伺服系统基础知识资料

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

交流永磁同步伺服驱动系统

一、伺服系统简介

伺服来自英文单词Servo,指系统跟随外部指令进行人们所期望的运动,运动要素包括位置、速度和力矩。伺服系统的发展经历了从液压、气动到电气的过程,而电气伺服系统包括伺服电机、反馈装置和控制器。在20世纪60年代,最早是直流电机作为主要执行部件,在70年代以后,交流伺服电机的性价比不断提高,逐渐取代直流电机成为伺服系统的主导执行电机。

交流永磁同步伺服驱动系统(以下简称伺服系统),是基于国外高端伺服技术开发出适合于国内环境的伺服驱动系统,具有性能优异、可靠性强,广泛应用于数控机床、织袜机械、纺织机械、绣花机、雕刻机械等领域,在这些要求高精度高动态性能以及小体积的场合,应用交流永磁同步电机(PMSM)的伺服系统具有明显的优势。其中,PMSM具备十分优良的低速性能、可以实现弱磁高速控制,调速范围宽广、动态特性和效率都很高。交流伺服系统的性能指标可以从调速范围、定位精度、稳速精度、动态响应和运行稳定性等方面来衡量。伺服系统调速范围一般的在1:5000~1:10000;定位精度一般都要达到±1个脉冲;稳速精度,尤其是低速下的稳速精度,比如给定1rpm时,一般的在±0.1rpm以内,高性能的可以达到±0.01rpm以内;动态响应方面,通常衡量的指标是系统最高响应频率,即给定最高频率的正弦速度指令,系统输出速度波形的相位滞后不超过90°或者幅值不小于50%。应用在特定要求高的一些场合,目前国内主流产品的频率在200~500Hz。运行稳定性方面,主要是指系统在电压波动、负载波动、电机参数变化、上位控制器输出特性变化、电磁干扰、以及其他特殊运行条件下,维持稳定运行并保证一定的性能指标的能力。

二、伺服系统的组成

伺服系统的组成

1.上位机

上位机通过控制端口发送指令(模拟指令或脉冲指令)给驱动器。驱动器跟随外部指令来执行,同时驱动器反馈信号给上位机。

2.驱动器

伺服驱动器是用来控制伺服电机的,是伺服电机的控制部分。伺服驱动器大体可以划分为功能比较独立的两个模块:驱动模块和控制模块两部分。驱动模块是强电部分,用于电机的驱动,同时也为控制模块提供直流电源;控制模块是弱电部分,是电机的控制核心,也是伺服驱动器的技术核心(控制算法)的远行载体。其功能是完成伺服系统的闭环控制,包括力矩、速度和位置等。一般伺服都有三种控制方式:速度控制方式,转矩控制方式,位置控制方式。

速度控制和转矩控制都是用模拟量来控制的。位置控制是通过发脉冲来控制的。如果您对电机的速度、位置都没有要求,只要输出一个恒转矩,当然是用转矩模式。如果对位置和速度有一定的精度要求,而对实时转矩不是很关心,用转矩模式不太方便,用速度或位置模式比较好。如果上位控制器有比较好的闭环控制功能,用速度控制效果会好一点。如果本身要求不是很高,或者,基本没有实时性的要求,用位置控制方式对上位控制器没有很高的要求。就伺服驱动器的响应速度来看,转矩模式运算量最小,驱动器对控制信号的响应最快;位置模式运算量最大,驱动器对控制信号的响应最慢。运动中的动态性能有比较高的要求时,需要实时对电机进行调整。那么如果控制器本身的运算速度很慢(比如PLC,或低端运动控制器),就用位置方式控制。如果控制器运算速度比较快,可以用速度方式,把位置环从驱动器移到控制器上,减少驱动器的工作量,提高效率(比如大部分中高端运动控制器);如果有更好的上位控制器,还可以用转矩方式控制,把速度环也从驱动器上移开,这一般只是高端专用控制器。以下分别介绍下这三种控制方式:

1、位置控制:

位置控制模式一般是通过外部输入的脉冲的频率来确定转动速度的大小,通过脉冲的个数来确定转动的角度,也有些伺服可以通过通讯方式直接对速度和位移进行赋值。由于位置模式可以对速度和位置都有很严格的控制,所以一般应用于定位装置。应用领域:如数控机床、纺织机械、印刷机械等等。

2、速度模式:

通过模拟量的输入或脉冲的频率都可以进行转动速度的控制,在有上位控制装置的外环PID控制时速度模式也可以进行定位,但必须把电机的位置信号或直接负载的位置信号给上位反馈以做运算用。位置模式也支持直接负载外环检测位置信号,此时的电机轴端的编码器只检测电机转速,位置信号就由直接的最终负载端的检测装置来提供了,这样的优点在于可以减少中间传动过程中的误差,增加了整个系统的定位精度。

3、转矩控制:

转矩控制方式是通过外部模拟量的输入或直接的地址的赋值来设定电机轴对外的输出转矩的大小,具体表现为例如10V对应5Nm的话,当外部模拟量设定为5V时电机轴输出为2.5Nm:如果电机轴负载低于2.5Nm时电机正转,外部负载等于2.5Nm时电机不转,大于2.5Nm时电机反转(通常在有重力负载情况下产生)。可以通过即时的改变模拟量的设定来

改变设定的力矩大小,也可通过通讯方式改变对应的地址的数值来实现。应用主要在对材质的受力有严格要求的缠绕和放卷的装置中,例如饶线装置或拉光纤设备,转矩的设定要根据缠绕的半径的变化随时更改以确保材质的受力不会随着缠绕半径的变化而改变。

3.永磁同步电机

PMSM作为执行元件,把收到的电信号转换成电动机轴上的角位移或角速度输出。其工作原理为: 伺服电机内部的转子是永磁铁,驱动器控制的U/V/W三相电形成的电磁场,转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行相比较,调整转子转动的角度。伺服电机的精度决定于编码器的精度(线数)。所谓交流同步电机,就是转子是由永磁材料构成,所以转动后,随着电机的定子旋转磁场的变化,转子也做响应频率的速度变化,而且转子速度=定子速度,所以称“同步”。其同步转速年n=60f/2p,其中2p为极对数。额定转速以下输出恒转矩,额定转速以上输出恒功率。

三、伺服驱动器的工作原理

噪声滤波器

SM

DC/DC 变 换

R S T L1

L2U V W

PE PE PE

DL1DL2N P

RB2RB4RB1电压检测继电器驱动再生电阻门驱动电流检测继电器驱动

过流 过热保 护接 口D/A PWM 产生

传感器处理指令处理

串行端口转距控制位置控制通用 I/O 速度控制差分驱动A/D

差 分

接 收接 口接 口ASIC CPU RY1DC12~24V GND

±5V ~±12V CHARGE RY1INPUT 3相AC220 TO 230V

50-60Hz(当三相电源输入时)

伺服驱动器

MC M1-M2模拟监视输出PC PC安装软件系统错误

紧急停止

启动准备

启动准备Setup 状态显示

监视

测试操作与调整

参数编辑

报警显示

运行波形显示DC电抗器

伺服电机

通用I/O 脉冲指令输入速度指令输入转矩指令输入报警输出,编码器输出外部电流限制,电源输入监视输出编码器时序输入/输出CN1

外部编码器

霍尔传感器外接再生电阻

状态显示监视

测试操作与调整参数编辑,报警显示抱闸CN2电源散热器内置数位操作器

伺服驱动器的原理结构框图

四、 伺服与其他产品的比较

相关文档
最新文档