运用圆锥曲线的定义法求轨迹方程教案

运用圆锥曲线的定义法求轨迹方程教案
运用圆锥曲线的定义法求轨迹方程教案

运用圆锥曲线的定义求轨迹方程

【学习目标】

1、进一步理解圆锥曲线定义的内涵,加深对圆锥曲线本质特征的理解和认识。学会运用定义判断动点的轨迹并求动点的轨迹方程。

2、在应用圆锥曲线定义解决问题的过程中,体验运用定义法解决问题时的特点,提高快速、准确、灵活的解题的能力。

3、进一步培养自我批判的思维品质,质疑求真的科学态度。

【教学重点】(1)圆锥曲线定义的再认识;(2)圆锥曲线定义在解题中的运用。

【教学难点】如何运用圆锥曲线定义解决相关问题。

【课前导学】

1、圆锥曲线的定义(用数学符号表示)

椭圆的定义 双曲线的定义 抛物线的定义

2、解答下列各题

(1)过点(1,0)A 且与直线l :1-=x 相切的动圆M 的圆心M 的轨迹方程为

(2)在ABC ?中,已知)0,1(),0,1(C A -,若sin sin 2sin A C B +=,则定点B 的轨迹方程为

(3)设向量i 、j 为直角坐标系的x 轴、y 轴正方向上的单位向量,向量(3)a x i y j =+?+?,

(3)b x i y j =-?+? , 若且||||2a b -=,则满足上述条件的点(,)P x y 的轨迹方程 是

(4)方程|2|21

)1()1(22-+=+++y x y x 表示的曲线是 ( )

A 、 椭圆

B 、双曲线

C 、抛物线

D 、不能确定

【课堂学习】

[例题1] 一动圆与圆1O :4)3(22=++y x 外切,同时与圆2O :100)3(2

2=+-y x 内切,求动圆圆心P 的轨迹方程。

[思考1] 一动圆与圆1O :4)3(22=++y x 外切,圆2O :9)3(22=+-y x 中的一个内切一个外切,求动圆圆心P 的轨迹方程。(同时相切呢?)

[思考2] 已知圆1O :4)2(22=+-y x ,动圆M 与圆1O 外切,且与y 轴相切,求动圆圆心M 的轨迹。

[例题2]已知圆22

:(3)100M x y ++=和点(3,0)N ,P 为圆M 上任一点,线段NP 的的垂直平分线交直线MP 于Q ,当点P 在圆M 上运动时,问:点Q 的轨迹是什么?并求其轨迹方程。

[思考] 已知圆22:(3)4M x y ++=和点(3,0)N ,P 为圆M 上任一点,线段NP 的的垂直平分线交直线MP 于Q ,当点P 在圆M 上运动时,问:点Q 的轨迹是什么?并求其轨迹方程。

[例题3] 已知椭圆经过点(0,7),(0,7)A B -,且以点(12,2)C 为一个焦点,求椭圆另一焦点

P 的轨迹所在的曲线方程。

【自主小结】

【课后练习】

[必做作业]

1、已知ABC ?的一边BC 的长为3,周长为8,则顶点A 的轨迹是什么?为什么?

2、若)0,2(-A ,)0,2(B ,且2=-MB MA ,则动点M 的轨迹是什么?为什么?

[思考]把2=-MB MA 换成(0)MA MB a a -=>后,情形会如何?

3、已知动点P 到直线40x +=的距离比它到点(2,0)M 的距离大2 ,则P 的轨 迹方程为

4、ABC ?顶点为)2,0(-A ,)2,0(C ,三边长c b a ,,成等差数列,公差0

5、一动圆与圆1O :4)3(22=++y x 外切,圆2O :9)3(22=+-y x 同时相切,求动圆圆心P 的轨迹方程。

[选做作业]

1、在正方体1111D C B A ABCD -中,P 是侧面1BC 内一动点,若P 到直线BC 与直线11D C 的距离相等,则动点P 的轨迹所在的曲线是( )

A. 直线

B. 圆

C. 双曲线

D. 抛物线

2、已知12,F F 分别是双曲线22

2136x y b

-=的左、右焦点,P 为双曲线上一点,过112F F PF ∠作的平分线的垂线,垂足为H,则点H 的轨迹为 ( )

A. 椭圆

B. 双曲线

C. 圆

D. 抛物线

3、 如图,某村在P 处有一堆肥,今要把此堆肥料沿道路PA 或PB 矩形的一块田ABCD 中去,已知PA=100米,PB=150米,BC=60米, 060=∠APB 。能否在田中确定一条界线,使位于界线一侧的点沿道 路PA 送肥较近而另一侧的点沿PB 送肥较近?如果能,请说出这条

界线是什么曲线?并求出它的方程。

求轨迹方程的几种常用方法

求轨迹方程的几种常用方法 求轨迹的方程,是学习解析几何的基础,求轨迹的方程常用的方法主要有: 1直接法: 若命题中所求曲线上的动点与已知条件能直接发生关系,这时,设曲线上动点坐标为( x, y )后,就可根据命题中的已知条件,研究动点形成的几何特征,在此基础上运用几何或代数的基本公式、定理等列出含有x,y 的关系式。从而得到轨迹方程,这种求轨迹方程的方法称作直接法。 例1 :在直角△ ABC中,斜边是定长2a (a 0),求直角顶点C的轨迹方程。 解:由于未给定坐标系,为此,首先建立直角坐标系,取AB所在的直线为X轴,AB的中点0为坐 标原点,过0与AB垂直的直线为y轴(如图).则有A ( a,0), B (a,0)。 设动点C为(x, y), ??? | AC |2 |BC |2 |AB|2, a)2y2]2h(x a)2y2]24a2, 即x2 由于C点到达A、B位置时直角三角形ABC不存在,轨迹中应除去A、B两点, 故所求方程为x2y2a2( x a )。 2?代入法(或利用相关点法): 即利用动点是定曲线上的动点,另一动点依赖于它,那么可寻求它们坐标之间的关系,然后代入定曲线的方程进行求解,就得到原动点的轨迹。 例2 :已知一条长为6的线段两端点A、B分别在x、y轴上滑动,点M在线段AB上,且AM : MB 1:2,求动点M的轨迹方程。 解:设 A (a,0) , B (0, b), M (x, y), 一方面,. 另一方面, 36 , M分AB的比为 1 , 2

评注:本例中,由于 M 点的坐标随着 A 、B 的变化而变化,因而动点 M 的坐标(x, y)可以用A 、B 点 的坐标来表示,而点 M 又满足已知条件,从而得到 M 的轨迹方程。此外,与上例一样,求曲线的方程时, 要充分注意化简过程是否完全同解变形,还要考虑曲线上的一些特殊点。 3.几何法: 求动点轨迹问题时,动点的几何特征与平面几何中的定理及有关平面几何知识有着直接或间接的联 系,且利用平面几何的知识得到包含已知量和动点坐标的等式,化简后就可以得到动点的轨迹方程,这种 求轨迹方程的方法称作几何法。 求动点P 的轨迹方程。 解:设P (x, y),由题 APO BPO ,由三角形角平分线定理有 L P A | ^A 0-1 |PB| |BO| ..(x 6)2 y 2 3 3 , (x 2)2 y 2 整理得x 2 y 2 6x 0,当x 0时,y 0, P 和O 重合,无 意义,??? x 0, 又易知P 落在x 轴上时,除线段AB 以外的任何点均有 APO BPO 00 , ? y 0 ( x 6或x 2)也满足要求。 综上,轨迹方程为 x 2 y 2 6x 0 ( x 0)或y 0 (x 6或x 2 )。 评注:本例利用平面几何的知识(三角形的角平分线定理进行解题) ,方便了求轨迹的方程。 4.参数法: 有时很难直接找出动点的横、纵坐标之间关系。如果借助中间量(参数) 联系,然后再从所求式子中消去参数,这便可得动点的轨迹方程。 0 -b _2_ 1 - -b 3 a x 2 b 3y ②代入①得: 3 2 2 (評(3y) 2 36,即一 16 例3 :如图,已知两定点 A ( 6,0 ), B ( 2,0 ), O 为原点,动点 P 与线段AO 、BO 所张的角相等, ,使(x, y)之间的关系建立起

圆锥曲线的定义、性质、方程

专题13 圆锥曲线的定义、性质和方程 ★★★高考在考什么 【考题回放】 1.已知△ABC 的顶点B 、C 在椭圆2 3 x +y 2=1上,顶点A 是椭圆的一个焦点,且 椭圆的另外一个焦点在BC 边上,则△ABC 的周长是(C ) (A )2 3 (B )6 (C )4 3 (D )12 2.已知双曲线22221x y a b -=的一条渐近线方程为y =4 3x ,则双曲线的离心率为(A) (A )53 (B )43 (C )54 (D )3 2 3.如果双曲线的两个焦点分别为)0,3(1-F 、)0,3(2F ,一条渐近线方程为x y 2= , 那么它的两条准线间的距离是( C ) A .36 B .4 C .2 D .1 4.抛物线y =4x 2上的一点M 到焦点的距离为1,则点M 的纵坐标是( B) ( A ) 16 17 ( B ) 1615 ( C ) 87 ( D ) 0 5.已知椭圆中心在原点,一个焦点为F (-23,0),且长轴长是短轴长的2倍, 则该椭圆的标准方程是 2 21164 +=y x . 6.如图,F 为双曲线C :()22 2210,0x y a b a b -=>>的右焦点。P 为双曲线C 右支 上一点,且位于x 轴上方,M 为左准线上一点,O 为坐标原点。已知四边形OFPM 为 平行四边形,|PF |=λ|OF |。 (Ⅰ)写出双曲线C 的离心率e 与λ的关系式; (Ⅱ)当λ=1时,经过焦点F 且平行于OP 的直线交双曲线于A 、B 点,若|AB |=12,求此时的双曲线方程。 【专家解答】 ∵四边形OFPM 是 ,∴||||OF PM c ==, 作双曲线的右准线交PM 于H ,则2 ||||2 a PM PH c =+,又22 2222|||||| 222 PF OF c e e a PH c a e c c λλλ====---, 220e e λ--=。 (Ⅱ)当1λ=时,2e =,2c a =,2 2 3b a =,双曲线为 22 22 143x y a a -=四边形

求轨迹方程的常用方法(例题及变式)

求轨迹方程的常用方法: 题型一 直接法 此法是求轨迹方程最基本的方法,根据所满足的几何条件,将几何条件)}(|{M P M 直接翻译成y x ,的形式0),(=y x f ,然后进行等价变换,化简0),(=y x f ,要注意轨迹方程的纯粹性和完备性,即曲线上没有坐标不满足方程的点,也就是说曲线上所有的点适合这个条件而毫无例外(纯粹性);反之,适合条件的所有点都在曲线上而毫无遗漏(完备性)。 例1 过点)3,2(A 任作互相垂直的两直线AM 和AN ,分别交y x ,轴于点N M ,,求线段MN 中点P 的轨迹方程。 解:设P 点坐标为),(y x P ,由中点坐标公式及N M ,在轴上得)2,0(y M ,)0,2(x N ),(R y x ∈ ∴12 0322230-=--?--y x )1(≠x ,化简得01364=-+y x )1(≠x 当1=x 时,)3,0(M ,)0,2(N ,此时MN 的中点)2 3,1(P 它也满足方程01364=-+y x ,所以中点P 的轨迹方程为01364=-+y x 。 变式1 已知动点(,)M x y 到直线:4l x =的距离是它到点(1,0)N 的距离的2倍。 (1) 求动点M 的轨迹C 的方程; (2) 过点(0,3)P 的直线m 与轨迹C 交于,A B 两点。若A 是PB 的中点,求直线m 的斜 率。 题型二 定义法 圆锥曲线定义所包含的几何意义十分重要,应特别重视利用圆锥曲线的定义解题,包括用定义法求轨迹方程。 例2 动圆M 过定点)0,4(-P ,且与圆08:2 2=-+x y x C 相切,求动圆圆心M 的轨迹方程。 解:根据题意4||||||=-MP MC ,说明点M 到定点P C 、的距离之差的绝对值为定值,故点M 的轨迹是双曲线。 ∴2=a ,4=c 故动圆圆心M 的轨迹方程为112 42 2=-y x 变式2 在ABC △中,24BC AC AB =,,上的两条中线长度之和为39, 求ABC △的重心的轨迹方程.

2.3.1圆锥曲线的参数方程教案新人教版选修4_4

第三课时 圆锥曲线的参数方程 一、教学目标: 知识与技能:了解圆锥曲线的参数方程及参数的意义 过程与方法:能选取适当的参数,求简单曲线的参数方程 情感、态度与价值观:通过观察、探索、发现的创造性过程,培养创新意识。 二、重难点:教学重点:圆锥曲线参数方程的定义及方法 教学难点:选择适当的参数写出曲线的参数方程. 三、教学方法:启发、诱导发现教学. 四、教学过程: (一)、复习引入: 1.写出圆方程的标准式和对应的参数方程。 (1)圆2 2 2 r y x =+参数方程? ? ?==θθ sin cos r y r x (θ为参数) (2)圆2 2020)\()(r y y x x =+-参数方程为:?? ?+=+=θ θ sin cos 00r y y r x x (θ为参数) 2.写出椭圆、双曲线和抛物线的标准方程。 3.能模仿圆参数方程的推导,写出圆锥曲线的参数方程吗? (二)、讲解新课: 1.椭圆的参数方程推导:椭圆122 22=+b y a x 参数方程 ???==θ θsin cos b y a x (θ为参数),参 数θ的几何意义是以a 为半径所作圆上一点和椭圆中心的连线与X 轴正半轴的夹角。 2.双曲线的参数方程的推导:双曲线122 22=-b y a x 参数方程 ???==θ θtan sec b y a x (θ为参数)

参数θ几何意义为以a 为半径所作圆上一点和椭圆中心的连线与X 轴正半轴的夹角。 3.抛物线的参数方程:抛物线Px y 22 =参数方程???==Pt y Pt x 222 (t 为参数),t 为以抛物 线上一点(X,Y )与其顶点连线斜率的倒数。 (1)、关于参数几点说明: A.参数方程中参数可以是有物理意义,几何意义,也可以没有明显意义。 B.同一曲线选取的参数不同,曲线的参数方程形式也不一样 C.在实际问题中要确定参数的取值范围 (2)、参数方程的意义: 参数方程是曲线点的位置的另一种表示形式,它借助于中间变量把曲线上的动点的两个坐标间接地联系起来,参数方程与变通方程同等地描述,了解曲线,参数方程实际上是一个方程组,其中x ,y 分别为曲线上点M 的横坐标和纵坐标。 (3)、参数方程求法:(A )建立直角坐标系,设曲线上任一点P 坐标为),(y x ;(B )选取适当的参数;(C )根据已知条件和图形的几何性质,物理意义,建立点P 坐标与参数的函数式;(D )证明这个参数方程就是所由于的曲线的方程 (4)、关于参数方程中参数的选取:选取参数的原则是曲线上任一点坐标当参数的关系比较明显关系相对简单。与运动有关的问题选取时间t 做参数;与旋转的有关问题选取角θ做参数;或选取有向线段的数量、长度、直线的倾斜斜角、斜率等。 4、椭圆的参数方程常见形式:(1)、椭圆12222=+b y a x 参数方程 ???==θ θsin cos b y a x (θ为

高中数学教师备课必备系列圆锥曲线:专题五 圆锥曲线

(1)第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F ,F 的距离的和等于常数,且此常数 一定要大于 ,当常数等于 时,轨迹是线段F F ,当常数小 于时,无轨迹;双曲线中,与两定点F ,F 的距离的差的绝对值等于常数,且此常数 一定要小于|F F |,定义中的“绝对值”与 <|F F |不可忽视。若 =|F F |, 则轨迹是以F ,F 为端点的两条射线,若﹥|F F |,则轨迹不存在。若去掉定义中的绝对 值则轨迹仅表示双曲线的一支。比如: ①已知定点,在满足下列条件的平面上动点P 的轨迹中是椭圆的是 A . B . C . D . (答:C ); ②方程 表示的曲线是_____(答:双曲线的左支) (2)第二定义中要注意定点和定直线是相应的焦点和准线,且“点点距为分子、点线距为分母”,其商即是离心率。圆锥曲线的第二定义,给出了圆锥曲线上的点到焦点距离与此点到相应准线距离间的关系,要善于运用第二定义对它们进行相互转化。 如已知点及抛物线上一动点P (x ,y ),则y+|PQ|的最小值是_____(答:2) 一、求焦点弦长 例1 过抛物线x 4y 2=的焦点F 作直线交抛物线于A (11y x ,)、B (22y x ,),若6x x 21=+,求|AB|的长。 解:设AB 的中点为E ,点A 、E 、B 在抛物线准线l :1x -=上的射影分别为G 、H 、M 。由第二定义知: 8)1(2 x x 2 |EH |2|BM ||AG ||BF ||AF ||AB |2 1=--+==+=+=。

二、求离心率 例2 设椭圆22 22b y a x +=1(a>b>0)的右焦点为1F ,右准线为l 1,若过F 1且垂直于x 轴的弦的 长度等于F 1到准线l 1的距离,求椭圆的离心率。 三、求点的坐标 例3 双曲线13 y x 2 2 =-的右支上一点P ,到左焦点F 1与到右焦点F 2的距离之比为2:1,求点P 的坐标。 解:设点P (00y x ,)(0x 0>),双曲线的左准线为l 1:21x -=,右准线为l 2:2 1 x =,则点P 到l 1、l 2的距离分别为2 1x d 21 x d 0201- =+=,。 所以,122 1x 21 x d d PF PF 002121=- + ==,解得23x 0 =。 将其代入原方程,得215y 0±=。因此,点P 的坐标为??? ? ??±21523,。 四、求焦半径 (圆锥曲线上的点P 到焦点F 的距离)的计算方法:利用圆锥曲线的第二定义,转化到相应准线的距离,即焦半径 ,其中 表示P 到与F 所对应的准线的距离。比如:

圆锥曲线标准方程求法(学生版)

圆锥曲线标准方程求法 一、椭圆标准方程求法 1、定义法 【例1】已知ABC ?的周长是18,)0,4(),0,4(B A -,求点C 的轨迹方程。 【变式】:在周长为定值的△ABC 中,已知|AB|=6,且当顶点C 位于定点P 时,cosC 有最小值为25 7.建立适当的坐标系,求顶点C 的轨迹方程. 【例2】已知椭圆C 以坐标轴为对称轴,以坐标原点为对称中心,椭圆的一个焦点为()0,1,点??? ? ??26,23M 在椭圆上,求椭圆C 的方程; 【例3】已知圆221:(1)16F x y ++=,定点2(1,0)F .动圆M 过点F 2,且与圆F 1相内切.求点M 的轨迹C 的方程. 【例4】设R y x ,,,∈为直角坐标系内y x ,轴正方向的单位向量, ,)2(j y i x a ++=j y i x b )2(-+=,且8||||=+.求点),(y x M 的轨迹C 的方程; 2、待定系数法 1.已知椭圆G 的中心在坐标原点,长轴在x 轴上,离心率为 2 ,且G 上一点到G 的两个焦点的距离之和为12,椭圆G 的方程.

2.已知椭圆1C :22 221(0)y x a b a b +=>>的右顶点为(1,0)A ,过1C 的焦点且垂直长轴的弦长为1.求椭圆1C 的方程. 3.已知椭圆C 的中心为直角坐标系xOy 的原点,焦点在x 轴上,它的一个顶点到两个焦点的距离分别是7和1.求椭圆C 的方程. 4.设椭圆:E 22 221x y a b +=(,0a b >>)过2)M ,(6,1)N 两点,O 为坐标原点,求椭圆E 的方程。 3、转化已知条件 【例1】已知点,A B 的坐标分别是(0,1)-,(0,1),直线,AM BM 相交于点M ,且它们的斜率之积为12- .求点M 轨迹C 的方程; 【例2】设Q 、G 分别为ABC ?的外心和重心,已知)0,1(-A ,)0,1(B ,AB QG //?求点C 的轨迹E 【例3】已知动点P 到直线33 4- =x 的距离是到定点(0,3-)的距离的332倍.求动点P 的轨迹方程;

求曲线轨迹方程的五种方法

求曲线轨迹方程的五种方法 一、直接法 如果题目中的条件有明显的等量关系,或者可以利用平面几何知 识推出等量关系,求方程时可用直接法。 例1长为2a的线段AB的两个端点分别在x轴、y轴上滑动,求AB 中点P的轨迹方程。 /解:设点P的坐标为(x, y),\ 则A(2x,0),B(0,2y),由|AB|=2a 得\、(2x 0)2(0 2y)2=2a 化简得x2+y2=a,即为所求轨迹方程 点评:本题中存在几何等式|AB|=2a,故可用直接法解之。 二、定义法 如果能够确立动点的轨迹满足某种已知曲线的定义,则可用曲线定义写出方程,这种方法称为定义法。 例2动点P到直线x+4=0的距离减去它到M (2, 0)的距离之 差等于2,则点P的轨迹是() A、直线 B、椭圆 C、双曲线 D、抛物线 解法一:由题意,动点P到点M (2,0)的距离等于这点到直 线x=-2的距离,因此动点P的轨迹是抛物线,故选D。 解法二:设P点坐标为(x,y),则/ |x+4|- (x 2)2 y2=2

当x > -4 时,x+4- (x 2)2 y2=2 化简得

当时,y2=8x 当x V -4 时,-X-4- .. (x 2)2 y2=2 无解 所以P点轨迹是抛物线y2=8x 点评:解法一与解法二分别用定义法和直接法求轨迹方程,明显, 解法一优于后一种解法,对于有些求轨迹方程的题目,若能采用定义法,则优先采用定义法,它能大量地简化计算。 三、代入法 如果轨迹点P(x,y)依赖于另一动点Q(a, b),而Q(a, b)又在某已知曲线上,则可先列出关于x、y、a、b的方程组,利用x、y表示出a、b,把a、b代入已知曲线方程便得动点P的轨迹方程,此法称为代入法。 2 2 例3 P 在以F1、F2为焦点的双曲线16七1上运动,则厶F1F2P 、k2 (x2 y2) ? . x2 y2=12 ??? k (x2+y2) =12,又点M在已知圆上, ??? 13k2x2+13k2y2-15kx-36ky=0 由上述两式消去x2+y2得 5x+12y-52=0 点评:用参数法求轨迹,设参尽量要少,消参较易。 五、交轨法 若动点是两曲线的交点,可以通过这两曲线的方程直接求出交点方程,

求曲线轨迹方程的常用方法

求曲线轨迹方程的常用 方法 Hessen was revised in January 2021

高考数学专题:求曲线轨迹方程的常用方法 张昕 陕西省潼关县潼关高级中学 714399 求曲线的轨迹方程,其实质就是利用题设中的几何条件,用“坐标化”将其转化为寻求变量间的关系.这类问题除了考查考生对曲线的定义、性质等基础知识的掌握,还充分考查了各种数学思想方法及一定的推理能力和运算能力.因此要分析轨迹的动点和已知条件的内在联系,选择最便于反映这种联系的形式建立等式.其常见方法如下: (1)直接法:直接法就是将动点满足的几何条件或者等量关系,直接坐标化,列出等式化简即得动点轨迹方程,这种求轨迹方程的方法就称为直接法,直接法求轨迹经常要联系平面图形的性质. (2)定义法:若动点轨迹的条件符合某一基本轨迹的定义(如椭圆、双曲线、抛物线、圆等),可以设出其标准方程,然后用待定系数法求解.这种求轨迹方程的方法称为定义法,利用定 义法求方程要善于抓住曲线的定义特征. (3)代入法:根据相关点所满足的方程,通过转换而求动点的轨迹方程.这就叫代入法.

(4) 参数法:若动点的坐标(x ,y )中的x ,y 分别随另一变量的 变化而变化,我们可以以这个变量为参数,建立轨迹的参数方程,消去参数来求轨迹方程. (5) 几何法:根据曲线的某种几何性质和特征,通过推理列出等式 求轨迹方程,这种求轨迹的方法叫做几何法. (6) 交轨法:在求动点轨迹方程时,经常遇到求两动曲线的交点轨 迹方程问题,我们列出两动曲线的方程再设法消去曲线中的参数即可得到交点的轨迹方程. 典型例题示范讲解: 设圆C :22(1)1x y -+=,过原点作圆的弦0A ,求OA 中点B 的轨迹方程. 【解】:法一:(直接法) 如图,设B (x ,y ),由题得2OB +2BC =2OC , 即x 2+y 2 +[22(1)x y -+]=1 即OA 中点B 的轨迹方程为2211()24 x y -+=(x ≠0). 法二:(定义法) 设B (x ,y ),如上图,因为B 是OA 的中点

圆锥曲线定义、标准方程及性质(精)

圆锥曲线定义、标准方程及性质 一.椭圆 定义Ⅰ:若F 1,F 2是两定点,P 为动点,且21212F F a PF PF >=+ (a 为常数)则P 点的轨迹是椭圆。 定义Ⅱ:若F 1为定点,l 为定直线,动点P 到F 1的距离与到定直线l 的距离之比为常数e (0>b a 取值范围:}{a x a x ≤≤-, }{b y b x ≤≤- 长轴长=a 2,短轴长=2b 焦距:2c 准线方程:c a x 2 ±= 焦半径:)(21c a x e PF +=,)(2 2x c a e PF -=,212PF a PF -=,c a PF c a +≤≤-1等(注意:涉及焦半径时①用点P 坐标表示,②第一定义,第二定义。) 注意:(1)图中线段的几何特征:=11F A c a F A -=22,=21F A c a F A +=12 =11F B a F B F B F B ===122221 ,222122b a B A B A += =等等。顶点与 准线距离、焦点与准线距离分别与c b a ,,有关。 (2)21F PF ?中经常利用余弦定理....、三角形面....积公式... 将有关线段1PF 、2PF 、2c , 有关角21PF F ∠结合起来,建立1 PF +2PF 、1 PF ? 2PF 等关系 (3)椭圆上的点有时常用到三角换元:?? ?θ =θ =sin cos b y a x ; (4)注意题目中椭圆的焦点在x 轴上还是在y 轴上,请补充当焦点在y 轴上时,其相 应的性质。 二、双曲线 (一)定义:Ⅰ若F 1,F 2是两定点,21212F F a PF PF <=-(a 为常数),则动点P 的轨迹是双曲线。 Ⅱ若动点P 到定点F 与定直线l 的距离之比是常数e (e>1),则动点P 的轨迹是双曲线。 (二)图形: (三)性质 方程:12222=-b y a x )0,0(>>b a 122 22=-b x a y )0,0(>>b a 取值范围:}{a x a x x ≤≥或; 实轴长=a 2,虚轴长=2b 焦距:2c

最全地圆锥曲线轨迹方程求法

圆锥曲线轨迹方程的解法 目录 一题多解 (3) 一.直接法 (5) 二. 相关点法 (10) 三. 几何法 (16) 四. 参数法 (19) 五. 交轨法 (22)

六. 定义法 (25)

一题多解 设圆C :(x -1)2+y 2=1,过原点O 作圆的任意弦OQ , 求所对弦的中点P 的轨迹方程。 一.直接法 设P (x,y ),OQ 是圆C 的一条弦,P 是OQ 的中点,则CP ⊥OQ ,x ≠0, 设OC 中点为M (0,21),则|MP |=21|OC |=21,得(x -21)2+y 2=4 1 (x ≠0),即 点P 的轨迹方程是(x -21)2+y 2=4 1 (0<x ≤1)。 二.定义法 ∵∠OPC =90°,∴动点P 在以M (0,2 1 )为圆心,OC 为直径的圆(除去原 点O )上,|OC |=1,故P 点的轨迹方程为(x -21)2+y 2=4 1 (0<x ≤1) 三.相关点法 设P (x,y ),Q (x 1,y 1),其中x 1≠0, ∴x 1=2x,y 1=2y ,而(x 1-1)2+y 2=1 ∴(2x -1)2+2y 2=1,又x 1≠0, ∴x ≠0,即(x - 21)2+y 2=4 1 (0<x ≤1)

四.参数法 ①设动弦PQ 的方程为y=kx ,代入圆的方程(x -1)2+kx 2=1, 即(1+k 2)x 2-2x =0,∴.12 2 21k x x +=+ 设点P (x,y ),则2 2211],1,0(112k k kx y k x x x +==∈+=+= 消去k 得(x - 21)2+y 2=4 1 (0<x ≤1) ②另解 设Q 点(1+cos θ,sin θ),其中cos θ≠-1,P (x,y ), 则,2sin ],1,0(2cos 1θθ=∈+= y x 消去θ得(x -21)2+y 2=4 1(0<x ≤1)

解析几何专题03圆锥曲线的定义方程及几何性质

解析几何专题03圆锥曲线的定义、方程及几何性质 学习目标 (1)理解圆锥曲线的定义,并能正确运用圆锥曲线的定义解决一些简单的问题; (2)掌握圆锥曲线的标准方程,并能熟练运用“待定系数法”求圆锥曲线的方程; (3)能根据圆锥曲线的方程研究圆锥曲线的一些几何性质(尤其是焦点、离心率以及双曲线的渐近线等)。 知识回顾及应用 1.圆锥曲线的定义 (1)椭圆 (2)双曲线 (3)抛物线 2.圆锥曲线的方程 (1)椭圆的标准方程 (2)双曲线的标准方程 (3)抛物线的标准方程 3.圆锥曲线的几何性质 (1)椭圆的几何性质 (2)双曲线的几何性质 (3)抛物线的几何性质 4.应用所学知识解决问题: 【题目】已知椭圆的两个焦点坐标分别是(-2,0),(2,0),并且经过点53 (,)22 -, 求椭圆的方程。 答案:22 1106 x y + = 【变式1】写出适合下列条件的椭圆的标准方程: (1)离心率14 e b = =,焦点在x 轴上; (2)4,a c ==焦点在y 轴上; (3)10,a b c +== 答案:(1)22116x y +=;(2)22 116y x +=;(3)2213616x y + =或2213616 y x +=。 【变式2】写出适合下列条件的椭圆的标准方程: (1)3a b =,且经过点(3,0)P ; (2)经过两点3(2-。 答案:(1)22 19x y +=或221819y x +=;(2)2214 x y +=。

问题探究(请先阅读课本,再完成下面例题) 【类型一】圆锥曲线的方程 例1.已知抛物线、椭圆和双曲线都经过点()1,2M ,它们在x 轴上有共同焦点,椭圆 和双曲线的对称轴是坐标轴,抛物线的顶点为坐标原点.求这三条曲线的方程。 解:设抛物线方程为()220y px p =>,将()1,2M 代入方程得2p = 24y x ∴= 抛物线方程为: 由题意知椭圆、双曲线的焦点为()()211,0,1,0,F F -∴ c=1 对于椭圆,1222a MF MF =++(2 2 2222211321 a a b a c ∴=+∴=+=+∴=-=+∴= 椭圆方程为: 对于双曲线,1222a MF MF '=-= 2222221321 a a b c a '∴='∴=-'''∴=-=∴= 双曲线方程为: 练习:1.在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点12,F F 在x 轴上,离心率为 2 。过1F 的直线L 交C 于,A B 两点,且2ABF 的周长为16,那么C 的方程为 。 答案:22 1168 x y + =求圆锥曲线的方程主要采用“待定系数法” 。需要注意的是在求解此类问题时应遵循“先定位,再定量”的原则。注意:当“焦点所在轴不定”时,要有“分类讨论”意识,

《圆锥曲线的参数方程》教学案

2.3《圆锥曲线的参数方程》教学案 一、教学目标: 知识与技能:了解圆锥曲线的参数方程及参数的意义 过程与方法:能选取适当的参数,求简单曲线的参数方程 情感、态度与价值观:通过观察、探索、发现的创造性过程,培养创新意识. 二、重难点: 教学重点:圆锥曲线参数方程的定义及方法 教学难点:选择适当的参数写出曲线的参数方程. 三、教学方法: 启发、诱导发现教学. 四、教学过程: (一)、复习引入: 1.写出圆方程的标准式和对应的参数方程. (1)圆222r y x =+参数方程?? ?==θ θ sin cos r y r x (θ为参数) (2)圆2 2 02 0r y y x x =+-)\()(参数方程为:?? ?+=+=θ θ sin cos r y y r x x 00 (θ为参数) 2.写出椭圆、双曲线和抛物线的标准方程. 3.能模仿圆参数方程的推导,写出圆锥曲线的参数方程吗? (二)、讲解新课: 1.椭圆的参数方程推导:椭圆 12 22 2=+ b y a x 参数方程 ?? ?==θ θ sin cos b y a x (θ为参数),参数θ的几何意义是以a 为半径所作圆上一点和椭圆中心的连线与X 轴正半轴的夹角 2.双曲线的参数方程的推导:双曲线12 22 2=- b y a x 参数方程 ?? ?==θ θ tan sec b y a x (θ为参数)

. 3.抛物线的参数方程:抛物线Px y 22 =参数方程?? ?==Pt y Pt x 222 (t 为参数),t 为以抛物线上一点(X ,Y)与其顶点连线斜率的倒数. (1)、关于参数几点说明: A.参数方程中参数可以是有物理意义,几何意义,也可以没有明显意义. B.同一曲线选取的参数不同,曲线的参数方程形式也不一样 C.在实际问题中要确定参数的取值范围 (2)、参数方程的意义: 参数方程是曲线点的位置的另一种表示形式,它借助于中间变量把曲线上的动点的两个坐标间接地联系起来,参数方程与变通方程同等地描述,了解曲线,参数方程实际上是一个方程组,其中x ,y 分别为曲线上点M 的横坐标和纵坐标. (3)、参数方程求法:(A)建立直角坐标系,设曲线上任一点P 坐标为),(y x ;(B)选取适当的参数;(C)根据已知条件和图形的几何性质,物理意义,建立点P 坐标与参数的函数式;(D)证明这个参数方程就是所由于的曲线的方程 (4)、关于参数方程中参数的选取:选取参数的原则是曲线上任一点坐标当参数的关系比较明显关系相对简单.与运动有关的问题选取时间t 做参数;与旋转的有关问题选取角θ做参数;或选取有向线段的数量、长度、直线的倾斜斜角、斜率等. 4、椭圆的参数方程常见形式:(1)、椭圆122 22=+b y a x 参数方程 ?? ?==θ θsin cos b y a x (θ 为参数);椭圆 2 2 221(0)y x b a b a +=>>的参数方程是 c o s s i n (2x b y a θθθθ==≤≤π? 为参数,且0). (2)、以0 ( ,)y x 为中心焦点的连线平行于x 轴的椭圆的参数方程是 00 cos sin ({x a y b x y θθ θ= +=+为参数). (3)在利用???==θθ sin cos b y a x 研究椭圆问题时,椭圆上的点的坐标可记作(acos θ,bsin θ). (三)、巩固训练

求曲线轨迹方程专题(2)

轨 迹 方 程 问 题 常见的有六种求轨迹方程的方法: ①待定系数法:由几何量确定轨迹方程; ②定义法:根据曲线的定义,求轨迹方程; ③直接法:给出某些条件(几何、三角或向量表达式等)求轨迹方程; ④“代入法”求轨迹方程; ⑥参数法(包括解决中点弦问题的点差法)求轨迹方程. ⑤“交轨法”求轨迹方程; 1.直接法求轨迹方程.给出某种条件:平面几何、三角函数、解析几何、向量形式等.求解程序:①设动点P 的坐标为P(x ,y);②按题目的条件写出关系式;③整合关系式;④注明范围. 例1.设m R ∈,在平面直角坐标系中,已知向量(,1)a mx y =+,向量(,1)b x y =-,a b ⊥,动点 (,)M x y 的轨迹为E .求轨迹E 的方程,并说明该方程所表示曲线的形状; 解:因为a b ⊥,(,1)a mx y =+,(,1)b x y =-,所以a ·b =2210mx y +-=, 即 221mx y +=. 当m =0时,方程表示两条直线:1±=y ; 当1m =时,方程表示的是圆:221x y +=; 当m >0且1≠m 时,方程表示的是椭圆; 当m <0时,方程表示的是双曲线. 2.根据圆锥曲线的定义,求轨迹方程

P M N 例2.如图,圆O 1与圆O 2的半径都是1,O 1O 2=4,过动点P 分别作圆O 1、圆O 2的切线PM 、PN (M 、N 分别为切点) ,使得PM =试建立适当的坐标系,并求动点 P 的轨迹方程. 解:如图,以直线12O O 为x 轴,线段12O O 的垂直平分线为y 轴,建立平面直角坐标系,则两圆心 分 别 为 12(2,0),(2,0) O O -.设 (,) P x y , 则,同理 222(2)1PN x y =-+-.2222211(2)1PM O P O M x y =-=++- ∵PM =, ∴2222(2)12[(2)1]x y x y ++-=-+-, 即221230x x y -++=,即22(6)33x y -+=. 这就是动点P 的轨迹方程. 注:动圆圆心轨迹问题 ①动圆与两外离定圆均外切(含相交);②动圆过定点且定圆外切;③动圆过定点且定直线相切;④动圆与两定圆一个外切,一个内切;⑤动圆过定点且定圆相切. 3.参数法求轨迹方程: 例3.动圆P 过点A (0,1)且与直线y=-1相切,O 是坐标原点,动圆P 的圆心轨迹是曲线C. (1)求曲线C 的方程; (2)过A 作直线l 交曲线C 于,D E 两点,求弦DE 的中点M 的轨迹方程; (3)在(2)中求ODE ?的重心G 的轨迹方程。 解:(1)点P 到点A 的距离等于点P 到直线y= -1的距离,故点P 的轨迹C 是以点A 为焦点,直线y=-1为准线的抛物线,所以曲线C 的方程 x 2=4y. 2222 A , 1 4440,+=4,(+)2, 1, 2 1 2()1,1.2221l x y x x kx k x k y x x k y y x y =====+=?=?+=+?=+? 1122212122 (2)设M(x,y),D(x ,y ),E(x ,y ),依题意知过的直线的斜率存在,设该直线的方程为:y=kx+1 与联立,消整理得:--则x x 则x x kx+1=2k 2k 即,消去得:即为所求的方程k 另解:(2)

用圆锥曲线定义求曲线方程

用圆锥曲线定义求曲线方程 圆锥曲线的定义尽管简单,但很重要,是推导标准方程和研究几何性质的基础和根源。圆锥曲线这一部分是高考考试的重点内容,其中对定义考查的试题又层出不穷,高考常常涉及,2008高考试题中有七套考察了定义。回归定义和有意识利用定义是高三学生需要加强的一个意识。 把握圆锥曲线的定义从两个方面入手即可:定义表达式和限制条件。现归纳对比如下表: 圆锥曲线定义表达式限制条件 椭圆+ =2a <2a 双曲线- =+2a >2a 抛物线=d P不在定直线L上 圆锥曲线的应用主要有三个方面: 1.求曲线的轨迹,即定义法。 2.涉及椭圆和双曲线上的点和两个焦点的“焦点三角形”问题,常利用定义表达式结合余弦定理解决。 3.研究曲线上的点和定点间距离的最值问题(和抛物线的焦点弦问题)。 现只对利用定义求曲线方程这部分试题总结如下: 一、与向量法有关的圆锥曲线定义试题

例1已知=(c, o)(c>0),=(n, n)(n R),| |的最小值为1,若动点P同时满足下列三个条件; ①| |= (a>c>0) ②(其中 ③动点P的轨迹C经过点B(0,-1) Ⅰ求c的值; Ⅱ求曲线C的方程; Ⅲ是否存在方向向量为a=(1,k)(k )的直线l,使l与曲线C 交于不同的点N、M且?若存在,求出k的取值范围;若不存在,请说明理由。 分析:本题的三个条件中的①②实质是用向量法给出了圆锥曲线的定义。因为F为一定点,②(其中实质说明E点在定直线x= ,且PE平行于x轴, 即垂直于直线x= ;①| |= 结合②说明了动点P到定点F和到定直线x= 的距离之比为定值。又根据a>c>0可知P点的轨迹为椭圆。 解:Ⅰ由①②可知P点轨迹为中心在原点,焦点在x轴上的椭圆,故可设方程为 又由=(c, o)(c>0),=(n, n)(n R),| |的最小值为1可知点F 到直线y=x的距离为1,可求得c= Ⅱ又点B(0,-1)在椭圆上可得b2=1,a2=3 所以曲线方程为 Ⅲ假设存在方向向量a0=(1,k)(k≠0)的直线l满足条件,

求曲线轨迹方程的五种方法

求曲线轨迹方程的五种 方法 TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-

求曲线轨迹方程的五种方法 一、直接法 如果题目中的条件有明显的等量关系,或者可以利用平面几何知识推出等量关系,求方程时可用直接法。 例1 长为2a的线段AB的两个端点分别在x轴、y轴上滑动,求AB中点P的轨迹方程。 解:设点P的坐标为(x,y), 则A(2x,0),B(0,2y),由|AB|=2a得 2) 2 x- 2(y + -=2a 2 0( )0 化简得x2+y2=a,即为所求轨迹方程 点评:本题中存在几何等式|AB|=2a,故可用直接法解之。 二、定义法 如果能够确立动点的轨迹满足某种已知曲线的定义,则可用曲线定义写出方程,这种方法称为定义法。 例2 动点P到直线x+4=0的距离减去它到M(2,0)的距离之差等于2,则点P的轨迹是() A、直线 B、椭圆 C、双曲线 D、抛物线 解法一:由题意,动点P到点M(2,0)的距离等于这点到直线x=-2的距离,因此动点P的轨迹是抛物线,故选D。 解法二:设P点坐标为(x,y),则 |x+4|-2 2 -=2 x+ (y )2

当x ≥-4时,x+4-22)2(y x +-=2化简得 当时,y 2=8x 当x <-4时,-x-4-22)2(y x +-=2无解 所以P 点轨迹是抛物线y 2=8x 点评:解法一与解法二分别用定义法和直接法求轨迹方程,明显,解法一优于后一种解法,对于有些求轨迹方程的题目,若能采用定义法,则优先采用定义法,它能大量地简化计算。 三、 代入法 如果轨迹点P (x ,y )依赖于另一动点Q (a ,b ),而Q (a ,b )又在某已知曲线上,则可先列出关于x 、y 、a 、b 的方程组,利用x 、y 表示出a 、b ,把a 、b 代入已知曲线方程便得动点P 的轨迹方程,此法称为代入法。 例3 P 在以F 1、F 2为焦点的双曲线19 1622=-y x 上运动,则△F 1F 2P 的重心G 的轨迹方程是 。 解:设P (x 0,y 0),G (x ,y ),则有 ??? ????++=+-=)00(31)4(3100y y x x x 即???==y y x x 3300,代入 191622=-y x 得19 91692 2=-y x 即116 922 =-y x 由于G 不在F 1F 2上,所以y ≠0

圆锥曲线的参数方程练习题(带答案)

圆锥曲线的参数方程练习题 1、若点()3,P m 在以点F 为焦点的抛物线2 4{4x t y t == (t 为参数)上,则PF 等于( ) A.2 B.3 C.4 D.5 答案:C 解析:抛物线为24y x =,准线为1x =-, PF 为()3,P m 到准线1x =-的距离,即为4. 故选C. 2、参数方程sin cos , {1sin 2x y θθθ=+=+ (θ为参数)所表示的曲线为( ) A.圆的一部分 B.抛物线的一部分 C.双曲线的一部分 D.椭圆的一部分 答案:B 解析:参数方程sin cos , {1sin 2x y θθθ=+=+ (θ为参数),化为普通方程为2(02)x y y =≤≤, 表示抛物线的一部分. 3、椭圆5cos ,{3sin x y ?? == (?为参数)的焦点坐标为( ) A.(5,0)± B.(4,0)± C.(3,0)± D.(0,4)± 答案:B 解析:椭圆5cos ,{3sin x y ?? == (?为参数)的普通方程为22 1259x y +=,故4c =. 又椭圆焦点在x 轴上,故焦点坐标为(4,0)±.

4、已知过曲线3cos ,{ 4sin x y θθ== (θ为参数,0θπ≤≤)上一点P 和原点O 的连线PO 的倾斜角为4 π,则P 点的坐标是( ) A.(3,4) B.1212,55??- ??? C.? D.1212,55?? ??? 答案:D 解析:直线PO 的方程是y x =,又点P 为曲线3cos ,{ 4sin x y θθ==上一点,故3cos 4sin θθ=,即3tan 4θ=,因为倾斜角为4 π,0θπ≤≤,所以曲线与直线的交点在第一象限,故3sin 5θ=,4cos 5θ=,所以125 x y ==. 5、已知O 为原点,P 为椭圆4cos ,{ x y αα== (α为参数)上第一象限内一点,OP 的倾斜角为3 π,则点P 坐标为( ) A.()2,3 B.()4,3 C.( D.( ,55 答案:D 解析:椭圆4cos , {x y αα== (α为参数)化为普通方程,得22 11612x y +=.由题意可得直线OP 的方程为y = (0x >). 由22(0), {11612y x x y =>+= 解得x y ==∴点P 的坐标为()55 .故选D. 6、参数方程cos 2sin x y θθ=??=? (θ为参数)化为普通方程为( ) A.22 14y x += B.2212y x += C.2214x y += D.2 212x y +=

轨迹方程的 几种求法整理(例题+答案)

轨迹方程的六种求法整理 求轨迹方程是高考中常见的一类问题.本文对曲线方程轨迹的求法做一归纳,供同学们参考. 求轨迹方程的一般方法: 1. 直译法:如果动点P 的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点P 所满足的几何上的等量关系,再用点P 的坐标(x ,y )表示该等量关系式,即可得到轨迹方程。 2. 定义法:如果动点P 的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程 3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P 运动的某个几何量t ,以此量作为参变数,分别建立P 点坐标x ,y 与该参数t 的函数关系x =f (t ), y =g (t ),进而通过消参化为轨迹的普通方程F (x ,y )=0。 4. 代入法(相关点法):如果动点P 的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P (x ,y ),用(x ,y )表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P 的轨迹方程。 5. 交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这种问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。 6. 待定系数法:已知曲线是圆,椭圆,抛物线,双曲线等 一、直接法 把题目中的等量关系直接转化为关于x,y,的方程基本步骤是:建系。设点。列式。化简。说明等,圆锥曲线标准方程的推导。 1. 已知点(20)(30)A B -,,,,动点()P x y ,满足2PA PB x =·,求点P 的轨迹。26y x =+, 2. 2.已知点B (-1,0),C (1,0),P 是平面上一动点,且满足.||||CB PB BC PC ?=? (1)求点P 的轨迹C 对应的方程; (2)已知点A (m,2)在曲线C 上,过点A 作曲线C 的两条弦AD 和AE ,且AD ⊥AE ,判断:直线DE 是否过定点?试证明你的结论. (3)已知点A (m,2)在曲线C 上,过点A 作曲线C 的两条弦AD ,AE ,且AD ,AE 的斜率k 1、k 2满足k 1·k 2=2.求证:直线DE 过定点,并求出这个定点. 解:(1)设.4,1)1(||||),(222x y x y x CB PB BC PC y x P =+=+-?=?化简得得 代入 二、定义法 利用所学过的圆的定义、椭圆的定义、双曲线的定义、抛物线的定义直接写出所求的动点的轨迹方程,这种方法叫做定义法.这种方法要求题设中有定点与定直线及两定点距离之和或差为定值的条件,或利用平面几何知识分析得出这些条件. 1、 若动圆与圆4)2(2 2 =++y x 外切且与直线x =2相切,则动圆圆心的轨迹 方程是

相关文档
最新文档