 21-log a 3,则x ,y ,z 的大小关系为 .答案 y >x >z解析 由题意得x =log a 6,y =log a 5,z =log a 7,而0<a <1,∴函数y =log a x 在(0,+∞)上单调递减,∴y >x >z .15.若α,β满足⎩⎪⎨⎪⎧-1≤α+β≤1,1≤α+2β≤3,则α+3β的取值范围为 .答案 [1,7]解析 设α+3β=x (α+β)+y (α+2β)=(x +y )α+(x +2y )β,则⎩⎪⎨⎪⎧x +y =1,x +2y =3,解得⎩⎪⎨⎪⎧x =-1,y =2.因为-1≤-(α+β)≤1,2≤2(α+2β)≤6,两式相加,得1≤α+3β≤7.所以α+3β的取值范围是[1,7].16.已知1≤lg (xy )≤4,-1≤lg x y ≤2,则lg x 2y的取值范围为 .答案 [-1,5]解析 令lg x 2y =m lg (xy )+n lg xy=lg (x m y m)+lg x n y n =lg x m +nyn -m .∴⎩⎪⎨⎪⎧m +n =2,m -n =-1,解得m =12,n =32.∴lg x 2y =12lg (xy )+32lg xy.∵1≤lg (xy )≤4,∴12≤12lg (xy )≤2.又-1≤lg x y ≤2,∴-32≤32lg xy≤3,∴-1≤12lg (xy )+32lg x y ≤5,∴-1≤lg x2y≤5.故lg x 2y的取值范围是[-1,5].。