轴的设计及校核

合集下载

机械设计中轴的强度设计与校核

机械设计中轴的强度设计与校核

机械设计中轴的强度设计与校核轴是在机械设施中的主要构成零件之一。

全部在机械设施上,用于作展转运动的传动零件,都要先把其装入于轴上才能够把运动和动力传达出去,与此同时,还要经过轴承和机架联接,因此就构成了一个以轴为基准的组合体—轴系零件。

因为在不一样的机器里,轴发挥的作用常常不一样。

而轴的构造主假如由以下的要素决定的:轴在整个设施中的安装地点和发挥的作用,轴上安装的全部零件的种类和大小,载荷的性质、大小、方向和详细散布状况,以及轴的加工流程等。

进行合理的轴的构造设计就要保证:轴上全部零件能够合理地部署,在合理的受力的状况下,轴能够进一步提升强度和刚度;轴和轴上零件要有比较固定的工作地点;轴上零件能够方便地进行装拆调整。

一般来说,在设计时,我们首当其冲的就是考虑轴的作用。

依据作用,为轴选择相应的资料,一般轴的毛坯主假如由圆钢、锻造或焊接获取,因为锻造质量难以保证轴有足够的强度和刚度,因此轴极少会采纳铸件作毛坯。

轴的构成部分有三大块。

轴上被支承,安装轴承的部分叫轴颈;支承轴上零件,安装轮毂的部分称为轴头;联络轴头和轴颈的部分称为轴身。

轴颈上安装转动轴承时,直径尺寸必定要依据转动轴承的国标尺寸来选择,尺寸公差和表面粗拙度必定要依据国家规定的标准来选用;轴头的尺寸必定要联合轮毂的尺寸来做出选择,轴身尺寸确准时要尽可能地保证轴颈与轴头的过渡合理,特别是要根绝截面尺寸变化过大,与此同时,还要有较好的工艺性。

假如在设计时,我们从装置能否简单这一角度来考虑:则合理的设计非定位轴肩,使轴上不一样零件在安装时尽可能减少不用要的配合面;为了保证简单装置,轴端要设计成45°的倒角;在装键的轴段,要保证键槽凑近轴与轮毂先接触的直径变化处,以保证在安装时,零件上的键槽与轴上的键简单瞄准;采纳过盈配合时,考虑到装置的方便性,直径变化能够用于锥面过渡等。

2.轴的强度校核方法2.1 强度校核的定义:强度校核实质上就是对轴的资料或设施的力学性能做好检测工作,并改良轴的设计的一种方式,而且这类方式是不会损坏资料和设计性能的。

轴的设计、计算、校核

轴的设计、计算、校核

轴得设计、计算、校核以转轴为例,轴得强度计算得步骤为:一、轴得强度计算1、按扭转强度条件初步估算轴得直径机器得运动简图确定后,各轴传递得P与n为已知,在轴得结构具体化之前,只能计算出轴所传递得扭矩,而所受得弯矩就是未知得。

这时只能按扭矩初步估算轴得直径,作为轴受转矩作用段最细处得直径dmin,一般就是轴端直径。

根据扭转强度条件确定得最小直径为:(mm)式中:P为轴所传递得功率(KW)n为轴得转速(r/min)Ao为计算系数,查表3若计算得轴段有键槽,则会削弱轴得强度,此时应将计算所得得直径适当增大,若有一个键槽,将d min增大5%,若同一剖面有两个键槽,则增大10%。

以dmin为基础,考虑轴上零件得装拆、定位、轴得加工、整体布局、作出轴得结构设计。

在轴得结构具体化之后进行以下计算。

2、按弯扭合成强度计算轴得直径l)绘出轴得结构图2)绘出轴得空间受力图3)绘出轴得水平面得弯矩图4)绘出轴得垂直面得弯矩图5)绘出轴得合成弯矩图6)绘出轴得扭矩图7)绘出轴得计算弯矩图8)按第三强度理论计算当量弯矩:式中:α为将扭矩折合为当量弯矩得折合系数,按扭切应力得循环特性取值:a)扭切应力理论上为静应力时,取α=0、3。

b)考虑到运转不均匀、振动、启动、停车等影响因素,假定为脉动循环应力,取α=0、59。

c)对于经常正、反转得轴,把扭剪应力视为对称循环应力,取α=1(因为在弯矩作用下,转轴产生得弯曲应力属于对称循环应力)。

9)校核危险断面得当量弯曲应力(计算应力):式中:W为抗扭截面摸量(mm3),查表4。

为对称循环变应力时轴得许用弯曲应力,查表1。

如计算应力超出许用值,应增大轴危险断面得直径。

如计算应力比许用值小很多,一般不改小轴得直径。

因为轴得直径还受结构因素得影响。

一般得转轴,强度计算到此为止。

对于重要得转轴还应按疲劳强度进行精确校核。

此外,对于瞬时过载很大或应力循环不对称性较为严重得轴,还应按峰尖载荷校核其静强度,以免产生过量得塑性变形。

机械设计轴的计算与校核

机械设计轴的计算与校核

校核主轴在工作过程中的热稳定性,防止 因温度变化导致精度损失。
精密机床主轴的预紧力调整
精密机床主轴的材料选择与处理
根据工作需求调整主轴的预紧力,提高回 转精度和刚度。
选择合适的材料和表面处理技术,提高主 轴的性能和使用寿命。
THANKS FOR WATCHING
感谢您的观看
变形。
校核方法通常包括计算轴的径向 刚度、分析径向力的分布和大小, 以及比较计算结果与轴的承载能
力。
径向刚度校核对于确保机械设备 的稳定性和精度至关重要,特别 是在高精度和高转速的机械设备
中。
轴向刚度校核
01
02
03
轴向刚度校核是指对轴 的轴向刚度进行评估, 以确保其能够承受外部 轴向力的作用而不发生
角刚度校核对于确保机械设备的稳定性和精度至关重要,特别是在需要承受较大扭 矩的机械设备中。
05 轴的稳定性校核
临界转速校核
01
02
03
临界转速定义
指轴在运转过程中,所承 受的转速达到一定值时, 会发生共振,导致轴的稳 定性下降。
临界转速计算
根据轴的长度、直径、转 动惯量等参数,通过计算 得到临界转速值。
临界载荷校核
将轴的实际工作载荷与临 界载荷进行比较,确保工 作载荷小于临界载荷,以 保证轴的安全性。
06 案例分析
案例一:减速器主轴的计算与校核
减速器主轴的承载能力计算
根据工作条件和材料特性,计算主轴 的承载能力,确保其能够承受工作过 程中的最大载荷。
减速器主轴的刚度校核
校核主轴的刚度,确保在正常工作时 不会发生过大的变形,影响传动精度。
减速器主轴的振动分析
分析主轴的振动特性,预防共振和振 动过大对设备性能的影响。

轴的设计与校核

轴的设计与校核

轴的设计与校核轴是一种常见的机械元件,其功能是将机械能从一个部件传递到另一个部件。

轴承受着多种负载,例如转矩、弯曲和剪切力,因此轴的设计与校核至关重要。

本文将介绍轴的设计与校核的基本概念和步骤。

1. 轴的设计轴的设计应该考虑到其所处的应用环境和负载类型。

在设计轴时需要考虑以下因素:1.1 操作条件轴所处的应用环境会影响其设计。

例如,轴可能暴露在腐蚀、高温或高湿度的环境中,此时需要选择相应的材料进行设计。

仔细分析操作条件是设计安全、可靠轴的第一步。

1.2 构造要素轴的长度、直径、几何形状和连接方式都会影响其设计。

例如,长而细的轴可能需要增加强度以避免扭曲,而大直径的轴可能需要更多的材料才能承受负载。

1.3 负载类型设计轴的最重要的因素是负载类型。

例如,将风机的力转换成排气段中的风压会产生弯曲和扭矩负载。

加强轴的弯曲刚度是应对此类负载的一种解决方案。

1.4 材料轴的材料通常是金属,且通常是钢。

轴的材料应该优先考虑强度和韧性。

强度指轴在负载下不会破裂的能力,而韧性指轴在承受重力时不会断裂的能力。

在选择材料时,还需要考虑轴是否需要抗疲劳。

2. 轴的校核校核是确定轴是否安全承受负荷的计算和实验过程。

当确定轴的设计后,需要进行校核以确保轴能够在操作条件下正常工作。

2.1 轴的应力分析轴的应力分析是校核的第一步。

应力分析确定轴受到的应力类型、大小和分布。

轴所需承受的负载类型将决定考虑什么样的应力(例如弯曲,剪切,轴向拉伸或压缩)。

2.2 轴的强度计算在进行强度计算时,需要考虑轴的几何形状、材料和应力情况。

在轴设计中,我们通常会为轴选择一种合适的材料,然后计算它在应用环境和负载条件下受到的应力。

然后,我们将应力值与轴材料的强度值进行比较,以确定轴是否能满足负载条件并安全操作。

校核轴应该考虑在负载下发生的弯曲和扭矩情况。

应该计算轴所需要的弯曲刚度和扭矩刚度以确保轴不会在负载下弯曲或扭曲过度。

轴的疲劳寿命计算是校核的最后一步。

轴的校核(机械设计用)

轴的校核(机械设计用)

轴的校核(机械设计用)一、引言轴是机械设计中重要的传动元件,其作用是将动力、扭矩或转动运动从一个部分传输到另一个部分,常用于制动、传动、液力传动、液压传动等装置中。

因此,轴的承载能力和稳定性对机械运转的安全性、正常性、可靠性起着关键性作用。

因此,在机械设计中,轴的校核显得尤为重要。

二、轴的校核轴的校核是指通过计算和检验的方法确定轴的受力状态和轴材的适宜性,在满足应力、变形、刚度、内部摩擦和动平衡等准则下评定轴的几何形状、尺寸和轴型的适宜性。

轴的挠度、变形和正反扭矩的产生将直接影响到机械的精度、运行可靠性和寿命,因此轴的安全性和可靠性是机械设计中必须考虑的关键因素。

轴的校核分为以下几个步骤:1. 确定轴的负载轴所承受的负载通常包括弯矩、剪力和轴向力。

在计算轴的承载能力时,需要将这些负载量化。

2. 计算轴所承受的应力应力就是单位面积上的力,轴所承受的应力与轴的几何形状、载荷以及材料的强度有关。

常用的轴应力计算方法有三种:弯曲应力、切割应力和轴向应力。

3. 判断轴的变形和挠度通过计算、分析和测试来判断轴材在所受负载下的弯曲变形和挠度。

需要将这些变形量化,以确定轴材的波纹度、平面度和圆度等几何指标的适宜性。

轴在承受负载时,其刚度会影响机器的频率响应和振动性能,同时也影响轴的几何强度。

常见的刚度指标包括挠度刚度、扭矩刚度和轴向刚度等。

5. 判断轴的内部摩擦和动平衡轴材的内部摩擦和动平衡将直接影响到机械运转的稳定性和可靠性,因此这些因素在轴的校核中也需要进行考虑。

1. 确认轴材的强度与硬度:轴材的强度与硬度将直接影响到轴材的承载能力和易损性,所以在轴的校核过程中需要先对轴材的材质、强度和硬度等参数进行确认。

2. 注意轴的材料性质:轴的材料性质将决定轴的几何尺寸和形状的合理性,同时也将影响到轴的寿命和易损性。

因此,在轴的校核中,需要特别注意轴材的硬度、韧性、延展性和强度等物理性质。

3. 考虑不同的负载类型:轴所承受的负载类型、位置和大小也会对轴的应力和变形产生不同的影响。

轴的设计计算校核

轴的设计计算校核

轴的设计、计算、校核以转轴为例,轴的强度计算的步骤为:一、轴的强度计算1、按扭转强度条件初步估算轴的直径机器的运动简图确定后,各轴传递的P和n为已知,在轴的结构具体化之前,只能计算出轴所传递的扭矩,而所受的弯矩是未知的;这时只能按扭矩初步估算轴的直径,作为轴受转矩作用段最细处的直径dmin,一般是轴端直径;根据扭转强度条件确定的最小直径为:mm式中:P为轴所传递的功率KWn为轴的转速r/minAo为计算系数,若计算的轴段有键槽,则会削弱轴的强度,此时应将计算所得的直径适当增大,若有一个键槽,将d min增大5%,若同一剖面有两个键槽,则增大10%;以dmin为基础,考虑轴上零件的装拆、定位、轴的加工、整体布局、作出轴的结构设计;在轴的结构具体化之后进行以下计算;2、按弯扭合成强度计算轴的直径l绘出轴的结构图2绘出轴的空间受力图3绘出轴的水平面的弯矩图4绘出轴的垂直面的弯矩图5绘出轴的合成弯矩图6绘出轴的扭矩图7绘出轴的计算弯矩图8按第三强度理论计算当量弯矩:式中:α为将扭矩折合为当量弯矩的折合系数,按扭切应力的循环特性取值:a扭切应力理论上为静应力时,取α=;b考虑到运转不均匀、振动、启动、停车等影响因素,假定为脉动循环应力,取α=;c对于经常正、反转的轴,把扭剪应力视为对称循环应力,取α=1因为在弯矩作用下,转轴产生的弯曲应力属于对称循环应力;9校核危险断面的当量弯曲应力计算应力:式中:W为抗扭截面摸量mm3,;为对称循环变应力时轴的许用弯曲应力,;如计算应力超出许用值,应增大轴危险断面的直径;如计算应力比许用值小很多,一般不改小轴的直径;因为轴的直径还受结构因素的影响;一般的转轴,强度计算到此为止;对于重要的转轴还应按疲劳强度进行精确校核;此外,对于瞬时过载很大或应力循环不对称性较为严重的轴,还应按峰尖载荷校核其静强度,以免产生过量的塑性变形;二、按疲劳强度精确校核按当量弯矩计算轴的强度中没有考虑轴的应力集中、轴径尺寸和表面品质等因素对轴的疲劳强度的影响,因此,对于重要的轴,还需要进行轴危险截面处的疲劳安全系数的精确计算,评定轴的安全裕度;即建立轴在危险截面的安全系数的校核条件;安全系数条件为:式中:为计算安全系数;、分别为受弯矩和扭矩作用时的安全系数;、为对称循环应力时材料试件的弯曲和扭转疲劳极限;、为弯曲和扭转时的有效应力集中系数,为弯曲和扭转时的表面质量系数;、为弯曲和扭转时的绝对尺寸系数;、为弯曲和扭转时平均应力折合应力幅的等效系数;、为弯曲和扭转的应力幅;、为弯曲和扭转平均应力;S为最小许用安全系数:~用于材料均匀,载荷与应力计算精确时;~用于材料不够均匀,载荷与应力计算精确度较低时;~用于材料均匀性及载荷与应力计算精确度很低时或轴径>200mm时;三、按静强度条件进行校核静强度校核的目的在于评定轴对塑性变形的抵抗能力;这对那些瞬时过载很大,或应力循环的不对称性较为严重的的轴是很有必要的;轴的静强度是根据轴上作用的最大瞬时载荷来校核的;静强度校核时的强度条件是:式中:——危险截面静强度的计算安全系数;——按屈服强度的设计安全系数;=~,用于高塑性材料≤制成的钢轴;=~,用于中等塑性材料=~制成的钢轴;=~2,用于低塑性材料制成的钢轴;=2~3,用于铸造轴;——只考虑安全弯曲时的安全系数;——只考虑安全扭转时的安全系数;式中:、——材料的抗弯和抗扭屈服极限,MPa ;其中=~;Mmax、Tmax——轴的危险截面上所受的最大弯矩和最大扭矩,;Famax——轴的危险截面上所受的最大轴向力,N;A——轴的危险截面的面积,m;W、W T——分别为危险截面的抗弯和抗扭截面系数,m;四、轴的设计用表表1 轴的常用材料及其主要力学性能材料牌号热处理毛坯直径mm硬度HBS抗拉强度极限σb屈服强度极限σs弯曲疲劳极限σ-1剪切疲劳极限τ-1许用弯曲应力σ-1备注Q235A 热轧或锻后空冷≤100400~42022517010540用于不重要及受载荷不大的轴>100~250375~39021545正火回火≤10170~21759029522514055应用最广泛>100~300162~217570285245135调质≤200217~2556403552751556040Cr 调质≤100>100~300241~28673568554049035535520018570用于载荷较大,而无很大冲击的重要轴40CrNi 调质≤100>100~300270~300240~27090078573557043037026021075用于很重要的轴38SiMnMo 调质≤100>100~300229~286217~26973568559054036534521019570用于重要的轴,性能近于40CrNi38CrMoAlA 调质≤60>60~100>100~160293~321277~302241~27793083578578568559044041037528027022075用于要求高耐磨性,高强度且热处理氮化变形很小的轴20Cr 渗碳淬火回火≤60渗碳56~62HRC64039030516060用于要求强度及韧性均较高的轴3Cr13调质≤100≥24183563539523075用于腐蚀条件下的轴1Cr18Ni9Ti 淬火≤100≤19253019519011545用于高低温及腐蚀条件下的轴180110100~200490QT600-3190~270600370215185用于制造复杂外形的轴QT800-2245~335800480290250表2 零件倒角C与圆角半径R的推荐值直径d>6~10>10~18>18~30>30~50>50~80>80~120>120~180 C或R表3 轴常用几种材料的和A0值轴的材料Q2351Cr18Ni9Ti354540Cr,35SiMn,2Cr13,20CrMnTi 12~2012~2520~3030~4040~52A0160~135148~125135~118118~107107~98表4 抗弯抗扭截面模量计算公式。

轴的设计与校核

轴的设计与校核

(2)按扭矩强度估算直径根据表6-2得C=118~107,又由式(6-5)得d≥c(p/n)1/3=(107~118)×(3.32/76.4)1/3=37.6~41.5mm考虑到轴的最小直径处要求安装联轴器,会有键槽存在,故将计算直径加3%~5%取38.73~41.5mm,由设计手册取标准直径d1=42mm(3)设计轴的结构并绘制草图由于设计的是单级减速器,可将齿轮布置在箱体内部中央,将轴承对称安装在齿轮两侧轴的外伸端安装半联轴器。

1)、确定轴上零件的位置和固定方式,要确定轴的结构形状,必须确定轴上零件的装拆顺序和固定方式,确定齿轮从右端装入,齿轮的左端用轴肩(或轴环)定位,右端用套筒固定,这样齿轮在轴上的轴向位置完全被确定,齿轮的周向固定采用平键联接,轴承对称安装于齿轮的两侧,其轴向用轴肩固定,周向固定采用过盈配合。

2)、确定各轴段的直径,如图所示,轴段a(外伸端)直径最小,d1=42mm,考虑到要对安装在轴段a上的联轴器进行定位,轴段b上应有轴肩,同时为能很顺利地在轴段c、f 上安装轴承,轴段c、f必须满足轴承的内径的标准,故取轴段c、f的直径分别为d3=55mm d6=55mm,用相同的方法确定轴段b、d、e的直径d2=50mm d4 =60mm d5=68mm,选用6211轴承。

3)、确定各轴段的长度,齿轮的轮毂宽为72mm,为保证齿轮固定可靠,轴段d的长度应略短于齿轮轮毂宽,取L4=70mm。

为保证齿轮端面与箱体内壁不相碰,齿轮端面与箱体内壁间应留有一定的间距取该间距为13mm。

为保证轴承安装在轴承座孔中(轴承宽度为21mm)并考虑轴承的润滑,取轴承端面距箱体内壁的距离为5mm。

所以轴段e的长度L5=18mm, 轴段f的长度L6=20mm。

轴段c由轴承安装的对称性知,L3=40mm,轴段b的长度L2=66mm,轴段 a 的长度由联轴器的长度确定得L1=83mm(由轴颈d1=42mm知联轴器和轴配合部分的长度为84mm),在轴段a 、d 上分别加工出键槽,使两键槽处于轴的同一圆柱母线上,键槽的长度比相应的轮毂宽度小约5—10mm,键槽的宽度按轴段直径查手册得到,a处选用平键12×8×70,d处选用平键18×11×60。

机械设计基础——4-1 轴的设计计算和校核

机械设计基础——4-1 轴的设计计算和校核

之为负。
(+) M
x
T
T
(+)
x
M
扭矩正负的判断
当轴上作用多个外力偶矩时,任一截面上的扭矩等于该截面左段(或右 段)所有外力偶矩的代数和。
3. 扭矩图
T
O
x
扭矩图
(三)扭转时横截面上的应力
扭转实验
切应力
γ x
圆轴扭转试验
x φ
试验分析
(1)横截面上没有正应力。
(2)横截面上有切应力,且与半 径垂直。
2.设计内容 Ⅱ轴的结构设计和强度校核计算。
3.设计步骤、结果及说明 1)选择轴材料 因无特殊要求,选45钢,调质处理 ,查表得 [σ-1]=60MPa,取 A=115 。 2)估算轴的最小直径
d≥
3
A
P
3
112
2.607
35.2 mm
n
83.99
因最小直径与联轴器配合,故有一键槽,可将轴径加大5%,
IP
32
D14
1
4
0.1D14 1 4
WP
d3
16
0.2d 3
WP
16
D13
1 4
0.2D13 1 4
d1 / D1
(四)传动轴的强度计算
强度校核公式
max
T WP
9.55 106 0.2d 3
p n

MPa
设计计算公式
3
d≥
9.55 106 P 3 P
0.2 n
Wz
bh2 6
Wy
hb2 6
(三)心轴的强度计算
轴弯曲变形时,产生最大应力的截面为危险截面。
最大弯曲正应力不允许超过轴材料的许用应力。

花键轴的设计与校核

花键轴的设计与校核

花键轴的设计与校核(1)轴设计参数1136.89kw 0.9836.15kw P P η=⋅=⨯=1n =n =10r/min()1119550/955036.15/1034523.25N m T P n ==⨯=⋅(2)初步估算轴的直径min d =A=98 min 98150.4mm d = 取min d =155mm(3)花键设计计算花键材料轴材料选30CrMnTi 调质处理,花键模数取m=5;齿数取z=29;渐开线齿形,平根,压力角为30度。

分度圆直径529145mm D mz ==⨯=基圆直径cos 529cos30125.6mm b D mz ο=∂=⨯⨯=内花键大径基本尺寸:( 1.5)530.5152.5mm ei D m z =+=⨯=内花键小径基本尺寸:max 2ii Fe F D D C =+0.10.5F C m ==2max Fe D = 0.63hs m ==max 2139.4mmFe D ==139.420.5140.4mm ii D =+⨯=;外花键大径基本值:(1)5(291)150mm ee D m z =+=⨯+=;外花键小径基本值:( 1.5)5(29 1.5)137.5mm ie D m z =-=⨯-=;花键强度验算: 静连接2p mT zhld σψ= 式中,ψ——齿间载荷分配不均匀系数,一般取0.7~0.8;z ——花键齿数;h ——花键齿侧面的工作高度,mm 。

对矩形花键()0.52h D d c =--,其中D 和d 分别为花键轴的外径和内径,c 为齿顶的倒圆半径,对渐开线花键h=m ,其中m 为模数;m d ——花键的平均直径,mm 。

对矩形花键()0.5m d D d =+,对渐开线花键m d d =,其中d 为分度圆直径;l ——齿的工作长度,mm ;许用挤压应力为p σ⎡⎤=⎣⎦120~220MPa不均匀系数0.75ψ=2234523.25100010.2MPa 0.75295430145p m T zhld σψ⨯⨯===⨯⨯⨯⨯p p σσ⎡⎤<⎣⎦强度合格。

轴结构设计和强度校核

轴结构设计和强度校核

一、轴的分类按承受的载荷不同, 轴可分为:转轴——工作时既承受弯矩又承受扭矩的轴。

如减速器中的轴。

虚拟现实。

心轴——工作时仅承受弯矩的轴。

按工作时轴是否转动,心轴又可分为:转动心轴——工作时轴承受弯矩,且轴转动。

如火车轮轴。

固定心轴——工作时轴承受弯矩,且轴固定。

如自行车轴。

虚拟现实。

传动轴——工作时仅承受扭矩的轴。

如汽车变速箱至后桥的传动轴。

固定心轴转动心轴转轴传动轴二、轴的材料轴的材料主要是碳钢和合金钢。

钢轴的毛坯多数用轧制圆钢和锻件,有的则直接用圆钢。

由于碳钢比合金钢价廉,对应力集中的敏感性较低,同时也可以用热处理或化学热处理的办法提高其耐磨性和抗疲劳强度,故采用碳钢制造尤为广泛,其中最常用的是45号钢。

合金钢比碳钢具有更高的力学性能和更好的淬火性能。

因此,在传递大动力,并要求减小尺寸与质量,提高轴颈的耐磨性,以及处于高温或低温条件下工作的轴,常采用合金钢。

必须指出:在一般工作温度下(低于200℃),各种碳钢和合金钢的弹性模量均相差不多,因此在选择钢的种类和决定钢的热处理方法时,所根据的是强度与耐磨性,而不是轴的弯曲或扭转刚度。

但也应当注意,在既定条件下,有时也可以选择强度较低的钢材,而用适当增大轴的截面面积的办法来提高轴的刚度。

各种热处理(如高频淬火、渗碳、氮化、氰化等)以及表面强化处理(如喷丸、滚压等),对提高轴的抗疲劳强度都有着显著的效果。

高强度铸铁和球墨铸铁容易作成复杂的形状,且具有价廉,良好的吸振性和耐磨性,以及对应力集中的敏感性较低等优点,可用于制造外形复杂的轴。

轴的常用材料及其主要力学性能见表。

三、轴的结构设计轴的结构设计包括定出轴的合理外形和全部结构尺寸。

轴的结构主要取决于以下因素:轴在机器中的安装位置及形式;轴上安装的零件的类型、尺寸、数量以及和轴联接的方法;载荷的性质、大小、方向及分布情况;轴的加工工艺等。

由于影响轴的结构的因素较多,且其结构形式又要随着具体情况的不同而异,所以轴没有标准的结构形式。

机械课程设计轴的校核

机械课程设计轴的校核

机械课程设计轴的校核一、课程目标知识目标:1. 理解轴的基本概念、分类及在机械系统中的作用;2. 掌握轴的受力分析及强度、刚度校核的基本原理;3. 学会运用相关公式和标准进行轴的设计计算。

技能目标:1. 能够分析机械系统中轴的受力情况,并进行简单的强度、刚度校核;2. 能够运用所学知识,完成轴的设计计算,提高解决实际问题的能力;3. 能够熟练运用相关工具和软件进行轴的设计与校核。

情感态度价值观目标:1. 培养学生严谨的科学态度,注重理论与实践相结合;2. 增强学生对机械工程领域的兴趣,激发创新意识;3. 培养学生的团队合作精神,提高沟通与协作能力。

课程性质:本课程为机械设计基础课程,旨在培养学生轴的设计与校核能力。

学生特点:学生在前期课程中已学习过力学、材料力学等基础知识,具备一定的理论素养。

教学要求:结合课本内容,注重实际应用,引导学生运用所学知识解决实际问题,提高学生的动手操作能力和创新能力。

将课程目标分解为具体的学习成果,以便后续的教学设计和评估。

二、教学内容1. 轴的基本概念与分类- 轴的功能和结构特点- 轴的分类及应用场景2. 轴的受力分析- 轴的受载类型及计算方法- 轴的弯扭组合受力分析3. 轴的强度校核- 轴的扭转强度校核- 轴的弯曲强度校核- 轴的疲劳强度校核4. 轴的刚度校核- 轴的扭转刚度校核- 轴的弯曲刚度校核5. 轴的设计计算- 轴的材料选择与尺寸确定- 轴的设计计算步骤与方法- 轴的校核计算实例分析教学安排与进度:1. 第1周:轴的基本概念与分类2. 第2周:轴的受力分析3. 第3周:轴的强度校核4. 第4周:轴的刚度校核5. 第5周:轴的设计计算及实例分析教材章节:1. 《机械设计基础》第3章:轴的设计与校核2. 《材料力学》第6章:扭转与弯曲教学内容与课程目标紧密相连,确保学生掌握轴的设计与校核的基本原理和方法,培养解决实际问题的能力。

同时,注重理论与实践相结合,提高学生的动手操作能力和创新能力。

轴的设计计算及校核实例

轴的设计计算及校核实例

轴的设计计算及校核实例
轴是用来支撑旋转的机械零件,如齿轮、带轮、链轮、凸轮等。

轴的设计计算主要包括选材、结构设计和工作能力计算。

以下是一个轴的设计计算及校核实例:
1. 按扭矩初算轴径:选用45#调质,硬度217-255HBS。

根据()2表14-1、P245(14-2)式,并查表14-2,取c=115,得d≥115×(5.07/113.423)1/3mm=40.813mm。

考虑有键槽,将直径增大5%,则d=40.813×(1+5%)=4
2.854mm。

初选d=50mm。

2. 选择轴承:因轴承同时受有径向力和轴向力的作用,故选用单列角接触球轴承。

参照工作要求并根据,根据d=50mm,选取单列角接触球轴承7208AC型。

在进行轴的设计时,需要考虑多方面的因素,并进行详细的计算和校核。

如果你需要进行轴的设计计算,建议咨询专业的工程师或查阅相关设计手册。

轴结构设计和强度校核

轴结构设计和强度校核

轴结构设计和强度校核
在进行轴的结构设计时,首先需要计算轴的弯曲应力。

弯曲应力是由于轴在负载作用下会发生弯曲而产生的应力,可以通过以下公式计算:σ=(M*c)/(I*y)
其中,σ为轴的弯曲应力,M为轴端的扭矩,c为轴的断面形心距,I为轴截面的惯性矩,y为轴上其中一截面上的最大距离。

根据弯曲应力的计算结果,可以选择合适的材料和轴的几何形状,以满足强度要求。

常用的轴材料有碳钢、合金钢和不锈钢等。

此外,轴还需要考虑扭转应力。

扭转应力是由于轴在传递扭矩时会产生的应力,可以通过以下公式计算:
τ=(T*r)/(J)
其中,τ为轴的扭转应力,T为轴端的扭矩,r为轴的半径,J为轴截面的极惯性矩。

轴的强度校核主要是通过计算轴的弯曲和扭转应力与材料的抗弯和抗扭强度之间的比较来完成。

一般来说,轴的弯曲应力不应超过材料的抗弯强度,而扭转应力不应超过材料的抗扭强度。

如果轴的弯曲应力或扭转应力超过了材料的强度限制,需要重新设计轴的几何尺寸或者选择更高强度的材料。

轴结构设计和强度校核是机械设计中非常重要的一部分。

合理的轴设计可以确保机械设备的正常运行,并提高其工作效率和寿命。

同时,通过强度校核可以避免轴的失效和损坏,保证机械设备的安全性。

因此,在机械设计中,轴结构设计和强度校核是必不可少的工作环节之一。

轴的设计计算校核

轴的设计计算校核

轴的设计计算校核一、轴的设计原则轴是机械传动系统中承载和传递力矩的元件,其设计应遵循以下原则:1.强度足够:轴的设计应保证其强度足够,能够承受传递的力矩和应力,并且在工作条件下不会发生破坏。

2.刚度适当:轴的设计应考虑到其在传动过程中的变形情况,尽量使其刚度足够以减小传动误差和能量损耗。

3.成本合理:轴的设计应综合考虑材料成本和制造成本等方面因素,力求设计出成本合理的轴。

二、轴的计算方法轴的计算方法主要有静态强度计算和动态强度计算两种。

1.静态强度计算静态强度计算主要是根据轴所承受的力矩和力的大小,计算轴的最大应力和挠度等参数,判断轴材料的强度是否满足要求。

常用的计算方法有平衡方法、应力法和变形法等。

平衡方法:根据轴所受力的平衡条件,考虑轴上的切线外力和切线内力,计算轴的弯矩和剪力等参数。

应力法:根据轴在受力过程中的应力分布情况,利用杨氏模量和弹性系数等参数,计算轴的最大应力。

变形法:根据轴在受力过程中的挠度和变形情况,利用弯矩和挠度的关系,计算轴的最大挠度。

2.动态强度计算动态强度计算主要是考虑轴在转动过程中的惯性力和振动情况,计算轴的扭转应力和动载荷等参数,判断轴的强度和稳定性。

常用的计算方法有惯性力法、扭转应力法和动力学方法等。

惯性力法:根据轴的质量和转动惯量等参数,计算轴的惯性力和振动情况,进而计算轴的扭转应力。

扭转应力法:根据轴在受到扭转力矩作用下的应力分布情况,利用杨氏模量和切比雪夫公式等,计算轴的扭转应力。

动力学方法:根据轴的转速和转动惯量等参数,计算轴在转动过程中的相对加速度和相对转速等,进而计算轴的动载荷和强度。

三、轴的校核步骤轴的校核是为了确保其设计和计算的准确性,一般按照以下步骤进行:1.确定轴承载力:根据传动系统的参数,确定轴所受的最大力矩和力大小。

2.确定材料:根据轴的使用条件和载荷情况,选取适当的轴材料。

3.进行静态强度计算:根据选定的材料和设计参数,进行静态强度计算,判断轴的强度是否满足要求。

30轴径轴的设计计算及校核实例

30轴径轴的设计计算及校核实例

30轴径轴的设计计算及校核实例轴径的设计计算及校核是机械设计中的重要环节之一、下面将以一个实际案例来详细介绍如何进行轴径的设计计算及校核。

案例描述:企业需要设计一根工作在静止负载下的轴。

轴承间距为300mm,轴材料为45#钢,要求寿命为5000小时。

计算步骤:1.估计承载能力:根据轴材料的强度性能,可以利用矩截面方法估计轴的承载能力。

假设轴的直径为d,则轴的面积为A=πd²/4,假设静拉强度为σt,轴承间距为l,则轴的最大弯矩为Mmax=Pl/4,其中P为轴上的负载。

根据梁的受力分析,轴的抗弯应力为σ=(32Mmax)/(πd³),根据强度设计准则,轴的承载能力应满足σ<=σt。

通过迭代计算可以得到合适的轴直径d。

2.计算寿命:根据轴承间距和负载大小,可以计算出轴的载荷。

根据标准或经验公式,可以估计出轴的等效动载荷Pf,然后根据所选轴承的寿命公式,可以计算出滚动轴承的额定寿命L10。

比对所需寿命和额定寿命,确定滚动轴承的类型和尺寸。

根据轴承类型和尺寸,可以计算出轴的等效动载荷Pu,然后根据寿命公式计算出轴的寿命。

3.校核轴的强度:根据轴的设计尺寸和载荷,可以计算出轴的应力。

根据材料的拉应力-应变曲线,可以确定材料的屈服应力和折断应力。

比较轴的应力和屈服应力,判断轴是否满足屈服条件。

在轴径比较大时,也需要考虑轴的韧性,比较轴的应力和折断应力,判断轴是否满足韧性条件。

4.校核轴的刚度:根据轴的设计尺寸和载荷,可以计算出轴的弯曲刚度和扭转刚度。

然后根据设计要求,比较轴的刚度和挠度,判断轴是否满足刚度要求。

以上就是轴径的设计计算及校核的主要步骤。

需要注意的是,设计计算及校核的结果应予以合理性的评估,并结合实际情况进行合理调整。

同时,需要根据所选轴承类型和尺寸,以及轴的工作环境和使用条件,进行综合评估和优化设计。

在实际工作中,还需要注意轴的加工和装配误差、轴的表面质量要求、轴与其他零件之间的配合等问题。

机械设计轴的计算与校核

机械设计轴的计算与校核

d
177.43
径向力:
Fr

Ft tan n cos

3845 tan 20 cos1117,3,,
图15-15
1427N
轴向力:F=Fttan =3845tan1117,3,, 767N
齿轮上作用力的大小、方向见图15-15(b)所示
5)计算轴承反力 (图15-15c及e)
W
提高轴的强度的常用措施
增大轴径; 改变材料及热处理;
改进轴的表面质量以提高 轴的疲劳强度
改进轴的结构设计
M, bH

64 R1H
641245.1
79686.4N mm
M ,, bH

M, bH

F

d
2
79686.4 767 177.43 2
11642N mm
垂直弯矩图如图15-15f
MbV 64 R1V
641922.5
123040N mm
§15.3 轴的强度校核
按扭转强度条件计算 按弯扭合成强度条件计算 作扭矩图 作出当量弯矩图 计算弯曲应力,校核轴的强度
§15.3 轴的强度校核
1.按扭转强度条件计算
校核式:T

MT Wp
9.55 106 0.2d 3
P n
[ ]T
(12 1)
抗扭截面系数
P251,表15-5
合成弯矩图如图15-15g
M, b

M
, bH

MbV
2

79686.42 1230402 146590N mm
M ,, b

M

轴的选择与校核

轴的选择与校核

03
采用先进制造技术
如采用数控加工技术、在线检 测技术、智能制造技术等,提 高轴的制造精度和生产效率。
04
加强人员培训
提高制造人员的技能水平和质 量意识,确保轴的制造过程符 合相关标准和要求。
05
轴的安装、调试与维护保养
安装前的准备工作
检查轴的外观和尺寸, 确保无裂纹、毛刺等 缺陷,尺寸符合设计 要求。
绘制轴力图
将计算得到的支反力按一定比例绘制在轴上 ,形成轴力图,以直观反映轴的受力情况。
轴的强度校核
选择校核截面
根据轴的受力情况和危险截面位置,选择合适的 校核截面。
计算截面应力
利用材料力学中的弯曲应力计算公式,计算校核 截面的应力。
强度条件校核
将计算得到的应力与许用应力进行比较,判断轴 的强度是否满足要求。
轴的热处理
通过淬火、回火、调质等热处理工 艺,提高轴的力学性能和耐磨性。
质量控制关键点
机械加工过程监控
监控加工过程中的切削参数、刀 具磨损、机床精度等,确保加工 质量稳定。
成品检验
对成品轴进行尺寸精度、形位公 差、表面质量等方面的检验,确 保符合设计要求和相关标准。
01
02
毛坯质量检查
对毛坯的外观、尺寸、化学成分 等进行检查,确保符合设计要求 。
准备安装所需的工具 和材料,如扳手、螺 栓、垫片等。
清理轴的安装表面, 去除油污、锈蚀等杂 质。
安装过程中的注意事项
确保轴的安装位置正确,避免出现偏移或倾斜。
在安装过程中,要轻拿轻放,避免对轴造成撞击 或划伤。 按照规定的拧紧力矩紧固螺栓,防止过紧或过松。
调试方法及步骤
01
安装完成后,进行初步的调试,检查轴是否灵活转动,无卡 滞现象。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


轴肩和轴环
轴肩与轴环——由定位面和过度圆角组成。
为保证零件端面能靠紧定位面,轴肩(环)圆角半径r必须 小于零件毂孔的圆角半径R或倒角高度C1; 轴肩(环)高度 h应大于C1和R,为了有足够的强度来承受轴向力,通常 取h=(0.07~0.1)d。轴环宽度b≥1.4h。
轴肩
轴环
b
R
D h
C1 d
D h
d
r
r
M
17
轴向定位和固定——

轴套(套筒)
轴套适用于轴上两个相距较近零件之间的定位,其两个 端面为定位面,应有较高的平行度和垂直度。为使轴上 零件定位可靠,应使轴段长度比零件毂长短2~3mm。
1
23
4
SEU-QRM
18
轴向定位和固定——

可用圆螺母与轴肩、 1 轴环等的组合实现零 件在轴上的双向定位 2 和固定。
SEU-QRM
6
转动心轴
不转心轴
SEU-QRM
不转心轴
7
Lifte
1
r
Motor
2 3
×
1——传动轴:T 2——转轴:T + M 3——转轴:T + M 4——心轴 :M
×
×
×
SEU-QRM
4
8
Stresses in shafts——
()
静应力
o
t
脉动循环应力 () o
t
对称循环应力 ()
o
t
Straight Shaft——
SEU-QRM
3
Crankshaft—— Flexible Shaft——
SEU-QRM
4
按所受载荷性质分——心轴、转轴和传动轴。
Rotating Shaft( 转 轴 )—— 指 既 受 弯 矩 (bending moment)又受转矩(torsional moment)的轴,转轴在各 种机器中最为常见。
SEU-QRM
12
Structure Design of Shafts 轴的结构设计
轴结构设计的任务——在满足强度、刚度和振动稳定性的 基础上,根据轴上零件的定位要求及轴的加工、装配工艺 性要求,合理地确定轴的结构形状和全部尺寸。
轴的组成—— 轴颈(journal)——轴上被支承部分; 轴头——安装轮毂(hub)部分; 轴身——连接轴颈和轴头的部分。
轴的设计及校核
授课:大山 时间:12月2日
SEU-QRM
1
Introduction 概述
轴用于安装传动零件(如齿轮、凸轮、带轮等),使其有确 定的工作位置,实现运动和动力的传递,并通过轴承支承 在机架或机座上。
SEU-QRM
2
Classification of Shafts 轴的分类
按 轴 线 形 状 分 —— 直 轴 (straight shaft) 、 曲 轴 (crankshaft)和软轴(flexible shaft)。
(1)根据轴的工作条件、生产批量和经济性原则,选取适合 的材料、毛坯形式及热处理方法。
(2)根据轴的受力情况、轴上零件的安装位置、配合尺寸及 定位方式、轴的加工方法等具体要求,确定轴的合理结 构形状及尺寸,即进行轴的结构设计。
(3)轴的强度计算或校核。对受力大的细长轴(如蜗杆轴)和 对刚度要求高的轴,还要进行刚度计算。在对高速工作 下的轴,因有共振危险,故应进行振动稳定性计算。
轴的失效形式与设计要求
Failure Forms ——
因疲劳强度不足而产生的疲劳断裂; 因静强度不足而产生的塑性变形或脆性断裂、磨损; 超过允许范围的变形和振动等。
SEU-QRM
11
Design Requirements ——
轴与轴上零件组成一个组合体称为轴系部件。轴的设计必 须与轴系零部件整体结构紧密联系起来。
圆螺母定位装拆方便, 通常用细牙螺纹来增 强防松能力和减小对 轴的强度消弱及应力 集中。
SEU-QRM
圆螺母
19
轴向定位和固定——

圆锥面
将轴与零件的配合面加工成圆锥面,可以实现轴向定位。 圆锥面的锥度小时,所需轴向力小,但不易拆卸,通常 取锥度1:30~1:8。
对要求不高的轴或较长的轴,毛坯直径小于150mm时,可用轧制圆 钢材;
受力大,生产批量大的重要轴的毛坯可由锻造提供;
对直径特大而件数很少的轴可用焊件毛坯;
生产批量大、外形复杂、尺寸较大的轴,可用铸造毛坯。
SEU-QRM
10
Failure Forms and Design Requirements of Shafts
Mandrel(心轴)——只承受弯矩而不承受转矩的轴,如 自行车轮轴。按轴转动与否,又可分为转动心轴和固定 心轴。
Transmitting Shaft(传动轴)——指只受转矩不受弯矩 或受很小弯矩的轴,如连接汽车发动机输出轴和后桥的 轴。
SEU-QRM
5
Rotating shaft
Transmitting shaft
转轴—— 弯矩:对称循环应力 扭矩:脉动循环应力
SEU-QRM
9
Materials and Roughs of Shafts 材料与毛坯
Shaft Materials ——
碳钢,合金钢,球墨铸铁,高强度铸铁等 热处理,化学处理,表面强化处理等
Shaft Roughs ——
可用轧制圆钢材、锻造、焊接、铸造等方法获得。
轴的结构设计主要解决以下几个问题: 轴上零件的布置;零件在轴上的轴向定位和固定,零件在 轴上的周向定位;轴结构的工艺性;提高轴强度的措施。
SEU-QRM
13
Arranging Scheme of Elements on a Shaft 轴上零件的布置方案
轴上零件的布置——预定出轴上零件的装配方向、顺序和 相互关系,它决定了轴的结构形状。
1. 零件在轴上的轴向定位和固定——
应考虑——零件所受轴向力的大小,轴的制造,轴上零件 装拆的难易程度,对轴强度的影响,工作可靠性等因素。
轴上零件轴向定位与固定的常用方法——轴肩和轴环,轴 套(套筒) ,圆螺母,圆锥面,轴端挡板,弹性挡圈,锁紧 挡圈、紧定螺钉等
SEU-QRM
16
轴向定位和固定——
装配方案——以轴最大直径处的轴环为界限,轴上零件分 别从两端装入。按安装顺序即可形成各轴段粗细和结构形 式的初步布置方案。
在拟定方案时,可以考虑几个方案,以供比较选择。
SEU-QRM
14
2 3 4
1 56 7 8 91 1
0
1
1 2
1 3
1 4
SEU-QRM
15
Location and Fixing of Elements on a Shaft 零件在轴上的定位和固定
相关文档
最新文档