第三章传热过程
传热学讲义——第三章
第三章 非稳态导热(unsteady state conduction)物体的温度随时间而变化的导热过程称非稳态导热。
0≠τ∂∂t,任何非稳态导热过程必然伴随着加热或冷却过程。
根据物体内温度随时间而变化的特征不同,非稳态导热过程可分为两类:(1)周期性导热(periodic unsteady conduction ):物体的温度按照一定的周期发生变化; 如建筑物的外墙和屋顶温度的变化。
(2)瞬态导热(transient conduction):物体的温度随时间不断升高或降低,在经历相当长时间后,物体的温度逐渐趋于周围介质的温度,最终达到热平衡。
分析非稳态导热的任务:找出温度分布和热流密度随时间和空间的变化规律。
第一节 非稳态导热的基本概念一、瞬态导热过程采暖房屋外墙墙内温度变化过程。
采暖设备开始供热前:墙内温度场是稳态、不变的。
采暖设备开始供热:室内空气温度很快升高并稳定;墙壁内温度逐渐升高;越靠近内墙升温越快;经历一段时间后墙内温度趋于稳定、新的温度分布形成。
墙外表面与墙内表面热流密度变化过程 采暖设备开始供热前:二者相等、稳定不变。
采暖设备开始供热:刚开始供热时,由于室内空气温度很快升高并稳定,内墙温度的升高相对慢些,内墙表面热流密度最大;随着内墙温度的升高,内墙表面热流密度逐渐减小;随着外墙表面的缓慢升高,外墙表面热流密度逐渐增大;最终二者相等。
上述非稳态导热过程,存在着右侧面参与换热与不参与换热的两个不同阶段。
(1)第一阶段(右侧面不参与换热)是过程开始的一段时间,特点是:物体中的一部分温度已经发生变化,而另一部分仍维持初始状态时的温度分布(未受到界面温度变化的影响),温度分布显现出部分为非稳态导热规律控制区和部分为初始温度区的混合分布,物体内各处温度随时间的变化率是不一样的,即:在此阶段物体温度分布受t分布的影响较大,此阶段称非正规状况阶段或初始阶段(initialregime)。
(2)第二阶段(右侧面参与换热)当右侧面参与换热以后,物体中的温度分布不受t影响,主要取决于边界条件及物性。
化工原理第三章传热
Q S
Kt m
t m
1/ K
(1-3)
传 热 速 率
传热温度差(推动力) 热阻(阻力)
式中:△tm──传热过程的推动力, ℃ 1/K ──传热总阻力(热阻),m2 ·℃/W
两点说明:
➢ 单位传热面积的传热速率(热通量)正比于推动力,反比于 热阻。因此,提高换热器的传热速率的途径是提高传热推
动力和降低热阻。
三、 换热器类型
换热器:实现冷、热介质热量交换的设备
用于输送热量的介质—载热体。 加热介质(加热剂):起加热作用的载热体。水蒸气、热水等。 冷却介质(冷却剂):起冷却作用的载热体。冷水、空气制冷剂。
① 直接混合式 —— 将热流体与冷流体直接混合的一种传热方式。 ② 蓄热式 —— 热量 存储在热载体上 传递给冷流体。如
式中:d1为套管的内管直径,d2为套管的内管直径。
应用范围:
Re 1200 ~ 220000, d2 1.65 ~ 17 d1
特征尺寸: 流动当量直径de。
定性温度: 流体进、出口温度的算术平均值。
滴状冷凝:若冷凝液不能润湿壁面,由于表面张力的作用,冷凝 液在壁面上形成许多液滴,并沿壁面落下,此中冷凝 称为。在实际生产过程中,多为膜状冷凝过程。
➢ 一般金属(固体)的导热系数>非金属(固体)>液体>气体
➢ 多数固体λ与温度的关系
λ=k0+k×t
单位:W/(m •K)
k0 --0℃下的导热系数
k为经验常数。
对大多数金属材料,其k值为负值;对非金属材料则为正值。
➢ 对于金属 t ↑ λ↓(通过自由电子的运动) 对于非金属 t ↑ λ↑ (通过靠晶格结构的振动) 对于液体 t ↑ λ↓ (通过靠晶格结构的振动) 对于气体 t ↑ λ↑ (通过分子不规则热运动)
《传热学》第三章 非稳态热传导
解的唯一性定理 数学上可以证明,如果某一函数t(x,y,z,τ)满足 方程(3-1a)(3-1b)以及一定的初始和边界条 件,则此函数就是这一特定导热问题的唯一解。 本章所介绍的各种分析法都被认为是满足特定问题 的唯一解。
3.1.3 第三类边界条件下Bi数对平板中 温度分布的影响
Bi =
δ λ δh = 1h λ
1)毕渥数的定义:
δ λ δh Bi = = 1h λ
毕渥数属特征数(准则数)。 2)Bi 物理意义: 固体内部单位导热面积上的导 热热阻与单位表面积上的换热热阻之比。Bi的大小 反映了物体在非稳态条件下内部温度场的分布规 律。 3)特征数(准则数):表征某一物理现象或过 程特征的无量纲数。 4)特征长度:是指特征数定义式中的几何尺 度。 毕渥数
∂t Φ = ∂τ ρ c
⋅
φ可视为广义热源,而且热交换的边界不是计算边 界(零维无任何边界) 界面上交换的热量应折算成整个物体的体积热源, 即: − ΦV = Ah(t − t )
∞
物体被冷却,∴φ应为负值
dt ρ cV = − Ah(t − t∞ ) dτ
适用于本问题的导 热微分方程式
方法二
温度分布主要 受初始温度分 布控制 温度分布主要 取决于边界条 件及物性
非正规状况阶段(起始阶段)、正规状况阶段、新的稳态
二类非稳态导热的区别:瞬态导热存在着有区别的 两个不同阶段,而周期性导热不存在。
5 热量变化
Φ1--板左侧导入的热流量 Φ2--板右侧导出的热流量
各阶段热流量的特征: 非正规状况阶段:Φ1急剧减小,Φ2保持不变; 正规状况阶段: Φ1逐渐减小,Φ2逐渐增大。
第三章 传热学3-辐射换热
E E Eb T4
18
3.1 辐射率
上面公式只是针对方向和光谱波长平均的情况,但实际上,真实表面的 辐射能力是随方向和波长变化的。
方向
波长
19
因此,我们需要定义单色定向辐射率,对于某一指定的方向和波
长
ε,θ
,θ ,TE ,actu alem itted E ,b lack b o d y
26
角系数的定义、性质及计算
1. 角系数的定义
在介绍角系数概念前,要先温习两个概念 (1)投入辐射:单位时间内投射到单位面积上的总辐射能,记为G。
(2)有效辐射:单位时间内离开单位面积的总辐射能为该表面的 有效辐射。包括了自身的发射辐射E和反射辐射G。G为投射 辐射。
有效辐射示意图
27
4 角系数
对于平面和凸面: Fii 0
对于凹面:
Fii 0
31
(3) 完整性
对于有n个表面组成的封闭系统,据能量守恒可得:
Q i Q i1 Q i2 Q i i Q i N
Qi1Qi2 Qii QiN1
Qi Qi
Qi
Qi
N
F ijF i1F i2 F ii F iN1
反射又分镜反射和漫反射两种镜反射漫反射立体角定义图14微元立体角可见辐射面积15辐射强度在单位时间内在某给定辐射方向上在与物体的发射方向垂直方向上的每单位投影面积在单位立体角内所发射的全波长的能量称为该方向上的辐射强度又称定向辐射强度用isrcosdqcosda方向的可见辐射面积10单位时间内辐射物体的单位表面积向半球空间发射的所有波长的能量总和
方向的立体角
dAcos 方向的可见辐射面积 9
第三章 液态成形过程的传热
33
第三节 铸件凝固时间的确定
实验法
两种方法:测温法和残余液体倾出法
有限元法 : 有限元法是根据变分原理来求解热传导问题微分方程的一 种数值计算方法。有限元法的解题步骤是先将连续求解域分割为有限 个单元 组成的离散化模型,再用变分原理将各单元内的热传导方程转 化为等价的线性方程组,最后求解全域内的总体合成矩阵。
16
17
第二节 铸件凝固温度场
研究温度场的方法三
测温法
τ(2 ──凝固时间( min); - 17) V──铸件体积(cm3); S──铸件散热表面积(cm2),
令
K
R V1 1 2 K2 S K
(2 - 21)
R──铸件折算厚度(cm) K──凝固系数(cm/min1/2)
当铸件合金、铸型和浇注条件确定之后,铸件凝固时 间取决于铸件体积与散热表面积之比 ,即折算厚度 (模数)。由于考虑了铸件结构形状的影响,计算值 更接近实际,是对“平方根定律”的发展。
2.铸型性质的影响
铸型的吸热速度越大,则铸件的凝固速度越大,断面的温度场的梯度也 就越大。
(1)铸型的蓄热系数b2
b2越大,冷却能力强,铸件中的gradt越大
(2)铸型的预热温度:
铸型温度上升,冷却作用小 ,gradt下降 熔模铸造的型壳预热至600~800℃, 金属型加热至200~400℃,提高铸 件精度减少热裂。
6
2.铸件在金属型中冷却 (1)铸件的冷却和铸型的加热 都不十分激烈。 在这种系统中,大部分温 度降在中间层上,当金属型 的铸型工作表面涂有较厚的 涂料时,就属此种情况。 特点:铸件断面上的温 差和铸型断面上的温差与中 间层的温差相比,可忽略不 计。可以认为,铸件和铸型 断面上的温度分布实际上是 均匀的,传热过程主要取决 于涂料层的热物理参数。
第三章传热过程
第三章传热过程内容提要:本章先对传热的三种基本方式即传导传热、对流传热和辐射传热以及工业上的换热方法进行介绍,然后着重讨论传导传热、对流传热的机理和传导传热、对流传热的速率方程式,在此基础上建立总传热速率方程。
冷热流体通过固体壁面进行热交换时的热量衡算及与总传热方程相结合解决热交换过程中的问题。
对强化和抑制传热过程的途径以及列管式热交换器的基本结构仅作简单介绍。
学习指导:了解传导传热和对流传热的机理,掌握传导传热、对流传热的速率方程式,掌握总传热速率方程式并对其中的总传热系数K、传热平均温度差Δtm能分别计算,能将热交换中热量衡算式与总传热方程相结合而解决热交换中的计算问题。
了解强化和抑制传热过程的方法以及列管式热交换器的基本结构。
第一节概述在自然界,在人们的生产和日常生活中,每时每刻都在发生由于物体或系统内部温度不同而使热量自动地转移到温度较低的部分的过程,这一过程称为热的传递简称传热。
而本章主要研究化工生产中的传热。
一、化工生产中的传热过程在化工生产、科学实验中随时会遇到热量传递问题,化工生产中的化学反应要求在一定温度下进行,而适宜的温度依靠加热或冷却才能实现。
例如,氮、氢合成氨、由氨氧化制硝酸、萘氧化制苯酐等,由于催化剂的活性和反应的要求,反应温度必须控制在一定的范围,过高过低都会导致原料利用率降低,温度控制不当甚至会发生事故。
又如在蒸馏、蒸发、干燥、结晶、冷冻等操作中也必须供给或移走一定的热量才能顺利进行。
在这类情况下,要求热量的传递速率要高,即通常所说的要求传热良好。
另有一类情况如高温或低温下操作的设备或管道,为了保持其温度应尽量隔绝热的传递即要求传热速度要低,即通常所说的保温。
此外,能量的充分利用是化工生产尤其是大型生产中极为重要的问题,为了充分利用反应热,回收余热和废热以降低生产成本,工业上大量使用热交换器,这都涉及到热量的传递问题。
传热过程是研究具有不同温度的物体内或物体间热量的传递。
化工基础第三章传热过程
(3) 常压下气体混合物的导热系数估算式为
m
式中 yi ——组分i的摩尔分率。 M i ——组分i的摩尔质量,kg/kmol。 ④.一般规律 (1)
1 i yi M i / 3 1 yi M i / 3
金 非金 (2) s l g (3) 晶 非晶 (4) (气体除外 ) 纯 混
第三章 传热过程 23
t+△t dt/dn n
t
t-△t
Φ dS
图 温度梯度和傅里叶定律
第三章 传热过程
24
3) 导热系数:表征物质导热能力的物性参数。
①.固体
式中:0为固体在0C的导热系数,W/(mK),W/(mC); α为温度系数, 1/ C。 金属的导热系数最大,其中以银和铜的导热系数值最 高;若金属材料的纯度不纯,会使λ大大降低。固体非 金属次之。(绝热材料λ<0.23 W/(mK) ) ②.液体 导热系数较小 (1) 金属液体: t , (2) 非金属液体(除水、甘油外):t, (略减小) (3) 有机化合物水溶液的导热系数估算式为
第三章 传热过程 19
二、传导传热
1、导热基本定律 傅里叶定律
1) 温度场和温度梯度
温度场(temperature field):某一瞬间空间中各点的温度
分布,称为温度场(temperature field)。
物体的温度分布是空间坐标和时间的函数,即
t = f (x,y,z,τ) 式中:t —— 温度; x, y, z —— 空间坐标; τ—— 时间。
T2
t1 T2
T1
套管式
T1 T2
t2
列管式
夹套式
第三章 传热过程 13
传热学 第三章 非稳态导热
解:首先需要求出平壁 的热扩散率
a
0.185
0.65 106 m 2 / s
c 1500 0.839 1000
Fo
a 2
0.65 106 6 3600 0.25 2
0.22
非稳态导热的导热微分方程式:
c t ( t ) ( t ) ( t ) x x y y z z
求解方法: 分析解法、近似分析法、数值解法
分析解法:分离变量法、积分变换、拉普拉斯变换 近似分析法:集总参数法、积分法、瑞利-里兹法 数值解法:有限差分法、蒙特卡洛法、有限元法、 分子动力学模拟
非稳态导热正规状况阶段
x,
0
1
2 sin 1 sin 1 cos 1
cos
1
x
e 12 Fo
Bi h
平壁中心x=0时
m
2 sin 1
a Fo 2
e 12Fo f Bi, Fo
0 1 sin 1 cos 1
m
0 m 0
cos
1
x
f
Bi, x
只取决于毕渥数与几何位置,与时间无关----特点3
传热学
第3章 非稳态导热 Transient/Unsteady Conduction
概述
自然界和工程上许多导热过程为非稳态,t = f()
例如:冶金、热处理与热加工:工件被加热或冷却
锅炉、内燃机等装置起动、停机、变工况 自然环境温度 供暖或停暖过程中墙内与室内空气温度
非稳态导热:周期性和非周期性(瞬态导热)
假设:厚度为2,导热系数、热扩散率为常数,无
内热源,初始温度与两侧流体相同,为t0。两侧流体温 度突然降低为tf,并保持不变,平壁表面与流体间对流 换热表面传热系数h为常数。
第三章 热量传递的基本原理
2
d T 1 dT + = 0 2 dr r dr
• 导热问题的完整数学描述 无内热源、常物性、稳态一维问题的导热 微分方程 2
由
d t =0 2 dx
得
dt = c1 dx
得
t = c1 x + c2
问题不能确定,需有定解条件: 〈1〉 初始条件:τ = 0 时的温度分布 t τ = 0 =f (x,y,z) 〈2〉 边界条件:边界上的温度分布或换热条 件。
即 边界条件:
x
d 2t =0 2 dx
x = 0 t = t1 ; x = δ t = t 2
数学描述
d 2t =0 2 dx x = 0 , t = t1 x = δ , t =t 2
t = c1 x + c2
c2 = t1
温度分布
c1 =
t 2 − t1
δ
t=
dt dx
t 2 − t1
δ
x + t1
μ↑
Re ↓
h↓
4、换热表面的形状、大小、位置 壁面形状、位置形状(平板,圆管)、位置(横 放、竖放、管内、管外)
5、流体有无相变 有相变(沸腾或凝结),流体温度基本保持不 变,流体与壁面的换热量等于吸收或放出的汽化潜 热。有相变比无相变时换热系数大很多。 珠状凝结比膜状凝结换热系数大得多。
综上所述
动力消耗大
δ ↓ h↑
3、流体的物理性质
流速:V↑ h↑ V=0 无对流 物性-表征物质物理特性的物理量 密度,粘性,热导率,比热等 其他条件相同时,不同的流体换热量不 同,就是因为物性不同
λ的影响:
化工原理课件(十一五)第三章对流传热
用幂函数逼近原函数 Nu C Rea Prk Gr g
3. 实验安排与结果整理 —以强制对流为例
Nu C Rea Pr k
(1)k的求法:用不同的流体,固定Re 测Nu, 得Nu~Pr
8
因为 lg Nu k lg Pr lgC Rea 作图k (2)a和c的确定 固定流体, 在不同的Re下 测Nu, 得一组(Re, Nu/Prk) 因为
—对流传热系数,W/㎡·K;
tw—壁温;t—流体温度
说明 t—流体(沿传热方向)平均温度
应针对一微无段 dQ dA tw t
3
只是推论,认为 Q(tw-t)
Q
Atw
t
tw t
1/ A
推动力 阻力
对流传热——复杂的物理过程。
影响因素 形式简单 —实验测定
4
3.3.2 的实验研究方法
6 105 f 1 Re1.8
其它条件和注意=Re>10000时
3.层流
(1)自然对流的影响可以忽略时 (Gr<25000)
12
Nu
1.86
Re
Pr
d l
1/
3
w
0.14
l / d 60
适用条件 Re 2300 6700 Pr 0.6 Re Pr d 10 Gr<25000
l
特征量取法=湍流时
(2)自然对流不能忽略时 f 0.8(1 0.015Gr1/3 ) Gr>25000
4.弯管
先按直管计算, 再校正
5.非圆形管
' 1 1.77 d
R
当量直径de, 按圆管计算。 u实际流通截面积
专用公式
13
例题2 空气以4m/s的流速通过一75.5×3.75的钢管,管长20米, 空气入口温度32℃,出口温度为68℃,(1)试计算空气与管壁间 的对流传热系数。(2)如空气流量增加一倍,忽略温度变化对 物性的影响,变为多少。(3)若管径减小一半,则 变为多少
化工基础概论 第三章 传热与换热器
q
dQ dA
(3-1)
与热流量 Q 不同,热流密度与传热面积 A 大小无关,完全取决于冷、热流体之间 的热量传递过程,是反映具体传热过程速率大小的特征量。
2、换热器的热流量(Q)
对于定态(稳态)传热过程,热流密度不随时间而变,但沿着管长是变化的,因此 作为传热结果,冷、热流体的温度沿管长而变,冷、热流体的温差也必将发生 相应的变化。 设换热器的传热面积为 A ,由 q
3、蓄热式换热器
首先使热流体通过蓄热器中固体壁面,用热流体将固体填充物加热,然后停止 热流体,使冷流体通过固体表面,用固体填充物所积蓄的热量加热冷流体。这 样交替通过冷、热流体达到换热的目的。 为将冷流体加热或热流体冷却,必须用另一种流体供给或取走热量,此流体称 为载热体。起加热作用的载热体称为加热剂;而起冷却作用的载热体称为冷却 剂。
2、间壁式传热
在多数情况下,工艺上不允许冷、热流体直接接触,因此直接接触式传热过程 在工业上并不很多。工业上应用最多的是间壁式传热过程。间壁式换热器类型 很多,其中最简单而又最典型的结构是套管换热器(图 3-2) 。在套管式换热器 中,冷热流体分别通过环隙和内管,热量自热流体传给冷流体,这种热量传递 过程包括三个步骤(图 3-3) : a 热流体靠对流传热将热量 Q 传给金属壁一侧——给热; b 热量自管壁一侧以热传导的形式传至另一侧——导热; c 热量以对流传热形式从壁面传给冷流体——给热。 冷、热流体之间进行的热量传递总过程通常称为传热(或换热)过程,而将流 体与壁面之间的热量传递过程称为给热过程。
3.3 间壁式换热器的传热速率方程及应用
3.3.1 传热速率公式及应用
3.3.2 强化传热的途径
3.3.1 传热速率公式及应用
我们以简单的并流套管式换热器为例,来分析综合传热速率方程。确切的讲是 导热与给热的联合传热速率方程。 如图 3-4 所示,热流体走管内,冷流体走环隙通道。热、冷流体的质量流速分别 为 Gh 、 Gc kg s 1 ,热、冷流体的定压比容分别为 C ph 、 C pc J kg 1 K 1 。热流体 的进出口温度分别为 Ti 、 T0 ,冷流体的进出口温度分别为 t i 、 t0 。 在此种间壁式换热器中,热量传递要经历下列三个阶段:热流体对管内壁对流 给热;管壁面间的导热;管外壁对冷流体的对流给热。单一的导热定律与对流 给热定律,无法解决这个问题。另外,冷、热流体的温度差,沿轴向变化着, 但对任一管截面,冷热流体的温度差不随时间而变,所以仍然是稳定传热过程, 称为稳定的变温传热。此时,热推动力(温度差)和传热系数如何表达呢?
第三章传热学
3.稳态导热3.1 知识结构1.一维导热问题(平壁、圆桶壁、球壁)分析解(导热公式、热阻形式);2.温度分布与导热系数和热流的关系;3.变导热系数及变截面问题的解题方法及其对温度分布的影响;4.伸展体导热的微元段分析(一维假设条件、微分方程及系数m的组成);5.三种细长杆(无限高、有限高端部散热、有限高端部绝热)的边界条件、分析解、散热量计算公式,工程计算中的简化方法;6.系数m对温度分布的影响⇒杆内热应力的影响;7.肋片与肋效率(定义、肋效率的影响因素、等截面直肋的肋效率公式);8.接触热阻及其治理方法;9.具有内热源的导热及多维导热。
3.2 重点内容剖析3.2.1 典型稳态导热问题分析解稳态导热问题的主要特征是物体中各点温度不随时间发生变化,只是空间坐标的函数,热流也具有同样性质。
温度在空间坐标上的分布决定导热问题的维数,同样的问题选择不同的坐标系会有不同的维数,维数越多问题越复杂,所以应对具体问题具体分析,从主要因数着手,忽略次要因数,进行适当简化。
一.无限大平壁的分析解(如图3-1)厚度方向传递,亦即温度只在厚度方向变化,→一维导热问题)1.问题(1)均质、单层无限大平壁(一维常物性)(2)无内热源稳态导热(3)平壁两面保持均匀而一定的温度,且t w1>t w2(4)求解平壁内的温度分布t(x)和通过平壁的热流密度。
2.描述问题的数学表达式:微分方程(一维稳态)02222==∂∂dx td x t (3-1) 定解条件:(稳态——无初始条件) 边界条件(第一类):21,,0w w t t x t t x ====δ (3-2)3. 求解对(3-1)两次积分得通解 :21c x c t += (3-3) (3-2)代入(3-3)得待定常数 δ12112,w w w t t c t c -== (3-4)(3-4)代入(3-3)得温度分布(直线) X xt t t t t x t t t w w w w w w =Θ⇒=--+-=δδ121112或(3-5)(无量纲温度与无量纲尺度相等)热流密度: δλδλλ2112w w w w t t t t dx dtq -=--=-= (3-6) (虽然上式就是绪论中的平壁导热公式,但已从感性上升到了理性)二. 多层平壁的导热问题工程中的传热壁面常常是由多层平壁组成的,如表层要考虑外观、防腐、抗老化、防水等因素,内层要考虑耐温、与所接触的介质相容等因素,整个壁面还要考虑强度、能耗、制造成本等问题。
《传热学》第3章_非稳态热传导分析
《传热学》第3章_非稳态热传导分析非稳态热传导分析是传热学中一个重要的研究内容。
在真实的物理系统中,尤其是工程实际中,非稳态热传导过程往往更为常见。
非稳态热传导分析主要研究物体内部温度分布随时间的变化规律,以及热传导过程中的能量交换。
本文将重点介绍非稳态热传导分析的基本原理和方法。
非稳态热传导分析需要考虑时间因素以及物质的热传导性质。
在非稳态热传导过程中,物体内部的温度分布随时间的变化满足热传导方程。
传热方程的一般形式为:∂(ρcT)/∂t=k∇²T+Q其中ρ是物质密度,c是比热容,T是温度,k是热传导系数,∇²是拉普拉斯算子,Q是热源项,即热传导过程中的能量增减。
解决非稳态热传导分析的一般步骤如下:1.建立热传导方程。
根据实际情况,确定适当的坐标系,并根据系统的几何形状和边界条件,建立热传导方程。
2.确定边界条件。
边界条件包括物体表面的温度、热通量以及对流边界等。
根据具体情况,选择适当的边界条件。
3.选择合适的数值方法。
非稳态热传导问题通常需要借助数值方法进行求解。
有限差分法、有限元法、迭代法等都可以应用于非稳态热传导分析,具体选择哪种方法需要根据具体问题的特点进行判断。
4.数值求解。
根据使用的数值方法,将热传导方程离散化,并进行数值求解。
通常需要在计算过程中进行迭代,直到得到满足要求的结果。
5.结果分析和验证。
得到物体内部温度随时间的变化规律后,可以通过实验进行验证。
比较模拟结果与实验结果,判断模拟的准确性。
非稳态热传导分析的典型应用包括热处理过程中的温度变化分析、电子元器件的散热分析、建筑物内部温度分布分析等。
通过对非稳态热传导问题的分析,可以更好地理解和控制物体内部温度分布的变化规律,为实际工程提供指导。
然而,非稳态热传导分析也存在一些挑战和限制。
首先,非稳态热传导分析通常需要考虑物质性质的非线性以及边界条件的复杂性,这增加了问题的难度。
其次,非稳态热传导问题的求解往往需要较长的计算时间和大量的计算资源。
《传热学》第三章 非稳态导热
令:
—— 过余温度
使导热微分方程边界条件齐次化:
1.分离变量法求解导热微分方程:
对于此类偏微分方程,应采用分离变量法来进行求解: 假定:
代入导热微分方程,得出:
令:
并对两式分别求解
求解结果: 因φ 不可能是无限大或常数,所以只能有:μ <0,因而可令:
求解结果:
将两个求解结果合并,得到:
其中:
A c1c2 , B c1c3
集总热容体的温度分布:
其中:
L
V ——定型尺寸 A
cV
hA
——时间常数(表示物体温度接近流体温度的快慢)
集总热容体的温度分布亦可写成:
四、不同加热方式下的无限大平壁瞬态导热
t
qv
h, t f
h, t f
qw
qw
h, t f
h, t f
x
第三节 半无限大物体的瞬态导热
应用领域:大地 一、第一类边界条件
半无限大物体表面温度:
半无限大物体表热负荷:
——一定时间内将壁温提高至tw所需的热负荷
第四节 其他形状物体的瞬态导热
一、无限长圆柱体和球体——计算线图法 分无 布限 计长 算圆 步柱 骤温 度
计算Bi和Fo
由图3-13计算中心温度
由图3-14计算任意处温度 无限大平壁—— 半壁厚δ
定型尺寸
无限长圆柱体和球体—— 半径 R 其他不规则形状物体——V/A
或:
傅立叶准则——
二、正常情况阶段——Fo准则对温度分布的影响
对
进行收敛性分析: 随着β n的递增,级数中指数一项收敛很快,所以级数收敛很快,尤其当Fo较 大时,收敛性更加明显。 因此,当Fo>0.2时,仅用级数第一项来描述,已足够精确,即:
传热
tW 1 tW 4 r4 R1 R2 R3 ln
r3
举例
二、对流给热 由于流体质点之间宏观相对位移而引起的热 量传递现象,称为热对流。产生相对位移原因: (1)因流体各部分的温度不同而引起密度的差异, 导致流体质点产生相对位移,这种对流称为自然 对流;(2)是由于外力的作用使得流体质点运动, 这种对流称为强制对流。 当流体与固体壁面之间存在着温度差时,热 流体将热量传递给壁面或壁面将热量传递给冷流 体的过程,称为对流给热。
对流给热热阻R=1/S。表明给热速率与给热推动力成 正比,与给热热阻成反比。
3. 给热系数的物理意义
给热系数的物理意义为:当传热面积为1m2,流体 与壁面之间的平均温度差为1K时,单位时间内流体与壁 面之间交换的热量。
(二)影响对流给热系数的主要因素 (1)流体产生的原因 (2)流动型态及流速的影响
3 1 2 1 S 2 S 3 S
tW 1 tW 4
对n层平壁,可写为
Q
tW 1 tW ,n 1
i i S i 1
n
t R
上式说明:多层壁串联导热的总推动力为各层推动力之 和,总热阻为各层热阻之和。举例 (四)圆筒壁定态导热 圆筒壁与平壁导热的不同之 处在于圆筒壁的传热面积不是常 数,它随其半径而变化。 1.单层圆筒壁定态导热 见单层圆筒壁导热,由傅立 叶定律,可得
热负荷Q 是生产工艺对换热器的换热能力的要求。一 个能满足工艺要求的换热器,必须使其换热器的换热能力, 即传热速率Q等于或略大于热负荷Q ,即Q ≥ Q 。
第三节 间壁式换热器的传热分析和计算
一、传热速率方程式
Q KSt m
t m
1 KS
化工原理第三章_传热-学习要点
传热(Heat transfer)是指由于温度差而引起的能量传递过程。 热传导 (Heat conduction):由于物体内部微观粒子热运动而 引起的热量传递现象。(固体或静止流体中) 热对流 (Heat convection):由于温度不同的流体之间发生相 对位移而引起的热量传递现象。(流体流动中) 自然对流:温差导致密度差导致流体流动 强制对流:外力强制流体流动 热辐射 (Heat radiation) :温度不同的物体之间发射与吸收 电磁波的能量不同,从而引起热量传递现象。(任 何物体中,高温条件下显著) 实际传热过程中,往往是多种传热形式的组合。
3.4.2 总传热系数 (Overall heat transfer coefficient )
基于管外表面积: 1 1 b d o 1 d o
Ko
o
dm
i di
1 1 b di 1 di 基于管内表面积: Ki i d m o do
dm 1 b dm 基于管平均面积: K m i di o do
多液滴,并沿壁面落下 。
* 蒸气与低温壁面直接接触,因此滴状冷凝传热效果好于膜 状冷凝。
3.3 对流传热 Convection Heat Transfer
3.3.3 对流传热系数 (Convective heat transfer coefficient )
3.3.3.4 蒸汽冷凝
影响冷凝传热的因素(P131) ① 液体的性质: λ↗ ,ρ↗, μ↘ → α↗ α水> α有机 ② 冷凝液膜两侧的温度差:α= f (Δt-1/4) Q =α· Δt A· ③ 蒸气中不凝气体(设置放气口,定期排不凝气体)
第3章 热传递的基本原理
第三章 热传递的基本原理
3-1 导热
一、导热的基本概念 当物体内部或相互接触的物体间存在温 度差时,热量从高温处传到低温处的过程称 为导热或热传导。
①定义:在没有质点相对位移的情况下,当物体内部 具有不同温度,或不同温度的物体直接接触时,所发 生的热能传递现象。
这种固体壁面同时存在对流和辐射换 热的过程称为复合换热。
3-4 传热过程与换热器
二、换热器 1.换热器的类型 换热器是实现冷热流体热量交换的设备。 按其工作原理,火电厂中的换热器一般可 分为混合式、表面式和再生式三类。
3-4 传热过程与换热器
二、换热器
2.换热器内冷热流体的相对流向
3-4 传热过程与换热器
2.削弱传热
削弱传热一般用于减少热力设备及热 力管道对环境的散热,且通过敷设隔热层的 办法来实现。 石棉、珍珠岩、矿渣棉等各类制品,是 电厂中广泛采用的隔热保温材料。
多层平壁导热
3-1 导热
对于多层的 圆筒壁仍然可以 利用热阻来求得 导热量、热流密
度,大家想一想
单层圆壁筒的导 热电阻如何求得?
3-2 对流换热
一、对流换热的概念及其类型 当温度不同的各部分流体之间产生宏观的相对运 动时,各部分流体因相互掺混所引起的热量传递过 程,称为热对流。流动着的流体与其相接触的固体 壁面之间的热量传递过程称为对流换热。对流换热 时,流体内部各部分流体之间存在着热对流,并同 时伴有热传导对流换热是热对流和热传导综合作用 的结果。
3-1 导热
数学表达式: q=-λdt/dx (W/m2) q—单位时间通过导体单位面积上的热量, 又称为热流密度; λ — 为导热系数;导热系数的大小取决 于物质的种类和温度;
传热学-第三章
无量纲数
当Bi→∞时,⇒rλ>>rh ;因此,可以忽略对流换热热阻 当Bi→0 时,⇒rλ<<rh;因此,可以忽略导热热阻
(4) 无量纲数的简要介绍 基本思想:当所研究的问题非常复杂,涉及到的参数很 多,为了减少问题所涉及的参数,将一些参数组合起来, 使之能表征一类物理现象,或物理过程的主要特征,并且 没有量纲。 因此,这样的无量纲数又被称为特征数,或者准则 数,比如,毕渥数又称毕渥准则。以后会陆续遇到许多类 似的准则数。特征数涉及到的几何尺度称为特征长度,一 般用符号 l 表示。 对于一个特征数,应该掌握其定义式+物理意义,以 及定义式中各个参数的含义。
着重讨论瞬态非稳态导热
3. 温度分布:
4. 两个不同的阶段
非正规状况阶段 (不规则情况阶段) 正规状况阶段 (正常情况阶段) 温度分布主要受初始温度 分布控制 温度分布主要取决于边界 条件及物性
非稳态导热过程总会经历:非稳态导热非正规状况阶段 (起始阶段)、正规状况阶段、新的稳态
5. 热量变化
可以采用集总参数法。时间常数为
13110 × 0.138 × 1000 × 0.953 × 10 −3 = = 148 τc = hA 11.63
ρcV
s
⎛ hA ⎞ 11.63 × 5 × 60 θ ⎛ ⎞ = exp⎜ − ⎟ ⎜ ρcV ⋅ τ ⎟ = exp⎜ − ⎟ −3 θ0 ⎝ 13110 × 0.138 × 1000 × 0.953 × 10 ⎠ ⎝ ⎠ = exp(− 2.02 ) = 0.133
5. 集总参数法的应用条件
对于平板、圆柱及圆球,如果Bi满足如下条件,则 物体中各点过余温度的差别小于5%
Bi v =
对厚为2δ的 无限大平板 对半径为R的 无限长圆柱 对半径为R的 球
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章传热过程复习题
一、单项选择题
1.对钢、建筑砖、水、空气而言,导热系数最小的是……… ()
A.钢B.建筑砖
C.水D.空气
2.流体与器壁间的对流传热(即给热过程),其热阻主要存在的
地方是………………………………………………………………… ()
A.器壁内B.整体流体内.
C.传热边界层中D.流体湍流主体中
3.在多数热交换过程中,热阻通常较小可以忽略不计的是…………()
A.热流体的热阻B.冷流体的热阻
C.冷热两流体的热阻D.金属壁的热阻
4.对流传热公式Ф=αAΔt中,Δt表示的物理意义是…………… ()
A.冷热两流体的平均温差
B.器壁与冷(或热)流体间的温差
C.间壁两侧壁面的温差
D.冷(或热)流体进出口的温差
5.普朗特准数Pr物理意义的确切说法是……………()A.表示传热膜系数的准数,并表明流体的导热系数与换
热器壁几何尺寸的关系
B.表明因受热引起的自然对流对传热过程的影响
C.表明流体的流动形态对传热过程的影响
D.表明流体的某些物理性质对传热过程的影响
6.在列管式换热器中用饱和水蒸汽加热原油。
已知油的传热膜系数α1=200W·m-2·K-1, 水蒸汽的传热膜系数α2=10000 W·m -2·K-1, 要提高换热器的传热速率,最合适的操作方法是……………………()
A.设法增大α1B.设法增大α2
C.同时增大α1和α2D.同时降低α1和α2
二、判断题(在题后括号内,对的打“√”,错的打“×”,并对错误处进行改正)
1.傅立叶定律中,dt/dδ表示与热流方向相垂直方向上温度变
化的强度。
………………………………… ()
2.冷热两流体进行热量交换时,过程的推动力是两流体间的
温度差,过程的最大极限是两流体的温度相等。
………()3.多层平面壁定态热传导时,推动力是内壁面与外壁面间的温度差;总热阻是各层热阻的倒数之和。
……………()
4.传导传热只能在固体中发生;对流传热只能在流体中进行。
………………………………………………… ()5.传热过程的规律与流体流动过程相似,流速越大,传热过程的阻力越大。
………………………………… ()
6.在定态传热中,凡热阻大处其温差也大。
……… ()
7. 圆筒壁内定态热传导时的温度分布是曲线,传热速率Φ也
随半径而变。
…………………………………… ()
8.水蒸汽冷凝时过程的传热膜系数很大,表明流体的相变化对
传热过程有很大影响。
………………………………… ()三、填空题
1.热量传递有三种方式:、和。
2.工业上的换热方法有换热、换热和换热。
3.傅立叶定律的表达式为。
其中,表示热传导方向上单位长度的温度变化率的称,它的方向与传热方向(一致,相反)。
4.牛顿冷却定律的数学表达式为,式中α称,用SI制表示的单位是。
5.单层平面壁热传导的计算公式为,式中热阻R=,用SI制表示的单位是。
6.在一列管式换热器中用饱和水蒸汽加热空气,此时换热器钢管的壁温接近的温度;总传热系数K值接近的传热膜系数。
7.总传热方程φ=KAΔt m中,K代表,其SI制的单位是。
对间壁为平面壁的热交换过程,K =。
8.传热计算分两类:计算和计算。
根据已定的生产要求,确定换热器的结构参数和几何尺寸属
计算。
9.列管式换热器是化工生产中最常用的换热器。
此外,常用的热器还有换热器、换热器和
换热器等(任写出三种)。
四、名词解释(解释下面名词的含义或物理意义)
1.导热系数
当物体的两个传热面间的温度差为1K、厚度为1m时,单位时间(每秒)经过单位传热面积(1m2)所传导的热量。
2.对流传热
由于流体质点的移动和相互碰撞,将热能由一处传递到另一处的过程。
3.传热膜系数
当流体主体与壁面间的温度差为1K时,单位时间(每秒)通过单位传热面积(1m2)所传给流体(或由流体传给壁面)的热
量。
4.定态恒温传热
指两流体经传热壁面进行热交换时,沿器壁流动的两流体的温
度,既不随时间而变,也不随位置而变。