双水相萃取技术及其应用.doc

合集下载

双水相萃取的原理及应用 (2)

双水相萃取的原理及应用 (2)

双水相萃取的原理及应用1. 引言双水相萃取是一种常用的分离和提取技术,它利用两种不相溶的溶剂,即水相和有机相,在液-液界面上进行分相和萃取。

该技术具有高效、简便、环保等特点,被广泛应用于化学、生物、环境等领域。

本文将介绍双水相萃取的原理和一些常见的应用。

2. 双水相萃取的原理双水相萃取的原理基于不同溶剂之间的亲疏水性差异,以及化合物在两种溶剂中的分配系数。

在水相和有机相的界面上,亲水性较强的化合物会向水相转移,而亲水性较弱的化合物则会向有机相转移。

这样,在两相之间可实现化合物的分离和富集。

3. 双水相萃取的步骤双水相萃取通常包括以下几个步骤:•第一步:选择合适的水相和有机相溶剂。

一般情况下,水相为水,有机相为有机溶剂如乙醚、丙酮等;•第二步:将待提取物溶解在适量的水相溶液中,并加入适量的有机相溶液;•第三步:进行充分摇匀和混合,使两相形成均匀混合体;•第四步:静置一段时间,使两相分离,从而形成上下两层液相;•第五步:将两相分离,分别收集上下相中的物质。

4. 双水相萃取的应用4.1. 生物化学•蛋白质分离纯化:双水相萃取可用于蛋白质的富集和纯化,对于分子量较大的蛋白质特别有效;•酶的富集:通过双水相萃取,可以有效地从复杂的酶混合物中富集目标酶,提高其活性和纯度;•生物活性物质的提取:双水相萃取可用于提取天然产物中的生物活性物质,如草药提取液中的有效成分。

4.2. 环境科学•水样前处理:对于含有大量有机物的水样,双水相萃取能够有效地去除有机物,净化水质;•环境污染物的富集:通过双水相萃取,可以将水中微量的有机污染物富集到有机相中,方便进一步分析和检测。

4.3. 化学合成•有机合成中的分离提取:在化学合成过程中,双水相萃取可用于分离和富集目标化合物,提高产率和纯度。

5. 结论双水相萃取是一种高效、简便、环保的分离和提取技术,适用于多个领域。

它的原理基于不同溶剂之间的亲疏水性差异,通过分配系数的差异实现化合物的分离和富集。

萃取技术—双水相萃取技术(药物分离纯化课件)

萃取技术—双水相萃取技术(药物分离纯化课件)

内侧流 外侧 分配 萃取物
体 流体 系数
细胞色素 C 磷酸盐 PEG 0.18 肌红蛋白 磷酸盐 PEG 0.009 过氧化氢酶 磷酸盐 PEG 0.12 尿激酶 磷酸盐 PEG 0.65
内侧流 速,cm/s
16.3 4.0 16.3 16.3
外侧流 传质系 速,cm/s 数,cm/s
6.6 5.5?0 -6 5.0 7.5?0 -7 5.0 2.8?0 -5 5.0 2.0?0 -4
双水相萃取的应用--双水相萃取技术(萃取技术)
1.双水相萃取的应用
双水相分离条件 (1) 目的分子与细胞应分配在不同的相 (2) 分配系数应足够大 (3) 离心机容易分离
双水相萃取的应用
分离物质
举例
体系
NaDS-硫酸葡聚糖
酶 核酸 生长素 病毒 干扰素
细胞组织
过氧化氢酶的分离 分离有活性核酸DNA 人生长激素的纯化 脊髓病毒和线病毒纯化 分离β-干扰素
双水相萃取的应用--双水相萃取技术(萃取技术)
2.双水相萃取分离技术的发展方向 (1)廉价双水相体系的开发
优点: (1)蛋白质溶解度大。蛋白质在PPT浓度到15%以前没有沉淀,但在PEG浓度大于
5%时,溶解度显著地减小,在盐溶液中的溶解度更小。 (2)粘度小。PPT的粘度是粗dextran的1/2,传质好。 ⑶价格便宜。PPT几十$/kg,粗dex几百$/kg
系线
TMB:系线连接双节线上两点的 直线。
在临界点处,分配系数为1
临界点
药物分离与纯化技术课程
3.双水相相图
系线反映的信息:
(1)系线长度:衡量两相间相对差别的尺度。越长则两相间性质差 别越大,反之则越小;趋向于零时,(双节线上的点,临界点), 两相差别消失,成为均一相。

双水相萃取技术的研究现状与应用

双水相萃取技术的研究现状与应用

基本内容
3、环保领域:双水相萃取技术在废水处理、重金属离子去除等方面具有潜在 应用价值。例如,通过双水相萃取技术成功实现了对含有重金属离子的废水的处 理,降低了废水中的重金属离子浓度。
基本内容
双水相萃取技术的研究方法双水相萃取技术的研究方法主要包括以下内容: 1、影响因素研究:双水相萃取技术的分离效果受到多种因素的影响,如双水 相体系的组成、目标物在双水相体系中的分配系数、实验温度和pH值等。通过对 这些影响因素的研究,可以优化双水相萃取工艺,提高目标物的分离效果。
基本内容
3、双水相萃取技术的设备研发和工艺优化将成为未来的研究重点,以进一步 降低操作成本,提高实际应用中的效率和稳定性。
基本内容
4、双水相萃取技术与其他新兴技术的结合,如微流控技术、纳滤技术等,将 成为未来的一个重要研究方向,以实现更高效、更便捷的分离和纯化过程。
基本内容
结论双水相萃取技术作为一种有效的分离和纯化技术,在食品、制药、环保 等领域已得到广泛应用。通过对该技术的研究和应用,不仅有利于促进相关领域 的技术进步,提高生产效率和产品质量,还有助于推动相关产业的绿色发展,为 实现可持续发展作出贡献。未来,随着科学技术的不断进步和创新,双水相萃取 技术将在更多领域展现其巨大潜力,为人类社会的进步和发展作出更大贡献。
基本内容
展望未来双水相萃取技术在多个领域显示出广泛的应用前景,但仍存在一定 的挑战和问题需要进一步探讨和研究。未来的发展趋势可能包括:
基本内容
1、双水相萃取技术的理论研究将更加深入,以进一步优化双水相体系的组成 和性质,提高目标物的分离效果。
基本内容
2、双水相萃取技术的应用领域将进一步拓展,特别是在新能源、新材料、生 物医药等领域的应用研究将更加活跃。

双水相萃取的原理及应用

双水相萃取的原理及应用

双水相萃取的原理及应用1. 前言双水相萃取是一种常用的物质分离方法,广泛应用于化学、生物、医药等领域。

本文将介绍双水相萃取的原理及其在不同领域中的应用。

2. 原理双水相萃取是利用两种不相溶的溶剂(通常为水和有机溶剂)之间的相互作用,以实现物质的分离和提取。

其原理基于分子之间的相互作用力,包括疏水性、极性和亲合力等。

2.1 水相与有机相的选择在进行双水相萃取实验时,选择合适的水相和有机相是十分重要的。

常用的水相溶剂有水、盐水等,而有机相溶剂则包括乙酸乙酯、正己烷等。

选择水相和有机相时需要考虑样品的性质、溶解度以及分离的目的。

2.2 萃取剂的选择萃取剂是进行双水相萃取的关键因素之一。

常用的萃取剂包括酸、碱、络合剂等。

通过选择不同的萃取剂,可以实现对不同种类物质的萃取和分离。

2.3 萃取过程双水相萃取的过程包括三个主要步骤:混合、均相化和相分离。

首先,将水相溶液、有机相溶液和适量的萃取剂混合,形成两相体系。

随后,通过剧烈搅拌等方法,使两相充分混合,进一步提高物质的分离效果。

最后,待两相达到平衡后,通过离心等方法使两相分离,获得所需的物质。

3. 应用双水相萃取在许多领域中具有广泛的应用。

以下列举了一些常见的应用领域。

3.1 化学分析双水相萃取可用于化学分析中的样品预处理。

通过选择合适的萃取剂和萃取条件,可以实现对样品中目标物质的浓缩和提取。

在质谱分析、气相色谱等分析方法中,双水相萃取常被用于样品前处理,提高分析的准确度和灵敏度。

3.2 生物制药在生物制药过程中,双水相萃取被广泛应用于蛋白质分离和纯化。

通过调节水相和有机相的条件,可以实现对蛋白质的特异性提取和纯化。

此外,双水相萃取还可以用于细胞培养液中目标物质的富集,提高生物药物产量。

3.3 环境监测双水相萃取可用于环境监测中对水体和土壤中的有害物质进行提取和分析。

通过调节萃取剂的种类和浓度,可以有效地提取出目标物质,实现对环境中的污染物的定性和定量分析。

蛋白分离纯化技术之双水相萃取技术

蛋白分离纯化技术之双水相萃取技术

蛋白分离纯化技术之双水相萃取技术双水相萃取是一项蛋白分离和蛋白纯化技术,是利用物质在两相间的选择分配差异而进行分离提纯的,目前已经被广泛应用与医药化学、细胞生物学、生物化工和食品工业等领域。

双水相萃取技术用于提取蛋白质等生物活性物质时,具有操作简单、体系含水量高,在萃取过程中可以保持物质的构象稳定、蛋白不易失活并获得高的萃取率的特点。

1、双水相萃取技术可分离和纯化蛋白双水相萃取技术可以用于蛋白分离和蛋白纯化,包含在一些蛋白分离公司提供的服务。

早期,如在20世纪60年代,有研究者全面进行了生物大分子在双水相系统中的分配行为的研究,得到了蛋白质、酶、核酸、病毒、抗体抗原复合物以及细胞等的分配数据。

双水相系统具有温和的操作条件,对于在极性条件下易造成变性失活的蛋白质和酶的提取中表现出了很大的优势。

双水相萃取法进行蛋白分离和蛋白纯化的原理是:聚合物与聚合物之间或聚合物与盐之间由于分子空间阻碍作用形成了双水相。

当待分离物质进入体系后,由于各组分表面性质、电荷作用和各种力的作用和溶液环境的影响,使其在上、下相中的分配系数不同,通过调节体系参数使被分离物质在两相间选择性分配,从而实现目标组分的分离纯化。

双水相萃取技术进行蛋白分离和蛋白纯化具有以下优点:(1)易于放大,各种参数可以按照比例放大而不降低产物收率[1];(2)双水相系统传质和平衡过程速度快,回收效率高、能耗较小;(3)易于进行连续化操作、设备简单,且可以直接与后续提纯工序相连接,无需进行特殊处理;(4)相分离条件温和,双水相体系的张力很小,有利于保持生物分子的活性,可以直接用在发酵液中;(5)影响双水相体系的因素比较复杂,可调参数多,便于改变操作条件提高纯化效果。

美迪西提供蛋白质分离纯化技术服务,可以根据客户要求,提供从小试到规模生产全程的蛋白分离纯化服务,并根据工艺的要求结合产品特点给客户定制适用的工艺和系统。

2、双水相萃取技术分离和纯化物质的研究α-淀粉酶是一类用途十分广泛的酶,在粮食、食品加工,以及医药行业等都经常使用,由于α-淀粉酶是具有重要应用价值的工业酶,周内外很多课题组对它进行了研究。

双水相萃取的应用

双水相萃取的应用

双水相萃取在蛋白质分离纯化中的应用双水相萃取技术( Aqueous two-phase extraction ,ATPE) 是指亲水性聚合物水溶液在一定条件下形成双水相,由于被分离物在两相中分配的不同,便可实现分离;其双水相体系可由高聚物/高聚物双水相体系、高聚物/无机盐双水相体系、低分子有机物/无机盐双水相体系、表面活性剂双水相体系等组成,被广泛用于生物化学、细胞生物学和生物化工等领域的产品分离和提取。

同时,双水相萃取技术作为一种新型的分离技术日益受到重视;此方法可以在室温环境下进行,双水相中的聚合物还可以提高蛋白质的稳定性,收率较高【1】。

1、近年来双水相萃取技术研究综述概述由于双水相萃取技术在生物工程、医药分析、金属及一些煤矿等化学分析中具有重要作用,因此也一直是分离提纯领域研究的热点。

特别是在近几年,随着生物工程技术、生物化学技术、高分子技术的发展,双水相萃取技术的研究也取得了较快的发展。

2008年,郭宪厚【2】对双水相萃取技术进行了综述,阐述了双水相萃取技术的基本原理、特点、工艺流程、物质分配平衡的影响因素及其在生命科学,复杂中药体系的分离以及重金属回收等方面的应用,并对双水相萃取技术的发展前景作了展望。

2009年,徐长波、王巍杰【3】对双水相萃取技术进行了综述,并发表了《双水相萃取技术研究进展》,以此综述了双水相萃取技术基本原理、特点、应用及热力学模型,并对双水相萃取技术存在的问题和发展趋势作了论述。

2010年,马春宏、朱红【4】等,发表了《双水相萃取技术的应用研究进展》,对双水相萃取技术的具体应用进行了相关综述,简单介绍了双水相萃取技术及其原理、特点, 综述了双水相体系在生物工程( 其中包括萃取分离抗生素、酶、分离提纯蛋白质和萃取其他生物活性物质) 、药物分析和金属分离等方面的应用。

2010年,姜大雨、朱红【5】对离子液体双水相萃取的应用研究进行了综述,指出了离子液体双水相的研究取得的一些阶段性的成果,介绍了离子液体双水相体系及其优点, 综述了离子液体双水相体系在生物工业分析、药物分析和金属分离等方面的应用,同时展望了离子液体双水相体系的应用前景。

双水相萃取技术在药物分离和提取中的应用

双水相萃取技术在药物分离和提取中的应用

双水相萃取技术在药物分离和提取中的应用
双水相萃取技术是一种基于液液相分离原理的分离和提取方法,它可以将混合物中的目标化合物从溶液中转移到两个不相溶的水相中,以实现分离和提取的目的。

在药物分离和提取中,双水相萃取技术具有广泛的应用。

以下是一些常见的应用领域:
1. 天然药物的提取:双水相萃取技术可以有效地提取植物中的活性成分,如生物碱、黄酮类化合物、萜类化合物等。

这种方法具有选择性强、操作简单等优点。

2. 药物代谢物的分离:药物在体内会发生代谢反应,生成一系列的代谢产物。

双水相萃取技术可以将药物代谢物从复杂的生物样品中分离出来,以便进行结构鉴定和生物活性研究。

3. 药物残留的提取:双水相萃取技术可以用于农产品中药物残留的提取。

通过调整水相的组成和浓度,可以实现对不同药物的高效提取,以保证食品中的药物残留达到合理的安全标准。

4. 药物纯化:双水相萃取技术也可以用于药物的纯化。

通过调整双水相体系中的成分和条件,可以实现对目标化合物的高效富集和纯化。

总之,双水相萃取技术在药物分离和提取中具有重要的应用价值,可以有效地实现药物的富集、提取和纯化,为药物研发和分析提供了一种有效的方法。

双水相的萃取原理及应用

双水相的萃取原理及应用

双水相的萃取原理及应用双水相萃取是一种常用的分离纯化技术,其原理是将两种互不相溶的溶剂(一般是水和有机溶剂)在适当的条件下混合形成两个相,通过溶质在两相间的分配系数差异,使溶质转移到另一相中来实现分离纯化。

双水相萃取技术在生物医药、食品工业、环境监测等领域有广泛的应用。

双水相萃取的原理可以通过亲水基团和疏水基团之间的相互作用来解释。

当有机溶剂向水中注入时,溶剂分子中的疏水基团与水中的活泼基团(如羟基和胺基)发生作用,形成一层水合包裹层。

这种水合包裹层使有机溶剂和水发生互溶性差异,从而使两种溶剂形成不相容的两个相。

双水相萃取的应用可以归纳为以下几个方面:1. 生物活性物质分离纯化:双水相萃取广泛应用于生物活性物质分离纯化领域,例如从植物提取出天然产物(如植物提取物中的生物碱、黄酮、甾醇等);从微生物培养液中提取酶、蛋白质等生物活性物质;海洋生物样品的提取等。

双水相萃取可以有效地分离目标物质并去除一些干扰性物质,提高目标物质的纯度和产率。

2. 蛋白质的分离纯化:双水相萃取可以用于蛋白质的分离纯化。

由于蛋白质在不同的条件下会有不同的溶解度,通过调节溶剂的性质和条件,可以使目标蛋白质在双水相中的分配系数大于1,从而实现蛋白质的富集和分离纯化。

3. DNA/RNA的提取:双水相萃取也可用于DNA/RNA的提取。

DNA/RNA在某些条件下与有机溶剂形成复合物,可以通过双水相萃取的方法将DNA/RNA 从混合物中分离出来。

这是分子生物学研究中常用的一种DNA/RNA提取方法。

4. 药物研发:双水相萃取在药物研发中有着重要的应用。

药物研发中常常需要提取、分离纯化目标化合物,双水相萃取可以通过调节溶剂体系的性质和条件,实现对复杂混合物中目标化合物的分离纯化,从而提高化合物的纯度和产率,为药物研发提供了有效的手段。

除了上述应用外,双水相萃取还可以用于环境监测、食品工业等领域。

例如,在环境监测中,可以利用双水相萃取将有机污染物和水样分离,进而进行有机污染物的检测与分析。

双水相萃取技术的应用

双水相萃取技术的应用

实验四、双水相萃取技术-双水相系统制备
一、实验目的
1、了解双水相系统成相的方法
2、观察双水相系统成相现象
二、实验原理
双水相系统中使用的双水相是由两种不相溶的高分子溶液或者互不相溶的盐溶液和高分子溶液组成。

双水相系统的制备,一般是将两种溶质分别配成一定浓度的水溶液,然后将两种溶液按照不同的比例混合,静止一段时间,当两种溶质的浓度超过某一浓度范围时,就会产生两相。

三、实验材料
聚乙二醇、硫酸钠(硫酸铵)、墨水(钢笔水)、烧杯、玻璃棒、量筒、分析天平
四、实验步骤
1、双水相系统的制备
(1)分别配制浓度为6g/100ml、10g/100ml、14g/100ml聚乙二醇溶液各50ml。

(2)配制50ml浓度为14g/100ml的硫酸钠溶液三份。

(3)将不同浓度的聚乙二醇溶液与硫酸钠溶液混合,充分搅拌,静置分层,得到3份双水相系统。

2、观察双水相系统,高浓度双水相系统如不成两相,可定量添加聚乙二醇和硫酸钠的高浓度溶液。

3、向三份双水相系统中分别滴加墨水1滴,观察现象。

五、实验结果
1、记录双水相系统的制备过程中所需聚乙二醇与硫酸钠的浓度。

计算方法:C(PEG)=m(PEG)/V(总)
C(Na
2SO
4
)=m(Na
2
SO
4
)/V(总)
2、记录上相、下相中墨水溶液颜色深浅情况。

双水相萃取技术在生物制药中的应用

双水相萃取技术在生物制药中的应用

经过近二十年的发展,双水相 萃取技术已形成两类基本模型: 一是利用热力学作用原理发展 出的晶格模型,通过聚合成相 作用研究蛋白质等物质的分离 提纯
2
双水相萃取分离特点
双水相萃取技术通过利用两相溶液的聚合,当两相水溶液浓度含量过高时自然分离效 果,实现有用物质的分离提纯。该项技术最早发现于18世纪90年代 在研究人员研究 明胶、可溶淀粉两种水溶液混合过 程,通过将上述两种溶液混合,得出一个浑浊不 透明液体,随后静置发生分离,形成两层液相溶液,也就是 双水相溶液。从双水相 溶液形成的特点来看,该体系 形成的主要原因是利用了高聚物之间的不相容效果,
双水相萃取技术在生物制药领域的应用
例如研究葛根素在 PEG/ (NH)SO₄ 双水相体系以及丙酮/K,HPO₂溶液 中的分 离特征,在前者体系中PEG1500 质量分数达到20%, (NH₄)SO₄ 质量分数达到16%,所得组分的分配系数 高达148.2,同时萃取回收率高达 99%以上
而在后者 丙酮萃取溶液中,丙酮与水的质量配比为8:2,K₂HPO 质量 1.5g, 最终所得萃取回收率达到了99.55%,因此 可以看出双水相萃取技 术在提纯天然组分中的应用 效果较好I1
显著
双水相萃取技术在生物制药领域的应用
利用 双水相萃取技术常温从枯草芽孢杆菌发酵液中分离 β-甘露聚糖酶,相比原发酵液 纯度可达2.76倍,同 时萃取回收率也接近99% 双水相萃取技术在分离抗生素中的应用 在20世纪90年代人们利用双水相系统分离生 物小分子时,包括抗生素、氨基酸以及天然 药物提纯 过程中,发现双水相萃取技术在能耗上要明显低于传 统萃取技术,同时在提 取效率上也有着显著优势。例 如利用PEG3350/K,HPO₄溶液萃取青霉素G 发酵液, 青霉素 G 的分配系数可达13~14.5,萃取率高达 97%,提纯纯青霉素溶液时,萃取率也能达到95%; 在

双水相萃取法的原理与应用

双水相萃取法的原理与应用

双水相萃取法的原理与应用1. 原理介绍双水相萃取法是一种分离提取化合物的方法,通过利用两种不相溶的溶剂构成两个水相层,达到从一个水相层向另一个水相层进行分配的目的。

双水相萃取法具有选择性强、操作简便、成本低廉等特点,已广泛应用于生物分离纯化、环境污染检测、食品安全等领域。

2. 原理步骤双水相萃取法的基本步骤如下:1.准备两种互不相溶的溶剂,一般常用的是极性和非极性的溶剂,如水和有机溶剂。

确保两种溶剂相分离的界面有尽可能大的接触面积。

2.将待提取物溶解在一个适宜的溶剂中,使其分布均匀。

3.加入两种溶剂,振荡或搅拌使两相充分混合并达到平衡分配。

4.待体系分层后,通过离心或重力沉淀将两相分离。

5.收集有机相或水相中的萃取物,进行进一步的分析或应用。

3. 应用领域双水相萃取法在以下领域有广泛的应用:•生物分离纯化:双水相萃取法可用于分离和纯化生物大分子,如蛋白质、酶等。

通过调节溶剂体系的性质,可以实现对不同生物大分子的选择性分离。

•环境污染检测:双水相萃取法在环境污染物的检测中有重要应用。

通过使用适当的溶剂和调节pH值,可以有效地富集和分离样品中的有机污染物,如农药、重金属等。

•食品安全:双水相萃取法被广泛应用于食品安全领域。

利用双水相萃取法可以快速、高效地提取食品中的有害物质,如农药残留、食品添加剂等,确保食品质量和安全性。

•药物研发:双水相萃取法在药物研发中起着重要作用。

通过双水相萃取法可以从复杂的生物样品中富集和分离药物分子,为药物研发提供重要的前处理步骤。

4. 优缺点双水相萃取法具有以下优点:•选择性强:通过调节溶剂体系的性质,可以实现对不同化合物的选择性分离。

•操作简便:双水相萃取法操作简单方便,不需要复杂的仪器设备。

•成本低廉:双水相萃取法所需的溶剂成本较低,适用于大规模应用。

然而,双水相萃取法也存在一些缺点:•萃取效率较低:双水相萃取法对于某些极性化合物的富集效果较差。

•溶剂耗量大:双水相萃取法需要大量的有机溶剂来保证分离效果。

双水相萃取

双水相萃取

操作步骤
一、重点 双水相萃取放大容易:一般10ml离心管的实验结果可直接放大到工业规模。具体实验步骤: 1、配制一系列不同浓度、pH及离子强度的双水相,每个双水相改变一个参数。 2、加入料液,再加水使整个系统质量达到5~10g。离心管封口后充分混合。 3、1800-2000g下离心3-5min,使两相完全分离。 4、用吸管或移液管将上相和下相分别吸出,测定上、下相中目标产物的浓度或生物活性,计算分配系数。 5、上、下两相中目标产物的总量应与加入量对比,以检验是否存在沉淀或界面吸附现象,并可确认浓度或活 性测定中产生的系统误差。 6、分析目标产物的收率和纯化倍数,确定最佳双水相系统。 二、特点: 1、含水量高(70%~90%),适宜提取水溶性的蛋白质、酶等生物活性物质,且不易引起蛋白质的变性失活。 2、不存在有机溶剂残留问题。3、易于放大,各种参数可按比例放大而产物收率并不降低。
可形成双水相的双聚合物体系很多,如聚乙二醇(PEG)/葡聚糖(Dx),聚丙二醇/聚乙二醇,甲基纤维素/ 葡聚糖。双水相萃取中采用的双聚合物系统是PEG/Dx,该双水相的上相富含PEG,下相富含Dx。另外,聚合物与 无机盐的混合溶液也可以形成双水相,例如,PEG/磷酸钾(KPi)、PEG/磷酸铵、PEG/硫酸钠等常用于双水相萃 取。PEG/无机盐系统的上相富含PEG,下相富含无机盐。
原理
某些亲水性高分子聚合物的水溶液超过一定浓度后可以形成两相,并且在两相中水分均占很大比例,即形成 双水相系统(aqueous two-phase system,ATPS)。利用亲水性高分子聚合物的水溶液可形成双水相的性质, Albertsson于20世纪50年代后期开发了双水相萃取法(aqueous two-phase extraction),又称双水相分配法。 20世纪70年代,科学家又发展了双水相萃取在生物分离过程中的应用,为蛋白质特别是胞内蛋白质的分离和纯化 开辟了新的途径。

双水相萃取技术及应用

双水相萃取技术及应用

《生物资源开发与利用专题》双水相萃取技术及应用152310018 杨云梅双水相萃取(Aqueous two phase extraction,英文缩写ATPE)是利用物质在互不相容的两水相间分配系数的差异来进行萃取的方法。

如:葡聚糖(dextran)与聚乙二醇(PEG)按一定比例与水混合,溶液混浊,静置平衡后,分成互不相溶的两相,上相富含PEG,下相富含葡聚糖。

当两种聚合物或一种聚合物与一种盐溶于同一溶剂时,由于聚合物之间或聚合物与盐之间的不相容性,当聚合物或无机盐浓度达到一定值时,就会分成不互溶的两相。

因使用的溶剂是水,因此称为双水相,在这两相中水分都占很大比例(85%一95%),活性蛋白或细胞在这种环境中不会失活,但可以不同比例分配于两相,这就克服了有机溶剂萃取中蛋白容易失活和强亲水性蛋白难溶于有机溶剂的缺点。

双水相萃取的优点:1、操作条件温和,在常温常压下进行;不会引起生物活性物质的失活或变性。

2、两相的界面张力小,萃取时两相能高度分散,传质速度快。

3、排除了使用有毒、易燃的有机溶剂,能够提供温和的水环境,避免被萃取成分的脱水变性。

4、溶质对目标组分选择性强,大量杂质能与所有固形物一同除去,使分离操作5、过程简化,易于连续操作,处理量大,适合工业应用。

缺点:系统易乳化,成相聚合物的成本较高,水溶性高聚物大多数粘度较大,不易定量控制,高聚物回收困难。

一:双水相萃取技术的发展趋势目前,分离生物物质经常采用的双水相系统主要有2类:非离子型聚合物/ 水系统(最常用的为聚乙二醇/葡聚糖)和非离子型聚合物/无机盐/水系统(常用的如聚乙二醇/盐体系)原因在于此2类双水相系统采用的是无毒性的聚合物,且其多元醇、多元糖结构能够保证生物大分子的稳定性但在实际应用中,2类双水相系统各有弊端,非离子型聚合物/水系统能够保证生物活性物质的活性,且界面吸附少,但所用聚合物材料如葡聚糖成本较大,且体系黏度大,制约大规模的工业生产过程;相对于前者,非离子型聚合物/无机盐/水系统成本低,体系黏度小,但该系统会导致某些敏感生物活性物质失活,此外还会产生大量的高浓度盐废水。

双水相萃取.doc

双水相萃取.doc

实训1 双水相萃取相图的制作一、实训目的1. 学习双水相分离萃取的原理和方法2. 学习双水相萃取相图的制作二、实训原理双水相萃取法是利用物质在互不相容的两个水相间分配系数的差异来进行萃取的方法。

两水相的形成:高聚物与无机盐在水中由于盐析的作用会形成两个相,如PEG 与硫酸盐或碱性磷酸盐。

两种亲水性高聚物在水中由于聚合物的不相容性也会形成两个相。

但是它们只有达到一定的浓度时,才能形成两相,双水相形成的定量关系可用相图来表示。

相图是一根双节线, 把均匀区和两相区分隔开来。

当成相组分的配比取在:线的下方时,为均相区; 曲线的上方时,为两相区;在曲线上,则混合后,溶液恰好从澄清变为浑浊。

相图中TMB 称为系线;T 代表上相组成;B 代表下相组成;同一条系线上各点分成的两相具有相同的组成,但体积比不同。

V T / V B = BM / MT三、实训器材、试剂、材料1.器材:试管,离心机,天平,离心管,三角瓶,滴定管。

2.试剂:聚乙二醇2000(PEG2000),硫酸铵。

四、实训操作步骤1.PEG2000(NH 4)2SO 4双水相体系相图的测定(1)取10%(g/ mL )PEG2000溶液10mL 于三角瓶中。

(2)用40%(g/mL )(NH 4)2SO 4溶液装入滴定管中滴定至三角并中溶液出现浑浊,记录)NH4)2SO 4溶液消耗的体积。

加入1mL 水使溶液澄清,继续用(NH 4)2SO 4溶液滴定至浑浊,重复7~8次,记录每次(NH 4)2SO 4溶液消耗的体积,计算每次出现浑浊时体系中PEG2000和(NH 4)2SO 4的浓度(g/mL )。

(3) 以(NH 4)2SO 4的浓度(g/mL )为横坐标,PEG2000的浓度(g/mL )为纵坐标,绘制PEG2000- (NH 4)2SO 4双水相体系相图。

2. 相图制作表10%PEG2000 10mL 温度T=20℃次H 2O 加量(NH 4)2SO 4纯(NH 4)2SO 4溶液累PEG2000(NH 4)2SO 4PEG2000 %(NH 4)2SO 4 %两相 均相数(mL) 溶液加量累计量(g)计总量(mL)(%) (%)(mL) (g)1 12 13 14 15 16 17 18 1五、结果与讨论1.如何正确绘制相图。

双水相萃取与应用

双水相萃取与应用
聚丙二醇ppg聚乙二醇peg聚乙烯醇pva葡聚糖dex聚蔗糖ficoll羟丙基葡聚糖聚乙二醇peg聚乙烯醇pva葡聚糖dex聚乙烯吡咯烷酮硫酸葡聚糖酸钠羧甲基葡聚糖酸钠聚丙烯乙二醇甲基纤维素羧甲基葡聚糖酸钠羧甲基纤维素钠盐聚乙二醇硫酸钾硫酸铵硫酸钠硫酸镁磷酸盐酒石酸钠琥珀酸钠柠檬酸纳聚乙二醇葡聚糖乙二醇单丁酯丙醇一种聚合物另一种为有机小分子几种典型双水相系统形成上相的聚合物形成下相的聚合物双水相系统及成相机理两种水溶性聚合物溶液混合形成单一相还是两相主要叏决于两种因素
形成上相的聚合物
聚丙二醇(PPG)
形成下相的聚合物
聚乙二醇(PEG) 聚乙烯醇(PVA) 葡聚糖(Dex) 聚蔗糖(Ficoll) 羟丙基葡聚糖 聚乙烯醇(PVA) 葡聚糖(Dex) 聚乙烯吡咯烷酮 聚丙烯乙二醇 甲基纤维素 羧甲基纤维素钠盐 硫酸钾,硫酸铵, 硫酸钠,硫酸镁, 磷酸盐 酒石酸钠 琥珀酸钠,柠檬酸纳 乙二醇单丁酯 丙醇
• 两相的溶剂都是水,上相和下相的含水量高达70%~90%(w/w),不存在有机溶剂残留问题。条件很温和,常温常压 操作,不会引起生物活性物质失活或变性。 • 两相界面张力小,仅为10-6~10-4N/m(普通体系为10-3~10-2N/m),双水相的两相差别(如密度、折射率) 很小,萃取 时两相能够高度分散,传质速度快,但也引起乳化现象。
双水相系统及成相机理
两种水溶性聚合物溶液混合,形成单一相还是两相,主要取决于两 种因素:系统熵的增加;分子间的作用力。熵的增加与分子数目有关, 而与分子大小无关;分子之间的相互作用力可看作分子中各基团相互作 用力之和,随分子量的增加而增加。分子量大的聚合物以摩尔计的相互 作用能超过混合熵的增加而起主导作用,进而决定聚合物溶液混合发生 的现象。当两种聚合物之间互不相溶而排斥,它们的线团结构无法互相 渗透,导致一种分子为同种分子所包围,在达到平衡后,形成了互不相 溶的各自富含单一种聚合物的两相。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

双水相萃取技术及其应用
.《生物资源开发与利用专题》双水相萃取技术及其应用152310018杨双水相萃取(ATPE)是一种利用不相容的两个水相之间分配系数的差异来萃取物质的方法。

例如:
将葡聚糖和聚乙二醇按一定比例与水混合,溶液呈浑浊状,静置平衡后,溶液分为两相,两相互不混溶,上相富含聚乙二醇,下相富含葡聚糖。

当两种聚合物或一种聚合物和一种盐溶解在同一溶剂中时,由于聚合物之间或聚合物和盐之间的不相容性,当聚合物或无机盐的浓度达到一定值时,它将被分成两个不混溶的相。

因为所用的溶剂是水,所以称为双水相,其中水占很大比例(85%至95%),活性蛋白质或细胞在这种环境中不会失活,但它可以以不同的比例分布在两相中,克服了有机溶剂萃取中容易失活蛋白质和不溶性强亲水性蛋白质的缺点。

双水相萃取的优点:
1.操作条件温和,在常温常压下进行。

它不会导致生物活性物质失活或变性。

2.两相界面张力小,萃取过程中两相高度分散,传质速度快。

3.消除了有毒和易燃有机溶剂的使用,这可以提供温和的水环境,并避免提取组分的脱水和变性。

4.溶质对目标组分具有很强的选择性,大量的杂质可以与所有固体物质一起被除去,从而能够进行分离操作。

5、工艺简化,连续操作容易,处理量大,适合工业化应用。

缺点:
该体系易乳化,成相聚合物成本较高,大多数水溶性聚合物粘度较高,不易定量控制,聚合物回收困难。

I:
双水相萃取技术的发展趋势目前,用于分离生物物质的双水相体系主要有两种:
非离子聚合物/水体系(最常用的是聚乙二醇/葡聚糖)和非离子聚合物/无机盐/水体系(常用的是聚乙二醇/盐体系)是由于在两种类型的双水相体系中使用了无毒聚合物,并且它们的多元醇和多糖结构可以确保生物大分子的稳定性。

然而,在实际应用中,这两种类型的双水相系统有其自身的缺点。

非离子聚合物/水体系能保证生物活性物质的活性,界面吸附少,但所用的高分子材料如葡聚糖价格昂贵,体系粘度大,限制了大规模应用。

与前者相比,非离子聚合物/无机盐/水体系成本低、粘度低,但该体系会导致一些敏感的生物活性物质失活,此外,还会产生大量高浓度含盐废水。

因此,寻找一种新型的双水相体系成为未来的主要研究方向。

目前,新型双水相体系的开发主要包括廉价双水相体系和其他新型功能双水相体系。

(1)低成本双水相体系由于葡聚糖等高分子材料价格昂贵,寻找一些低成本的聚合物是目前低成本双水相体系发展的主要方向,如使用变性淀粉、阿拉伯树胶等。

取代葡聚糖,羟基纤维素取代聚乙二醇。

王文锦·[2]研究了用羟丙基改性淀粉代替葡聚糖和聚乙二醇形
成双水相体系来提取菠萝蛋白酶。

(2)新型功能性双水相系统新型功能性双水相系统是指双水相系统,其中系统中使用的聚合物易于回收或操作。

对温度敏感的双水相体系可以由乙烯基氧和丙烯氧基(商品名UCON)与聚酯的共聚物形成。

在常温下,聚酯、UCON和水混合成一个均匀的体系。

当温度加热到40℃时,形成两相系统。

上相是聚酯和UCON,下相是水。

该系统可以实现循环利用
将葡聚糖和聚乙二醇按一定比例与水混合,溶液呈浑浊状,静置平衡后,溶液分为两相,两相互不混溶,上相富含聚乙二醇,下相富含葡聚糖。

当两种聚合物或一种聚合物和一种盐溶解在同一溶剂中时,由于聚合物之间或聚合物和盐之间的不相容性,当聚合物或无机盐的浓度达到一定值时,它将被分成两个不混溶的相。

因为所用的溶剂是水,所以称为双水相,其中水占很大比例(85%至95%),活性蛋白质或细胞在这种环境中不会失活,但它可以以不同的比例分布在两相中,克服了有机溶剂萃取中容易失活蛋白质和不溶性强亲水性蛋白质的缺点。

双水相萃取的优点:
1.操作条件温和,在常温常压下进行。

它不会导致生物活性物质失活或变性。

2.两相界面张力小,萃取过程中两相高度分散,传质速度快。

3.消除了有毒和易燃有机溶剂的使用,这可以提供温和的水环境,并避免提取组分的脱水和变性。

4.溶质对目标组分具有很强的选择性,大量的杂质可以与所有固体物质一起被除去,从而能够进行分离操作。

5、工艺简化,连续操作容易,处理量大,适合工业化应用。

缺点:
该体系易乳化,成相聚合物成本较高,大多数水溶性聚合物粘度较高,不易定量控制,聚合物回收困难。

I:
双水相萃取技术的发展趋势目前,用于分离生物物质的双水相体系主要有两种:
非离子聚合物/水体系(最常用的是聚乙二醇/葡聚糖)和非离子聚合物/无机盐/水体系(常用的是聚乙二醇/盐体系)是由于在两种类型的双水相体系中使用了无毒聚合物,并且它们的多元醇和多糖结构可以确保生物大分子的稳定性。

然而,在实际应用中,这两种类型的双水相系统有其自身的缺点。

非离子聚合物/水体系能保证生物活性物质的活性,界面吸附少,但所用的高分子材料如葡聚糖价格昂贵,体系粘度大,限制了大规模应用。

与前者相比,非离子聚合物/无机盐/水体系成本低、粘度低,但该体系会导致一些敏感的生物活性物质失活,此外,还会产生大量高浓度含盐废水。

因此,寻找一种新型的双水相体系成为未来的主要研究方向。

目前,新型双水相体系的开发主要包括廉价双水相体系和其他新型功能双水相体系。

(1)低成本双水相体系由于葡聚糖等高分子材料价格昂贵,寻找一些低成本的聚合物是目前低成本双水相体系发展的主要方向,如使用变性淀粉、阿拉伯树胶等。

取代葡聚糖,羟基纤维素取代聚乙二醇。

王文锦·[2]研究了用羟丙基改性淀粉代替葡聚糖和聚乙二醇形成双水相体系来提取菠萝蛋白酶。

(2)新型功能性双水相系统新型功能性双水相系统是指双水相系统,其中系统中使用的聚合物易于回收或操作。

对温度敏感的双水相体系可以由乙烯基氧和丙烯氧基(商品名UCON)与聚酯的共聚物形成。

在常温下,聚酯、UCON和水混合成一个均匀的体系。

当温度加热到40℃时,形成两相系统。

上相是聚酯和UCON,下相是水。

该系统可以实现聚酯和UCON的回收。

(3)由热分离聚合物和水组成的新型双水相体系(温度敏感双水相体系)。

大多数水溶液中的热分离聚合物是环氧乙烷和环氧丙烷的无规共聚物(环氧乙烷:7%(质量分数)聚乙烯)
近年来,关于双水相萃取技术从中草药中提取有效成分的文献开始报道,虽然数量不多,但现有的实例充分表明其具有良好的应用前景。

将聚乙二醇和磷酸二氢钾配制成一定浓度的浓缩液;
常温下,将诺特5明生浓缩液放入10毫升离心试管中,加入一定体积的成相物质浓缩液,摇匀,在离心机中以一定速度离心5分钟,进行分相;
分别读取上相和下相的体积,并取样分析上相和下相的总皂苷含量。

(3)黄色素的免疫分析基于液-液体系或界面性质开发的分析检测技术是一种潜在的具有应用价值的生化检测分析技术。

该技术已成功应用于免疫分析、生物分子相互作用力的测定和细胞数量的测定。

例如心脏药物异羟基洋地黄毒苷(缩写为黄素)的免疫测定。

双水相体系中螺旋霉素的电化学检测方法都是基于双水相体系中生物物质的
不同分配系数。

(4)稀有金属/贵金属的分离传统的稀有金属/贵金属的溶剂萃取方法存在溶剂污染环境、对人体有害、操作成本高、工艺复杂等缺点。

双水相萃取技术引入金属分离领域,无疑是一项新的金属分离技术。

在聚乙二醇2000/硫酸/偶氮胂(ⅲ)双水相体系中,钛(ⅳⅳ)和锆(ⅳ)被分离。

将两毫升不同酸碱度的缓冲溶液、0.6毫升偶氮胂ⅲ溶液、5毫升聚乙二醇溶液和一定量的金属离子溶液分别加入60毫升分液漏斗中,用水定容至10毫升,然后加入2克固体(NH4)2SO4,振荡3-5分钟,静置。

两相分离清楚后,将下层水相放入25ml比色管中,测定下层水相中金属离子的残留量,计算萃取率。

(5)其他物质的分离A .青霉素的纯化向发酵液中加入8%聚乙二醇(PEG2000)和20%硫酸铵进行提取和相分离。

青霉素在轻相中富集,然后用乙酸丁酯从轻相中提取青霉素。

抗生素的分离丙酰螺旋霉素的分离ph=8.0-8.5,peg 2000 (14%)/na2hpo4 (18%),收率69.2%,而乙酸丁酯提取工艺的收率为53.4%。

Word教育材料。

相关文档
最新文档