统计学计算题例题(含答案)

合集下载

统计学期末五种计算题题型(附答案)

统计学期末五种计算题题型(附答案)

统计学期末五种计算题题型(附答案)计算题题型:⼀、平均指标会⽐较平均数的代表性例1:甲、⼄两种不同⽔稻品种,分别在5个⽥块上试种,其中⼄品种平均亩产量是520公⽄,标准差是40.6公⽄。

甲品种产量情况如下:甲品种⽥块⾯积(亩)f 产量(公⽄/亩)x 1.21.11.00.90.8 600495445540420 要求:试研究两个品种的平均亩产量,以确定哪⼀个品种具有较⼤稳定性,更有推⼴价值??(2)因为7.81%<12.93%,所以⼄品种具有较⼤稳定性,更有推⼴价值? 1 2 3 4 5 6 7 8 9 10 产值(万元)x 350 340 350 380 360 340 330 350 370 390 计算⼄企业的⽉平均产值及标准差,并根据产值⽐较2007年前10个⽉甲⼄两企业的⽣产稳定性。

(2)因为4%<5.06%,所以甲企业⽣产更稳定例3:从10000只灯泡中随机不重复抽出100只,得如下资料:若规定使⽤寿命在3000⼩时以下为不合格产品。

使⽤寿命(⼩时)只数 3000以下3000-40004000-50005000以上 10305010 合计 100 计算该批灯泡的平均合格率,标准差和标准差系数计算200只电灯泡平均使⽤时间和标准差和标准差系数(2)组中值x(⼩时) f 2500350045005500 10305010 合计 100⼆、动态数列1、会计算序时平均数:分⼦为时期数列,分母为间断的间隔相等的时点数列2、会计算平均增长量和平均发展速度,移动平均数例1:3、已知某⼯业企业今年上半年各⽉⼯业总产出与⽉初⼯⼈数资料如下所⽰:⽉份 1 2 3 4 5 6 7 ⼯业总产出(万元) 57.3 59.1 58.1 60.3 61.8 62.7 63 ⽉初⼯⼈数(⼈) 205 230 225 210 220 225 230 要求:计算该企业平均劳动⽣产率。

(计算结果保留位⼩数)⽉份 1 2 3 4 商品销售额(万元) 120 143 289 290 ⽉初商品库存额(万元) 50 70 60 110 (1)企业第⼀季度⽉平均商品流转次数(2)第⼀季度的=2.633=7.89(次/⼀季度)三、抽样调查1、会计算简单随机抽样的平均数和成数的区间估计2、会计算简单随机抽样重复抽样条件下的样本容量n例1:⼀企业研制了某种新型电⼦集成电路,根据设计的⽣产⼯艺试⽣产了100⽚该集成电路泡,通过寿命测试试验得知这100⽚该集成电路的平均使⽤寿命为60000个⼩时,标准差为500个⼩时,要求以95.45%的概率保证程度(t=2)估计该集成电路平均使⽤寿命的区间范围。

统计学计算题

统计学计算题

统计学计算题1. 某企业生产的A 、B两种产品的产量及产值资料如下:产品总产值(万元)产量的环比发展速度(%)基期报告期A B 400600580760110100★标准答案:2. 某厂生产的三种产品的有关资料如下:产品名称产量单位产品成本基期报告期基期报告期甲10001200108乙500050004丙1500200087要求:计算三种产品的成本总指数以及由于单位产品成本变动使总成本使总成本变动的绝★标准答案:产品成本指数=由于单位产品成本变动使总成本使总成本变动的绝对额;(-)=461000-48000=-1900(万元)3. 某企业本月分三批购进某种原材料,已知每批购进的价格及总金额如下:购进批次价格(元/吨)总金额(元)一二三200190205160001900028700★标准答案:4. 某厂三个车间一季度生产情况如下:第一车间实际产量为200件,完成计划95%;第二车间实际产量280件,完成计划100%;第三车间实际产量650件,完成计划105%,请问★标准答案:平均计划完成程度☆考生答案:解:三个车间总的计划产量=200/95%+280/100%+650/105%=1110(件)三个车间总的实际产量=200+280+650=1130(件)三个车间产品产量的平均计划完成程度=1130/1110*100%=%5. 三种商品的销售额及价格资料如下:商品销售额(万元)报告期价格比基期增(+)或减(-)的%基期报告期甲乙丙5070809010060+10+8-4合计200250—★标准答案:6. 某公司下属三个企业上季度生产计划完成情况及一级品率资料如下:企业计划产量(件)计划完成(%)实际一级品率(%)甲乙丙50034025010310198969895根据资料计算:(1)产量计划平均完成百分比;★标准答案:☆考生答案:解:(1)计划平均完成百分比=(500*+340*+250*)/(500+340+250)*100%=% (2)平均一级品率=(500**+340**+250**)/(500*+340*+250*)*100%=%7. 某商店主要商品价格和销售额资料如下:商品计量单位价格本月销售额(万元)上月本月甲乙丙件台套1005060110486311024★标准答案:8. 某市场上某种蔬菜早市每斤元,中午每斤元,晚市每斤元,现在早、中、晚各买一元,★标准答案:.平均价格H==(元)☆考生答案:解:购买的总斤数=1/+1/+1/=19(斤)平均价格=(1+1+1)/19=(元/斤)9. 某商店出售某种商品第一季度价格为元,第二季度价格为元,第三季度为6元,第四季度为元,已知第一季度销售额3150元,第二季度销售额3000元,第三季度销售额5400元,★标准答案:☆考生答案:解:平均价格=(3150+3000+5400+4650)/(3150/+3000/+5400/6+4650/)=(元)10. 某厂生产某种机床配件,要经过三道工序,各加工工序的合格率分别为%,%,%。

统计学计算练习题及解答2015

统计学计算练习题及解答2015

统计学计算练习题及解答一、某集团公司所属22个企业职工工资资料如下:月工资(元)企业数(个)职工人数比重(%)700-800 3 20800-900 6 25900-1000 4 301000-1100 4 151100以上 5 10试计算该集团公司职工的平均工资。

解:==750×0.2+850×0.25+950×0.3+1050×0.15+1150×0.1 =920(元)该局职工的平均工资为920元。

二、某厂三个车间生产同一种产品,有关资料如下:车间废品率(%)总产量(件)甲 3 70乙 2 20丙 4 90试计算三个车间生产该产品的平均废品率。

解:x =xf f=3%702%204%90702090= 3.4%三、 2006年某月甲、乙两市场某商品价格、销售量和销售额资料如下:试分别计算该商品在两个市场上的平均价格。

解:在甲市场上的平均价格:7001059001201100137123.04(元/件)2700xf xf在乙市场上的平均价格为:317900317900117.74(元/件)126009600959002700105120137m xm x四、甲 车 间 乙 车 间日产量(件) 人数(人) 日产量(件) 人数(人)45 4 40 5 55 8 60 10 65 15 80 24 75 27 100 15 85 7 120 2 95 3 140 1 合 计64合 计57根据上述资料计算两车间工人的平均日产量,并说明哪一个车间的平均日产量更具有代表性。

解:甲乙4545581.(件/人)件/人)655+7527+857+953x 64=7031405+6010+8024+10015+1202+1401x 57=80.7(xf f xf f甲乙(8793.750411.7264(24771.9320.855722x-x)ff x-x)ff甲甲甲乙乙乙甲乙11.7210010016.6770.3120.8510010025.8480.7%=%=%x %=%=%x所以甲车间工人的平均日产量比乙车间工人的平均日产量更具有代表性。

统计学计算题答案(课后)

统计学计算题答案(课后)

9.(1)工人日产量平均数: =64.85(件∕人)(2)通过观察得知,日产量的工人数最多为260人,对应的分组为60~70,则众数在60~70这一组中,则众数的取值范围在60~70之间。

利用下限公式计算众数: =65.22(件)(3)首先进行向上累计,计算出各组的累计频数:比较各组的累计频数和330.5,确定中位数在60~70这一组。

利用下限公式计算中位数:(4)分析:由于o e M M x <<,所以该数列的分布状态为左偏。

10.(1)全距R=最大的标志值—最小的标志值=95—55=40(2)∑∑=ff x x ii 平均日装配部件数=73.8(个)462412448.739568.7385248.7375128.736548.7355++++⨯-+⨯-+⨯-+⨯-+⨯-==7.232(件) (3)∑∑==-=ni ini ii ff x x1122)(σ方差46241244)8.7395(6)8.7385(24)8.7375(12)8.7365(4)8.7355(22222++++⨯-+⨯-+⨯-+⨯-+⨯-==98.56(个)(4)%46.138.7393.9%100==⨯=xV σσ标准差系数 13.267281101269084702550430⨯+⨯+⨯+⨯+⨯==∑∑ff x x ii 甲甲企业的平均日产量=81.16(件)1001811042903070850230⨯+⨯+⨯+⨯+⨯==∑∑ff x x ii 乙乙企业的平均日产量=83.2(件)26728)16.81110(126)16.8190(8416.8170256.1815046.1813022222⨯-+⨯-+⨯-+⨯-+⨯-=)()()(41.293==17.13(件)∑∑==-=ni ini i i ff x x 112)(乙乙的标准差σ10018).283110(42).28390(302.83708.283502.2833022222⨯-+⨯-+⨯-+⨯-+⨯-=)()()(76.345==18.59(件).11%21%1006.1813.117%100=⨯=⨯=甲甲甲甲企业的标准差系数:x V σσ%3.322%100.2839.518%100=⨯=⨯=乙乙乙乙企业的标准差系数:x V σσ由计算结果表明:甲企业的标准差系数小于乙企业,因此甲企业工人的日产量资料更有代表性。

统计学考试计算题答案统计学试题及答案

统计学考试计算题答案统计学试题及答案

统计学考试计算题答案统计学试题及答案一、填空题(每空1分,共10分)1.从标志与统计指标的对应关系来看,标志通常与( )相同。

2.某连续变量数列,其首组为开口组,上限为80,又知其邻组的组中值为95,则首组的组中值为( )。

3.国民收入中消费额和积累额的比例为1:0.4,这是( )相对指标。

4.在+A的公式中,A称为( )。

5.峰度是指次数分布曲线项峰的( ),是次数分布的一个重要特征。

6.用水平法求平均发展速度本质上是求( )平均数。

7.按习惯做法,采用加权调和平均形式编制的物量指标指数,其计算公式实际上是( )综合指数公式的变形。

8.对一个确定的总体,抽选的样本可能个数与( )和( )有关。

9.用来反映回归直线代表性大小和因变量估计值准确程度的指标称( )。

二、是非题(每小题1分,共10分)1.统计史上,将国势学派和图表学派统称为社会经济统计学派。

2.统计总体与总体单位在任何条件下都存在变换关系统计学原理试题及答案统计学原理试题及答案。

3.学生按身高分组,适宜采用等距分组。

4.根据组距数列计算求得的算术平均数是一个近似值。

5.基尼系数的基本公式可转化为2(S1+S2+S3)。

6.对连续时点数列求序时平均数,应采用加权算术平均方法。

7.分段平均法的数学依据是Σ(Y-YC)2=最小值。

8.平均数、指数都有静态与动态之分。

9.在不重复抽样下,从总体N中抽取容量为n的样本,则所有可能的样本个数为Nn个10.根据每对____和y的等级计算结果ΣD2=0,说明____与y之间存在完全正相关。

三、单项选择题(每小题2分,共10分)1.在综合统计指标分析^p 的基础上,对社会总体的数量特征作出归纳、推断和预测的方法是A.大量观察法B.统计分组法C.综合指标法D.模型推断法2.对同一总体选择两个或两个以上的标志分别进行简单分组,形成A.复合分组B.层叠分组C.平行分组体系D.复合分组体系3.交替标志方差的最大值为A.1B.0.5C.0.25D.04.如果采用三项移动平均修匀时间数列,那么所得修匀数列比原数列首尾各少A.一项数值B.二项数值C.三项数值D.四项数值5.可变权数是指在一个指数数列中,各个指数的A.同度量因素是变动的B.基期是变动的C.指数化因数是变动的D.时期是变动的四、多项选择题(每小题2分,共10分)1.反映以经济指标为中心的三位一体的指标总体系包括A.社会统计指标体系B.专题统计指标体系C.基层统计指标体系D.经济统计指标体系E.科技统计指标体系2.典型调查A.是一次性调查B.是专门组织的调查C.是一种深入细致的调查D.调查单位是有意识地选取的E.可用采访法取得资料3.下列指标中属于总量指标的有A.月末商品库存额B.劳动生产率C.历年产值增加额D.年末固定资金额E.某市人口净增加数4.重复抽样的特点是A.各次抽选互不影响B.各次抽选相互影响C.每次抽选时,总体单位数逐渐减少D.每次抽选时,总体单位数始终不变E.各单位被抽中的机会在各次抽选中相等5.下列关系中,相关系数小于0的现象有A.产品产量与耗电量的关系B.单位成本与产品产量的关系C.商品价格与销售量的关系D.纳税额与收入的关系E.商品流通费用率与商品销售额的关系五、计算题(每小题10分,共60分)要求:(1)写出必要的计算公式和计算过程,否则,酌情扣分。

统计学题库+答案

统计学题库+答案

统计学题库+答案一、单选题(共50题,每题1分,共50分)1、已知4个水果商店苹果的单价和销售额,要求计算4个商店苹果的平均单价,应该采用()。

A、简单算术平均数B、加权算术平均数C、加权调和平均数D、几何平均数正确答案:C2、当自变量的数值确定后,因变量的数值也随之完全确定,这种关系属于()。

A、函数关系B、回归关系C、随机关系D、相关关系正确答案:A3、如果分配数列把频数换成频率,那么方差()。

A、不变B、增大C、减小D、无法预期其变化正确答案:A4、按地理区域划片进行的区域抽样,其抽样方法属于()。

A、整群抽样B、等距抽样C、类型抽样D、简单随机抽样正确答案:A5、次数分配数列是()。

A、按数量标志分组形成的数列B、按品质标志分组形成的数列C、按统计指标分组所形成的数列D、按数量标志和品质标志分组所形成的数列正确答案:D6、按组距式分组()。

A、会使资料的真实性受到一定的影响B、会增强资料的真实性C、不会使资料的真实性受到损害D、所得资料是虚假的正确答案:A7、调查时间的含义是()。

A、调查资料报送的时间B、调查工作期限C、进行调查的时间D、调查资料所属的时间正确答案:D8、相关分析中,要求相关的两变量()。

A、都是随机的B、都不是随机变量C、其中因变量是随机变量D、其中自变量是随机变量正确答案:A9、某农贸市场土豆价格2月份比1月份上升5%,3月份比2月份下降2%,则3月份土豆价格与1月份相比()。

A、下降3%B、下降2%C、提高2.9%D、提高3%正确答案:C10、现象之间线性依存关系的程度越低,则相关系数()。

A、越接近于0B、越接近于1C、越接近于1D、在0.5和0.8之间正确答案:A11、计算平均指标最常用的方法和最基本的形式是()。

A、中位数B、众数C、调和平均数D、算术平均数正确答案:D12、全国的粮食产量与人口数之比是()。

A、总量指标B、平均指标C、相对指标D、数量指标正确答案:C13、相关系数的取值范围是()。

统计学计算题答案(课后)

统计学计算题答案(课后)

9.(1)工人日产量平均数:45 60 55 140 65 260 75 150 85 50660=64.85(件 / 人)(2)通过观察得知,日产量的工人数最多为 260人,对应的分组为 60~70,则众数在60~70这一组中,则众数的取值范围在 60~70 之间。

利用下限公式计算众数:nx fi i i 1nf ii 1众数M °(f mfm 1 )=65.22 (件)(3)首先进行向上累计,计算出各组的累计频数:10.(1)全距 只=最大的标志值一最小的标志值 =95—55=40x f⑵平均日装配部件数x ―」55 4 65 12 75 24 85 6 95 450=73.8 (个)n_X i x f ii 1 n260 140 (260 140 (260 15C)(70 60)660 12330.5比较各组的累计频数和 330.5,确定中位数在60~70这一组 利用下限公式计算中位数:~~2-Sm 1M e L 壬60 660 2002(70 60) 65(件)260⑷分析:由于x M e M o ,所以该数列的分布状态为左偏。

平均差 A.Df ii 1|55 73.8 4 |65 73.8| 12 |75 73.8| 24 |85 73.8 6 |95 73.8 44 12 24 6 4=7.232 (件)⑷标准差系数V-100% x9.93 73.813.46%X i f i30 4 50 25 70 84 90 126 110 28267=81.16 (件)乙企业的平均日产量X 乙xf j 30 2 50 8 70 30 90 42 110 182(X i X) f ii 1nf ii 12 2 2 2 2(55 73.8) 4 (65 73.8)12 (75 73.8) 24 (85 73.8)6 (95 73.8) 4⑶方差4 12 24 6 4=98.56 (个)标准差n(x x)2 f ii 1n、、98.56 9.93(件)13.甲企业的平均日产量x 甲=83.2 (件)(30 81.16)2 4 (50 81.16)2 25 (70 81.16)2 84 (90 81.16)2 126 (110 81.16)228267n(X i x)2f ii 1 niii 1(30 83.22 2 (50 83.22 8 (70 832)30 (90 832)2 42 (110 832)218X100345.76 =18.59 (件)甲企业的标准差系数: V 甲甲100% 17.13 100% 21.11%X 甲81.16乙企业的标准差系数: V 乙乙100% 18.59 100%22.33%X 乙83.2由计算结果表明:甲企业的标准差系数小于乙企业, 因此甲企业 工人的日产量资料更有代表性。

统计学分析计算题

统计学分析计算题

1、某地区2013—2017 年的水泥产量如表:根据资料特征,试用最小二乘法拟合合适的方程,并据以预测2018 年的水泥平均产量。

(答案:直线,469.5 万吨)2、某地区2013—2017 年的小麦产量如表:计算:(1)2016年的逐期增长量、累计增长量、环比发展速度、定基发展速度、环比增长速度、定基增长速度、增长1%的绝对值;(2)2014—2017 年平均发展速度和平均增长速度。

(答案:105.85%,5.85%)3、某企业2018 年上半年资料如下:求:(1)该企业上半年的平均人数;111人(110.67人)(2)该企业上半年的月平均总产值;486 万元(3)该企业 3 月份的劳动生产率; 4.33万元/人(4)该企业上半年的月平均劳动生产率。

4.39 万元/人=486/110.67万元/人4、某地区2017 年生猪存栏头数资料如表:要求:计算一季度(答案:15.75万头)、上半年(答案:16.38万头)、下半年(答案:20万头)及全年的生猪平均存栏头数(答案:18.19万头)。

5、某地区2013—2017年GDP的有关速度指标如表:要求:(1)填空;(红字原来是空格,现为答案)(2)计算2013—2017年GDP 年平均增长速度;(答案:7.99%)(3)若2012年GDP为110亿元,试按此平均增长速度推算2019 年的国民生产总值。

(答案:188.40 亿元)6、某市 A 商品零售量资料如下:(单位:万件)要求:(1)用按季平均法计算 A 商品零售量的季节比率;30.40%,45.87%,130.13%,193.60%(2)用趋势剔除法计算 A 商品零售量的季节比率;33.00%, 46.64%, 129.32%, 191.04%(3)若2018年 A 商品零售量若为240 万件,分别用两种方法预测各个季度商品零售量分别为多少?按季平均法18.24 ,27.52 ,78.08 ,116.16趋势剔除法19.80, 27.98, 77.59, 114.637、某企业2018 年6 月份职工人数变动情况如下: 6.1 有职工2600 人,其中非直接生产人员300 人; 6.13 调离企业24 人,其中企业管理人员8 人; 6.23 招进生产工人20 人。

统计学原理计算题及参考答案

统计学原理计算题及参考答案

3.某地区历年粮食产量如下:1、某生产车间30名工人日加工零件数(件)如下: 30 26 42 41 36 44 40 37 37 25 45 29 43 31 36 36 49 34 47 33 43 38 42 32 34 38 46 43 39 35 要求:(1)根据以上资料分成如下几组:25—30,30—35,35—40,40—45,45—50,计算各组的频数和频率,编制次数分布表;(2) 根据整理表计算工人平均日产零件数。

(20分)解:(1)根据以上资料编制次数分布表如下:则工人平均劳动生产率为:17.38301145===∑∑fxf x(2)当产量为10000件时,预测单位成本为多少元?(15分)xbx a y n x b n y a x x n y x xy n b c 5.2808010703125.232105.26151441502520250512503210128353)(222-=+==+=⨯+=-=-=-=--=-⨯⨯-⨯=--=∑∑∑∑∑∑∑因为,5.2-=b ,所以产量每增加1000件时,即x 增加1单位时,单位成本的平均变动是:平均减少2.5元 (2)当产量为10000件时,即10=x 时,单位成本为55105.280=⨯-=c y 元>课程的测试,甲班平均成绩为81分,标准差为9.5分;乙班的成绩分组资料如下:计算乙班学生的平均成绩,并比较甲.乙两班哪个班的平均成绩更有代表性?解:乙班学生的平均成绩∑∑=f xf x ,所需的计算数据见下表:75554125===∑∑fxf x (比较甲.乙两班哪个班的平均成绩更有代表性,要用变异系数σν的大小比较。

)甲班%73.11815.9===xσνσ 从计算结果知道,甲班的变异系数σν小,所以甲班的平均成绩更有代表性。

%65.207549.1549.152405513200)(2======-=∑∑x ffx x σνσσ计算(1)产品产量总指数及由于产量增长而增加的总成本.(2)总成本指数及总成本增减绝对额. 解;(1)产品产量总指数为: %42.1112102342106351120605010060%10550%102100%12000==++=++⨯+⨯+⨯=∑∑qp qkp 由于产量增长而增加的总成本:∑∑=-=-242102340000qp q kp(2)总成本指数为:%62.10721022660501006046120011==++++=∑∑qp qp总成本增减绝对额:∑∑=-=-16210226011qp q p计算第二季度平均每月商品流转次数和第二季度商品流转次数. 解:商品流转次数c=商品销售额a/库存额bba c =商品销售额构成的是时期数列,所以67.23837163276240200==++==∑na a 库存额b 构成的是间隔相等的时点数列,所以33.533160327545552453224321==+++=+++=b b b b b 第二季度平均每月商品流转次数475.433.5367.238===ba c 第二季度商品流转次数3*4.475=13.425解:甲市场的平均价格为:04.123270033220027001507001080007350011009007001100137900120700105==++=++⨯+⨯+⨯==∑∑fxf x乙市场的平均价格为74.1172700317900700800120031790013795900120960001051260009590096000126000==++=++++==∑∑xM M x。

统计学计算题8个例题及答案

统计学计算题8个例题及答案

统计学计算题8个例题及答案
1.给定一组数据,X=(13,12,13,13,10,13,11),求它的众数:
答:13(众数是出现次数最多的值)
2.给定一组数据,X=(1,2,3,4,5,6,7),求它的中位数:
答:4(中位数是将一组数据按照大小顺序排列后位于正中间的一个数)
3.给定一组数据,X=(1,2,3,4,5,6,7),求它的样本标准差:
答:(样本标准差S=√ [(∑(Xi−X平均数)2)/ (n−1)],其中,Xi代表样本的每一项,X平均数是样本的平均值,n是样本的总观测值数量)
4.给定一组数据,X=(1,2,3,4,5,6,7,8,9),求它的方差:
答:(方差σ^2=∑(Xi−X平均数)^2/n,其中,Xi代表样本的每一项,X平均数是样本的平均值,n是样本的总观测值数量)
5.给定一组数据,X=(21, 25, 28, 31, 34, 37, 40),求它的算术平均数:
答:31(算术平均数是将样本中数据求和,再除以样本的个数得到的数)
6.给定一组数据,X=(1,2,3,4,5,6,7,8,9),求它的期望:
答:5(期望是一组数据根据概率分布定义出的一种数学期望)
7.给定一组数据,X=(3,4,5,7,12,15,18),求它的方差:
答:(方差σ^2=∑(Xi−X平均数)^2/n,其中,Xi代表样本的每一项,X平均数是样本的平均值,n是样本的总观测值数量)
8.给定一组数据,X=(7,7,7,7,8,8,9),求它的众数:
答:7(众数是出现次数最多的值)。

统计学计算题(有答案)

统计学计算题(有答案)

1、甲乙两班同时参加《统计学原理》课程的测试,甲班平均成绩为81分,标准差为9.5分,乙班的成绩分组资料如下:按成绩分组学生人数(人)60以下 460~70 1070~80 2580~90 1490~100 2计算乙班学生的平均成绩,并比较甲乙两班,哪个班的平均成绩更有代表性?2、某车间有甲乙两个生产组,甲组平均每个人的日产量为36件,标准差为9.6件,乙组工人产量资料如下:日产量(件)工人数(人)15 1525 3835 3445 13要求:(1)计算乙组平均每个工人的日产量和标准差(2)比较甲乙两生产小组的日产量更有代表性3、某商店1990年各月末商品库存额资料如下:(超级重点题目)月份 1 2 3 4 5 6 8 11 12 库存额60 55 48 43 40 50 45 60 68 又知1月1日商品库存额为63万元,试计算上半年,下半年和全年的平均商品库存额。

4、已知两种商品的销售资料如下:品名单位销售额2002比2001销售量增长(%)2001 2002电视台5000 8880 23自行车辆4500 4200 -7合计9500 13080要求:(1)计算销售量总指标(2)计算由于销售量变动消费者增加或减少的支出金额5、某商店两种商品的销售额和销售价格的变化情况如下:(万元)商品单位销售额1996比1995年销售价格提高(%)1995 1996甲米120 130 10乙件40 36 12要求:(1)计算两件商品销售价格总指标和由于价格变动对销售额的影响绝对值(2)计算销售量总指数,计算由于销售变动消费者增加或减少的支出金额6、某企业上半年产品量与单位成本资料如下:月份产量(千克)单位成本(元)1 2 732 3 723 4 714 3 735 4 696 5 68要求:(1)计算相关系数,说明两个变量相关的密切程度(2)配合回归方程,指出产量每增加1000件时,单位成本平均变动多少?7、根据企业产品销售额(万元)和销售利润率(%)资料计算出如下数据:(重点题目)n=7 ∑x=18090 ∑y=31.1 ∑2x=535500 ∑2y=174.15∑xy=9318要求:(1)确定以利润为因变量的直线回归方程(2)解释式中回归系数的经济含义8、某企业第二季度产品产量与单位成本资料如下:月份产量(千件)单位成本(元)4 3 735 4 696 5 68要求:(1)定量判断产量与单位成本间的相关程度(2)建立直线回归方程,并说明b的经济含义解:(1)所需计算数据见下表:月份产量单位成本45 634 57369 68916 25219276 340合计1221050835因为,,所以产量每增加1000件时,即增加1单位时,单位成本的平均变动是:平均减少2.5元。

统计学的计算题汇总(附有答案)

统计学的计算题汇总(附有答案)

统计学的计算题汇总如下
答案计算过程中避免不了误差哦,请各位认真去计算一下吧!
1、某地区2010年玉米产量如下表所示:
解: 依题意知,此题数据是组距数列。

所以取产量组中值分别为450、550、650、750、850
2、已知甲组工人的平均奖金为1767元,其标准差为92元,乙组工人的奖金如下表所示:
解:依题意知,此题数据是组距数列。

所以取奖金组中值分别为1550、1650、1750、1850、1950
3、某地区2011年土地面积为2.4万平方公里,人口资料如下表所示:
4、①某企业2009年计划利润需求比上年提高5% ,实际提高了8% 。

计划产品单位成本要求比上年降低10% ,实际降低了6% 。

请计算利润和成本各自的完成情况,并加以说明?
②某班有40名学生,20岁的有3人,19岁的有25人,18岁的有12人,请用加权算数平均法和众数法分别计算该班的平均年龄?
答案如下:。

统计学计算题答案

统计学计算题答案

统计学计算题答案1(1)(2)计算并填写表格中各⾏对应得向下累计频数;(3)确定该公司⽉销售额得中位数。

按上限公式计算:Me=U-=18-0、22=17,78《简捷法》3、试根据表中得资料计算某旅游胜地2004年平均旅游⼈数。

P505、已知某企业2004年⾮⽣产⼈员以及全部职⼯⼈数资料如下表所⽰,求该企业第四季度⾮⽣产⼈员占全部职⼯⼈数得平均⽐重。

6、根据表中资料填写相应得指标值。

24、73百万元)。

10要求(2)预测2006年该地区粮⾷产量。

11、已知某地区2002年末总⼈⼝为9、8705万⼈,(1)若要求2005年末将⼈⼝总数控制在10、15万⼈以内,则今后三年⼈⼝年均增长率应控制在什么⽔平?(2)⼜知该地区2002年得粮⾷产量为3805、6万千克,若2005年末⼈均粮⾷产量要达到400千克得⽔平,则今后3年内粮⾷产量每年应平均增长百分之⼏?(3)仍按上述条件,如果粮⾷产量每年递增3%,2005年末该地区⼈⼝为10、15万⼈,则平均每⼈粮⾷产量可达到什么⽔平?解:三种商品物价总指数:=105、74%销售量总指数=销售额指数÷价格指数=114、04%14要求:15、某市居民家庭⼈均收⼊服从µ=6000元,σ=1200元得正态分布,求该市居民家庭⼈均年收⼊:(1)在5000~7000元之间得概率;(2)超过8000元得概率;(3)低于3000元得概率。

(注:Φ(0、83)=0、7967,Φ(0、84)=0、7995,Φ(1、67)=0、95254,Φ(2、5)=0、99379)16、⼀种汽车配件得平均长度要求为12cm,⾼于或低于该标准均被认为就是不合格得。

汽车⽣产企业在购进配件时通常要对中标得汽车配件商提供得样品进⾏检验,以决定就是否购进。

现对⼀个配件提供商提供得10个样本进⾏了检验,结果如下(单位:cm) 12、2 10、8 12、0 11、8 11、9 12、4 11、3 12、2 12、0 12、3假定该供货商⽣产得配件长度服从正态分布,在0、05得显著性⽔平下,检验该供货商提供得配件就是否符合要求?(查t 分布单侧临界值表,262.2)9()9(025.02==t t α,2281.2)10(025.02==t t α;查正态分布双侧临界值表,96.105.0==z z α)。

统计学原理计算题有答案

统计学原理计算题有答案

3、统计调查的组织形式5、时期指标和时点指标的概念、区别 6、动态数列的定义、构成因素、模型10、抽样调查中存在哪些误差 11、抽样调查组织形式12、函数关系和相关关系的区别和联系 题型一:计算加权算术平均数、加权调和平均数、标准差、变异系数例题1:某车间有甲、乙两个生产组,甲组平均每个工人的日产量为36件,标准差为9.6件;乙组工人日产量资料如下:要求:⑴计算乙组平均每个工人的日产量和标准差;⑵比较甲、乙两生产小组哪个组的日产量更有代表性?解:5.291002950133438151345343538251515==+++⨯+⨯+⨯+⨯=∑∑fxf x =乙()986.810080752==-∑∑ff x x =乙σ267.0366.9==x V σ=甲3046.05.29986.8==x V σ=乙甲组更有代表性。

乙甲∴<V V例题2:乙两个生产小组,甲组平均每个工人的日产量为36件, 标准差为9.6件;乙组工人日产量资料如下:计算乙组平均每个工人的日产量,并比较甲、乙两生产小组哪个组的日产量更有代表性? 解答:7.281002870123139181245313539251815==+++⨯+⨯+⨯+⨯=∑∑f xf x =乙()127.910083312==-∑∑ffx x =乙σ267.0366.9==x V σ=甲 32.07.28127.9==x V σ=乙甲组更有代表性。

乙甲∴<V V题型2:动态数列相关指标的计算例题另知和平均流通费用率。

解:2006年下半年商品的平均流转次数:012/()/22n a nb b b b n=++++∑商品平均零售额商品平均流转次数=商品平均库存额(110711601150117012001370)6 1.77680710(675670650670690)622+++++÷==++++++÷(次)2006年下半年平均流通费用率为: 平均流通费用率=商品平均流通费用额商品平均零售额/(1081029895100104)66078.48%/(110711601150117012001n 370)67157a n yb n +++++÷====+++++÷∑∑例题3(1) 用最小二乘法拟合直线趋势方程(2)并预测该地区2007年该种产品的产量; 解:(1)用最小二乘法拟合直线趋势方程最小二乘法求参数的计算表设:ˆia bt y=+∑∑=tn ty n b 2=252.510=6.245123===∑nya ∴..ˆit y24625=+该企业这种产品产量2007年预测值为:ˆy2007=24.6+2.5×3=32.1(万吨)题型3、统计指数的编制(1)计算三种产品单位成本总指数及由于单位成本影响总成本的绝对额。

统计学计算题和答案完整版

统计学计算题和答案完整版

统计学计算题和答案 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】三个企业生产的同一型号空调在甲、乙两个专卖店销售,有关资料如下:企业型号 价格 (元/台) 甲专卖店销售额(万元) 乙专卖店销售量(台) A 2500 340 B 3400 260 C 4100 200 合计——答案:2某企业甲、乙两个生产车间,甲车间平均每个工人日加工零件数为65件,标准差为11件;乙车间工人日加工零件数资料如下表。

试计算乙车间工人加工零件的平均数和标准差,并比较甲、乙两个生产车间哪个车间的平均日加工零件数更有代表性?日加工零件数(件) 60以下 60—70 70—80 80—90 90—100 工人数(人)59121410三、某地区2009—2014年GDP 资料如下表,要求: 1、计算2009—2014年GDP 的年平均增长量; 2、计算2009—2014年GDP 的年平均发展水平;年份 2009 2010 2011 2012 2013 2014 GDP (亿元)87431062711653147941580818362年平均增长速度:5100%280%100%22.9%x -=-= 年份2010 2011 2012 2013 2014 销售额(万元)320332340356380水平?答案: 2010年—2014年的数据有5项,是奇数,所以取中间为0,以1递增。

设定x 为-2、-1、0、1、2、年份/销售额(y ) x xy x2 2010 320 -2 -640 4 2011 332 -1 -332 1 2012 340 0 0 0 2013 356 1 356 1 2014 380 2 760 4合计 1728 0 144 10b=∑xy/∑x2=144/10=a=∑y/n=1728/5=y=+预测2016年,按照设定的方法,到2016年应该是5y=+*5=元五、某企业生产三种产品,2013年三种产品的总生产成本分别为20万元,45万元,35万元,2014年同2013年相比,三种产品的总生产成本分别增长8%,10%,6%,产量分别增长12%,6%,4%。

统计学计算题(有答案)

统计学计算题(有答案)

1、甲乙两班同时参加《统计学原理》课程的测试,甲班平均成绩为81分,标准差为9.5分,乙班的成绩分组资料如下:按成绩分组学生人数(人)60以下 460~70 1070~80 2580~90 1490~100 2计算乙班学生的平均成绩,并比较甲乙两班,哪个班的平均成绩更有代表性?静1 己5 甲册抽二。

也二93 Z Jti片■轨*■低4=?昭f4t/h= 1(1= 25,/, = 14.^ -1V f4*UH15*14f 144 N4 S+MU釘酿加样Mb !■ ,=^=^=0.1173 片1拆川备因加<「m«i I'irwjtwft气tf]2、某车间有甲乙两个生产组,甲组平均每个人的日产量为36件,标准差为9.6件,乙组工人产量资料如下:日产量(件)工人数(人)15 1525 3835 3445 13要求:(1)计算乙组平均每个工人的日产量和标准差(2)比较甲乙两生产小组的日产量更有代表性战屮如 K 的平均日严洛更内世表性3月份 1 23 4 5 6 8 11 12 库存额6055 48 43 40 50 456068又知月日商品库存额为万元,试计算上半年,下半年和全年的平均商品库存额。

解:(1)该商店上半年商品库存额:8 泊(63/2+60+55M8+43+40+50/2) =50417 (万元) (2) 该商店下半年商品库存额:b ={[(50+45)/2]*2 + [(45+60>/2]*3 + [(60+68)/2]* 1 >5275 (万元)(3) 该商店全年商品库存额:C- (50.147+52.75) / 2-51.5835 (万元)4品名单位销售额2002比2001销售量增长(%)2001 2002电视 台 5000 8880 23 自行车辆4500 4200-7合计950013080要求:()计算销售量总指标(2)计算由于销售量变动消费者增加或减少的支出金额工 K p 詔o[,23 x 5000 + ().93 x 4500 10335= -------------------- = --------------------------------------------- = ------------- =10S .79 %工 Pn% 5000 + 4500 9500ISxl5 + 25*38+35*34 +45<J3 dX)2'. fnr.^4 " !■<-h hlfln=0,267^629.5'U..VI5⑵山册吿员变功潇费者晏虫讨金敲= L K qPo<3o"LPo C5o =他饰9500-835(^<3)计霽苗种商品帝皆价格总指難和III十价格变动制悄您榊的誓响帥对飆.够见NS的思眛通过质11描标烷令指独号谓和平炖救持数处式之何的关帝壮得剋所需敎握”5、某商店两种商品的销售额和销售价格的变化情况如下:(万元)要求:(1)计算两件商品销售价格总指标和由于价格变动对销售额的影响绝对值(2)计算销售量总指数,计算由于销售变动消费者增加或减少的支出金额解,<”诙轴紳晦召也hl IJ2in w瀬的空,担对刃]I:I:船恪二对紀y p闭一工丄P4 =166-15032 = 15.67 万几k工PE工P0 工Pi%品備竹苗格总弗趙j-------------- =j ------------------= 寸几ItiJMSUI 和前顺的训算中y PnGi = 16(),卩“ =150.32由」旬%命苍城.占喑讪减❻的丸出伞触工卩%》几如=15°33-160 = -9厲76、某企业上半年产品量与单位成本资料如下:月份产量(千克)单位成本(元)12 73 2 3 72 34 71 4 3 73 54 69 6568要求:(1)计算相关系数,说明两个变量相关的密切程度(2)配合回归方程,指出产量每增加1000件时,单位成本平均变动多少?15033 160= 9335%,主"99二X + R 可审Ct• cao g* •<>»= 9*Z8 ・ r-zs •"=・i-z$: ・"=z 血二柬珂由 + 9=x (U -44 oooo MTT4君0 ( £》-竺N8 l 科刮站士寸孕刃衣 -4^4^ oooi nrrMT^TT=uitD “ X 岁⑷q 窪習日回Uh 耳雷宕F 丑xz8 T -ZS •"=•▲ fiiiZE ・"=gm (NR r-)-g/9Zfr= xq — « = □Z8 ・l 一 =(lN*lNy/l — GZ 〉/(9乙“INT/l -l 蔽l ) = a —严 M< M ・* M 二-心 MI/M 卜TRT-T RQTTOC6ZTZOt^E 卡 N9trSZ8^S 9 9ZN TQZtr 9T fi9* s6T^ ENWM 6 CX w卩"SIN TXFS 9T IXE9TZ ^8TS 6NZ £ Z 9" 6NW9frWZZTJLacNAA +申对侖< TT"3PTUtrl8^^OE=, 97^=18 * M<>=u<I>心M心M8^^OE=^7、根据企业产品销售额(万元)和销售利润率(%)资料计算出如下数据:(重点题目)n=7 X=18090 ' y=31.1X2=535500y2 =174.157 xy =9318要求:(1)确定以利润为因变量的直线回归方程(2)解释式中回归系数的经济含义(1)鞘定収利涓率为丙Z的立线冋旧方程:Y=-5. 5-K), 037x(2)解释戌屮回归杀数的经济含突:产母制善额毎壊加1万元*钳您利満率平均増加6037^(3)肖常乜極为500万元时•利洞率为:¥=12. 9 寮8、某企业第二季度产品产量与单位成本资料如下:要求:(1)定量判断产量与单位成本间的相关程度(2)建立直线回归方程,并说明b的经济含义解:(1 )所需计算数据见下表:月份产量单位成本45 634 57369 68916 25219276 340合计12210508352.57、根据企业产品销售额(万元)和销售利润率(%)资料计算出如下数据:(重点题目)因为,,所以产量每增加1000件时,即增加1单位时,单位成本的平均变动是:平均减少元。

统计学计算题例题(含答案)

统计学计算题例题(含答案)

1、某企业制定了销售额的五年计划, 该计划要求计划期的最后一年的年销售额应达到 1200万元。

实际执行最后两年情况如下表:请根据上表资料,对该企业五年计划的完成情况进行考核。

1、 计划完成相对数 =1410/1200*100%=117.5%该计划完成相对数指标为正指标, 计划完成相对数又大于 100% ,所以表示该计划超额完成。

从第 四年 5 月至第五年 4 月的一年的年销售额之和恰好为 1200 万元,所以该计划在第五年 4 月完成,提 前 8 个月完成。

2、 某地区制定了一个植树造林的五年计划,计划中设定的目标是五年累计植树造林面积为 2000 万 亩。

实际执行情况如下:请对该长期计划的完成情况进行考核。

2、 计划完成程度相对数 =2100/2000*100%=105%计划完成相对数指标大于100%, 且该指标为正指标 , 所以该计划超额完成截止第五年第三季度累计完成 2000 万亩造林面积,所以提前 1 个 季 度 完 成3、某班学生统计学课程考试成绩情况如下表:请根据上述资料计算该班统计学课程的平均成绩、成绩的中位数、众数和成绩的标准差。

3、某企业职工年龄情况如下表:X 二三于=4740/62=76.45 (分)Me=70+ (62/2-18) *10/20=76.5 (分)Mo=70+(20 J5)70/[(2CM5)+(2CM8)]=77 」4 (分)G-7(55-76.45f *3 +⋯⋯+ (95^76.45f *6/62=10.45 (分)4、某学校有5000 名学生,现从中按重复抽样方法抽取250 名同学,调查其每周观看电视的小时数的情况,获得资料如下表:请根据上述资料,以95% 的概率保证程度对全校学生每周平均收看电视时间进行区间估计。

4> 样本平均数X= Sxf/Sf-l250/250-5样 ______________ __________二>/ 刀(好予f/(工f—1 )二V 1136/249 二2. 14抽样平均误差U 二s/ Vn=0.14因为 F (t) =95%, 所以日.96抽样极限误差△ 二t U 二 1. 96*0. 14=0. 27 区间下限=5-0. 27=4. 73 区间上限二5+0. 27-5. 27全校学生每周平均收看电视的吋间在( 4.73,5.27) 小时之间,概率保证程度为95%5 、某企业对全自动生产线上的产品随机抽取1000 件进行检验,发现有45 件是不合格的,设定允许的极限误差为1.32% 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、某企业制定了销售额的五年计划,该计划要求计划期的最后一年的年销售额应达到1200
万元。

实际执行最后两年情况如下表:
请根据上表资料,对该企业五年计划的完成情况进行考核。

1、计划完成相对数=1410/1200*100%=117.5%
该计划完成相对数指标为正指标,计划完成相对数又大于100%,所以表示该计划超额完成。

从第四年5月至第五年4月的一年的年销售额之和恰好为1200万元,所以该计划在第五年4月完成,提前8个月完成。

2、某地区制定了一个植树造林的五年计划,计划中设定的目标是五年累计植树造林面积为2000万
亩。

实际执行情况如下:
请对该长期计划的完成情况进行考核。

2、计划完成程度相对数=2100/2000*100%=105%
计划完成相对数指标大于100%,且该指标为正指标,所以该计划超额完成
截止第五年第三季度累计完成2000万亩造林面积,所以提前1个季度完成3、某班学生统计学课程考试成绩情况如下表:
请根据上述资料计算该班统计学课程的平均成绩、成绩的中位数、众数和成绩的标准差。

4、某学校有5000名学生,现从中按重复抽样方法抽取250名同学,调查其每周观看电视的小时数的情
4> 样本平均数X= Sxf/Sf-l250/250-5
样 ________ __________
二>/刀(好予f/(工f—1)二V 1136/249二
2. 14
抽样平均误差U二s/ Vn=0.14
因为F (t) =95%,所以日.96
抽样极限误差△二t U 二 1. 96*0. 14=0. 27 区间下限=5-0. 27=4. 73 区间上限二5+0. 27-5. 27
全校学生每周平均收看电视的吋间在(4.73,
5.27)小时之间,概率保证程度为95%
5、某企业对全自动生产线上的产品随机抽取1000件进行检验,发现有45件是不合格的,
设定允许的极限误差为 1.32%。

请对全部产品的合格率进行区间估计。

5、样本合格率p=955/1000=95.5% 抽样平均误差u二V pChp)/n= 0.66%
因为△=1.32%,所以t= A/ u =2
所以F.(.t)-95. 45%
区间下限二95. 5%-l. 32%=94. 18%
区间上限二95. 5%+l. 32%二96. 82%
所以我们以95. 45%的概率估计全部产品和合
格率是在(94.18%, 96. 82%)之间。

6、现在对一批新产品的合格情况进行抽样调查(假设为重复抽样) ,如果规定的抽样极限误差为3%,要求区间估计的把握程度为95%。

请问,至少需要抽取多少件产品。

6、因为F(t)=95%,所以口.96
因为总体方差情况未知,根据谨慎原则,取合格率为50%
所以n=t ^(1 -p)/A =1.96 ^0.5X0.5/3% 2 =1067.11
所以至少要抽取1068个单位构成样本方能满
足精度和可靠程度的要求。

相关文档
最新文档