计量经济学【一元线性回归模型——回归分析概述】
《计量经济学》eviews实验报告一元线性回归模型详解
计量经济学》实验报告一元线性回归模型-、实验内容(一)eviews基本操作(二)1、利用EViews软件进行如下操作:(1)EViews软件的启动(2)数据的输入、编辑(3)图形分析与描述统计分析(4)数据文件的存贮、调用2、查找2000-2014年涉及主要数据建立中国消费函数模型中国国民收入与居民消费水平:表1年份X(GDP)Y(社会消费品总量)200099776.339105.72001110270.443055.42002121002.048135.92003136564.652516.32004160714.459501.02005185895.868352.62006217656.679145.22007268019.493571.62008316751.7114830.12009345629.2132678.42010408903.0156998.42011484123.5183918.62012534123.0210307.02013588018.8242842.82014635910.0271896.1数据来源:二、实验目的1.掌握eviews的基本操作。
2.掌握一元线性回归模型的基本理论,一元线性回归模型的建立、估计、检验及预测的方法,以及相应的EViews软件操作方法。
三、实验步骤(简要写明实验步骤)1、数据的输入、编辑2、图形分析与描述统计分析3、数据文件的存贮、调用4、一元线性回归的过程点击view中的Graph-scatter-中的第三个获得在上方输入Isycx回车得到下图DependsntVariable:Y Method:LeastSquares□ate:03;27/16Time:20:18 Sample:20002014 Includedobservations:15VariableCoefficientStd.Errort-StatisticProb.C-3J73.7023i820.535-2.1917610.0472X0416716 0.0107S838.73S44 a.ooao R-squared0.991410 Meandependentwar119790.2 AdjustedR.-squared 0.990750 S.D.dependentrar 7692177 S.E.ofregression 7J98.292 Akaike infocriterion20.77945 Sumsquaredresid 7;12E^-08 Scliwarz 匚「爬伽20.37386 Loglikelihood -1&3.3459Hannan-Quinncriter. 20.77845 F-statistic 1I3&0-435 Durbin-Watsonstat0.477498Prob(F-statistic)a.oooooo在上图中view 处点击view-中的actual ,Fitted ,Residual 中的第一 个得到回归残差打开Resid 中的view-descriptivestatistics 得到残差直方图/icw Proc Qtjject PrintN^me FreezeEstimateForecastStatsResids凹Group:UNIIILtD Worktile:UN III LtLJ::Unti1DependentVariablesMethod;LeastSquares□ate:03?27/16Time:20:27Sample(adjusted):20002014Includedobservations:15afteradjustmentsVariable Coefficient Std.Errort-Statistic ProtJ.C-3373.7023^20.535-2.191761 0.0472X0.4167160.01075S38.735440.0000R-squared0.991410 Meandependeniwar1-19790.3 AdjustedR-squa.red0990750S.D.dependentvar 76921.77 SE.ofregre.ssion 7J98.292 Akaike infacriterion20.77945 Sumsquaredresid 7.12&-0S Schwarzcriterion 20.S73S6 Laglikelihood -153.84&9Hannan-Quinncrite匚20.77545 F-statistic1I3&0.435Durbin-Watsonstat 0.477498 ProbCF-statistic) a.ooaooo在回归方程中有Forecast,残差立为yfse,点击ok后自动得到下图roreestYFM J訓YForea空巾取且:20002015 AdjustedSErmpfe:2000231i mskJddd obaerratire:15Roof kter squa red Error理l%2Mean/^oLteError畐惯啟iJean Afe.PereersErro r5.451SSQThenhe鼻BI附GKWCE口.他腐4Prop&niwi□ooooooVactaree Propor^tori0.001^24G M『倚■底Props^lori09®475在上方空白处输入lsycs…之后点击proc中的forcase根据公式Y。
计量经济学课件-第二章
重要提示
• 几乎没有哪个实际问题能够同时满足所有基本假设; • 通过模型理论方法的发展,可以克服违背基本假设 带来的问题; • 违背基本假设问题的处理构成了单方程线性计量经 济学理论方法的主要内容: 异方差问题(违背同方差假设) 序列相关问题(违背序列不相关假设) 共线性问题(违背解释变量不相关假设) 随机解释变量(违背解释变量确定性假设)
Back
第 二 章:一元线性回归模型
§2.2 一元线性回归模型的参数估计
一、古典(基本)假定 二、用普通最小二乘法(OLS)估计模型的参数 三、OLS回归直线的性质(数值性质) 四、最小二乘估计式的统计性质 (前提:满足古典(基本)假定)
一、古典(基本)假定
简单线性回归模型:
(一) 对变量和模型的假定 1)重复抽样中,解释变量 X i 与干扰项 u独立; i 是一组固定的值或虽然是随机的,但
估计总体回归方程(PRF)。
设样本回归方程为:
ˆ ˆ X ˆ Y i 1 2 i
ˆ 实际值与拟合值的离差为: Y Y i i
离差平方和为:
ˆ) Q e (Y Y
2 i i i
2
最小二乘法的基本思想(原则):寻找实际值与拟合值的离 差平方和为最小的回归直线。
ˆ ˆ X) ˆ ) (Y e (Y Y
ˆ x ˆi y 2 i
ˆ ˆ X ˆ Y i 1 2 i
ˆ ˆ X e Yi 1 2 i i
ˆ e Yi Y i i
ˆ ˆ X) ˆ ˆ X) ˆi y ( ( 1 2 i 1 2 ˆ(X X) ˆ x ˆi y 2 i 2 i
i=1,2,„n (2.1.3)
X X , X , 1 2 其中,Y 称被解释变量, „ k 称解释变量,k 为解
计量经济学第二章--一元线性回归模型
2 、同方差假定:每一个随机误差项的方差为常数,即:
经 济
Var(Yi ) Var(i ) 2 (常数)
学
该假定表明:给定X对应的每个条件
分布都是同方差的,每个Y值以相同
的分布方式在它的期望值E(Y)附近波
动
10
3、无自相关假定:任意两个随机误差项之间不相关,用数学
形式表示为:
Cov(i, j ) E (i E(i ))( j E( j )) 0
)
xiYi Y xi2
xi
xi 0
bˆ1
xiYi xi2
(bˆi
x12
x1Y1 x22
xn2
x12
x2Y2 x22
xn2
...
x12
xnYn x22
xn2
)
19
令
ki
xi xi2
则
bˆi
kiYi
(1) k i
(
xi xi2
)
xi xi2
0
计 量 经 ki的性质 济 学
2 n
2k1k21 2
2kn1kn n1 n
)
量
经
k12
E
(12
)
k22
E
(
2 2
)
kn2
E
(
2 n
)
2k1k2
E
(1
2
)
2kn
1kn
E
(
n1
n
)
济
学 由古典线性回归模型的假定可知,对每一个随机变量,有
E(i2) 2, E(i j ) 0(当i j时)
Var(bˆ1)
k12 E (12
计量经济学第2章 一元线性回归模型
15
~ ~ • 因为 2是β2的线性无偏估计,因此根据线性性, 2 ~ 可以写成下列形式: 2 CiYi
• 其中αi是线性组合的系数,为确定性的数值。则有
E ( 2 ) E[ Ci ( 1 2 X i ui )]
E[ 1 Ci 2 Ci X i Ci ui ]
6
ˆ ˆ X )2 ] ˆ , ˆ ) [ (Yi Q( 1 2 i 1 2 ˆ ˆ X 2 Yi 1 2 i ˆ ˆ 1 1 2 ˆ ˆ ˆ ˆ [ ( Y X ) ] 1 2 i Q( 1 , 2 ) i ˆ ˆ X X 2 Yi 1 2 i i ˆ ˆ 2 2
16
~
i
i
• 因此 ~ 2 CiYi 1 Ci 2 Ci X i Ci ui 2 Ci ui
• 再计算方差Var( ) 2 ,得 ~ ~ ~ 2 ~ Var ( 2 ) E[ 2 E ( 2 )] E ( 2 2 ) 2
C E (ui )
2 i 2 i
i
~
i
i
i
i
E ( 2 Ci ui 2 ) 2 E ( Ci ui ) 2
i
2 u
C
i
2 i
i
~ ˆ)的大小,可以对上述表达式做一 • 为了比较Var( ) 和 Var( 2 2
些处理: ~ 2 2 2 2 Var ( 2 ) u C ( C b b ) i u i i i
8
• 2.几个常用的结果
• (1) • (2) • (3) • (4)
计量经济学 第二章 一元线性回归模型
第二章 一元线性回归模型2.1 一元线性回归模型的基本假定2.1.1一元线性回归模型有一元线性回归模型(统计模型)如下, y t = β0 + β1 x t + u t上式表示变量y t 和x t 之间的真实关系。
其中y t 称被解释变量(因变量),x t 称解释变量(自变量),u t 称随机误差项,β0称常数项,β1称回归系数(通常未知)。
上模型可以分为两部分。
(1)回归函数部分,E(y t ) = β0 + β1 x t ,(2)随机部分,u t 。
图2.1 真实的回归直线这种模型可以赋予各种实际意义,居民收入与支出的关系;商品价格与供给量的关系;企业产量与库存的关系;身高与体重的关系等。
以收入与支出的关系为例。
假设固定对一个家庭进行观察,随着收入水平的不同,与支出呈线性函数关系。
但实际上数据来自各个家庭,来自同一收入水平的家庭,受其他条件的影响,如家庭子女的多少、消费习惯等等,其出也不尽相同。
所以由数据得到的散点图不在一条直线上(不呈函数关系),而是散在直线周围,服从统计关系。
“线性”一词在这里有两重含义。
它一方面指被解释变量Y 与解释变量X 之间为线性关系,即1tty x β∂=∂220tt y x β∂=∂另一方面也指被解释变量与参数0β、1β之间的线性关系,即。
1ty x β∂=∂,221ty β∂=∂0 ,1ty β∂=∂,2200ty β∂=∂2.1.2 随机误差项的性质随机误差项u t 中可能包括家庭人口数不同,消费习惯不同,不同地域的消费指数不同,不同家庭的外来收入不同等因素。
所以在经济问题上“控制其他因素不变”是不可能的。
随机误差项u t 正是计量模型与其它模型的区别所在,也是其优势所在,今后咱们的很多内容,都是围绕随机误差项u t 进行了。
回归模型的随机误差项中一般包括如下几项内容: (1)非重要解释变量的省略, (2)数学模型形式欠妥, (3)测量误差等,(4)随机误差(自然灾害、经济危机、人的偶然行为等)。
第二章 一元线性回归模型(本科生计量经济学)
即:正规方程组揭示的是残差的性质。
26
普通最小二乘估计有关 的其他性质(课后习题)
Y Y
^
e Y e y
i ^ i
^
i
0 0
27
i
2、由普通最小二乘估计系数的性质可证
得普通最小二乘估计与参数的关系如下:
1 1 k i u i
^
0 0 wi ui
( 1) ( 2)
( 1)
0 Y 1 X
^
^
Y
1 n
Y , X X
i 1 i 1 n i 1
n
n
i
18
参数的普通最小二乘估计量
ˆ ˆ X )0 (Yi 0 1 i ˆ ˆ X )X 0 ( Y i 0 1 i i
^
33
三、一元线性回归模型参数的最大似 然法(Maximum Likehood,ML)估计
• 基本原理:似然原理
• 一元线性回归模型ML使用的条件:已知随机扰动 项的分布。
34
Y1 , Y2 ,...,Yn
1 f (Yi ) e 2
1 2
1 2
2
Yi ~ N (0 1 X i , 2 )
w 1
i
22
普通最小二乘估计的例
年份
1991 1992 1993 1994
ED(X)
708 793 958 1278
FI(Y)
3149 3483 4349 5218
ed(x)
-551 -466 -301 19
fi(y)
-2351 -2017 -1151 -282
一元线性回归模型的参数估计
斜率(β1)
表示 x 每变化一个单位,y 平均变化的数量。
一元线性回归模型的假设
线性关系
因变量 y 和自变量 x 之间存在线性关系。
误差项独立
误差项 ε 之间相互独 立,且与 x 独立。
误差项的正态性
误差项 ε 的分布是正 态的。
误差项的无偏性
误差项 ε 的期望值为 0,即 E(ε) = 0。
有限的方差
回归分析的分类
一元回归分析
研究一个自变量和一个因变量之间的关系。
多元回归分析
研究多个自变量和一个因变量之间的关系。
线性回归模型
线性回归模型是一种常用的回归分析方法,它假设自变量和因变量之间存在线性关系,即可以用一条 直线来描述它们之间的关系。
在一元线性回归模型中,自变量和因变量之间的关系可以表示为一条直线,即 y = ax + b,其中 a 是斜 率,b 是截距。
确定样本数据
收集用于估计参数的样本数据。
构建估计量
根据模型和样本数据构建用于估计参数的统计量。
计算估计值
通过计算统计量的值得到参数的估计值。
评估估计质量
通过统计检验和图形方法评估估计的质量和可靠性。
05 模型的评估与检验
模型的拟合度评估
决定系数(R^2)
衡量模型解释变量变异程度的指标,值越接 近1表示模型拟合度越好。
数据整理
将数据整理成适合进行统计分析 的格式,如表格或图形,以便后 续分析。
建立一元线性回归模型
确定自变量和因变量
根据研究问题选择合适的自变量和因变量,确 保它们之间存在一定的关联性。
散点图分析
绘制散点图,观察自变量和因变量之间的关系, 初步判断是否适合建立一元线性回归模型。
《一元线性回归》ppt课件
E (Y|Xi)01Xi2 E (Y|Xi)01 2Xi
三、总体回归模型与随机干扰项 〔 population regression model,PRM & stochastic disturbance/error〕
• 描画总体中解释变量X和被解释变量Y的个体值Yi之间的变 化规律:Yi=f〔Xi〕+μi
称为线性总体回归函数。其中,0,1是未知参数,称为回归系 数〔regression coefficients〕。
A1:“线性〞的含义
• 对变量为线性——解释变量以一次方的方式出现 • ○ 从几何上看,此时总体回归线是一条直线
• 对参数为线性——回归系数以一次方的方式出现 • ○ 从几何上看,此时总体回归线并不一定是直线
四、样本回归函数 〔sample regression function,SRF〕
•描画样本中解释变量X和被解释变量Y的之间的平均变化规 律:Y^i=f〔Xi〕
1、样本回归函数〔SRF〕
• 总体的信息往往无法掌握,因此PRF实践上未知 • 现实的情况只能是在一次观测中得到总体的一个样本,经过样本的信息来 估计总体回归函数。
1969 1991 2046 2068 2101
968 1045 1243 1474 1672 1881 1078 1254 1496 1683 1925
2189 2233
1122 1298 1496 1716 1969 1155 1331 1562 1749 2013
2244 2299
1188 1364 1573 1771 2035 1210 1408 1606 1804 2101
问题:能否从样本估计总体回归函数?
例2.2:从例2.1的总体中获得如下一个样本:
经典单方程计量经济学模型:一元线性回归模型
设由获得的样本观测值 (yi , xi ) ( i 1,2,, n) 去估计计量经济模型中的未知参数,
结果为
Yˆi ˆ0 ˆ1Xi 其能够很好的拟合样本数据。 Yˆi 为别 解释变量的估计值,它是由参数估计 量和解释变量的观测之计算得到的。 那么,被解释变量的估计值与观测值 应该在总体上最为接近。
ˆ i
~
N
(
i
,
c2
ii
)
(ˆ ) /
i
i
c2 ii
~
N (0,1)
而
ˆ 2 (n k 1) / 2 ee / 2 ~ 2 (n k 1)
则
(ˆ ) / c ee /(n k 1) ~ t(n k 1)
i
i
ii
可以用上述统计量检验解释变量系数是否为0,
原假设 H : 0 ,计算统计量
2
exp{
1
2 2
( yi
ˆ0
ˆ1xi )2}
i
1,2,n
联合密度(似然函数)
L(ˆ0, ˆ1, )
f ( y1,,
yn )
1
n
(2
)n
/
2
exp{
1
2
2
( yi
ˆ0
ˆ1xi )2}
或对数似然函数
L* ln(L) n ln(
2
)
1
2
2
( yi
ˆ0
ˆ1xi )2
极大化上式
ˆ0
ˆ1
1430 1650 1870 2112
1485 1716 1947 2200
2002
共计
2420 4950 11495 16445 19305 23870 25025 21450 21285 15510
第二章一元线性回归模型1
第二章一元线性回归模型计量经济学在对经济现象建立经济计量模型时,大量地运用了回归分析这一统计技术,本章和下一章将通过一元线性回归模型、多元线性回归模型来介绍回归分析的基本思想。
第一节回归分析的几个基本问题回归分析是经济计量学的主要工具,下面我们将要讨论这一工具的性质。
一、回归分析的性质(一)回归释义回归一词最先由F •加尔顿(Francis Galt on )提出。
加尔顿发现,虽然有一个趋势,父母高,儿女也高:父母矮,儿女也矮,但给定父母的身高,儿女辈的平均身高却趋向于或者“回归” 到全体人口的平均身高。
或者说,尽管父母双亲都异常高或异常矮,而儿女的身高则有走向人口总体平均身高的趋势(普遍回归规律)。
加尔顿的这一结论被他的朋友K •皮尔逊(Karl pearson)证实。
皮尔逊收集了一些家庭出身1000多名成员的身高记录,发现对于一个父亲高的群体,儿辈的平均身高低于他们父辈的身高,而对于一个父亲矮的群体,儿辈的平均身高则高于其父辈的身高。
这样就把高的和矮的儿辈一同“回归”到所有男子的平均身高,用加尔顿的话说,这是“回归到中等” 。
回归分析是用来研究一个变量(被解释变量Explained variable或因变量Dependent variable 与另一个或多个变量(解释变量Explanatory variable或自变量Independent variable之间的关系。
其用意在于通过后者(在重复抽样中)的已知或设定值去估计或预测前者的(总体)均值。
下面通过几个简单的例子,介绍一下回归的基本概念。
例子1.加尔顿的普遍回归规律。
加尔顿的兴趣在于发现为什么人口的身高分布有一种稳定性,我们关心的是,在给定父辈身高的条件下找出儿辈平均身高的变化。
也就是一旦知道了父辈的身高,怎样预测儿辈的平均身高。
为了弄清楚这一点,用图 1.1 表示如下图 1.1 对应于给定父亲身高的儿子身高的假想分布图 1.1 展示了对应于设定的父亲身高, 儿子在一个假想人口总体中的身高分布, 我们不难发现,对应于任一给定的父亲身高, 相对应都有着儿子身高的一个分布范围,同时随着父亲身高的增加,儿子的平均身高也增加,为了清楚起见,在1.1散点图中勾画了一条通过这些散点的直线,以表明儿子的平均身高是怎样随着父亲的身高增加而增加的。
计量经济学——一元回归模型
§2.1 回归分析概述 (Regression Analysis)
一、变量间的关系及回归分析的基本概念 二、总体回归函数 三、随机扰动项 四、样本回归函数
一、变量间的关系及回归分析的基本概念 1、变量间的关系
• 确定性关系或函数关系:研究的是确定性现象 非随机变量间的关系。
圆面积 f ,半径 半径 2
称为(双变量)总体回归函数(population regression function, PRF)。
• 含义:
回归函数(PRF)说明被解释变量Y 的平均状态 (总体条件期望)随解释变量X 变化的规律。
• 函数形式:
可以是线性或非线性的。
例2.1中,将居民消费支出看成是其可支配收 入的线性函数时:
2、回归分析的基本概念
• 回归分析(regression analysis)是研究一个变量 关于另一个(些)变量的具体依赖关系的计算 方法和理论。
• 其目的在于通过后者的已知或设定值,去估计 和(或)预测前者的(总体)均值。
• 两类变量;
–被解释变量(Explained Variable)或因变量 (Dependent Variable)。
• 下面的假设主要是针对采用普通最小二乘法 (Ordinary Least Squares, OLS)估计而提出的。 所以,在有些教科书中称为“The Assumption Underlying the Method of Least Squares”。
• 在不同的教科书上关于基本假设的陈述略有不同, 下面进行了重新归纳。
1012 1045 1078 1122 1155 1188 1210
11495
1700 1023 1100 1144 1155 1210 1243 1254 1298 1331 1364 1408 1430 1485
第二章 经典单方程计量经济学模型:一元线性回归模型
第二章经典单方程计量经济学模型:一元线性回归模型一、内容提要本章介绍了回归分析的基本思想与基本方法。
首先,本章从总体回归模型与总体回归函数、样本回归模型与样本回归函数这两组概念开始,建立了回归分析的基本思想。
总体回归函数是对总体变量间关系的定量表述,由总体回归模型在若干基本假设下得到,但它只是建立在理论之上,在现实中只能先从总体中抽取一个样本,获得样本回归函数,并用它对总体回归函数做出统计推断。
本章的一个重点是如何获取线性的样本回归函数,主要涉及到普通最小二乘法(OLS)的学习与掌握。
同时,也介绍了极大似然估计法(ML)以及矩估计法(MM)。
本章的另一个重点是对样本回归函数能否代表总体回归函数进行统计推断,即进行所谓的统计检验。
统计检验包括两个方面,一是先检验样本回归函数与样本点的“拟合优度”,第二是检验样本回归函数与总体回归函数的“接近”程度。
后者又包括两个层次:第一,检验解释变量对被解释变量是否存在着显著的线性影响关系,通过变量的t检验完成;第二,检验回归函数与总体回归函数的“接近”程度,通过参数估计值的“区间检验”完成。
本章还有三方面的内容不容忽视。
其一,若干基本假设。
样本回归函数参数的估计以及对参数估计量的统计性质的分析以及所进行的统计推断都是建立在这些基本假设之上的。
其二,参数估计量统计性质的分析,包括小样本性质与大样本性质,尤其是无偏性、有效性与一致性构成了对样本估计量优劣的最主要的衡量准则。
Goss-markov定理表明OLS估计量是最佳线性无偏估计量。
其三,运用样本回归函数进行预测,包括被解释变量条件均值与个值的预测,以及预测置信区间的计算及其变化特征。
二、典型例题分析例1、令kids表示一名妇女生育孩子的数目,educ表示该妇女接受过教育的年数。
生育率对教育年数的简单回归模型为β+μβkids=educ+1(1)随机扰动项μ包含什么样的因素?它们可能与教育水平相关吗?(2)上述简单回归分析能够揭示教育对生育率在其他条件不变下的影响吗?请解释。
计量经济学 第二章 一元线性回归模型
计量经济学第二章一元线性回归模型第二章一元线性回归模型第一节一元线性回归模型及其古典假定第二节参数估计第三节最小二乘估计量的统计特性第四节统计显著性检验第五节预测与控制第一节回归模型的一般描述(1)确定性关系或函数关系:变量之间有唯一确定性的函数关系。
其一般表现形式为:一、回归模型的一般形式变量间的关系经济变量之间的关系,大体可分为两类:(2.1)(2)统计关系或相关关系:变量之间为非确定性依赖关系。
其一般表现形式为:(2.2)例如:函数关系:圆面积S =统计依赖关系/统计相关关系:若x和y之间确有因果关系,则称(2.2)为总体回归模型,x(一个或几个)为自变量(或解释变量或外生变量),y为因变量(或被解释变量或内生变量),u为随机项,是没有包含在模型中的自变量和其他一些随机因素对y的总影响。
一般说来,随机项来自以下几个方面:1、变量的省略。
由于人们认识的局限不能穷尽所有的影响因素或由于受时间、费用、数据质量等制约而没有引入模型之中的对被解释变量有一定影响的自变量。
2、统计误差。
数据搜集中由于计量、计算、记录等导致的登记误差;或由样本信息推断总体信息时产生的代表性误差。
3、模型的设定误差。
如在模型构造时,非线性关系用线性模型描述了;复杂关系用简单模型描述了;此非线性关系用彼非线性模型描述了等等。
4、随机误差。
被解释变量还受一些不可控制的众多的、细小的偶然因素的影响。
若相互依赖的变量间没有因果关系,则称其有相关关系。
对变量间统计关系的分析主要是通过相关分析、方差分析或回归分析(regression analysis)来完成的。
他们各有特点、职责和分析范围。
相关分析和方差分析本身虽然可以独立的进行某些方面的数量分析,但在大多数情况下,则是和回归分析结合在一起,进行综合分析,作为回归分析方法的补充。
回归分析(regression analysis)是研究一个变量关于另一个(些)变量的具体依赖关系的计算方法和理论。
一元线性回归模型(计量经济学)
回归分析是一种统计方法,用于研究变量之间的关系。它基于最小二乘法,寻找最合适的直线来描述变 量间的线性关系。通过回归分析,我们可以理解变量之间的因果关系和预测未知数据。
一元线性回归模型的假设
1 线性关系
2 独立误差
一元线性回归模型假设自变量和因变量之 间存在线性关系。
模型的残差项是独立的,不受其他因素的 影响。
3 常数方差
4 正态分布
模型的残差项具有恒定的方差,即方差齐 性。
模型的残差项服从正态分布。
一元线性回归模型的估计和推断
1
模型估计
使用最小二乘法估计模型的回归系数。
2
参数推断
进行参数估计的显著性检验和置信区间估计。
3
模型拟合程度
使用残差分析和R平方评估模型的拟合程度。
模型评估和解释结果
通过残差分析和R平方等指标评估模型的拟合程度,并解释模型中回归系数的 含义。了解如何正确使用模型的结果,并识别异常值和离群点对模型的影响。
一元线性回归模型(计量 经济学)
在本节中,我们将介绍一元线性回归模型,探讨回归分析的基本概念和原理, 了解一元线性回归模型所做的假设,并学习模型的估计和推断方法。我们还 将探讨模型评估和解释结果的技巧,并通过实例应用和案例分析进一步加深 对该模型的理解。最后,我们将总结和得出结论。
回归分析的基本概念和原理
实例应用和案例分析
汽车价格预测Байду номын сангаас
使用一元线性回归模型预 测汽车价格,考虑车龄、 里程等因素。
销售趋势分析
通过一元线性回归模型分 析产品销售的趋势,并预 测未来销售。
学术成绩预测
应用一元线性回归模型预 测学生的学术成绩,考虑 学习时间、背景等因素。
计量经济学一元线性回归模型总结
第一节 两变量线性回归模型一.模型的建立1.数理模型的基本形式y x αβ=+ (2.1)这里y 称为被解释变量(dependent variable),x 称为解释变量(independent variable)注意:(1)x 、y 选择的方法:主要是从所研究的问题的经济关系出发,根据已有的经济理论进行合理选择。
(2)变量之间是否是线性关系可先通过散点图来观察。
2.例如果在研究上海消费规律时,已经得到上海城市居民1981-1998年期间的人均可支配收入和人均消费性支出数据(见表1),能否用两变量线性函数进行分析?表1.上海居民收入消费情况年份 可支配收入 消费性支出 年份 可支配收入 消费性支出 1981 636.82 585 1990 2181.65 1936 1982 659.25 576 1991 2485.46 2167 1983 685.92 615 1992 3008.97 2509 1984 834.15 726 1993 4277.38 3530 1985 1075.26 992 1994 5868.48 4669 19861293.24117019957171.91586819871437.09128219968158.746763 19881723.44164819978438.896820 19891975.64181219988773.168662.一些非线性模型向线性模型的转化一些双变量之间虽然不存在线性关系,但通过变量代换可化为线性形式,这些双变量关系包括对数关系、双曲线关系等。
例3-2 如果认为一个国家或地区总产出具有规模报酬不变的特征,那么采用人均产出y与人均资本k的形式,该国家或者说地区的总产出规律可以表示为下列C-D生产函数形式y Akα=(2.2)也就是人均产出是人均资本的函数。
能不能用两变量线性回归模型分析这种总量生产规律?3.计量模型的设定 (1)基本形式:y x αβε=++ (2.3) 这里ε是一个随机变量,它的数学期望为0,即(2.3)中的变量y 、x 之间的关系已经是不确定的了。
第二章 一元线性回归模型
__
__
2
/n
★样本相关系数r是总体相关系数 的一致估计
相关系数有以下特点:
• • • • 相关系数的取值在-1与1之间。 (2)当r=0时,线性无关。 (3)若r>0 ,正相关,若r<0 ,负相关。 (4)当0<|r|<1时,存在一定的线性相关 关系, 越接近于1,相关程度越高。 • (5)当|r|=1时,表明x与y完全线性相关 (线性函数),若r=1,称x与y完全正相关; 若r=-1,称x与y完全负相关。 • 多个变量之间的线性相关程度,可用复相 关系数和偏相关系数去度量。
●假定解释变量X在重复抽样中取固定值。 但与扰动项u是不相关的。(从变量X角度看是外生的)
注意: 解释变量非随机在自然科学的实验研究中相对
Yi 1 2 X i ui
●假定解释变量X是非随机的,或者虽然X是随机的,
容易满足,经济领域中变量的观测是被动不可控的, X非随机的假定并不一定都满足。
E( y xi ) 0 1xi
11
• 可以看出,虽然每个家庭的消费支出存在差 异,但平均来说,家庭消费支出是随家庭可 支配收入的递增而递增的。当x取各种值时, y的条件均值的轨迹接近一条直线,该直线称 为y对x的回归直线。(回归曲线)。 • 把y的条件均值表示为x的某种函数,可写 为:
E( y xi ) 0 1xi
Var ( y xi ) 2
Cov( yi , y j ) 0
y | xi ~ N (0 1xi , )
2
22
第三节 参数估计
• 一、样本回归方程
• 对于
yi 0 1 xi ui
• 在满足古典假定下,两边求条件均值,得到总体 回归函数:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
➢ 例如:
二、总体回归函数(方程)PRF Population regression function
由于变量间统计相关关系的随机性(非确定性),回归 分析关心的是根据解释变量的已知或给定值,考察被解 释变量的总体均值,即当解释变量取某个确定值时,与 之统计相关的被解释变量所有可能出现的对应值的平均 值。
每月家庭收入与消费支出散点图(总体)
描出散点图发现:随着收入 X 的增加,消费“平均地说” 也在增加,且Y 的条件均值均落在一根正斜率的直线上。
这条直线称为总体回归线。
二、总体回归函数(方程)PRF
总体回归线
在给定解释变量 的条件下,被解释变量 的期望轨 迹称为总体回归线(Population regression line)。
样本回归函数的随机形式:
其中 为(样本)残差(Residual),可看成是随机误差项 的 的具体估计值。由于引入随机项,称为样本回归 模型。
总体回归线与样本回归线的基本关系
3rew
演讲完毕,谢谢听讲!
再见,see you again
2020/12/8
计量经济学【一元线性回归模型—— 回归分析概述】
回归分析是研究因果相关,也就是有因果关系的相关关 系;既然回归分析是研究变量之间的因果关系,因此回归 分析对变量的处理方法存在不对称性,也就是说,回归分 析将变量区分为被解释变量和解释变量,其中被解释变量 是“结果”,解释变量是“原因”,并且回归分析方法认
为作 为“原因”的解释变量属于非随机变量,作为“结果”的
四、随机误差项的涵义
随机误差项是在模型设定中省略下来而又集体的
影响着被解释变量 Y 的全部变量的替代物。涵义如
下: 1、在解释变量中被忽略的因素的影响; 2、变量观测值观测误差的影响; 3、模型关系的设定误差的影响; 4、其它随机因素的影响。 设定随机误差项的主要原因: 1、理论的含糊性; 2、数据的欠缺; 3、节省的原则。
五、样本回归函数(方程)SRF Sample regression function
总体的信息往往是无法掌握的,现实的情况只能是 在一次观测中得到总体的一个样本。 例2.2:在例 2.1 假定的总体中有如下一个样本(见 下表2.2),问:能否用该样本预测总体中对应于选定
收入水平X 的平均每月消费支出?即能否用该样本估计
第一节:回归分析概述
一、变量间的关系及回归分析的基本概念 二、总体回归函数(方程)PRF 三、总体回归函数(方程)PRF 的随机设定 四、随机误差项的涵义 五、样本回归函数(方程)SRF
一、变量间的关系及回归分析的基本概念
1、变量间的关系
经济变量之间的关系,大体可分为两类: (1) 确定性的函数关系:研究的是确定性现象间的,而 (2) 并不是随机变量间的关系。 例如:圆面积 S 与圆半径 r 间的关系: (2) 非确定性的统计依赖(相关)关系:研究的是非确定性 现象间的,也就是随机变量间的关系。
总体回归函数(PRF)
即总体回归线所对应的函数形式,表示为:
可以是线性或非线性的,为了研究的方便,计量经济学 中总体回归函数常设定为线性形式。
三、总体回归函数(方程)PRF 的随机设定
总体回归函数形式:
计量经济学模型形式:
其中 是一个随机变量,又称为随机干扰项 (stochastic disturbance)或随机误差项(stochastic error);由于方程中引入了随机误差项,成为计量经济 学模型,因此也称为总体回归模型。
计量经济学【一元线性 回归模型——回归分析
概述】
2020/12/8
计量经济学【一元线性回归模型—— 回归分析概述】
第二章 经典单方程计量经济学模型: 一元线性回归模型
n 第一节 回归分析概述 n 第二节 一元线性回归模型的参数估计 n 第三节 一元线性回归模型的统计检验 n 第四节 一元线性回归本二)
每月家庭收入与消费支出散点图(样本一/样本二)
五、样本回归函数(方程)SRF
样本回归线: 从总体中随机抽出的一个样本,画出散点图之后,找一 条直线能够尽量好地拟合该散点图,这条直线就称为样 本回归线(Sample regression lines)。 样本回归函数(SRF): 即样本回归线的函数形式,表示为:
被解 释变量为随机变量;也就是说,作为“原因”的解释变量
取
一、变量间的关系及回归分析的基本概念
2、回归分析的基本概念
➢ 回归分析(regression analysis)是研究一个变量关于另 一个(些)变量的统计依赖关系的计算方法和理论。其 用意:在于通过后者的已知或设定值,去估计和(或) 预测前者的(总体)均值。
总体回归函数 PRF?
每月家庭收入与消费支出散点图(样本)
样本散点图中点的分布近似于线性,可以画一条直线来尽
量好的拟合这个散点图,这条线称为样本回归线(sample
regression lines)
五、样本回归函数(方程)SRF
为了更好地理解,假设我们从例 2.1 假定的 总体中,也就是从表2.1中再次随机抽取一个样 本,称为随机样本二,见下表2.3。
例如:
其中 Y:农作物产量; X:施肥量; :包括阳光、气温、 降雨量等其他许多因素。 X 与 Y 之间具有统计相关关系。
一、变量间的关系及回归分析的基本概念
一、变量间的关系及回归分析的基本概念
经济变量之间的关系分为确定的函数关系和非确定性 的统计相关关系,非确定性统计相关关系又分为线性相 关和非线性相关,线性相关可以用相关系数来表示;
例2.1:一个假想的社区是由60户家庭组成的总体,要
研究该社区每月家庭消费支出Y 与每月家庭可支配收入 X 的关系;即知道了家庭的每月收入,预测该社区家庭
每月消费支出的 (总体) 平均水平。为达到此目的,将该 60户家庭划分为组内收入差不多的10组,以分析每一收 入组的家庭消费支出。
表2.1 某社区家庭每月收入与消费支出调查统计表