运筹学最短路问题实验报告
运筹学05_图与网络分析2-最短路
![运筹学05_图与网络分析2-最短路](https://img.taocdn.com/s3/m/153e20e4f78a6529657d53b1.png)
v4
v7
-1
42
终 点
lij
P(t)1j
起 v1 v2 v3 v4 v5 v6 v7 v8 t=1 t=2 t=3 t=4 点
v1 0 -1 -2 3 0 0 0 0
v2 6 0 2 -1 -5 -5 -5
v3 -3 0 -5 1 -2 -2 -2 -2
v4 8 0 2 3 -7 -7 -7
60
v1 v2 v3 v4 v5 v6 0 0 12 1 04 5 2 2 0 5 5 1 4 0 6 v5 2 3 0 v6 2 2 0
61
v1 v2 v3 v4 v5 v6 0 0 12 1 04 5 2 2 05 5 1 4 0 6 3 23 0 v6 2 2 0
54
v1 v2 v3 v4 v5 v6 0 0 12 1 04 5 v3 2 0 5 1 1 4 0 4 v5 2 3 0 v6 2 2 0
55
v1 v2 v3 v4 v5 v6 0 0 12 1 04 5 v3 2 0 5 1 1 4 0 4+2 v5 2 3 0 v6 2 2 0
0
2
7
1
5 3 5 55 7
1
3
3
1
4
6
7
5
12
③从已标号的点出发,找与这
(1,2)
2
些相邻点最小权数(距离)者, 找到之后:标号;边变红。
2
0
2
7
1
5 3 5 55 7
1
3
3
1
34 5 6
7
13
④重复上述步骤,直至全部的
(1,2)
点都标完。
2
2
0
2
运筹学实验报告
![运筹学实验报告](https://img.taocdn.com/s3/m/75893929a55177232f60ddccda38376baf1fe0b3.png)
运筹学实验报告姓名:学号:班级:指导老师:实验内容1、线性规划问题:⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤++=0,13119241171289..68max 2121212121x x x x x x x x t s x x z (1) 给出原始代码;(2) 计算结果(包括灵敏度分析,求解结果粘贴);(3) 回答下列问题(手写):a ) 最优解及最优目标函数值是多少;b ) 资源的对偶价格各为多少,并说明对偶价格的含义;c ) 为了使目标函数值增加最多,让你选择一个约束条件,将它的常数项增加一个单位,你将选择哪一个约束条件?这时目标函数值将是多少?d ) 对x 2的目标函数系数进行灵敏度分析;e ) 对第2个约束的约束右端项进行灵敏度分析;f ) 结合本题的结果解释“Reduced Cost ”的含义。
解:(1) max =8*x1+6*x2;9*x1+8*x2<=12; 7*x1+11*x2<=24; 9*x1+11*x2<=13;(2)计算结果: Objective value: 10.66667Total solver iterations: 2 Variable Value Reduced Cost X1 1.333333 0.000000 X2 0.000000 1.111111 Row Slack or Surplus Dual Price 1 10.66667 1.000000 2 0.000000 0.8888889 3 14.66667 0.000000 4 1.000000 0.000000灵敏度分析: Objective Coefficient RangesCurrent Allowable Allowable Variable Coefficient Increase Decrease X1 8.000000 INFINITY 1.250000 X2 6.000000 1.111111 INFINITY Righthand Side RangesRow Current Allowable Allowable RHS Increase Decrease 2 12.00000 1.000000 12.00000 3 24.00000 INFINITY 14.66667 4 13.00000 INFINITY 1.000000(3)a)该LP问题的最优解x={x1,x2}={1.333333,0.000000} 目标函数值z=10.66667b)第2行资源的对偶价格为0.8888889,3、4行的对偶价格为0、0.对偶价格的含义:表示当对应约束有微小变动时, 目标函数的变化率。
数学建模实验报告-第十一章-最短路问题
![数学建模实验报告-第十一章-最短路问题](https://img.taocdn.com/s3/m/45d486fba6c30c2258019ec6.png)
实验名称:第十一章最短路问题一、实验内容与要求掌握Dijkstra算法和Floyd算法,并运用这两种算法求一些最短路径的问题.二、实验软件MATLAB7.0三、实验内容1、在一个城市交通系统中取出一段如图所示,其入口为顶点v1,出口为顶点v8,每条弧段旁的数字表示通过该路段所需时间,每次转弯需要附加时间为3,求v1到v8的最短时间路径.63V4 2 V7 4 V8程序:function y=bijiaodaxiao(f1,f2,f3,f4)v12=1;v23=3;v24=2;v35=1;v47=2;v57=2;v56=6;v68=3;v78=4;turn=3;f1=v12+v23+v35+v56+turn+v68;f2=v12+v23+v35+turn+v57+turn+v78;f3=v12+turn+v24+turn+v47+v78;f4=v12+turn+v24+v47+turn+v57+turn+v56+turn+v68;min=f1;if f2<minmin=f2;endif f3<minmin=f3;endif f4〈minmin=f4;endminf1f2f3f4实验结果:v1到v8的最短时间路径为15,路径为1—2-4-7-8.2、求如图所示中每一结点到其他结点的最短路。
V110 V3V59 V6function[D,R]=floyd(a)n=size(a,1);D=afor i=1:nfor j=1:nR(i,j)=j;endendRfor k=1:nfor i=1:nfor j=1:nif D(i,k)+D(k,j)<D(i,j)D(i,j)=D(i,k)+D(k,j);R(i,j)=R(i,k);endendendkDRend程序:>〉a=[0 3 10 inf inf inf inf inf;3 0 inf 5 inf inf inf inf;10 inf 0 6 inf inf inf inf;inf 5 6 0 4 inf 10 inf ;inf inf inf 4 0 9 5 inf ;inf inf inf inf 9 0 3 4;inf inf inf 10 5 3 0 6;inf inf inf inf inf 4 6 0;];[D,R]=floyd(a)实验结果:D =0 3 10 Inf Inf Inf Inf Inf3 0 Inf 5 Inf Inf Inf Inf10 Inf 0 6 Inf Inf Inf InfInf 5 6 0 4 Inf 10 InfInf Inf Inf 4 0 9 5 InfInf Inf Inf Inf 9 0 3 4Inf Inf Inf 10 5 3 0 6Inf Inf Inf Inf Inf 4 6 0R =1 2 3 4 5 6 7 81 2 3 4 5 6 7 81 2 3 4 5 6 7 81 2 3 4 5 6 7 81 2 3 4 5 6 7 81 2 3 4 5 6 7 81 2 3 4 5 6 7 81 2 3 4 5 6 7 8k =1D =0 3 10 Inf Inf Inf Inf Inf3 0 13 5 Inf Inf Inf Inf10 13 0 6 Inf Inf Inf InfInf 5 6 0 4 Inf 10 InfInf Inf Inf 4 0 9 5 InfInf Inf Inf Inf 9 0 3 4Inf Inf Inf 10 5 3 0 6Inf Inf Inf Inf Inf 4 6 0R =1 2 3 4 5 6 7 81 2 1 4 5 6 7 81 1 3 4 5 6 7 81 2 3 4 5 6 7 81 2 3 4 5 6 7 81 2 3 4 5 6 7 81 2 3 4 5 6 7 81 2 3 4 5 6 7 8 k =2D =0 3 10 8 Inf Inf Inf Inf3 0 13 5 Inf Inf Inf Inf10 13 0 6 Inf Inf Inf Inf8 5 6 0 4 Inf 10 InfInf Inf Inf 4 0 9 5 InfInf Inf Inf Inf 9 0 3 4Inf Inf Inf 10 5 3 0 6Inf Inf Inf Inf Inf 4 6 0R =1 2 3 2 5 6 7 81 2 1 4 5 6 7 81 1 3 4 5 6 7 82 234567 81 2 3 4 5 6 7 81 2 3 4 5 6 7 81 2 3 4 5 6 7 81 2 3 4 5 6 7 8 k =3D =0 3 10 8 Inf Inf Inf Inf3 0 13 5 Inf Inf Inf Inf10 13 0 6 Inf Inf Inf Inf8 5 6 0 4 Inf 10 InfInf Inf Inf 4 0 9 5 InfInf Inf Inf Inf 9 0 3 4Inf Inf Inf 10 5 3 0 6Inf Inf Inf Inf Inf 4 6 0R =1 2 3 2 5 6 7 81 2 1 4 5 6 7 81 1 3 4 5 6 7 82 234567 81 2 3 4 5 6 7 81 2 3 4 5 6 7 81 2 3 4 5 6 7 81 2 3 4 5 6 7 8k =4D =0 3 10 8 12 Inf 18 Inf3 0 11 5 9 Inf 15 Inf10 11 0 6 10 Inf 16 Inf8 5 6 0 4 Inf 10 Inf12 9 10 4 0 9 5 InfInf Inf Inf Inf 9 0 3 418 15 16 10 5 3 0 6Inf Inf Inf Inf Inf 4 6 0R =1 2 3 2 2 6 2 81 2 4 4 4 6 4 81 4 3 4 4 6 4 82 234567 84 4 4 4567 81 2 3 4 5 6 7 84 4 4 4567 81 2 3 4 5 6 7 8 k =5D =0 3 10 8 12 21 17 Inf3 0 11 5 9 18 14 Inf10 11 0 6 10 19 15 Inf8 5 6 0 4 13 9 Inf12 9 10 4 0 9 5 Inf21 18 19 13 9 0 3 417 14 15 9 5 3 0 6Inf Inf Inf Inf Inf 4 6 0R =1 2 3 2 2 2 2 81 2 4 4 4 4 4 81 4 3 4 4 4 4 82 2345 5 5 84 4 4 4567 85 5 5 5 567 85 5 5 5 567 81 2 3 4 5 6 7 8 k =6D =0 3 10 8 12 21 17 253 0 11 5 9 18 14 2210 11 0 6 10 19 15 238 5 6 0 4 13 9 1712 9 10 4 0 9 5 1321 18 19 13 9 0 3 417 14 15 9 5 3 0 625 22 23 17 13 4 6 0 R =1 2 3 2 2 2 2 21 2 4 4 4 4 4 41 4 3 4 4 4 4 42 2345 5 5 54 4 4 4567 65 5 5 5 567 85 5 5 5 567 86 6 6 6 6 678 k =7D =0 3 10 8 12 20 17 233 0 11 5 9 17 14 2010 11 0 6 10 18 15 218 5 6 0 4 12 9 1512 9 10 4 0 8 5 1120 17 18 12 8 0 3 417 14 15 9 5 3 0 623 20 21 15 11 4 6 0 R =1 2 3 2 2 2 2 21 2 4 4 4 4 4 41 4 3 4 4 4 4 42 2345 5 5 54 4 4 45 7 7 77 7 7 7 7 6 7 85 5 5 5 567 87 7 7 7 7 6 7 8 k =8D =0 3 10 8 12 20 17 233 0 11 5 9 17 14 2010 11 0 6 10 18 15 218 5 6 0 4 12 9 1512 9 10 4 0 8 5 1120 17 18 12 8 0 3 417 14 15 9 5 3 0 623 20 21 15 11 4 6 0R =1 2 3 2 2 2 2 21 2 4 4 4 4 4 41 4 3 4 4 4 4 42 2345 5 5 54 4 4 45 7 7 77 7 7 7 7 6 7 85 5 5 5 567 87 7 7 7 7 6 7 8D =0 3 10 8 12 20 17 233 0 11 5 9 17 14 2010 11 0 6 10 18 15 218 5 6 0 4 12 9 1512 9 10 4 0 8 5 1120 17 18 12 8 0 3 417 14 15 9 5 3 0 623 20 21 15 11 4 6 0 R =1 2 3 2 2 2 2 21 2 4 4 4 4 4 41 4 3 4 4 4 4 42 2345 5 5 54 4 4 45 7 7 77 7 7 7 7 6 7 85 5 5 5 567 87 7 7 7 7 6 7 8四、实验体会。
运筹学实验报告
![运筹学实验报告](https://img.taocdn.com/s3/m/d131b5146bd97f192279e94d.png)
运筹学实验报告学院:安全与环境工程姓名:***学号: **********专业:物流工程班级:物流1302班实验时间: 5月8日、 5月9日5月13日、5月14日5月20日、5月21日湖南工学院安全与环境工程学院2015年5月实验一线性规划一、实验目的1、理解线性规划的概念。
2、对于一个问题,能够建立基本的线性规划模型。
3、会运用Excel解决线性规划电子表格模型。
二、实验内容线性规划的一大应用适用于联邦航空公司的工作人员排程,为每年节省开支超过600万美元。
联邦航空公司正准备增加其中心机场的往来航班,因此需要雇佣更多的客户服务代理商,但是不知道到底要雇用多少数量的代理商。
管理层意识到在向公司的客户提供令人满意的服务水平的同时必须进行成本控制,因此,必须寻找成本与收益之间合意的平衡。
于是,要求管理团队研究如何规划人员才能以最小的成本提供令人满意的服务。
分析研究新的航班时间表,以确定一天之中不同时段为实现客户满意水平必须工作的代理商数目。
在表1.2的最后一栏显示了这些数目,其中第一列给出对应的时段。
表中的其它数据反映了公司与客户服务代理商协会所定协议上的一项规定,这一规定要求每一代理商工作8小时为一班,各班的时间安排如下:轮班1:6:00AM~2:00PM轮班2:8:00AM~4:00PM轮班3:中午~8:00PM轮班4:4:00PM~午夜轮班5:10:00PM~6:00AM表中打勾的部分表示这段时间是有相应轮班的。
因为轮班之间的重要程度有差异,所以协议中工资也因轮班所处的时间而不同。
每一轮班对代理商的补偿(包括收益)如最低行所示。
问题就是,在最低行数据的基础上,确定将多少代理商分派到一天之中的各个轮班中去,以使得人员费用最小,同时,必须保证最后一栏中所要求的服务水平的实现。
表1.1 联邦航空公司人员排程问题的数据轮班的时段时段 1 2 3 4 5 最少需要代理商的数量6:00AM~8:00AM √ 488:00AM~10:00AM √√ 7910:00AM~中午√√ 65中午~2:00PM √√√ 872:00PM~4:00PM √√ 644:00PM~6:00PM √√ 736:00PM~8:00PM √√ 828:00PM~10:00PM √ 4310:00PM~午夜√√ 52午夜~6:00AM √ 15每个代理商的每日成本 170 160 175 180 195三、实验步骤(1)明确实验目的:科学规划人员以最小的成本提供令人满意的服务。
运筹学最短路径实验(实验相关)
![运筹学最短路径实验(实验相关)](https://img.taocdn.com/s3/m/53d40f44daef5ef7ba0d3cfb.png)
实验项目:最短路径问题 实验学时: 4实验日期:2012年11月30日 实验要求:案例 模型 分析实验内容:用最短路径模型解决具体问题前言运输是物流过程的主要职能之一,也是物流过程各项业务的中心活动。
物流过程中的其它各项活动,如包装、装卸搬运、物流信息等,都是围绕着运输而进行的。
可以说,在科学技术不断进步、生产的社会化和专业化程度不断提高的今天,一切物质产品的生产和消费都离不开运输。
物流合理化,在很大程度上取决于运输合理化。
所以,在物流过程的各项业务活动中,运输是关键,起着举足轻重的作用。
而有效的缩减路径可以使得运输费用降低。
本文运用Dijkstra 算法求出最短路径,以最大限度地节约运输费用降低物流成本,Dijkstra 算法用于求解最短路径问题最常用的方法之一。
Dijkstra 算法的基本步骤如下:(1)给起点1v 以P 标号()01=v p ,其余各点均给以T 标号,()∞+=i V T 。
(2)若i v 点为刚得到的p标号的点,考虑这样的点为j v ,考虑()j i v v ,这条边,且()j v 为T 标号,对j v 的T 标号进行如下更改()()()[]ij i j j l v P v T v T +=,min (3)比较所有具有T标号的点,把最小者改为P标号,即()()[]i v V P i min =,当存在两个以上最小者时,可同时改为P标号,若全部点均为P标号,则停止,否则-i v 代i v 改为第二步重做。
案例分析下图所示是某地区交通运输的示意图,试问从1v 出发,经哪条路线达到8v 才能使总行程最短?使用Dijkstra 求解。
2v 5 4v 9 6v4 4 75 41v 8v6 4 5 1 3v7 5v 6 7v 步骤:1. 首先给1v 以P 标号,()01=V P ,给其余所有的点以T 标号,()()8,,2,1 =+∞=i V T i2. (1)考察点1V ,边()()3121,,,V V V V()()()[][]()()()[][]660,min ,min 440,min ,min 1313312122=+∞+=+==+∞+=+=l V P V T V T l V P V T V T(2)比较所有T 标号()(){}32,V T V T ,()42=V T 最小,所以给2V 以P 标号,令()42=V P ,记录路径()21,V V3. (1) 2V 为刚得到P 标号的点,考察边()()5242,,,V V V V ()()()[][]954,m in ,m in 24244=+∞+=+=l V P V T V T ()()()[][]844,m in ,m in 25255=+∞+=+=l V P V T V T(2)比较所有T 标号,()()(){}543,,V T V T V T ,()63=V T 最小,给3V 以P 标号,令()63=V P ,记录路径()31,V V4. (1)3V 为刚得到P 标号的点,考察()()5343,,,V V V V()()()[][]946,9m in ,m in 34344=+=+=l V P V T V T ()()()[][]876,8m in ,m in 35355=+=+=l V P V T V T(2)比较所有T 标号,()(){}54,V T V T ,()85=V T 最小,给5V 以P 标号,令()85=V P ,记录路径()52,V V5. (1) 5V 为刚得到P 标号的点,考察()()7565,,,V V V V ()()()[][]1358,m in ,m in 56566=+∞+=+=l V P V T V T ()()()[][]1468,m in ,m in 57577=+∞+=+=l V P V T V T(2)比较所有T 标号,()()(){}764,,V T V T V T ,()94=V T 最小,给4V 以P 标号,令()94=V P ,记录路径()42,V V6. (1)4V 为刚得到P 标号的点,考察()()7464,,,V V V V ()()()[][]1399,13m in ,m in 46466=+=+=l V P V T V T ()()()[][]1479,14m in ,m in 47477=+=+=l V P V T V T(2) 比较所有T 标号,()(){}76,V T V T ,()136=V T 最小,给6V 以P 标号,令()136=V P ,记录路径()65,V V7. (1)6V 为刚得到P 标号的点,考察()()8676,,,V V V V ()()()[][]14413,14m in ,m in 67677=+=+=l V P V T V T ()()()[][]17413,m in ,m in 68688=+∞+=+=l V P V T V T(2)比较所有T 标号,()(){}87,V T V T ,()147=V T 最小,给7V 以P 标号,令()147=V P ,记录路径()75,V V8. (1)7V 为刚得到P 标号的点,考察()87,V V ()()()[][]15114,17m in ,m in 78788=+=+=l V P V T V T(2)比较所有T 标号,()158=V T 最小,给8V 以P 标号,令()158=V P ,记录路径()87,V V至此可以得到最短路径为87521V V V V V →→→→,最短行程为15实验总结科学合理的运输路线对物流的成本的大小影响很大。
运筹学论文最短路问题
![运筹学论文最短路问题](https://img.taocdn.com/s3/m/895f6c40b0717fd5370cdc86.png)
运筹学论文——旅游路线最短问题摘要:随着社会的发展,人民的生活水平的提高,旅游逐渐成为一种时尚,越来越多的人喜欢旅游。
而如何才能最经济的旅游也成为人民考虑的一项重要环节,是选择旅游时间最短,旅游花费最少还是旅游路线最短等问题随之出现,如何决策成为一道难题。
然而,如果运用运筹学方法来解决这一系列的问题,那么这些问题就能迎刃而解。
本文以旅游路线最短问题为列,给出问题的解法,确定最短路线,实现优化问题。
关键词:最短路 0-1规划约束条件提出问题:从重庆乘飞机到北京、杭州、桂林、哈尔滨、昆明五个城市做旅游,每个城市去且仅去一次,再回到重庆,问如何安排旅游线路,使总旅程最短。
各城市之间的航线距离如下表:问题分析:1.这是一个求路线最短的问题,题目给出了两两城市之间的距离,而在最短路线中,这些城市有的两个城市是直接相连接的(即紧接着先后到达的关系),有些城市之间就可能没有这种关系,所以给出的两两城市距离中有些在最后的最短路线距离计算中使用到了,有些则没有用。
这是一个0-1规划的问题,也是一个线性规划的问题。
2.由于每个城市去且仅去一次,最终肯定是形成一个圈的结构,这就导致了这六个城市其中有的两个城市是直接相连的,另外也有两个城市是不连接的。
这就可以考虑设0-1变量,如果两个城市紧接着去旅游的则为1,否则为0。
就如同下图3.因为每个城市只去一次,所以其中任何一个城市的必有且仅有一条进入路线和一条出去的路线。
LINGO解法:为了方便解题,给上面六个城市进行编号,如下表(因为重庆是起点,将其标为1)重庆北京杭州桂林哈尔滨昆明1 2 3 4 5 6假设:设变量x11。
如果x11=1,则表示城市i与城市j直接相连(即先后紧接到达关系),否则若x11=0,则表示城市i与城市j不相连。
特别说明:xij和xji是同一变量,都表示表示城市i与城市j是否有相连的关系。
这里取其中xij (i<j)的变量。
模型建立:由于这是一个最短路线的问题,且变量已经设好。
最短路问题的实际应用论文
![最短路问题的实际应用论文](https://img.taocdn.com/s3/m/6b3d1bb4f121dd36a32d8220.png)
金华双龙洞旅游路线中最短路问题摘要:金华双龙洞景点分布较多,通过对其旅游路线的设置,转化为图论内容中的最短路情景进行讨论,建立模型,并通过搜索资料,利用几种方法解决路线最小的问题。
关键字:数学建模最短路问题 lingo Dijkstra法 flod算法一、研究背景:在旅游过程中,我们常常感觉到自己一天下来走了很多路,回到宾馆脚痛的不行。
但其实我们可以利用运筹学的知识,通过建立数学模型,转化为图论的内容。
从而较为合理的制定出选择的路线(即最短路问题)。
因而这次的小论文,我主要探究一下几个问题:1.从景点进口到出口的最短路程。
(最短路问题)2.从景点到出口的最长路线。
3.建立的模型是否满足能回到起点(古典图论问题)二、研究内容:根据从互联网中搜索的资料,金华双龙洞的主要景点:景区进口双龙洞,冰壶洞,朝真洞,桃源洞,黄大仙祖宫五个,其余为小景点(若要加入,同样可以按照以下问题的研究方法进行讨论)现在忽略。
问题总假设:分别设置双龙洞,冰壶洞,朝真洞,桃源洞,黄大仙祖宫五个景点为A,B,C,D,E五点,根据现实及假设,可以得到如图所示的路线图:再利用用Dijkstra算法求解无负权网络的最短路。
同时也可以利用此法算出最长路程。
问题一的解决:以A为景点出口,E为出口。
故A点标号为P(a)=0 给其余所有的T标号T(i)=+∞考虑与A相邻的两个顶点BC,两个顶点为T标号,故修改这两个点的标号为:T(b)=min[T(b),P(a)+l12]=min[+∞,0+3]=3T(c)=min[T(c),P(a)+l13]=min[+∞,0+2]=2比较所有T标号,T(c)最小,所以令P(c)=2再考察(C,B)(C,D)(C,E)的端点:同理可得T(b)=6 T(d)=6.8 T(e)=10.2(显然已经到终点但还需要看看其余路线长短)故又令P(b)=6.综合分析只有一条线路即A→C→B→D→E 此时总路程为2+4+3+8.4=16.4>10.2所以,最短路程为A→C→E。
运筹学-最短路问题
![运筹学-最短路问题](https://img.taocdn.com/s3/m/33b91760783e0912a2162a91.png)
V1 0 V2 2 V3 5 D = V4 − V5 − V6 − V7 −
பைடு நூலகம்
v2
2 0 2 4 6 − −
v3
5 2 0 1 − 3 −
v4
− 4 1 0 4 1 4
v5
− 6 − 4 0 − 1
v6
− − 3 1 − 0 2
v7
− − − 4 1 2 0
二、最短路算法: 最短路算法:
1. D氏标号法(Dijkstra) 氏标号法(Dijkstra) (1)求解思路 求解思路——从始点出发,逐步顺序 从始点出发, 从始点出发 逐步顺序 地向外探寻,每向外延伸一步都要求是最 地向外探寻,每向外延伸一步都要求是最 短的。 短的。 (2)使用条件 使用条件——网络中所有的弧权均 网络中所有的弧权 网络中所有的弧权均 非负, 非负,即 wij ≥ 0 。
(4) 计算步骤及例:
第三步:若网络图中已无T标号点 标号点, 第三步:若网络图中已无 标号点,停止 计算。否则 令 计算。否则,令 二步。 二步。 此时,要注意将第二步中的 此时,
T ( v j0 ) =
min {T ( v )}
v j ∈s j
,
然后将 标号改成P 然后将 v j0 的T 标号改成 标号 ,转入第
步骤 考察点 T标号点集 标号点集 v1 0
标 v2
标号) 号( 表P标号) 标号 v3 v4 v5 v6 v7
1 2 3 4 5 6
v1 v2 v3 v4 v6 v5
{v2,…,v7} , {v3,…,v7} , {v4,…,v7} , {v5,v6,v7} {v5,v7} {v7}
2
5 2+2 4
运筹学实验报告
![运筹学实验报告](https://img.taocdn.com/s3/m/179ed51fa8956bec0975e3c0.png)
运筹学实验报告学院:经济管理学院专业班级:工商11-2班姓名:石慧婕学号:311110010207实验一线性规划一实验目的学习WinQSB软件的基本操作,利用Linear Programming功能求解线性规划问题。
掌握线性规划的基本理论与求解方法,重点在于单纯形法的应用以及灵敏度分析方法。
二、实验内容安装WinQSB软件,了解WinQSB软件在Windows环境下的文件管理操作,熟悉软件界面内容,掌握操作命令。
利用Linear Programming功能建立线性模型,输入模型,求解模型,并对求解结果进行简单分析。
三实验步骤1.将WinQSB文件复制到本地硬盘;在WinQSB文件夹中双击setup、exe。
2.指定安装WinQSB软件的目标目录(默认为C:\ WinQSB)。
3.安装过程需要输入用户名与单位名称(任意输入),安装完毕之后,WinQSB菜单自动生成在系统程序中。
4.熟悉WinQSB软件子菜单内容及其功能,掌握操作命令。
5.求解线性规划问题。
启动程序开始→程序→WinQSB→Linear and Integer Programming。
某工厂要用三种原材料C、P、H混合调配出三种不同规格的产品A、B、D。
已知产品的规格要求,产品单价,每天能供应的原材料数量及原材料单价分别见下表1与2。
该厂应如何安排生产,使利润收入为最大?表1表2CPH10010060652535(1)计算过程(1)利用WinQSB软件,根据建立的数据模型,设定完成后建立问题的电子表格;在电子表格中输入各个系数,保存。
如下图:点击菜单栏Solve and Analyze中的Solve the Problem项或者点击工具栏中的图标用单纯形法求解,查瞧求解得出的结果;(2)点击菜单栏Solve and Analyze中的Solve and Display Steps,查瞧单纯形法在求解该问题时的具体迭代步骤;点击菜单栏Solve and Analyze中的Graphic Method,用图解法求解,显示可行域。
组合优化报告-最短路问题总结
![组合优化报告-最短路问题总结](https://img.taocdn.com/s3/m/5a6aa3402e3f5727a5e9626c.png)
定义2.1.12(路径) 在图G=<V,E>中,设v0,v1,…,vnV,e1,e2,….,enE,其中ei是关联于结点vi-1,vi的边,交替序列v0e1v1e2…envn称为联结v0到vn的路径(或称路).v0与vn分别称为路的起点与终点,边的数目n称为路的长度.
孤立点:长度为0的路定义为孤立点.
(5)若子图G’中,对V’中的任意两个结点u,v,当u,vV’时有[u,v]E’,则G’由V’唯一确定,则称G’为由结点集V’导出的子图.
定义2.1.11(同构) 设G=〈V,E>和G’=<V’,E’>是两个图,若存在从V到V’的双射函数f,使对任意[a,b]E,当且仅当[f(a),f(b)]E’,并且[a,b]和[f(a),f(b)]有相同的重数,则称G和G’是同构的.
弧立结点:图中不与任何相邻的结点称为弧立结点.
零图:全由孤立结点构成的图称为零图.
自回路(环):关联于同一结点的一条边称为自回路或环.
重边(平行边):在有向图中,两结点间(包括结点自身间)若多于一条边,则称这几条边为重边或平行边.
多重图:含有重边的图称为多重图.
线图:非多重图称为线图.
定义2.1.2(简单图)无自回路的线图称为简单图.
实验报告最短路和最大流问题
![实验报告最短路和最大流问题](https://img.taocdn.com/s3/m/eb6151dace2f0066f5332260.png)
实验报告一、实验名称:图论和排队论二、实验目的:通过学习掌握excel规划求解工具,学会对最短路问题、最大流问题进行求解及利用excel 的函数工具对排队论问题进行求解。
三、实验设备计算机、Excel四、实验内容1、最短路问题:将原问题建立模型。
各个点的净流量=流出该结点的流量-流入该结点的流量,按题目输入各点的净流量函数。
在最短路平衡流中,各个中间结点的平衡值为0,起点为1,终点为-1。
设置目标单元格B18=SUMPRODUCT(C4:C16,D4:D16)。
利用规划求解工具求解,如图进行设置,并在【选项】中选择“采用线性模型”和“假定非负”项,求解可得最短路距离为8.5,最短路线为v1—v2—v6—v9。
2、最大流问题:将原问题建立模型。
各个点的净流量=流出该结点的流量-流入该结点的流量,按题目输入各点的净流量函数。
在最大流平衡流中,各个中间结点的平衡值为0。
设置目标单元格B16 =SUM(C3:C5)。
利用规划求解工具求解,如图进行设置,并在【选项】中选择“采用线性模型”和“假定非负”项,求解可得最大流为14.。
3、排队论其中:服务强度=B3/B4;系统中没有顾客的概率=(1-B7)/(1-B7^(B5+1));有效到达率=B3*(1-B11);N=4;系统中有n个顾客的概率=B8*B7^B10;平均队长=B7/(1-B7)-(B5+1)*B7^(B5+1)/(1-B7^(B5+1));平均队列长=B12-(1-B8);逗留时间Ws=B12/B9;等待时间Wq=B13/B9;即可马上求解得。
五、实验体会通过实验,觉得用excel做这类题速度很快,很方便。
首先就是要掌握题目梗概,有一个基本的轮廓,才能为建模做好铺垫;将题目的信息输入excel表格中;建模,确定变量,约束条件,目标值的计算方法,求解便可。
排队论则是将公式输入单元格的表达式中即可方便求解。
运筹学最短路
![运筹学最短路](https://img.taocdn.com/s3/m/0888c20d4a7302768e99397a.png)
附件2《运筹学》最短路、最小费用最大流经典作品关于钢管订购和运输的优化模型队员:陈显健陈瑜斌陈振松2007年6月5日摘 要: 本文首先运用图论知识中的最短路算法求出i S 到j A 的最优路径。
然后将模型转化为最小费用最大流的网络优化问题,从而求出近似最优解。
在分析出求解该网络优化模型的解法后,运用Lingo 软件包求出了该问题的近似最优解。
对问题一而言,求出了较优的订购和运输计划(见表三),其最小费用为1291630万元。
对于第二个问题而言,可得出钢厂6S 的钢管销价的变化对购运计划和总费用的影响最大;钢管厂1S 的钢管产量的上限的变化对总费用的影响最大,钢管厂3S 的产量上限的变化对购运计划的影响最大。
对问题三,给出了一般解,求出了较优的订购和运输计划(见表四),其最小费用为1396099万元,最后对模型进行了综合评价并提出了改进方向。
关键词:网络流 最小费用最大流一、 问题重述要铺设一条1521A A A →→→ 的输送天然气的主管道,如图一所示,经筛选后可以生产这种主管道的钢厂有721,,,S S S 。
图中粗线表示铁路,单细线表示公路,双细线表示要铺设的管道(假设沿管道或者原来有公路,或者建有施工公路),圆圈表示火车站,每段铁路、公路和管道旁的阿拉伯数字表示里程(单位km )。
为了方便,1km 主管道称为1单位钢管。
一个钢厂如果承担制造这种钢管,至少需要生产500个单位。
钢厂i S 在指定期限内能生产该钢管的最大生产数量为i s 个单位,钢厂出厂销价为i p 万元,如下表:表一1单位钢管的铁路运价如下表:(表二)1000km 以上每增加1至100km 运价增加5万元。
公路运输费用为1单位管道每公里0.1万元(不足整公里的按整公里计算)。
管道可由铁路、公路运往铺设地点(不只是运到点1521A A A →→→ ,而是管道全线)。
要求:(1) 请制定一个主管道钢管的订购和运输计划,使总费用最小,并给出总费用。
运筹学及其应用10.2 最短路问题
![运筹学及其应用10.2 最短路问题](https://img.taocdn.com/s3/m/e225a610168884868762d6a3.png)
3
3,1
v3
0,0
6
1
2
10
v4
1,1
v5 6,2 2
∞,1
v9
6
3
3 4
10 4
v6 2 v7 ∞,1
11,4
∞,1
v8
18
v2 5,3 1
6 2
v1
3
3,1
v3
0,0
6
1
2
10
v4
1,1
v5 6,2 2
∞,1
v9
6
3
3 4
10 4
v6 2 v7 9,5
10,5
12,5
v8
19
v2 5,3 1
9
v2 6,1 1
6 2
v1
3
3,1
v3
0,0
6
1
2
10
v4
1,1
v5 ∞,1 2
6
3
4 10
4
v6
2
v7
∞,1
∞,1
∞,1
v9
3
∞,1
v8
10
v2 6,1 1
6 2
v1
3
3,1
v3
0,0
6
1
2
10
v4
1,1
v5 ∞,1 2
6
3
4 10
4
v6
2
v7
∞,1
∞,1
∞,1
v9
3
∞,1
v8
11
v2 6,1 1
6 2
v1
3
3,1
v3
0,0
6
1
2
运筹学最短路径问题
![运筹学最短路径问题](https://img.taocdn.com/s3/m/84271a63bdd126fff705cc1755270722192e59b8.png)
运筹学最短路径问题
在运筹学中,最短路径问题是指寻找图中两个节点之间的最短路径。
最短路径可以通过一系列边连接起来,使得路径上的累计权值总和最小。
最短路径问题是运筹学中的经典问题,有广泛的应用领域,如交通网络规划、物流路径优化等。
常见的最短路径算法包括迪杰斯特拉算法和弗洛伊德算法。
迪杰斯特拉算法是用于解决单源最短路径问题的一种算法。
它从起点开始,通过不断更新节点的最短路径估计值和前驱节点,逐步扩展到其他节点,直到找到目标节点或所有节点都被处理。
弗洛伊德算法是用于解决全源最短路径问题的一种算法。
它通过动态规划的方式,对所有节点之间的最短路径进行逐步计算和更新,最终得到所有节点之间的最短路径。
除了迪杰斯特拉算法和弗洛伊德算法,还有其他一些算法可以用于解决最短路径问题,如贝尔曼-福特算法和A*算法等。
总之,最短路径问题在运筹学中具有重要的实际应用价值,可以通过不同的算法来求解。
这些算法在实践中可以根据具体的问题特点和需求选择合适的算法进行求解。
运筹学实验报告
![运筹学实验报告](https://img.taocdn.com/s3/m/ded526d8ad51f01dc281f1b0.png)
运算过程及敏感性报告:
目标函数 约束条件
1 5 1 0
3 10 ≤ 50 1 ≤ 1 1 ≤ 4
分析总结: 对偶问题的最优解代表原问题 松弛变量的检验数,对应 Excel 表中的求
决策 变量 X1 2 目标函数最大化
X2 4 14
解结果就是目标函数的影子价格。 目标价 值系数、 右端常数项的变化范围都可在敏 感性报告中得出。即“允许的增量” “允
第 15 页 共 17 页
运筹学实验报告 7.网络计划
6. 图与网络分析: 图与网络分析:-----------------------------------------------------------------------13 (1)最短路径: 最短路径:写出下图从 v1 到各点的最短路径及路长------------------------13 (2)最大流量: 最大流量:题目 1、题目 2------------------------------------------------------14
第 2 页 共 17 页
运筹学实验报告 线性规划问题:题目 2
max z = 3 x 1 + 2 x 2 + 2.9 x 3 8 x 1 + 2 x 2 + 10 x 3 ≤ 300 10 x 1 + 5 x 2 + 8 x 3 ≤ 400 2 x1 + 1 , x 2 , x 3 ≥ 0
V5 1 4 1 2 V6 V7
3
解:到 V7 最短路为 8 路线为:V1 V2 V3 V4 V6 V7
同理采用换目标单元格变量的方法: V6:把 V6 的净流量改为-1 得到关键路线为:V1 V5:把 V5 的净流量改为-1 得到关键路线为:V1 V4:把 V4 的净流量改为-1 得到关键路线为:V1 V3:把 V3 的净流量改为-1 得到关键路线为:V1 V2:把 V2 的净流量改为-1 得到关键路线为:V1
运筹学最短路问题及程序
![运筹学最短路问题及程序](https://img.taocdn.com/s3/m/8fd500b0960590c69fc37603.png)
运筹学最短路问题----------关于旅游路线最短及程序摘要:随着社会的发展,人民的生活水平的提高,旅游逐渐成为一种时尚,越来越多的人喜欢旅游。
而如何才能最经济的旅游也成为人民考虑的一项重要环节,是选择旅游时间最短,旅游花费最少还是旅游路线最短等问题随之出现,如何决策成为一道难题。
然而,如果运用运筹学方法来解决这一系列的问题,那么这些问题就能迎刃而解。
本文以旅游路线最短问题为列,给出问题的解法,确定最短路线,实现优化问题。
关键词:最短路 0-1规划约束条件提出问题:从重庆乘飞机到北京、杭州、桂林、哈尔滨、昆明五个城市做旅游,每个城市去且仅去一次,再回到重庆,问如何安排旅游线路,使总旅程最短。
各城市之间的航线距离如下表:重庆北京杭州桂林哈尔滨昆明重庆0 1640 1500 662 2650 649北京1640 0 1200 1887 1010 2266杭州1500 1200 0 1230 2091 2089桂林662 1887 1230 0 2822 859哈尔滨2650 1010 2091 2822 0 3494昆明649 2266 2089 859 3494 0问题分析:1.这是一个求路线最短的问题,题目给出了两两城市之间的距离,而在最短路线中,这些城市有的两个城市是直接相连接的(即紧接着先后到达的关系),有些城市之间就可能没有这种关系,所以给出的两两城市距离中有些在最后的最短路线距离计算中使用到了,有些则没有用。
这是一个0-1规划的问题,也是一个线性规划的问题。
2.由于每个城市去且仅去一次,最终肯定是形成一个圈的结构,这就导致了这六个城市其中有的两个城市是直接相连的,另外也有两个城市是不连接的。
这就可以考虑设0-1变量,如果两个城市紧接着去旅游的则为1,否则为0。
就如同下图3. 因为每个城市只去一次,所以其中任何一个城市的必有且仅有一条进入路线和一条出去的路线。
解法:为了方便解题,给上面六个城市进行编号,如下表(因为重庆是起点,将其标为1)重庆北京杭州桂林哈尔滨昆明123456假设:设变量x11。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
运筹学最短路问题实验报告
姓名:雷超敏
学号:10069107
班级:安全101
指导教师:冯树虎
一、实验目的:
1、学会独立建模能力,并用模型解决相关现实问题。
2、通过实验,把所学的运筹学理论知识与实践相结合,从而强化相关理论知识。
3、进一步加强对现实问题的认识,提高独立运用理论知识解决现实问题。
4、通过上机实验检验运筹学理论,发现相关理论知识的适用范围及不足。
二、实验任务:
1、提出一个有关运筹学的实际问题;
2、建立模型;
3、运用软件进行求解;
4、撰写分析报告。
三、实验软件
Excel2003。