半导体物理:半导体表面和MIS结构

合集下载

半导体物理:半导体表面和MIS结构

半导体物理:半导体表面和MIS结构

式中:V (x) 0 取+号,V (x) 0 取-号
Es
理想模型的实际意义在于证明了三维理想晶体的表面上每个原子 都会在禁带中产生一个附加能级
大多数结晶半导体的原子密度在1022cm-3量级.按此推算,单位面积 表面的表面态数应在1015量级. 数目如此巨大的表面能级实际已构 成了一个能带。
表面态本质上与表面原子的未饱和键,即悬挂键有关.
表面取向不同,其悬挂键的密度亦有所不同。表面态亦有施主和 受主之分。
当金属与半导体表面间正压进一步增大,表面 处费米能级位置可能高于禁带中央能量。使得 在表面处的少子电子浓度反型层。
半导体空间电荷层的负电荷由两部分组成:耗尽
层中已经电离的受主负电荷和反型层中的电子。
n 型半导体同样有:
金属与半导体间加正压, 多子堆积;
表面态会加速非平衡载流子的复合,会改变半导体表面的功函数,从而影响 材料和金属-半导体接触的性能。但另一方面我们也看到,外加电压能通过 金属-半导体接触改变半导体表面的电场,使表面附近的能带发生不同程度 的弯曲。以后我们会知道,利用这样的表面电场效应可以做成各种各样的 器件。
8.1.1 理想一维晶体模型及其解 由于晶格的不完整性使势场的周期性受到破坏时,则在禁带中产生附加能级。
E2(x)
(x 0)
V(x)=V(x a)
4
对能量E<V0的电子
1.在晶体外部,电子波函数集中在x=0的表面处,随着离开表 面距离的增加,波函数按照指数形式衰减。
2 2m0
d 21( x) dx
V01(x)
E 1 ( x)
(x 0)
1
1
2m0 (V0 E )2 x
2m0 (V0 E )2 x

半导体表面与MIS结构

半导体表面与MIS结构




n D n 0 假设 3 p A p0
在空间电荷层中 k0T n p x N c e qV x k0T p p x p p 0 e

Ec 0 qV x E F
n p0e
qV x qV x d V q 2 p p 0 e k0T 1 n p 0 e k0T 1 6 dx rs 0 2
在6式两边同乘以 dV并积分
EFm


Ec Ei EFs Ev
Qs
Qm
x
1)能带向上 弯曲并接近EF; 2)多子(空 穴)在半导 体表面积累 ,越接近半 导体表面多 子浓度越高。
(2) 平 带
VG=0
Ec Ei EFs Ev
EFm特征:半导体 Nhomakorabea面能带平直。
( 3) 耗 尽
VG≥0
特征: Ec Ei EFs Ev
EFm
根据高斯定律
2 rs 0k0T qV x F Qs rs 0 E qL kT D 0 n p0 9 p p0
(1c)表面电容Cs
Qs Cs Vs
假定Qs跟得上Vs的变化
在低频情况的微分电容
qVs qVs k n p 0 T k T e 0 1 e 0 1 p p0 rs 0 F 10 2 m LD qVs n p0 F k T p 0 p 0
2、理想MIS结构的电容效应
dQm 因为 C 1 dVG
VG=Vs+Vo
而 Co

半导体物理半导体表面与MIS结构总结

半导体物理半导体表面与MIS结构总结

§8.2 表面电场效应
• 多子积累状态 • 耗尽状态 • 反型状态
理想MIS结构的四个要求:
(1) 金属和半导体不存在功函数差,即:Wm=Ws ; (2)绝缘层内无电荷:QI =0,且绝缘层不导电:IL=0; (3)绝缘层与半导体界面处不存在界面态Qss=0; (4)由均匀半导体构成,无边缘电场效应。
表面能级:与表面态相应的能级称为表面能级。分布在禁带内的表面能级, 彼此靠得很近,形成准连续的分布。
对于理想表面的问题求解,需要建立薛定谔方程,利用具 体的边界条件对波函数加以求解。
对于硅表面态:表面最外层每个硅原子有一个未配对电子, 有一个未饱和键,称为悬挂键,由于每平方厘米表面有 1015个原子,相应悬挂键亦有1015个,这与实验测量值在量 级上相符合。
以P型半导体为例。
VG
VG
金属栅电极
绝缘层
C0
半导体
Cs
MIS结构
等效电路
小结
Si-SiO2系统的特性和其中带电情况密切相关,其主要的带电形式有: 可动离子:主要是带正电的Na+ 、 K+ 、 Li+ 、 H+正离子; 固定电荷:位于Si-SiO2界面附近200 Å处; 界面态: Si-SiO2界面处位于禁带中的能级或能带; 电离陷阱电荷:由X射线、γ射线、电子射线等引起的电荷。
半导体内电场强度 E dV 1 dEc (x) 1 Ei (x) 0
dx q dx q dx
金属表面处 堆积的电子
由空穴浓度
p

ni
exp

Ei
EFs kT

得知,随着表面处的Ei相对于 内部上升则表面处的空穴浓度 亦随之升高,称此时P型半导体 空穴发生堆积现象。

半导体物理-第8章-半导体表面和MIS结构PPT课件

半导体物理-第8章-半导体表面和MIS结构PPT课件

E fs
空穴势阱,多子空穴被吸引
Ev
至表面附近,因而表面空穴 浓度高于体内,形成多子积
(1)积累层(VG<0) 累,成为积累层。
(Vs<0) 表面微分电容
.
Cs
rs0
LD
exp2qkV0Ts
20
8.2.3 各种表面层状态
(2)平带状态
Ec
E fM
Ei
E fs
Ev
(2)平带(VG=0)
VG=0时,能带无弯曲,无空
LD
(
q2 pp0
1
)2
2rs0k0T
F (q,n V p 0 ) {[ q e) x V q p V 1 ] ( n p 0 [e q x ) V q p V 1 ( ]1 2 }
k 0 T p p 0
k 0 Tk 0 T p p 0 k 0 Tk 0 T
.
13
分别称为德拜长度 ,F函数。 则
2Vs
1/ 2
采用耗尽近似
Vs
.
q
N
A
.
15
带入可得
Qs 2rqs0L D k0TF(q k0TV s,n ppp00) 当金属电极为正,即Vs>0,Qs用负号; 反之Qs用正号。
.
16
在单位表面积的表面层中空穴的改变量 为
p0 (p pp p 0)d x0 p p 0 [e x k q 0 T p )V 1 (]dx
.
10
在半导体内部,电中性条件成立,故
(x)0

nD pA np0pp0
带入可得
d d 2 V 2x rq s 0{ p p 0 [e x k q 0 T p )V 1 ] ( n p 0 [ek q x 0 T )V p 1 ](}

半导体物理刘恩科8半导体表面与MIS结构

半导体物理刘恩科8半导体表面与MIS结构
理想表面就是指表面居中原子排列的对称性与体内原子完全相同,且 表面上不附着任何原子成分子的半无限晶体表面。因晶格在表面处突 然终止,在表面外层的每个原子将有一个未配对的电子,即有一个未 饱和的键,这个键称作悬挂键,与之对应的电子能态就是表面态;
表面有大量的原子键被断开而需要大量的能量,形成表面能; 为降低表面能,表面和近表面的原子层间距发生变化而出现表面弛豫
ei( k )a ei( k )a
1 1
考虑x=0处函数连续得到的系数方程组
eika sin(a) cos(a)
6
如同体内讨论相似,同样可表达为: P sin(a) cos(a) 1 a
满足此方程的E解构成能带,不满足此方程的解构成禁带。在半导体表面
得到的上方程右边为实数,为保证左边也为实数,k只能取(n为整数):
称为德拜长度,引入了F函数
F (x, y) [ex x 1) y(e x x 1)]1/ 2
是表征半导体空间电荷层性质的一个重要参数
16
半导体表面处的电场强度为
Es
2k0T qDL
F( qVs k0T
,
np0 ) pp0
表面的电荷面密度:根据高斯定理得到 Qs r 0 Es
式中的负号是因为规定电场强度指向半导体内部时为正
电荷全由已电离的受主杂质构成,若半导体接杂是均匀的.则空间
电荷层的电荷密度ρ(x)=一qNA,泊松方程为
d 2V qN A
dx2 r 0
设xd为耗尽层宽度,因半导体内部电场强度为零,由此得边界xd处dV/dx
=0,上式积分,得
dV dx
qN A r 0
( xd
x)
取半导体内部电势为零,xd处V=0, V

《半导体物理》习题答案第八章

《半导体物理》习题答案第八章

第8章 半导体表面与MIS 结构2.对于电阻率为8cm Ω⋅的n 型硅,求当表面势0.24s V V =-时耗尽层的宽度。

解:当8cm ρ=Ω⋅时:由图4-15查得1435.810D N cm -=⨯∵22D d s rs qN x V εε=-,∴1022()rs s d D V x qN εε=-代入数据:11141352219145211.68.85100.24 4.9210()()7.3101.610 5.8109.2710d x cm -----⨯⨯⨯⨯⨯==⨯⨯⨯⨯⨯3.对由电阻率为5cm Ω⋅的n 型硅和厚度为100nm 的二氧化硅膜组成的MOS 电容,计算其室温(27℃)下的平带电容0/FB C C 。

解:当5cm ρ=Ω⋅时,由图4-15查得143910D N cm -=⨯;室温下0.026eV kT =,0 3.84r ε=(SiO 2的相对介电系数) 代入数据,得:1141/20002197722110.693.84(11.68.85100.026)11()11.6 1.61010010310FBr rs rs A C C kT q N d εεεε---===⨯⨯⨯+⋅+⨯⨯⨯⨯⨯此结果与图8-11中浓度为1⨯1015/cm 3的曲线在d 0=100nm 的值非常接近。

4. 导出理想MIS 结构的开启电压随温度变化的表示式。

解:按定义,开启电压U T 定义为半导体表面临界强反型时加在MOS 结构上的电压,而MOS结构上的电压由绝缘层上的压降U o 和半导体表面空间电荷区中的压降U S (表面势)两部分构成,即oST S Q U U C =-+ 式中,Q S 表示在半导体表面的单位面积空间电荷区中强反型时的电荷总数,C o 单位面积绝缘层的电容,U S 为表面在强反型时的压降。

U S 和Q S 都是温度的函数。

以p 型半导体为例,强反型时空间电荷区中的电荷虽由电离受主和反型电子两部分组成,且电子密度与受主杂质浓度N A 相当,但反型层极薄,反型电子总数远低于电离受主总数,因而在Q S 中只考虑电离受主。

半导体物理 第八章 半导体表面与MIS结构

半导体物理 第八章 半导体表面与MIS结构

实际密度: 1010~1012cm-2
悬挂键特点:与体内交换电子或空穴。
8.2表面电场效应 以MIS结构(金属-绝缘层-半导体)为例
在金属-半导体间加电压即 可产生表面电场, 在理想情 况下, MIS结构中满足以下 条件:
1. 金属-半导体间功函数差为零;
2. 在绝缘层内没有任何电荷且绝缘层完全不 导电。
空间电荷区电势:随距离逐渐变化。表面发生能带向 下弯曲现象。
1. 多数载流子堆积状态(P型半导体为例) 金属-半导体加反向电压(金属端负),表面势 为负,能带向上弯曲。
热平衡下,半导体内费米能级 不变。 接近表面,价带顶向上弯曲甚 至超过费米能级,价带中空穴 浓度随之增加,表面层出现空 穴堆积现象。
C C0
r s 0
1 qVs exp( ) 2k0T
CFBS
2 r s 0 LD
(C )Vs 0 C0
CFB C0
r 0 rs 0 k0T 1/ 2 1 ( 2 ) 2 rs q N Ad 0
1
利用C-V特性测量表面参数时, 常需计算CFB/C0 若绝缘层厚度d0一定,NA越大,表 面空间电荷层越薄CFB/C0也越大。
koT NA VB ln( ) q ni
得强反型条件:
2koT NA Vs ln( ) q ni
衬底掺杂浓度越大,Vs越大,越不容易达到强反型。 Vs=2 VB称为开启电压。此时, VG= VT
临界反型时
2 k0T 1/ 2 Es ( ) (Vs )1/ 2 LD q
Qs (4 rs 0qNAVB )1/ 2
达姆表面能级:晶体自由表面 周期势场发生中断或破坏引入 的附加能级。
悬挂键:晶体自由表面的最外 层原子中有一个未配对的电子, 即未饱和的键。 表面态:悬挂键所对应的电子 能态。

半导体物理西交课件-半导体表面和MSI结构

半导体物理西交课件-半导体表面和MSI结构
2
u 'k (0) + i 2π k uk (0)
2
(8-14)
k为复数时波函数特点:
1/ 2 m V E 2 − ( ) 0 0 x ; ( x ≤ 0) A exp h ψ ( x) = i 2π k ' x −2π k " x A u ( x ) e e ;( x ≥ 0) 1 k
x→∞
1/ 2 2m0 (V0 − E ) ψ ( x ) = A exp 波函数有限: 1 h
x (8-4)
x (8-3)
表面态
( x ≥ 0)区域的波函数:
ψ 2 ( x) = A1uk ( x)ei 2π kx + A2u− k ( x)e − i 2π kx
表面电场效应
从理想的MIS结构出发,讨论外加电场作用下, 半导体表面层内发生的现象。 理想MIS结构: 金属与半导体间功函数差为零 绝缘层内没有任何电荷且绝缘层完全不导电 绝缘体与半导体界面处不存在任何界面态
表面电场效应
MIS结构的一般性静电特性
表面电场效应
表面电场效应
整体电中性: 绝缘层中电场均匀:
但是表面处Ei仍位于费米能级以上:
此时:V、Vs>0,又np0/pp0<<1, np0/pp0和e-qV/k0T均可略去
qVs n p 0 qVs F , = kT p p0 k0T 0
2 k0T 1/ 2 Es = V s LD q
qVs 2ε rsε 0 k0T Qs = exp − qLD 2 k T 0 qVs ε rsε 0 Cs = exp − LD 2k0T

半导体表面与MIS结构

半导体表面与MIS结构


exp

qVs k0T

qVs k0T
1
LD
F

qVs k0T
,
np0 pp0

np0 / pp0 0, exp(Vs / kt) 0
rs0
1
LD
1/ 2

qVs 2k0T

代入LD表达式,同时考虑受主杂质电离饱和时pp0=NA,则Cs变为:
8.1 表面态:成因与特点
主要成因:理想晶体结构是无限延伸的格子,势场是周期性
连续的。实际晶体具有表面,晶格在表面处不完整,周期性
遭到破坏。
其他成因:晶体缺陷,吸附原子等。
理想表面的悬挂键
表面层
(Surface)
体材料 (bulk)
8.1 表面态:理想表面态的理论计算与密度
• 达姆表面能级:1932年达姆首先提出晶体自由表面的存在 使其周期场在表面处发生中断,同样引起附加能级,这种 能级称为达姆表面能级。
价带顶降低远离费米能级,价带内
空穴密度减小。
表面层空穴比体内空穴浓度低很多,VG>0 表面负电荷浓度基本等于电离受主 杂质浓度。
空间电荷区分布,金属侧QG正电
ρ(x)
荷,半导体侧少量负电荷。
p
外加电场E Ec Ei EF Ev
QG xd
8.2 表面电场效应:p型MIS反型状态
宏观分析:VG>>0,外加电场宏
,
np0 pp0


2r0
LD

k0T q
1/ 2 (Vs )1/ 2
结论:Es和Qs正比于(Vs)1/2,特性参见图8-6
讨论 (3)耗尽状态:空间电容

半导体物理第八章 半导体表面和MIS结构

半导体物理第八章 半导体表面和MIS结构

qN A xd2
2 rs 0
Cs
rs 0
xd
返回
8.1 表面电场效应 8.1.3 各种表面层状态下的电容情况
对于耗尽状态,空间电荷区也可以用“耗尽层近似”
来处理,即假设空间电荷区内所有负电荷全部由电
离受主提供,对于均匀掺杂的半导体,电荷密度为:
x qNA
代入泊松方程求解,得到:
电势分布 V qNAxd x2表面势
q 2 rs0k0T
k0T k0T
pp0
k0T k0T

1/ 2
LD
2 rs0k0T
q2 pp0
F( qV
,
np0 ) {[exp(
qV
)
qV
1]
np0
[exp( qV
)
qV
1
1]} 2
k0T pp0
k0T k0T
pp0
k0T k0T
12 3 4
8.1 表面电场效应 8.1.2 表面空间电荷层的电场、电势和电容
②强反型层出现的条件:当P型衬底表面处的电子浓 度等于体内的多子空穴浓度时。
Ec
ns
ni
exp
E f Eis kT
Ef
Ei0 Ef
p0
ni
exp Ei0 E f kT
Eis
Ev
p0 ns
Ef
Eis
Ei0 E f
qVB qVs
Ei0 Eis
2qVB
此时表面势为:Vs 2VB
分别称为德拜长度 ,F函数。 则
E 2k0T F ( qV , np0 ) qLD k0T pp0
式中当V大于0时,取“+”号;V小于0时, 取“-”号。

chap_8半导体表面与MIS结构

chap_8半导体表面与MIS结构
2k 0T E q
2

2
q 2 p p0 2 k T rs 0 0

x qV qV x k T e 0 1 7 k T 0
qV x qV x n p 0 k0T e 1 k 0T p p0
NA k 0T ln 表 面 反 型 条 件 为 Vs VB q n i 因此 表 面 强 反 型 条 件 为 V 2V 2 k 0 T ln N A s B q ni
开启电压VT:使半导体表面达到强
反型时加在金属电极上的栅电压VG。
§8.1 表面态
硅理想表面示意图
表面能级示意图
硅晶体表面处每个硅原子将有一个未配对电 子--悬挂键,对应的电子能态就是表面态 硅晶体表面原子密度~1015cm-2,悬挂键密度 也应~1015cm-2 一定条件下,每个表面原子在禁带中对应一个表面能级。 由于表面原子很多,这些表面能级组成表面能带。
第八章 半导体表面与MIS结构
Semiconductor surface and metal-insulator- semiconductor structure
本章内容提要 表面态 § 8.1 理想MIS结构: §8.2 表面电场效应 §8.3 MIS结构的C-V特性 §8.4 硅-二氧化硅系统的性质 §8.5 表面电导
n p0 9 p p0
(3)表面电容Cs
假定Qs 跟得上Байду номын сангаасs的变化
在低频情况的微分电容 Qs Cs Vs
表面空间电荷层的电荷面密度 Qs随表面势Vs而变,这相当于 一电容效应。

《半导体物理学》【ch08】半导体表面与MIS 结构 教学课件

《半导体物理学》【ch08】半导体表面与MIS 结构 教学课件

半导体表面与MIS 结构
导入
为了解决这一问题,人们对半导体表面,特别是硅一二氧化硅系统进行了广泛的研究工作。这方 面的研究成果使集成电路克服了性能不稳定的障碍,得到进一步的迅速发展,同时也发展了有关 半导体表面的理论。这些事实证明了实践推动理论的发展、理论又反过来指导实践这一辩证关系。 在半导体表面的研究工作中,有理想表面研究和实际表面研究两个方面。本章的讨论将侧重于实 际表面研究方面,包括表面态概念、表面电场效应、硅—二氧化硅系统性质、MISC指金属—绝 缘层一半导体)结构的电容一电压特性、表面电场对pn 结特性影响及其他有关表面效应等。
表面态
上述结论可推广到三维情形,可以证明在三维晶体中,仍是每个表面原子对应禁带中的一个表面能 级,这些表面能级组成表面能带。因单位面积上的原子数约为10 ¹5 cm-² ,故单位表面积上的表面 态数也具有相同的数量级。表面态的概念还可以从化学键方面来说明。以硅晶体为例,因晶格的表 面处突然终止,在表面的最外层的每个硅原子都将有一个未配对的电子,即有一个未饱和的键,这 个键称作悬挂键,与之对应的电子能态就是表面态。因每平方厘米表面约有10 ¹5个原子,故相应的 悬挂键数亦应为约10 ¹5个。表面态的存在是肖克莱等首先从实验上发现的,后来有人在超高真空中 对洁净硅表面进行测量’,证实表面态密度与上述理论结果相符。
表面电场效应
01 空间电荷层及表面势
可归钠为堆积、耗尽和反型三种情况,以下分别加以说明:
2 多数载流子耗尽状态
当金属与半导体间加正电压(指金属接 正)时, 表面势vs为正值,表面处能带 向下弯曲。这时越接近表面,费米能级 离价带顶越远,价带中的空穴浓度越低。 在靠近表面的一定区域内,价带顶位置 比费米能级低得多,根据玻耳兹曼分布, 表面处空穴浓度将较体内空穴浓度低得 多,表面层的负电荷基本上等于电离受 主杂质浓度。表面层的这种状态称作耗 尽。

半导体物理学第八章

半导体物理学第八章

理想MOS结构的能带图


热平衡情形能带结构: 1)三种材料接触构成MOS结构,在热平衡情况下Ef = 常数,正如schottky接触或P-N结二极管。 2)通过SiO2的电流为0,因此,MOS结构由靠自身结 构首先由非平衡达到平衡的过程将非常漫长,或者需 要通过辅助的导电路径,实现热平衡。 理想MOS的平衡能带图 对于MOS结构,重要的 是了解不同偏置电压下的 能带结构和电荷分布情形
(4)
实际MOS结构及其C-V特性
★ MOS结构的微分电容 ♦ 栅压-- VG= VOX+ VS , ♦ 当不考虑表面态电荷,半导体的总电荷 面密度-- QS = QSC = - QG ♦ MOS结构的微分电容— C dQG/dVG
1 dVG dVOX dVS C dQG dQG dQG
VS 0
2 rs 0 LD
♦ 德拜长度
2 rs 0 kT LD e2 N A

对半导体表面空间电荷区电容的小结: ♦ 表面积累, CSC很大
♦ 表面耗尽
CSC
rs 0
d
♦ 表面反型, CSC很大
♦ 表面平带
CSC CFBS
2 rs 0 LD
理想MOS结构
金属-氧化物(SiO2)-半导体(Si) (MOS)结构是 主流半导体器件CMOS的重要组成部分, 典型 的结构如Al/SiO2/p-Si, 其基本的能带结构参数如下图所示。
d
2 rs 0 VS eN A
QSC eN Ad
Csc
rs 0
d
图8-7
③表面反型(强反型): ♦当VS =2VB 耗尽层宽度达到最大
4 rs 0 d dM VB eN A

第七章-半导体表面与MIS结构

第七章-半导体表面与MIS结构

§ 7·1 表 面 态
By increasing miniaturization in semiconductor-device technology, the
interface itself is the device!
Kroemer, the 2000 Nobel winner of physics
k0T

1

n
p0

e

k0T
1 5
5代入到方程 1

d 2V dx2
q
rs 0
qV x

p
p
0

e
k0T

qV x

1

n
p
0

e
k0T

1 6
在6式两边同乘以 dV并积分 并且 E dV / dx
E
2


2k0T q
2


q2 pp0
2 rs 0k0T

太复杂!
e

qV x
k0T



qV x k0T
1


np0 pp0
qV x
k0T


1

7
LD
d 2
dx2
V0

E (x 0)
X
2
2m0
d 2
dx2
V (x)

E (x 0)
其中,V (x a) V (x), E V0
1(0) 2 (0)
(
d 1
dx

第八章半导体表面与MIS结构

第八章半导体表面与MIS结构

小结
1. 半导体材料和绝缘层材料一定,MIS结构 C-V特性由半导体半导体掺杂浓度和绝缘层 厚度决定。
2. 由C-V曲线可得到半导体掺杂浓度和绝缘 层厚度。
二. 金属与半导体功函数差对MIS结构C-V特性的影响
如果Wm<Ws, 当VG=0时,表面能带向下弯曲。 Vms=(Ws-Wm)/q
平带电压:为了恢复半导体表面平带状态,需外加一 电压,这个电压叫平带电压——VFB。此处VFB为负。
Si-SiO2界面处——快界面态; 快界面态可迅速地和半导体交换电荷。 空气/ SiO2界面处——慢态。
4. SiO2层中的电离陷阱电荷,由各种辐射引起。
Si-SiO2系统中的电荷状态
二. Si-SiO2系统中的电荷的作用:
引起MOS结构C-V特性变化,影响器件性能。
三.减少Si-SiO2系统中的电荷的主要措施:
1. 防止沾污——减少Na+ 等可动离子。 2.退火,热处理——减少固定电荷和陷阱电荷。 3.选[100]晶向的单晶硅——减少界面态。
§ 8.4 表面电导及迁移率
1.表面电导 表面电导取决于表面层载流子浓度及迁移率。 垂直于表面的电场产生表面势,改变载流 子浓度,影响表面电导。
以p型MIS结构为例:
本章小结
1.在电场或其他物理效应作用下,半导体表面层载流子分布 发生变化,产生表面势及电场,导致表面能带弯曲。半导 体表面电场不同,导致表面出现多子的积累、平带、耗尽、 反型或强反型。以下以p型半导体为例:
(1)多子的积累VG < 0,表面能带向上弯曲,表面积累 VS<0
(2)平带状态( VG=0 ,Vs=0) (3)多子耗尽状态VG >0,能带向下弯曲,表面耗尽VS>0

第8章-半导体表面与MIS结构

第8章-半导体表面与MIS结构
即 : n p n 3 p 0 p p 0
D A
xq n p pn p 0 p 0 p p
?

假定在空间电荷层中满 足经典分布 k0T np x N ce qV x k0T ppx pp0e
E qV xE c0 F
np0e
qV x k0T
4
其中np0和pp0为体内平衡时的电子和空穴浓度
qV x qV x k T k T 0 0 则 x q p e 1 n e 1 5 p 0 p 0

讨论:(以p型半导体为例)
(a)多子积累时: 外加电压VG<0 ,即Vs<0, 表面层的电势是负 的,表面电荷是空穴。即Qs>0。
F函数
q V x q V x n q Vx q Vx p 0 k T k T e0 1 e0 1 k T p k T 0 p 0 0
并 且 E d V/d x 在 6 式两边同乘以 dV 并积分
2 q p 2 k T 2 p 0 0 E q 2 k T rs 0 0 2
qV x qV x n qV x qV x k p 0 T k T 0 0 e 1 e 1 7 k T p k T 0 p 0 0
空间电荷区对电场、电势与能带的影响: 空间电荷层两端的电势差为表面势,以 V S 表示之。规定表面势比内部高时,取 正值,反之 V S 取负值。 表面势surface potential及空间区内电荷 的分布情况,随金属与半导体间所加的电 压VG而变化,主要可归纳为堆积、耗尽和 反型三种情况:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1932年,达姆首先提出:晶体自由表面的存在使周期性势场在表面处发生中断, 引起附 加能级。这种能级称为达姆表面能级。
达姆证明了半无限Kronig-Penney模型在一定条件下,每个表面原子在禁带中对应一个表 面能级。在三维晶体中仍如此,即每个表面原子对应禁带中一个表面能级,这些表面能级 组成表面能带。
u(k x)=u(k x a)
波函数及其一阶导数在x 0处应连续:
1(0)=2 (0)
d 1( x) d 2 ( x)
dx x0
dx x0
A1 uk (0) A2 u-k (0) A
1
A1
uk(0)
ikuk (0)
A2
u- k (0)
iku-k
(0)
A 2m0 (V0
E)2
当k为实数时,解总是存在的,这些解表示一维无限周期势场
理想模型的实际意义在于证明了三维理想晶体的表面上每个原子 都会在禁带中产生一个附加能级
大多数结晶半导体的原子密度在1022cm-3量级.按此推算,单位面积 表面的表面态数应在1015量级. 数目如此巨大的表面能级实际已构 成了一个能带。
表面态本质上与表面原子的未饱和键,即悬挂键有关.
表面取向不同,其悬挂键的密度亦有所不同。表面态亦有施主和 受主之分。
第8章 半导体表面和MIS结构
第8章 半导体表面与MIS结构
8.1 半导体表面与表面态 8.2 表面电场效应与MIS结构 8.3 MIS结构的电容电压特性 8.4 硅-二氧化硅系统的性质 8.5 表面电导与表面迁移率
2
第8章 半导体表面与MIS结构
8.1 半导体表面与表面态 8.1.1 理想一维晶体模型及其解 8.1.2 实际半导体表面
当x 时,A2 =0
2 ( x)=A1uk ( x)eikxe-kx
由边界条件知:
1(0)=2 (0)
d 1( x) d 2 ( x)
dx x0
dx x0
A A1 uk (0)
1
A 2m0 (V
E)2
A1
ikuk
(0)
uk
(0)
一维半无限周期场中存在波数k取复数的电子状态,其波函数在x=0的 两边按指数衰减。表明占据这一附加能级的电子主要集中在x=0处, 即电子被局限在表面上。即表面态(对应的表面能级)
通常将空态呈中性而被电子占据后带负电的表面态称为受主型表 面态;将空态带正电而被电子占据后呈中性的表面态称为施主型表 面态
表面态能够与体内交换电子或空穴,引起半导体表面能带的弯曲,产 生耗尽层甚至反型层.当外加偏压使半导体表面电势发生变化时,表 面态中的电荷分布也随之变化,即表面态随外加偏压的变化而充放 电
1(x) Ae
Be
(x 0)
当x 时,波函数必须有限,知B=0
1
2m0 (V0 E )2 x
1(x) Ae
5
2、在晶体内部
2 2m0
d 22(x) dx
V(x)2 ( x)
E2(x)
式中 V(x)=V(x a)
( x 0)
在x 0的范围V(x)=V(x a)为周期函数,得解:
2 ( x)=A1uk ( x)eikx A2uk ( x)eikx
x=0处为晶体表面;
x≥0的区域为晶体内部,其中有一个以a为周期随x变化的 周期势场V(x);
x≤0的区域表示晶体之外,其中的势能V0为一常数,这相当于一个深度为V0的势阱。
2பைடு நூலகம்2m0
d 21(x) dx
V01(x)
E 1 ( x)
(x 0)
对能量E<V0的电子
2 2m0
d 22(x) dx
V(x) 2 ( x)
悬挂键与表面态
表面态的概念还可以从化学键方面来说明。 每个表面原子由于晶格的突然终止而存在 未饱和的悬挂键,与之对应的能态就是表面态。 由于悬挂键的存在,表面可与体内交换电子 和空穴,从而使表面带电。这些带电电荷可以 排斥表面层中相同的电荷使之成为耗尽层甚至 变成反型层。
9
2 三维理想晶体的表面态
由于晶格缺陷或吸附原子等原因也可以引起表面态,这种表面态与表面处理 工艺密切相关。
表面态对半导体的各种物理过程有着重要影响,特别是对许多半导体器件的 性能影响更大。
理想表面:即晶体表面不附着任何其他分子或氧化膜
3
1、理想一维晶体表面模型及其 对能量E<解V0的电子
一维半无限晶体的周期性势场模型
表面态会加速非平衡载流子的复合,会改变半导体表面的功函数,从而影响 材料和金属-半导体接触的性能。但另一方面我们也看到,外加电压能通过 金属-半导体接触改变半导体表面的电场,使表面附近的能带发生不同程度 的弯曲。以后我们会知道,利用这样的表面电场效应可以做成各种各样的 器件。
8.1.1 理想一维晶体模型及其解 由于晶格的不完整性使势场的周期性受到破坏时,则在禁带中产生附加能级。
表面态 表面能级
在一维半无限周期场中存在波数k取复数的电子状态,其波函数在x=0的两边 按指数衰减。这表明占据这一附加能级的电子主要集中在x=0处,即电子被 局限在表面上。因此,这种电子状态被称作表面态,对应的能级称为表面能 级,亦称达姆能级。
表面态的存在是肖克莱等首从实验上发现的。 晶体所固有的的三维平移对称性在表面层中受到破坏,现在许多实验观察到
E2(x)
(x 0)
V(x)=V(x a)
4
对能量E<V0的电子
1.在晶体外部,电子波函数集中在x=0的表面处,随着离开表 面距离的增加,波函数按照指数形式衰减。
2 2m0
d 21( x) dx
V01(x)
E 1 ( x)
(x 0)
1
1
2m0 (V0 E )2 x
2m0 (V0 E )2 x
中允许能带(即允带)
2 2m0
d 22(x) dx
V(x)2 ( x)
E2(x)
式中 V(x)=V(x a)
( x 0)
在x 0的范围V(x)=V(x a)为周期函数,得解:
2 ( x)=A1uk ( x)eikx A2uk ( x)eikx
u(k x)=u(k x a)
当k为复数时:k k ik 2 ( x)=A1uk ( x)eik ex -kx A2uk ( x)eikxekx
在超高真空下共价半导体的表面发生再构现象,形成新的具有沿表面二维平 移对称性的原子排列结构。
受降低表面自由能这个自然法则的 驱使,表面重构使硅晶体实际表面的 原子排列比理想表面复杂得多,但带 悬键的原子密度大为降低; 吸附原子 或分子也是自由表面为了降低悬键密度 、降低表面能量的一种本能
8
达姆表面能级
相关文档
最新文档