向量基础知识及应用

向量基础知识及应用
向量基础知识及应用

向量基础知识及应用

基本知识:

1. 向量加法的定义及向量加法法则(三角形法则、平行四边形法则);

2. 向量减法的定义及向量减法法则(三角形法则、平行四边形法则);

3. 实数及向量的积λa . 向量共线的充要条件 :向量及非零向量共线的充要条件是有且只有一个实数λ,使得=λ。

4. 向量和的数量积:·=| |·||cos θ,其中θ为和的夹角。 向量b 在a 上的投影:|b |cos θ,其中θ为a 和b 的夹角

a ⊥

b ?a ·b =0

5. 向量的坐标表示: ()y x y x ,=+=0 ;

若向量()y x a ,=,则 |22|y x a +=;

若P 1(1x ,1y )、P 2(2x ,2y ),则 ()

121221y y x x P P --=,; |2

1P P |=212212)()(y y x x -+- 6. 向量的坐标运算及重要结论: 若a =(1x ,1y ), b =(2x ,2y ), 则

① ()2121y y x x ++=+,②()2121y y x x b a --=-,

③ ()11y x λλλ,=④y y x x 121+=?

⑤ 0//1221=-?y x y x ⑥?⊥b a 1x 2x +1y 2y =0

⑦ cos θ= (θ为向量的夹角)

7. 点P 分有向线段21P P 所成的比的λ: 21PP P λ=,或

P 内分线段21P P 时,0>λ; P 外分线段21P P 时,0<λ.

8. 定比分点坐标公式: ()1-≠λ ,中点坐标公式:

9. 三角形重心公式及推导(见课本例2):

三角形重心公式:)3

,3(321321y y y x x x ++++ 10. 图形平移:设F 是坐标平面内的一个图形,将F 上所有的点按照同一方向移动同样长度(即按向量平移),得到图形F`,我们把这一过程叫做图形的平移。

平移公式: 或 平移向量=PP =(h ,k )

应用:

1.利用向量的坐标运算,解决两直线的夹角,判定两直线平行、垂直问题

例1已知向量321,,OP OP OP 满足条件0321=++OP OP OP

1===,求证:321P P P ?是正三角形

解:令O 为坐标原点,可设()()()333222111sin ,cos ,sin ,cos ,sin ,cos θθθθθθP P P 由321OP OP OP -=+,即()()()332211sin cos sin ,cos sin ,cos θθθθθθ--=+ ?

??-=+-=+321321sin sin sin cos cos cos θθθθθθ 两式平方和为()11cos 2121=+-+θθ,,由此可知21θθ-的最小正角为0

120,即1OP 及2OP 的夹角为0120,同理可得1OP 及3OP 的夹角为0120,2OP 及3OP

的夹角为0120,这说明321,,P P P 三点均匀分部在一个单位圆上,所以321P P P ?为等腰三角形.

例2 求等腰直角三角形中两直角边上的中线所成的钝角

的度数

解:如图,分别以等腰直角三角形的两直角边为x 轴、y

轴建立直角坐标系,设()()a B a A 2,0,0,2,则()()a C a D ,0,0,, 从而可求:()()a a BD a a AC 2,,,2-=-=

,()()a

a a a a a 552,,2cos ?-?-==θ =..

2.利用向量的坐标运算,解决有关线段的长度问题

例3已知ABC ?,AD 为中线,求证()2

222221??

? ??-+=BC AC AB AD 证明:以B 为坐标原点,以BC 所在的直线为x 轴建立如图2直角坐标系,设()()0

,,,c C b a A ,,()22222

402b a ac c b a c ++-=-+?

??

??-

=, 221??

?-???+. =()4

42122222222c ac b a c b a c b a +-+=?????

?-

+-++,

从而221?? ?-???+,()

2222221??? ??-+=BC AC AB AD . 3.利用向量的坐标运算,用已知向量表示未知向量

例4已知点O 是,,内的一点,0090BOC 150AOB =∠=∠?ABC ,,,

=

==设,312===试用.,c b a 表示和

解:以O 为原点,OC ,OB 所在的直线为x 轴和y 轴建立如图3所示的坐标系.

① ②

由OA=2,0120=∠AOx ,所以()()

,31-A ,120sin 2,120cos 200,即A ,易求

()()3,0C 1-0B ,,,设()

()().31-3

--331-3,01-031-,OA 21122121?????==???==+=+=λλλλλλλλ,,,,即OC OB

.

例5

的夹角为与,的夹角为与530OA OC 120OB ,100===OA 用OB OA ,表示.OC 解:以O 为坐标原点,以OA 所在的直线为x 轴,建立如图所示的直角坐标系,则()0,1A ,

()

,,即,所以由???? ??=∠25235C ,30sin 5,5cos30C 30COA 000

()???

? ??+=???? ??+=23,21-0125235,OC 2121λλλλ,,即OB OA .33

53310232521-23521221???

????==???????==λλλλλ,

OB OC 3

353+=∴. 4.利用向量的数量积解决两直线垂直问题

例6 求证:三角形的三条高交于同一点

[分析]如图,已知ABC ?中,由AC BE BC AD ⊥⊥,,

,H BE AD = 要证明,AB CH ⊥利用向量法证明⊥,只要证得0=?即可;证明中,要充分利用好0=?,0=?这两个条件.

证明:H BC AD ,⊥ 在AD 上,∴0=?而 -=,0)(=?-BC CA CH ,即0=?-?① 又-=⊥, ,0=?∴即0)(=?-AC CB CH

0=?-?∴②

①-②得:0=?-?,即()0=-?AC BC CH 从而0=?,⊥∴,AB CH ⊥∴.

5.利用向量的数量积解决有关距离的问题,距离问题包括点到点的距离,点的线的距离,点到面的距离,线到线的距离,线到面的距离,面到面的距离.

例7 求平面内两点),(),,(2211y x B y x A 间的距离公式

[分析]已知点),(),,(2211y x B y x A 求B A ,两点间的距离|,|AB 这时,我们就可以构造出向量,那么),,(1212y y x x AB --=而||||AB AB =, 根据向量模的公式得212212)()(||y y x x -+-=

,从而求得平面内两点间的距离公式为212212)()(||y y x x AB -+-=.

解:设点),(),,(2211y x B y x A ,),(1212y y x x AB --=∴

212212)()(||y y x x -+-=∴ ,而||||AB =

∴点A 及点B 之间的距离为:212212)()(||y y x x AB -+-=

6.利用向量的数量积解决线及线的夹角及面及面的夹角问题.

例8 证明: βαβαβαsin sin cos cos )cos(+=-

[分析]如图,在单位圆上任取两点B A ,,以Ox 为始

边,OB OA ,为终边的角分别为αβ,,设出B A ,两点的坐标,即得到,的坐标,则βα-为向量,的

夹角;利用向量的夹角公式,即可得证.

证明:在单位圆O 上任取两点B A ,,以Ox 为始边,

以OB OA ,为终边的角分别为αβ,,则A 点坐标为

),sin ,(cos ββB 点坐标为)sin ,(cos αα;则向量

=),sin ,(cos ββ=)sin ,(cos αα,它们的夹角为βα-,

,1||||==OB OA βαβαsin sin cos cos +=?OB OA ,由向量夹角公式得:

==-||||)cos(OB OA βαβαβαsin sin cos cos +,从而得证.

注:用同样的方法可证明=+)cos(βαβαβαsin sin cos cos -

7.利用向量的数量积解决有关不等式、最值问题.

例9 证明柯西不等式221212

2222121)()()(y y x x y x y x +≥+?+ 证明:令),(),,(2211y x b y x a == (1) 当0 =a 或0 =b 时,02121=+=?y y x x b a ,结论显然成立; (2) 当0 ≠a 且0 ≠b 时,令θ为b a ,的夹角,则],0[πθ∈ θcos ||||2121b a y y x x b a =+=?. 又 1|cos |≤θ ||||||b a b a ≤?∴(当且仅当b a //时等号成立) 2

22221212121||y x y x y y x x +?+≤+∴ ∴2212122222121)()()(y y x x y x y x +≥+?+.(当且仅当时等号成立)

例10求x x x x y 22cos 3cos sin 2sin ++=的最值

解:原函数可变为x x y 2cos 2sin 2++=,所以只须求x x y 2cos 2sin +='的最值即可,构造{}{}1,1,2cos ,2sin ==x x ,那么22cos 2sin =

≤=+b a b a x x . 故22,22min max -=+=y y .

平面向量基础知识

b a B A O a -b 平面向量基础知识 1.向量的概念 (1)向量的定义:既有大小又有方向的量叫做向量.向量可用字母a ,b ,c ,…等表示,也可用表示向量的有向线段的起点和终点的字母表示(起点写在前面,终点写在后面,上面划箭头)如AB 表示由起点A 到终点B 方向的向量. (2)向量的模:向量AB 的大小(即向量AB 的长度)叫做向量AB 的模,记作|AB |.又如向量a 的模记作|a |. 注意:向量的模是一个非负实数,是只有大小而没有方向的标量. (3)零向量、单位向量、平行向量、共线向量的概念. ①零向量:长度(模)为0的向量叫做零向量,记作0.零向量的方向可看作任意方向. ②单位向量:长度(模)为1个单位的向量叫做单位向量. ③平行向量:方向相同或相反的非零向量叫做平行向量,向量a 与b 平行可记作:a //b .因为平行向量都可移到同一条直线上,所以平行向量又叫做共线向量.我们规定0与任一向量平行. ④相等向量:长度相等且方向相同的向量叫做相等向量.向量a 与b 相等,记作a =b .相等向量一定共线,反之则不一定成立. 2.向量运算 (1)加法运算 ①定义:求两个向量和的运算叫做向量的加法,如已知向量a ,b , 作AB =a ,BC =b ,则向量AC 叫做a 与b 的和,记作a +b ,即a +b =AB +BC =AC . 这种根据向量加法的定义求向量和的方法,叫做向量加法的 三角形法则. 由图可知,以同一点A 为起点的两个已知向量a ,b 为邻边作 平行四边形ABCD ,则以A 为起点C 为终点的对角线AC 就是a 与b 的和,我们把这种作两个向量和的方法叫做向量加法的平行 四边形法则. ②运算性质: a + b =b +a (交换律); (a +b )+ c =a +(b +c )(结合律); a +0=0+a =a . (2)减法运算 ①相反向量:与向量a 长度相等,方向相反的向量叫做a 的相反向量. 记作a .零向量的相反向量仍是零向量;-(-a )=a ;a +(-a )=0 (即互为相反的两个向量的和是零向量.) ②减法定义:向量a 加上b 的相反向量叫做a 与b 的差,即a b =a +(-b ). 求两个向量的减法可转化为加法进行.若向量是用两个大写字母,则只需把减向量起点字母与终点字母交换顺序,就可将减法变为加法,如AB -BC =AB +CB 如图,已知,在平面内任取一点O ,作OA =a ,OB =b ,则BA =a -b .即a -b 可以表示为从向量b 的终点指向a 的终点的向量.此法则叫做两向量减 法的三角形法则. (3)实数与向量的积: ①定义:λa ,其中λ>0,λa 与a 同向,|λa |=|λ|?|a |; λ<0时,λa 与a 反方向,|λa |=|λ|?|a |;λ=0时,λa =0,当a =0,λa =0. ②运算律: B A C a +b a b B A C a +b a b D a b

空间向量知识点归纳总结归纳

空间向量知识点归纳总结 知识要点。 1.空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。 注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。 (2)空间的两个向量可用同一平面内的两条有向线段来表示。 2.空间向量的运算。 定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。 OB OA AB a b =+=+u u u r u u u r u u u r v r ;BA OA OB a b =-=-u u u r u u u r u u u r r r ;()OP a R λλ=∈u u u r r 运算律:⑴加法交换律:a b b a ? ??ρ+=+ ⑵加法结合律:)()(c b a c b a ? ???ρ?++=++ ⑶数乘分配律:b a b a ? ???λλλ+=+)( 3.共线向量。 (1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫 做共线向量或平行向量,a ρ平行于b ρ,记作b a ρ ?//。 当我们说向量a ρ、b ρ共线(或a ρ//b ρ)时,表示a ρ、b ρ 的有向线段所在的直线可能是同一直线,也可能是平行直线。 (2)共线向量定理:空间任意两个向量a ρ、b ρ(b ρ≠0ρ),a ρ//b ρ 存在实数λ,使a ρ =λb ρ。 4.共面向量 (1)定义:一般地,能平移到同一平面内的向量叫做共面向量。 说明:空间任意的两向量都是共面的。 (2)共面向量定理:如果两个向量,a b r r 不共线,p r 与向量,a b r r 共面的条件是存在 实数,x y 使p xa yb =+r r r 。 5.空间向量基本定理:如果三个向量,,a b c r r r 不共面,那么对空间任一向量p r ,存在 一个唯一的有序实数组,,x y z ,使p xa yb zc =++r r r r 。 若三向量,,a b c r r r 不共面,我们把{,,}a b c r r r 叫做空间的一个基底,,,a b c r r r 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。 推论:设,,,O A B C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序 实数,,x y z ,使OP xOA yOB zOC =++u u u r u u u r u u u r u u u r 。 6.空间向量的直角坐标系: (1)空间直角坐标系中的坐标: 在空间直角坐标系O xyz -中,对空间任一点A ,存在唯一的有序实数组(,,)x y z ,使++=,有序实数组(,,)x y z 叫作向量A 在空间直角坐标系O xyz -中的坐标,记作(,,)A x y z ,x 叫横坐标,y 叫纵坐标,z 叫竖坐标。 (2)若空间的一个基底的三个基向量互相垂直,且长为1,这个基底叫单位正交基底,用{,,}i j k r r r 表示。 (3)空间向量的直角坐标运算律: ①若123(,,)a a a a =r ,123(,,)b b b b =r ,则112233(,,)a b a b a b a b +=+++r r ,

(整理)5平面向量基础知识.

平面向量基础知识 第一课时:向量的概念 向量的定义(两要素) 向量与矢量、数量、标量的区别 作用点、实际意义(单位)、可比性 向量是矢量的抽象、数量是标量的抽象 向量的表示 几何表示 (几何中用点表示位置、用射线表示方向 起点到终点) 用有向线段表示向量使向量具有几何直观性 有向线段(三要素)与向量的区别 (人的身高不随位置改变而改变) 向量只与其起点和终点的相对位置有关,与起点和终点的绝对位置无关 符号表示 有向线段的起点与终点符号(大写)(具体) 小写符号(抽象) 手写必须带箭头 (“帽子”) 用符号表示向量使向量具有代数的属性 坐标表示 用坐标表示向量使向量具有算术的属性 向量的模及其表示 写法与读法 (“外套”) 模特殊的向量 零向量 定义、表示0、方向 单位向量 定义 方向的惟一性 与已知非零向量共线的单位向量常用表示符号e 、i 、j 、k 位置特殊的向量 位置向量 起点为坐标原点的向量 方向关系特殊的向量与表示 平行向量(共线向量 “平行向量”与“共线向量”是等意词) 垂直向量 相等向量 平移变换用之 相反向量 反向变换用之 零向量的规定:零向量与任一向量共线,零向量的相反向量是零向量 判断: 1、若两向量相等,则它们的起点与终点相同 2、AB BA =- 3、若a ∥b ,b ∥c ,则a ∥c 4、若AB CD =,则AB CD 5、若a 与b 不共线,则a ≠0,b ≠0 6、若AB ∥CD ,则A 、B 、C 、D 四点共线 7、若AB ∥AC ,则A 、B 、C 三点共线 8、若AB=CD ,则AB CD = ∥ =

9、若AB=CD ,则||||AB CD = (既戴帽子,又穿外套) 两个向量平行,这两个向量可以在一条直线上,这与平面几何中的“平行”的含义不同;两个向量共线,这两个向量不一定在一条直线上,这与平面几何中的“共线”的含义也不同.而规定零向量与任一向量平行,使几何中的“平行公理”对于向量平行不再成立.(在几何中,“平行”和“共线、重合”绝不相同,而在向量中,“平行”和“共线”绝对一样) 向量的类型:自由向量、滑动向量、固定向量 第二课时:向量的加法 向量加法的定义 向量加法处理方法:三角形法则、平行四边形法则 (当两个向量共线时,平行四边形法则不适用,只适用三角形法则;当两个向量不共线时,平行四边形法则和三角形法则是一致的) 向量加法的特征:尾首相接,首尾相连(与接点的位置无关) 向量的和拆分 封闭折线的和向量 △ABC 中,G 是重心?GA +GB +GC =0 求和向量时需要把向量具体化、几何化 向量加法的运算律:交换律、结合律 向量加法的性质 1、两个向量的和为一个向量 2、若两个向量平行,则它们的和向量与它们也平行 3、若两个向量不平行,则它们的和向量与它们也不平行 4、||a |-|b ||≤|a +b |≤|a |+|b |, 当且仅当a 与b 同向,或其中至少一个是零向量时,后一等号成立;当且仅当a 与b 反向或其中至少一个是零向量时,前一等号成立. 第三课时:向量的减法 向量减法的定义 向量减法是向量加法的逆运算 向量减法处理方法:三角形法则、平行四边形法则 向量减法的特征:首首相聚,被减被指(与起点的位置无关) 向量的差拆分 向量减法是向量加法的逆运算,即减去一个向量等于加上该向量的相反向量 求差向量时需要把向量具体化、几何化 向量减法的性质 1、两个向量的差为一个向量 2、若两个向量平行,则它们的差向量与它们也平行 3、若两个向量不平行,则它们的差向量与它们也不平行 4、||a |-|b ||≤|a -b |≤|a |+|b |, 当且仅当a 与b 反向或其中至少一个是零向量时,后一等号成立;当且仅当a 与b 同向或其中至少一个是零向量时,前一等号成立.

空间向量与立体几何知识点

立体几何空间向量知识点总结 知识网络: 知识点拨: 1、空间向量的概念及其运算与平面向量类似,向量加、减法的平行四边形法则,三角形法则以及相关的运算律仍然成立.空间向量的数量积运算、共线向量定理、共面向量定理都是平面向量在空间中的推广,空间向量基本定理则是向量由二维到三维的推广. 2、当a 、b 为非零向量时.0a b a b ?=?⊥是数形结合的纽带之一,这是运用空间向量研究线线、线面、面面垂直的关键,通常可以与向量的运算法则、有关运算律联系来解决垂直的论证问题. 3、公式cos ,a b a b a b ?<>= ?是应用空间向量求空间中各种角的基础,用这个公式可以求两异面直线所成的角(但要注意两异面直线所成角与两向量的夹角在取值围上的区别),再结合平面的法向量,可以求直线与平面所成的角和二面角等. 4、直线的方向向量与平面的法向量是用来描述空间中直线和平面的相对位置的重要概念,通过研究方向向量与法向量之间的关系,可以确定直线与直线、直线与平面、平面与平面等的位置关系以及有关的计算问题. 5、用空间向量判断空间中的位置关系的常用方法 (1)线线平行 证明两条直线平行,只需证明两条直线的方向向量是共线向量. (2)线线垂直 证明两条直线垂直,只需证明两条直线的方向向量垂直,即0a b a b ?=?⊥.

(3)线面平行 用向量证明线面平行的方法主要有: ①证明直线的方向向量与平面的法向量垂直; ②证明可在平面找到一个向量与直线方向向量是共线向量; ③利用共面向量定理,即证明可在平面找到两不共线向量来线性表示直线的方向向量.(4)线面垂直 用向量证明线面垂直的方法主要有: ①证明直线方向向量与平面法向量平行; ②利用线面垂直的判定定理转化为线线垂直问题. (5)面面平行 ①证明两个平面的法向量平行(即是共线向量); ②转化为线面平行、线线平行问题. (6)面面垂直 ①证明两个平面的法向量互相垂直; ②转化为线面垂直、线线垂直问题. 6、运用空间向量求空间角 (1)求两异面直线所成角 利用公式cos, a b a b a b ? <>= ? , 但务必注意两异面直线所成角θ的围是 0, 2 π ?? ???, 故实质上应有:cos cos,a b θ=<> . (2)求线面角 求直线与平面所成角时,一种方法是先求出直线及射影直线的方向向量,通过数量积求出直线与平面所成角;另一种方法是借助平面的法向量,先求出直线方向向量与平面法向量的夹角φ,即可求出直线与平面所成的角θ,其关系是sinθ=| cosφ|. (3)求二面角 用向量法求二面角也有两种方法:一种方法是利用平面角的定义,在两个面先求出与棱垂直的两条直线对应的方向向量,然后求出这两个方向向量的夹角,由此可求出二面角的大小;另一种方法是转化为求二面角的两个面的法向量的夹角,它与二面角的大小相等或互补.7、运用空间向量求空间距离 空间中的各种距离一般都可以转化为求点与点、点与线、点与面的距离. (1)点与点的距离 点与点之间的距离就是这两点间线段的长度,因此也就是这两点对应向量的模. (2)点与面的距离 点面距离的求解步骤是: ①求出该平面的一个法向量; ②求出从该点出发的平面的任一条斜线段对应的向量; ③求出法向量与斜线段向量的数量积的绝对值再除以法向量的模,即得要求的点面距离. 备考建议:

平面向量基础知识复习+练习(含答案)

平面向量 1. 基本概念: 向量的定义、向量的模、零向量、单位向量、相反向量、共线向量、相等向量。 2. 加法与减法的代数运算: (1)A] A2 A2A3 A n i A n A1A n . ⑵若a= ( X i, y i) ,b= ( X2, y2 )则 a b= ( X i x?, y i y ). 向量加法与减法的几何表示:平行四边形法则、三角形法则。 以向量AB = a、AD = b为邻边作平行四边形ABCD ,则两条对角线的向量 AC = a + b, BD=b —a,DB = a —b 且有丨a I —I b I <| a b I <| a I + I b I . 向量加法有如下规律: a + b = b + a (交换律);a+(b+c)=(a+ b)+c (结合律);—F- —F —k —V- a + 0= a a + (—a )=0. 3 .实数与向量的积:实数与向量a的积是一个向量。 (1) I a I = I I?I a I ; (2) 当 >0时,a与a的方向相同;当v 0时,a与a的方向相反;当=0时, —t a = 0. (3) 若a= ( X i, y i),则a= ( X i, y i). 两个向量共线的充要条件: (1) 向量b与非零向量a共线的充要条件是有且仅有一个实数,使得b= a . ―b- —te- (2) 若a= ( X i, y i) ,b= ( X2, y2 )则a // b x』2 x? y i 0 . 平面向量基本定理: 若e i、e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a,有且只有 —*■ 一对实数i, 2,使得a = i e i+ 2 e2.

空间向量知识点归纳(期末复习).doc

空间向量期末复习 知识要点: 1.空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。 注:(1)向量一般用有向线段表示?同向等长的有向线段表示同一或相等的向量。 (2)空间的两个向量可用同一平面内的两条有向线段来表示。 2.空间向量的运算。 定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。 运算律:⑴加法交换律:a + h =b +ci ⑵加法结合律:(N + T) + E = N + 0 + e) ⑶数乘分配律:= + 3.共线向量。 (1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量,&平行于5 ,记作allb o 当我们说向量N、T共线(或a//b)时,表示万、5的有向线段所在的直线可能是同一直线,也可能是平行直线。 (2)共线向量定理:空间任意两个向量万、b(方工6), allb存在实数2,使a=kb o 4.共面向量 (1)定义:一般地,能平移到同一平面内的向量叫做共面向量。 说明:空间任意的两向量都是共面的。 (2)共面向量定理:如果两个向量方,5不共线,"与向量刁,5共面的条件是存在实数 x^y\^p = xa-\-yb。 5.空间向量基本定理:如果三个向量a.b.c不共面,那么对空间任一向量存在一个唯一的有序实数组x,y,z ,使0 = xN + y5 + zC。 若三向量万不共面,我们把{a.b.c}叫做空间的一个基底,a,b,c叫做基向量,空间任意三个不共而的向量都可以构成空间的一个基底。 推论:设O ,A,B,C是不共面的四点,则对空间任一点P,都存在唯一的三个有序实数x, y, z ,使OP = xOA + yOB + zOC。 6.空间向量的数量积。 (1)空I'可向量的夹角及其表示:已知两非零向量a.b,在空间任取一点0,作0A = a,0B = b ,则厶叫做向量N与方的夹角,记作且规定OM a9b><7T, 显然有<丽>=<歸>;若<云伍>=仝,则称万与5互相垂直,记作:N丄方。 (2)向量的模:设0A = a,则有向线段刃的长度叫做向量万的长度或模,记作:\a\o

平面向量基本定理练习题

平面向量基本定理及坐标表示强化训练 姓名__________ 一、选择题 1.下列向量给中,能作为表示它们所在平面内所有向量的基底的是 ( ) A .e 1=(0,0), e 2 =(1,-2) ; B .e 1=(-1,2),e 2 =(5,7); C .e 1=(3,5),e 2 =(6,10); D .e 1=(2,-3) ,e 2 =)4 3,2 1(- 2. 若AB =3a, CD =-5a ,且||||AD BC = ,则四边形ABCD 是 ( ) A .平行四边形 B .菱形 C .等腰梯形 D .不等腰梯形 3. 在△ABC 中,已知D 是AB 边上一点,若AD → =2DB →, CD → =1 3 CA →+λCB → ,则λ 等于() A. 23 B. 13 C. 13- D. 2 3- 4.已知向量a 、b ,且AB =a +2b ,BC = -5a +6b ,CD =7a -2b ,则一定共线的三点是 ( ) A .A 、B 、D B .A 、B 、C C .B 、C 、D D .A 、C 、D 5.如果e 1、 e 2是平面α内两个不共线的向量,那么在下列各说法中错误的有 ( )①λe 1+μe 2(λ, μ∈R)可以表示平面α内的所有向量; ②对于平面α中的任一向量a ,使a =λe 1+μe 2的λ, μ有无数多对; ③若向量λ1e 1+μ1e 2与λ2e 1+μ2e 2共线,则有且只有一个实数k ,使λ2e 1+μ2e 2=k (λ1e 1+μ1e 2); ④若实数λ, μ使λe 1+μe 2=0,则λ=μ=0. A .①② B .②③ C .③④ D .仅② 6.过△ABC 的重心任作一直线分别交AB 、AC 于点D 、E ,若AD =x AB ,AE =y AC ,xy ≠0,则11 x y +的值 为 ( ) A .4 B .3 C .2 D .1 7.若向量a =(1,1),b =(1,-1) ,c =(-2,4) ,则c = ( ) A .-a +3b B .3a -b C .a -3b D .-3a +b 二、填空题 8.作用于原点的两力F 1 =(1,1) ,F 2 =(2,3) ,为使得它们平衡,需加力F 3= ; 9.若A (2,3),B (x , 4),C (3,y ),且AB =2AC ,则x = ,y = ; 10.已知A (2,3),B (1,4)且12 AB =(sin α,cos β), α,β∈(-2π,2π),则α+β= * 11.已知a =(1,2) ,b =(-3,2),若k a +b 与a -3b 平行,则实数k 的值为

空间向量与立体几何知识总结(高考必备!)

zk ,有序实数组(,x 在空间直角坐标系O xyz -中的坐标,记作(A x 叫纵坐123,b a b a λλ?===2)若11(,A x y 一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。)//a b b ?=)R 设b a ,是空间两个非零向21a a x =?=+2 (AB x ==

12)(x y y -+-cos |||| b a b ?.空间向量数量积的性质: cos ,a e <>.②0a b a b ⊥?=.③2 ||a a a =?. 、运算律 a b b ?=?; ②)(a ?λ四、直线的方向向量及平面的法向量 b = ④解方程组,取其中的一组解即可。 存在有序实数对μλ,使AB =n ⊥

六、计算角与距离 1、求两异面直线所成的角 已知两异面直线b a ,,,,,A B a C D b ∈∈,则异面直线所成的角θ为:cos AB CD AB CD θ?= 例题 【空间向量基本定理】 例1.已知矩形ABCD ,P 为平面ABCD 外一点,且PA ⊥平面ABCD ,M 、N 分别为PC 、PD 上的点,且M 分成定比2, N 分PD 成定比1,求满足 的实数x 、y 、z 的值。 ] 分析;结合图形,从向量出发,利用向量运算法则不断进行分解,直到全部向量都用 、 、 表示出来, 即可求出x 、y 、z 的值。 如图所示,取PC 的中点E ,连接NE ,则 。 点评:选定空间不共面的三个向量作基向量,并用它们表示出指定的向量,是用向量解决立体几何问题的一项基本功,要结合已知和所求,观察图形,联想相关的运算法则和公式等,就近表示所需向量。再对照目标,将不符合目标要求的向量当作新的所需向量,如此继续下去,直到所有向量都符合目标要求为止,这就是向量的分解。有分解才有组合,组合是分解的表现形式。空间向量基本定理恰好说明,用空间三个不共面的向量组可以表示出空间任意一个向量, 而且a,b,c 的系数是惟一的。 ) 【利用空间向量证明平行、垂直问题】 例2.如图,在四棱锥P —ABCD 中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD=DC ,E 是PC 的中点,作EF ⊥PB 于点F 。 (1)证明:PA 方形ABCD —中,E 、F 分别是,的中点,求:

平面向量的基本概念及线性运算知识点

平面向量 一、向量的相关概念 1、向量的概念:既有大小又有方向的量,注意向量和数量的区别。向量常用有向线段来表示,注意不能说向量就是有向线段(向量可以平移)。如已知A (1,2),B (4,2),则把向量AB u u u r 按向量a r =(-1,3)平移后得到的向量是_____(3,0) 2、向量的表示方法:用有向线段来表示向量. 起点在前,终点在后。有向线段的长度表示向量的大小,用_____箭头所指的方向____表示向量的方向.用字母a ,b ,…或用AB ,BC ,…表示 (1) 模:向量的长度叫向量的模,记作|a |或|AB |. (2)零向量:长度为0的向量叫零向量,记作:0,注意零向量的方向是任意的; (3)单位向量:长度为一个单位长度的向量叫做单位向量(与AB u u u r 共线的单位向量是|| AB AB ±u u u r u u u r ); (4)相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性。 (5)平行向量(也叫共线向量):方向相同或相反的非零向量a 、b 叫做平行向量,记作:a ∥b ,规定零向量和任何向量平行。提醒:①相等向量一定是共线向量,但共线向量不一定相等;②两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线, 但两条直线平行不包含两条直线重合;③平行向量无传递性!(因为有0r );④三点A B C 、、共线? AB AC u u u r u u u r 、共线; (6)相反向量:长度相等方向相反的向量叫做相反向量。a 的相反向量是-a 。零向量的相反向量时零向量。 二、向量的线性运算 1.向量的加法: (1)定义:求两个向量和的运算,叫做向量的加法. 如图,已知向量a ,b ,在平面内任取一点A ,作AB =u u u r a ,BC =u u u r b ,则向量AC 叫做a 与b 的和,记作a+b ,即 a+b AB BC AC =+=u u u r u u u r u u u r 。AB BC CD DE AE +++=u u u r u u u r u u u r u u u r u u u r 特殊情况:a b a b a+b b a a+ b (1)平行四边形法则三角形法则 C B D C B A 对于零向量与任一向量a ,有 a 00+=+ a = a (2)法则:____三角形法则_______,_____平行四边形法则______ (3)运算律:____ a +b =b +a ;_______,____(a +b )+c =a +(b +c )._______ 当a 、b 不共线时,

空间向量基础知识和应用

空间向量基础知识和应用

知识网络 知识要点梳理 知识点一:空间向量 1.空间向量的概念 在空间,我们把具有大小和方向的量叫做向量。 注: ⑴空间的一个平移就是一个向量。 ⑵向量一般用有向线段表示,同向等长的有向线段表示同一或相等的向量。相等向量只考虑其定义要 素:方向,大小。 ⑶空间的两个向量可用同一平面内的两条有向线段来表示。 2.共线向量 (1)定义:如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平 行向量.平行于记作.当我们说向量、共线(或//)时,表示、的有向线段所在的直线可能是同一直线,也可能是平行直线. (2)共线向量定理:空间任意两个向量、(≠),//的充要条件是存在实数λ,使 =λ。 3.向量的数量积 (1)定义:已知向量,则叫做的数量积,记作,即 。 (2)空间向量数量积的性质: ①; ②; ③. (3)空间向量数量积运算律: ①;

②(交换律); ③(分配律)。 4.空间向量基本定理 如果三个向量不共面,那么对空间任一向量,存在一个唯一的有序实数组,使 。若三向量不共面,我们把叫做空间的一个基底,叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。 5.空间直角坐标系: (1)若空间的一个基底的三个基向量互相垂直,且长为,这个基底叫单位正交基底,用表示; (2)在空间选定一点和一个单位正交基底,以点为原点,分别以的方向为正方向建立三条数轴:轴、轴、轴,它们都叫坐标轴.我们称建立了一个空间直角坐标系, 点叫原点,向量都叫坐标向量.通过每两个坐标轴的平面叫坐标平面,分别称为 平面,平面,平面; 6.空间直角坐标系中的坐标 在空间直角坐标系中,对空间任一点,存在唯一的有序实数组,使,有序实数组叫作向量在空间直角坐标系中的坐标,记作,叫横坐标,叫纵坐标,叫竖坐标. 7.空间向量的直角坐标运算律: (1)若,,则. 一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。 (2)若,,则 , , , ,

高中数学向量基础知识

高中数学的平面向量知识向量的概念表c,.......(物理学中叫做矢量),向量可以用a,b,既有方向又有大小的量叫做向量(物示,也可以用表示向量的有向线段的起点和终点字母表示。只有大小没有方向的量叫做数量)。在自然界中,有许多量既有大小又有方向,如力、速度等。我们为了研究理学中叫做标量这些量的这个共性,在它们的基础上提取出了向量这个概念。这样,研究清楚了向量的性质,当然用它来研究其它量,就会方便许多。向量的几何表示是印刷体,AB。(AB有向线段,以A为起点,B为终点的有向线段记作具有方向的线段叫做也就是粗体字母,书写体是上面加个→) AB|。AB的长度叫做向量的模,记作| 有向线段个因素:起点、方向、长度。有向线段包含3 相等向量、平行向量、共线向量、零向量、单位向量: 相等向量。长度相等且方向相同的向量叫做共线向量,两个方向相同或相反的非零向量叫做平行向量或 ,,零向量与任意向量平行,即0//a、向量ab平行,记作a//b 在向量中共线向量就是平行向量,(这和直线不同,直线共线就是同一条直线了,而向量 共线就是指两条是平行向量)”是有区别。(注意粗体格式,实数“0”和向量“0零向量,记作 0长度等于0的向量叫做的)的方向是任意的;且零向量与任何向量都平行,垂直。零向量。1个单位长度的向量叫做单位向量模 等于 平面向量的坐标表示作为基底。任作ji、x 在直角坐标系内,我们分别取与轴、 y轴方向相同的两个单位向量 ,使得、y,由平面向量基本定理知,有且只有一对实数x一个向量a +yj a=xi 的(直角)坐标,记作)叫做向量,ya 我们把(x ),,y( a=x 向量的坐标表示。在y轴上的坐标,上式叫做叫做在其中 x叫做ax轴上的坐标,ya 在平面直角坐标系内,每一个平面向量都可以用一对实数唯一表示。注意:平面向量的坐标与点的坐标不一样,平面向量的坐标是相对的。而点的坐标是绝对 ),)那么该向量上的所有点都可以用(,的。若一向量的起点在原点,例如该向量为(12a2a1 / 5 表示。即,若一向量的起点在原点,那么该向量上的任意一点的横纵坐标比例关系与向量坐标。关系是的比例的一样

平面向量基础知识

平面向量基础知识 一、向量的基本概念 1.向量定义中的两个要素: 2、向量的表示方法:几何表示、代数表示 3.向量AB的大小,也就是向量AB的长度(或称模),记作,a的模为a. 4.特殊向量:零向量、单位向量、平行(共线)向量、相等向量、相反向量. 规定:零向量与任一向量平行. 二、平面向量的线性运算 1.加法:平行四边形法则 三角形法则 2.减法: → → -b a= - 3.数乘: (1)定义:规定实数λ与向量a的积是一个向量,这种运算叫做向量的数乘,记作λa,它的长度与方向规定如下: ①|λa|=; ②当λ>0时,λa的方向与a的方向;当λ<0时,λa的方向与a的方向. (2)运算律:设λ、μ为实数,那么 ①λ(μa)= ②(λ+μ)a= ③λ(a+b)=. (3)向量共线条件:a,b共线(a≠0)? (4)A、B、C三点共线? ? 三、平面向量基本定理及表示 1.平面向量基本定理:基底的概念 2.平面向量的坐标运算 (1)平面向量的坐标 设i,j是与方向相同的两个向量,对于平面上任一向量a,,使得a=,有序数对叫做向量a的坐标,记作a=.

(2)平面向量的坐标运算 ①设a=(x1,y1),b=(x2,y2),则有 a+b= a-b= λa= ②设A(x1,y1),B(x2,y2),则有AB= ③向量共线的坐标表示 设a=(x1,y1),b=(x2,y2),则a,b共线? 四.平面向量数量积 1.定义:已知两个非零向量a,b,我们把数量叫做a与b的数量积(或内积). 叫做a在b方向上的投影,叫做b在a方向上的投影. 2.a·b的几何意义: 数量积a·b等于a的长度|a|与b在a方向上的投影|b|cosθ的乘积. 3.数量积的运算律:已知向量a,b和实数λ,则 ①a·b= ②(λa)·b== ③(a+b)·c= 4.坐标表示:设a=(x1,y1),b=(x2,y2),则 a·b= 5.模长公式:设a=(x,y),则 |a|==. 6.垂直条件:设a,b为非零向量,则 a⊥b?? 7.夹角公式:设a=(x1,y1),b=(x2,y2),夹角为θ,则 θ cos= =

平面向量基础知识点总结 (1)

平面向量知识点总结 基本知识回顾: 1.向量的概念:既有大小又有方向的量叫向量,有二个要素:大小、方向. 2.向量的表示方法: ①用有向线段表示-----AB u u u r (几何表示法); ②用字母a r 、b r 等表示(字母表示法); ③平面向量的坐标表示(坐标表示法): 分别取与x 轴、y 轴方向相同的两个单位向量i r 、j r 作为基底。任作一个向量a ,由平 面向量基本定理知,有且只有一对实数x 、y ,使得a xi yj r r ,),(y x 叫做向量a 的(直 角)坐标,记作(,)a x y r ,其中x 叫做a 在x 轴上的坐标,y 叫做a 在y 轴上的坐标, 特别地,i r (1,0) ,j r (0,1) ,0(0,0) r 。a r ),(11y x A ,),(22y x B , 则 1212,y y x x ,AB 3.零向量、单位向量: ①长度为0的向量叫零向量,记为0; ②长度为1个单位长度的向量,叫单位向量.| |a 就是单位向量) 4.平行向量: ①方向相同或相反的非零向量叫平行向量; ②我们规定0r 与任一向量平行.向量a r 、b r 、c r 平行,记作a r ∥b r ∥c r .共线向量与平行向量 关系:平行向量就是共线向量. 性质://(0)(a b b a b r u r r r r r 是唯一)||b a b a a b u r r u r r r r 0,与同向方向---0,与反向长度--- 1221//(0)0a b b x y x y r u r r r (其中 1122(,),(,)a x y b x y r u r ) 5.相等向量和垂直向量: ①相等向量:长度相等且方向相同的向量叫相等向量. ②垂直向量——两向量的夹角为2 性质:0a b a b r u r r r g

高中数学(理)空间向量知识点归纳总结及综合练习

空间向量知识点归纳总结 知识要点。 1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。 注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。 (2)空间的两个向量可用同一平面内的两条有向线段来表示。 2. 空间向量的运算。 3. 共线向量。 (1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量, a 平行于 b ,记作b a //。 》 (2)共线向量定理:空间任意两个向量a 、b (b ≠0 ),a b a b 共面向量 (1)定义:一般地,能平移到同一平面内的向量叫做共面向量。 说明:空间任意的两向量都是共面的。 (2)共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的条件是存在实数,x y 使 p xa yb =+。 5. 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组 ,,x y z ,使p xa yb zc =++。 若三向量,,a b c 不共面,我们把{,,}a b c 叫做空间的一个基底,,,a b c 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。 推论:设,,,O A B C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序实数,,x y z ,使 OP xOA yOB zOC =++。 6. 空间向量的直角坐标系: ~ (1)空间直角坐标系中的坐标: (2)空间向量的直角坐标运算律: ①若123(,,)a a a a =,123(,,)b b b b =,则112233(,,)a b a b a b a b +=+++, 112233(,,)a b a b a b a b -=---,123(,,)()a a a a R λλλλλ=∈, 112233a b a b a b a b ?=++, 112233//,,()a b a b a b a b R λλλλ?===∈, 1122330a b a b a b a b ⊥?++=。 ②若111(,,)A x y z ,222(,,)B x y z ,则212121(,,)AB x x y y z z =---。 一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。 》

平面向量基础练习题

平面向量基础练习 1)在四边形ABCD 中,若AC AB AD =+ ,则四边形ABCD 的形状一定是 ( ) (A) 平行四边形 (B) 菱形 (C) 矩形 (D) 正方形 2)如果a ,b 是两个单位向量,则下列结论中正确的是 ( ) (A) a =b (B) 1?a b = (C) 22≠a b (D) =a b 3)AB BC AD +-= ( ) A 、A D B 、CD C 、 D B D 、DC 4)已知正方形ABCD 的边长为 1,A B = a ,BC = b ,AC = c , 则++a b c 等于 ( ) (A) 0 (B) 3 (D) 5)下列各组的两个向量,平行的是 A 、(2,3)a =- ,(4,6)b = B 、(1,2)a =- ,(7,14)b = C 、(2,3) a = , (3,2) b = D 、 (3,2) a =- , (6,4) b =- 6)若平行四边形的3个顶点分别是(4,2),(5,7),(-3,4),则第4个顶点的坐标不 可能是( ) (A)(12,5) (B)(-2,9) (C) (3,7) (D) (-4,-1)7)点),0(m A )0(≠m , 按向量a 平移后的对应点的坐标是 ) 0,(m ,则向量a 是( ) A 、),(m m - B 、),(m m - C 、),(m m -- D 、),(m m 8)已知(6,0)a = ,(5,5)b =- ,则a 与b 的夹角为 A 、045 B 、0 60 C 、0 135 D 、0 120 9)已知)2,3(-M ,)0,1(-N ,则线段MN 的中点P 的坐标是________。 10)已知向量a (1,5)=,b (3,2)=-,则向量a 在b 方向上的投影为 . 11)已知3a = ,4b = ,a 与b 的夹角为4 3π , (3)(2)a b a b -?+ =__________. 12)已知3=a ,4=b ,且向量a ,b 不共线,若向量+a k b 与向量-a k b 互相垂直,则 实数k 的值为 . 平面向量基础练习 1)在四边形ABCD 中,若AC AB AD =+ ,则四边形ABCD 的形状一定是 ( ) (A) 平行四边形 (B) 菱形 (C) 矩形 (D) 正方形 2)如果a ,b 是两个单位向量,则下列结论中正确的是 ( ) (A) a =b (B) 1?a b = (C) 22≠a b (D) =a b 3)AB BC AD +-= ( ) A 、A D B 、CD C 、 D B D 、DC 4)已知正方形ABCD 的边长为 1,A B = a ,BC = b ,AC = c , 则++a b c 等于 ( ) (A) 0 (B) 3 (D) 5)下列各组的两个向量,平行的是 A 、(2,3)a =- ,(4,6)b = B 、(1,2)a =- ,(7,14)b = C 、(2,3) a = , (3,2) b = D 、 (3,2) a =- , (6,4) b =- 6)若平行四边形的3个顶点分别是(4,2),(5,7),(-3,4),则第4个顶点的坐标不 可能是( ) (A)(12,5) (B)(-2,9) (C) (3,7) (D) (-4,-1)7)点),0(m A )0(≠m , 按向量a 平移后的对应点的坐标是 ) 0,(m ,则向量a 是( ) A 、),(m m - B 、),(m m - C 、),(m m -- D 、),(m m 8)已知(6,0)a = ,(5,5)b =- ,则a 与b 的夹角为 A 、045 B 、0 60 C 、0 135 D 、0 120 9)已知)2,3(-M ,)0,1(-N ,则线段MN 的中点P 的坐标是________。 10)已知向量a (1,5)=,b (3,2)=-,则向量a 在b 方向上的投影为 . 11)已知3a = ,4b = ,a 与b 的夹角为4 3π , (3)(2)a b a b -?+ =__________. 12)已知3=a ,4=b ,且向量a ,b 不共线,若向量+a k b 与向量-a k b 互相垂直,则 实数k 的值为 .

空间向量知识点总结.doc

空间向量与立体几何知识点总结 一、基本概念 : 1、空间向量: 2、相反向量: 3 、相等向量: 4、共线向量: 5 、共面向量: 6、方向向量 : 7 、法向量 8、空间向量基本定理: 二、空间向量的坐标运算: 1.向量的直角坐标运算 r r 设 a =(a1,a2 , a3 ) , b = (b1 , b2 , b3 ) 则 (1) r r b1, a2 b2, a3 b3 ) ;(2) r r a +b=(a1 a -b=( a1 (3) r a2 , a3 ) (λ∈R);(4) r r λ a =( a1, a · b = a1b1 2.设 A( x1, y1, z1), B( x2, y2, z2),则b1 , a2 b2 , a3b3 ) ;a2b2a3b3; uuur uuur uuur AB OB OA = (x2x1 , y2y1 , z2z1 ) . r r 3、设a ( x1 , y1, z1 ) , b ( x2, y2 , z2 ) ,则 r r r r r r r r r r a P b a b(b 0) ; a b a b 0 x1 x2 y1 y2 z1z2 0 . 4. 夹角公式 r r r r a1b1 a2 b2 a3b3 . 设 a =(a1,a2, a3),b=(b1, b2, b3),则 cos a,b a12 a22 a32 b12 b22 b32 5.异面直线所成角 r r r r | a b | | x1x2 y1 y2 z1 z2 | cos | cos a,b . |= r r x12 y12 z12 x22 y22 z22 | a | | b | 6.平面外一点p 到平面的距离 n r 已知 AB 为平面的一条斜线, n 为平面的一个法 α

高中数学平面向量知识点总结及常见题型范文

平面向量 一.向量的基本概念与基本运算 1向量的概念: ①向量:既有大小又有方向的量向量一般用c b a ,,……来表示,或用有向线段的起点与 终点的大写字母表示,如:几何表示法 AB ,a ;坐标表示法,(y x yj xi a =+= 向 量的大小即向量的模(长度),记作|AB |即向量的大小,记作|a | 向量不能比较大小,但向量的模可以比较大小. ②零向量:长度为0的向量,记为0 ,其方向是任意的,0 与任意向量平行a = ? |a |=0 由于0的方向是任意的,且规定0平行于任何向量,故在有关向量平行(共 线)的问题中务必看清楚是否有“非零向量”这个条件.(注意与0的区别) ③单位向量:模为1个单位长度的向量 向量0a 为单位向量?|0a |=1 ④平行向量(共线向量):方向相同或相反的非零向量任意一组平行向量都可以移到同 一直线上方向相同或相反的向量,称为平行向量记作a ∥b 由于向量可以进行任意的 平移(即自由向量),平行向量总可以平移到同一直线上,故平行向量也称为共线向量⑤相等向量:长度相等且方向相同的向量相等向量经过平移后总可以重合,记为b a =大小相等,方向相同),(),(2211y x y x =???==?21 2 1y y x x 2向量加法 求两个向量和的运算叫做向量的加法 设,AB a BC b ==,则a +b =AB BC +=AC (1)a a a =+=+00;(2)向量加法满足交换律与结合律; 向量加法有“三角形法则”与“平行四边形法则”: (1)用平行四边形法则时,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条对角线,而差向量是另一条对角线,方向是从减向量指向被减向量

相关文档
最新文档