机械优化设计习题集

合集下载

机械优化设计试题及答案

机械优化设计试题及答案

机械优化设计试题及答案### 机械优化设计试题及答案#### 一、选择题(每题2分,共10分)1. 机械优化设计的最基本目标是什么?- A. 最小化成本- B. 最大化效率- C. 确保安全性- D. 以上都是2. 以下哪个是优化设计中常用的数学方法?- A. 线性代数- B. 微积分- C. 概率论- D. 几何学3. 在进行机械优化设计时,以下哪个因素通常不是设计变量? - A. 材料选择- B. 尺寸参数- C. 工作温度- D. 制造工艺4. 机械优化设计中,约束条件通常包括哪些类型?- A. 应力约束- B. 位移约束- C. 速度约束- D. 所有上述5. 以下哪个软件不是用于机械优化设计的?- A. ANSYS- B. MATLAB- C. AutoCAD- D. SolidWorks#### 二、简答题(每题10分,共20分)1. 简述机械优化设计的基本步骤。

2. 解释什么是多目标优化,并举例说明其在机械设计中的应用。

#### 三、计算题(每题15分,共30分)1. 假设有一个机械臂设计问题,需要优化其长度以获得最大的工作范围。

如果机械臂的长度 \( L \) 与工作范围 \( R \) 的关系为 \( R = L \times \sin(\theta) \),其中 \( \theta \) 是机械臂与水平面的夹角,\( 0 \leq \theta \leq 90^\circ \),求当 \( \theta = 45^\circ \) 时,机械臂的最佳长度 \( L \)。

2. 考虑一个简单的梁结构,其长度为 \( 10 \) 米,承受均布载荷\( q = 10 \) kN/m。

若梁的弯曲刚度 \( EI \) 为 \( 1 \times10^7 \) Nm²,求梁的最大挠度 \( \delta \)。

#### 四、论述题(每题15分,共30分)1. 论述机械优化设计在现代制造业中的重要性。

机械优化设计题目

机械优化设计题目

机械优化设计题目1、一直园杆,用锻铝制造,其强度极限δB=490Mpa,屈服极限δS=380Mpa,杆的直径d=25mm,承受轴向载荷P=45000N,弯矩M=17.5N.m,扭矩T=46.1N.m。

试用第三强度、第四强度理论计算杆的安全系数的最大值。

2、某一设备中的非变位普通圆柱蜗杆传动,蜗杆由电动机驱动,n1=1440r/min,传动比i=21。

由于结构限制,应使蜗杆传动的中心距a≤200mm。

蜗杆用45号钢淬火(HRC>45),蜗轮采用ZQ19-4砂模铸造,滚刀加工,Z2<80。

折合一班制工作,使用寿命7年,单向传动,工作稳定。

试按传递最大功率的要求确定主要参数。

3、某一设备中的非变位普通圆柱蜗杆传动,蜗杆由电动机驱动,n1=1440r/min,传动比i=21。

由于结构限制,应使蜗杆传动的中心距a≤200mm。

蜗杆用45号钢淬火(HRC>45),蜗轮采用ZQ19-4砂模铸造,滚刀加工,Z2<80。

折合一班制工作,使用寿命7年,单向传动,工作稳定。

试按具有最大啮合效率的要求确定主要参数。

4、设计一压缩圆柱螺旋弹簧,要求其质量最小。

最大工作载荷P max=450(N),最小工作载荷P min=200(N),弹簧工作行程要求不少于10(mm),弹簧材料为65Mn,III类载荷弹簧,弹簧端部结构为YIII型,疲劳强度设计安全系数S F=1.2。

(三维14约束)5、已知直齿圆柱齿轮传动的参数如下:法面压力角αn=20º,法面齿顶高系数h an*=1.0,法面径向间隙系数c n*=0.25,齿数Z1=50,Z2=80,许用齿顶厚系数[S a*]=0.25,重合度许用值[ε]=1.2,节点进入双齿啮合区深度系数δ=0.6,求该齿轮副的最优法面变位系数X n1、X n2的和。

(参考机械原理课本,二维七个不等式一个等式约束)6、一受静载荷圆柱螺旋压缩弹簧,已知工作压力F=700N,弹簧材料选用50C r V A,其密度ρ=7.8g/cm3,切变模量G=8.1Χ10-4Mpa,许用剪应力[τ]=444Mpa,设弹簧中径为D,弹簧丝直径为d,弹簧总圈数为n,有效圈数为n1(n1=n-n2,n2为弹簧支承圈数),要求最大变形量10mm,压并高度不大于50mm,弹簧内径不小于16mm,以重量最轻为目标函数优化设计该弹簧。

(完整版)机械优化设计习题参考答案孙靖民第四版机械优化设计

(完整版)机械优化设计习题参考答案孙靖民第四版机械优化设计
1.Fibonacci法—理想方法,不常用。
2.黄金分割法(0.618法)
原理:提高搜索效率:1)每次只插一个值,利用一个前次的插值;2)每次的缩短率λ相同。左右对称。
程序:p52
(四)插值方法
1.抛物线法
原理:任意插3点:
算得: ; ;
要求:
设函数 用经过3点的抛物线 代替,有
解线代数方程
解得:
程序框图p57
网格法 ,缩小区间,继续搜索。
Monte Carlo方法 , ,随机数。
比较各次得到的 得解
遗传算法(专题)
(二)区间消去法(凸函数)
1.搜索区间的确定:高—低--高( )则区间内有极值。
2.区间消去法原理:在区间[a, b]内插两个点a1, b1保留有极值点区间,消去多余区间。
缩短率:
(三)0.618法
可行方向—约束允许的、函数减小的方向。(图)约束边界的切线与函数等高线的切线方向形成的区域。
数学模型
用内点法或混合法,取 ,
直接方法
(一)随机方向法
1.在可行域产生一个初始点 ,因 (约束),则
--(0,1)的随机数。
2.找k个随机方向,每个方向有n个方向余弦,要产生kn个随机数 , , ,随机方向的单位向量为
3.取一试验步长 ,计算每个方向的最优点
4.找出可行域中的最好点 得搜索方向 。以 为起点, 为搜索方向得 。最优点必须在可行域内或边界上,为此要逐步增加步长。

穷举下去得递推公式
3.算例
p73
4.框图p72
5.特点
作业:1. 2.
(六)变尺度法
1.引言
坐标变换
二次函数
令 为尺度变换矩阵

机械优化设计复习题全集

机械优化设计复习题全集

一、 填空题1. 用最速下降法求()()2211f x =100)1x x -+-(x 最优解时,设()[]00.5,0.5T x =-,第一步迭代的搜索方向为_______________。

2. 机械优化设计采用数学的规划法,其核心一是最佳步长,二是搜索方向。

3. 当优化问题是凸规划的情况下,在任何局部最优解就是全域最优解。

4. 应用外推法来确定搜索区间时,最后得到的三点,即为搜索区间的始点,中间点和终点,他们的函数值形成趋势高低高。

5. 包含n 个设计变量的优化问题,称为 n 维优化问题。

6. 函数12T T x Hx B x c ++的梯度为_________。

7. 与负梯度成锐角的方向为函数值下降方向,与梯度成直角的方向为函数值的不变方向。

8. 设G 为n n ⨯对称正定矩阵,若n 维空间中有两个非零向量0d ,1d ,满足()010d Gd =,则0d ,1d 之间存在共轭关系。

9. 设计变量,目标函数,约束条件是优化设计问题的数学模型的基本要素。

10. 对于无约束二元函数()12,f x x ,若在()01234,x x x =点处取得极小值,其必要条件是在0x 点的梯度为0,充分条件是在0x 点的海赛矩阵正定。

11. K-T 条件可以叙述为在极值点处目标函数的负梯度为起作用的各约束函数梯度的非负线性组合。

12. 用黄金分割法求一元函数()21036f x x x =-+的极值点,初始搜索区间[][],10,10a b =-,经第一次区间消去后得到新区间_________。

13. 优化设计问题的数学模型的基本要素有设计变量,目标函数,约束条件。

14. 牛顿法搜索方向k d =()()21()k k f x f x --∇∇,其计算是大,且要求初始在级极小点附近位置。

15. 将函数()2112121210460f x x x x x x x =+---+表示成的形式_______。

16. 存在矩阵H ,向量1d ,2d ,当满足()0T i j d Hd =向量1d 和向量2d 是关于H 共轭方向。

机械优化设计课后习题答案0001

机械优化设计课后习题答案0001

34 第一章习题答案1-1 某厂每日(8h 制)产量不低于 1800件。

计划聘请两种不同的检验员,一级检验员的标准为:速度为25件/h ,正确率为98%,计时工资为 4元/ h ;二级检验员标准为:速度为 15件/h ,正确率为95%,计时工资 3 元/h 。

检验员每错检一件,工厂损失2元。

现有可供聘请检验人数为:一级8人和二级10人。

为使总检验费用最省,该厂应聘请一级、二级检验员各多少人? 解:(1 )确定设计变量;X-j一级检验员根据该优化问题给定的条件与要求,取设计变量为X =1;x 2二级检验员(2) 建立数学模型的目标函数; 取检验费用为目标函数,即:f(X) = 8*4* X 1+ 8*3* X 2 + 2 ( 8*25*0.02 X 1 +8*15*0.05 X 2 )=40x 1+ 36x 2(3) 本问题的最优化设计数学模型:s.t. g 1(X) =1800-8*25 X 1+8*15X 2< 0 g 2( X) = x 1 -8 < 0 g 3( X) = X 2-10 < 0 g 4( X) =- X 1 < 0g 5( X) = - x 2 < 0(2)建立数学模型的目标函数;取弹簧重量为目标函数,即:22一 rx 1 x 2x 3(3)本问题的最优化设计数学模型:2 2min f (X) = rx 1 x 2x 3s.t.g 1(X) =0.5- X 1 w 0 g 2( X) =10- X 2 w 0min f (X) = 40X 1+ 36X 2X € R 31-2 已知一拉伸弹簧受拉力F ,剪切弹性模量G ,材料重度r ,许用剪切应力[],许用最大变形量[]。

欲选择一组设计变量 X [咅 x 2 X 3]T[dD 2 n]T 使弹簧重量最轻,同时满足下列限制条件:弹簧圈数簧丝直径d 0.5,弹簧中径10 D 2 50。

试建立该优化问题的数学模型。

《机械优化设计》试卷习题及答案

《机械优化设计》试卷习题及答案

精选文档你我共享《机械优化设计》复习题及答案一、填空题、用最速降落法求22212的最优解时,设X(0)=[-0.5,0.5]T,第一1)+(1-x)1f(X)=100(x-x步迭代的搜寻方向为[-47;-50]。

2、机械优化设计采纳数学规划法,其中心一是成立搜寻方向二是计算最正确步长因子。

3、当优化问题是__凸规划______的状况下,任何局部最优解就是全域最优解。

4、应用进退法来确立搜寻区间时,最后获取的三点,即为搜寻区间的始点、中间点和终点,它们的函数值形成高-低-高趋向。

5、包括n个设计变量的优化问题,称为n维优化问题。

、函数1X THX BTX C的梯度为HX+B。

627、设G为n×n对称正定矩阵,若n维空间中有两个非零向量0,d1,知足(d0T1,d)Gd=0则d0、d1之间存在_共轭_____关系。

8、设计变量、拘束条件、目标函数是优化设计问题数学模型的基本因素。

9、对于无拘束二元函数f(x1,x2),若在x0(x10,x20)点处获得极小值,其必需条件是梯度为零,充足条件是海塞矩阵正定。

10、库恩-塔克条件能够表达为在极值点处目标函数的梯度为起作用的各拘束函数梯度的非负线性组合。

11、用黄金切割法求一元函数f(x)x210x36的极小点,初始搜寻区间[a,b][10,10],经第一次区间消去后获取的新区间为[-2.36,2.36]。

12、优化设计问题的数学模型的基本因素有设计变量、拘束条件目标函数、13、牛顿法的搜寻方向d k=,其计算量大,且要求初始点在极小点迫近位置。

14、将函数f(X)=x222-10x1-4x2+60表示成1XTHXTX C的形1+x2-x1x2B式。

15、存在矩阵H,向量d,向量d,当知足(d1)TGd2=0,向量d和向量d1212是对于H共轭。

16、采纳外点法求解拘束优化问题时,将拘束优化问题转变为外点形式时引入的处罚因子r数列,拥有由小到大趋于无量特色。

机械优化设计试题及答案

机械优化设计试题及答案

计算题1.试用牛顿法求()221285f X x x =+的最优解,设()[]01010TX =。

初始点为()[]01010TX =,则初始点处的函数值和梯度分别为()()0120121700164200410140f X x x f X x x =+⎡⎤⎡⎤∇==⎢⎥⎢⎥+⎣⎦⎣⎦,沿梯度方向进行一维搜索,有()010000010200102001014010140X X f X αααα-⎡⎤⎡⎤⎡⎤=-∇=-=⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦0α为一维搜索最佳步长,应满足极值必要条件()()[]()()()(){}()αϕααααααααm i n 14010514010200104200108min min 200020001=-⨯+-⨯-⨯+-⨯=∇-=X f X f X f()001060000596000ϕαα'=-=, 从而算出一维搜索最佳步长 0596000.05622641060000α==则第一次迭代设计点位置和函数值01010200 1.245283010140 2.1283019X αα--⎡⎤⎡⎤==⎢⎥⎢⎥-⎣⎦⎣⎦ ()124.4528302f X =,从而完成第一次迭代。

按上面的过程依次进行下去,便可求得最优解。

2、试用黄金分割法求函数()20f ααα=+的极小点和极小值,设搜索区间[][],0.2,1a b =(迭代一次即可)解:显然此时,搜索区间[][],0.2,1a b =,首先插入两点12αα和,由式 ()1()10.61810.20.5056b b a αλ=--=--= ()2()0.20.6181.20.6944a b a αλ=+-=+⨯-=计算相应插入点的函数值()()4962.29,0626.4021==ααf f 。

因为()()12f f αα>。

所以消去区间[]1,a α,得到新的搜索区间[]1,b α, 即[][][]1,,0.5056,1b a b α==。

机械优化设计复习题及答案

机械优化设计复习题及答案

机械优化设计复习题一.单项选择题1.一个多元函数()F X在X* 附近偏导数连续,则该点位极小值点的充要条件为()A.()*0F X∇= B. ()*0F X∇=,()*H X为正定C.()*0H X= D. ()*0F X∇=,()*H X为负定2.为克服复合形法容易产生退化的缺点,对于n维问题来说,复合形的顶点数K应()A.1K n≤+ B. 2K n≥ C. 12n K n+≤≤ D. 21n K n≤≤-3.目标函数F(x)=4x21+5x22,具有等式约束,其等式约束条件为h(x)=2x1+3x2-6=0,则目标函数的极小值为()A.1 B. 19.05 C.0.25 D.0.14.对于目标函数F(X)=ax+b受约束于g(X)=c+x≤0的最优化设计问题,用外点罚函数法求解时,其惩罚函数表达式Φ(X,M(k))为( )。

A. ax+b+M(k){min[0,c+x]}2,M(k)为递增正数序列B. ax+b+M(k){min[0,c+x]}2,M(k)为递减正数序列C. ax+b+M(k){max[c+x,0]}2,M(k)为递增正数序列hnD. ax+b+M (k){max [c+x,0]}2,M (k)为递减正数序列1.B2.C3.B4.B5.A6.B7.D8.B9.A 10C.11.B 12.C 13A 14.B 15.B 16 D 17.D 18.A0.186 C6.F(X)在区间[x 1,x 3]上为单峰函数,x 2为区间中一点,x 4为利用二次插值法公式求得的近似极值点。

如x 4-x 2>0,且F(x 4)>F(x 2),那么为求F(X)的极小值,x 4点在下一次搜索区间内将作为( )。

A.x 1 B.x 3 C.x 2D.x 47.已知二元二次型函数F(X)=AX X 21T ,其中A=⎥⎦⎤⎢⎣⎡4221,则该二次型是( )的。

A.正定 B.负定 C.不定 D.半正定 8.内点罚函数法的罚因子为( )。

《机械优化设计》习题及答案1word版本

《机械优化设计》习题及答案1word版本

机械优化设计习题及参考答案1-1.简述优化设计问题数学模型的表达形式。

答:优化问题的数学模型是实际优化设计问题的数学抽象。

在明确设计变量、约束条件、目标函数之后,优化设计问题就可以表示成一般数学形式。

求设计变量向量[]12Tn x x x x =L 使 ()min f x → 且满足约束条件()0(1,2,)k h x k l ==L ()0(1,2,)j g x j m ≤=L2-1.何谓函数的梯度?梯度对优化设计有何意义?答:二元函数f(x 1,x 2)在x 0点处的方向导数的表达式可以改写成下面的形式:⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡∂∂∂∂=∂∂+∂∂=∂∂2cos 1cos 212cos 21cos 1θθθθxo x f x f xo x f xo x f xo d fρ令xo Tx f x f x f x fx f ⎥⎦⎤⎢⎣⎡∂∂∂∂=∂∂∂∂=∇21]21[)0(, 则称它为函数f (x 1,x 2)在x 0点处的梯度。

(1)梯度方向是函数值变化最快方向,梯度模是函数变化率的最大值。

(2)梯度与切线方向d 垂直,从而推得梯度方向为等值面的法线方向。

梯度)0(x f ∇方向为函数变化率最大方向,也就是最速上升方向。

负梯度-)0(x f ∇方向为函数变化率最小方向,即最速下降方向。

2-2.求二元函数f (x 1,x 2)=2x 12+x 22-2x 1+x 2在T x ]0,0[0=处函数变化率最大的方向和数值。

解:由于函数变化率最大的方向就是梯度的方向,这里用单位向量p表示,函数变化率最大和数值时梯度的模)0(x f ∇。

求f (x1,x2)在x0点处的梯度方向和数值,计算如下:()⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡+-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡∂∂∂∂=∇120122214210x x x x f x f x f 2221)0(⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂=∇x f x f x f =5⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-=∇∇=5152512)0()0(x f x f p ϖ2-3.试求目标函数()2221212143,x x x x x x f +-=在点X 0=[1,0]T 处的最速下降方向,并求沿着该方向移动一个单位长度后新点的目标函数值。

《机械优化设计》练习题及答案

《机械优化设计》练习题及答案

《机械优化设计》练习题及答案1. 单选题1. K-T条件是多元函数取得约束极值的()条件。

A. 充分B. 必要C. 充分必要D. 不确定正确答案:B2. ()是从可行域的外部构造一个点序列去逼近原约束问题的最优解。

A. 外点法B. 内点法C. 混合法D. 抛物线法正确答案:A3. 在最速下降法中,相邻两个迭代点上的函数梯度相互()。

A. 平行B. 垂直C. 相交D. 相异正确答案:B4. 动态问题分为约束问题和()两种。

A. 一维问题B. n维性问题C. 无约束问题D. 约束问题正确答案:C5. 非线性问题分为一维问题和()两种。

A. 静态问题B. n维性问题C. 无约束问题D. 约束问题正确答案:B6. 一个可行设计必须满足某些设计限制条件,这些限制条件称作()。

A. 可行条件B. 固定条件C. 约束条件D. 边界条件正确答案:C7. 下列说法不正确的一项是()。

A. 变量轮换法的方法是依次沿相应的坐标轴方向进行的一维优化,收敛速度较慢B. 二维正定二次函数的等值线是同心的椭圆族,且椭圆中心就是以该函数为目标函数的极小点C. 用梯度法寻求目标函数的最小值时,就是沿目标函数方向上的一维搜索寻优法D. 利用复合形法进行优化设计时,构造初始复合形的全部顶点都必须在可行城内选取。

正确答案:C8. 下列优化设计的算法中,不属于无约束优化设计算法的一项是()。

A. 牛顿法B. 鲍威尔法C. 罚函数法D. 变尺度法正确答案:C9. ()通常是指在解决设计问题时,使其结果达到某种意义上的无可争议的完善化。

A. 正交化B. 规范化C. 最优化D. 正定化正确答案:C10. 有n个设计变量为坐标所组成的实空间称为()。

A. 设计空间B. 行向量C. 列向量D. 集正确答案:A2. 多选题11. 机械优化设计的数学模型的三要素是()。

A. 设计变量B. 目标函数C. 约束函数D. 定义公式正确答案:ABC12. 下列哪几项属于梯度法的特点?()A. 理论明确,程序简单,对初始点要求不严格B. 对一般函数而言,梯度法的收敛速度并不快C. 在远离极小点时逼近速度较快,而在接近极小点时逼近速度较慢D. 梯度法的收敛速度与目标函数的性质密切相关正确答案:ABCD13. 惩罚函数法有()三种方法。

机械优化设计试卷及答案

机械优化设计试卷及答案

百度文库《机械优化设计》复习题及答案一、填空题1、用最速下降法求f(X)=100(X2-X12)2+(1- X1)2的最优解时,设X(0)=[,]T,第一步迭代的搜索方向为[-47;-50]。

2、机械优化设计采用数学规划法,其核心一是建立搜索方向二是计算最佳步长因子。

3、当优化问题是—凸规划的情况下,任何局部最优解就是全域最优解。

4、应用进退法来确定搜索区间时,最后得到的三点,即为搜索区间的始点、中间点和终点,它们的函数值形成高-低-高趋势。

5、包含n个设计变量的优化问题,称为J 维优化问题。

6、函数1X T HX + B T X + C的梯度为HX+B。

7、设G为nxn对称正定矩阵,若n维空间中有两个非零向量d。

,d i,满足(d0)T Gd i=0,则d0、d i之间存在-共轭关系。

8、设计变量、约束条件、目标函数是优化设计问题数学模型的基本要素。

9、对于无约束二元函数f (x ,x2),若在x°(x w,x20)点处取得极小值,其必要条件是梯度为零,充分条件是2海塞矩阵正定。

10、库恩-塔克条件可以叙述为在极值点处目标函数的梯度为起作用的各约束函数梯度的非负线性组合。

11、用黄金分割法求一元函数f (x ) = x 2 -10 x + 36的极小点,初始搜索区间[a,b] = [-10,10],经第一次区间消去后得到的新区间为□。

12、优化设计问题的数学模型的基本要素有设计变量、约束条件目标函数、13、牛顿法的搜索方向d k=,其计算量大,且要求初始点在极小点逼近位置。

14、将函数f(X)=X]2+Xo2-X1X0-10X]-4Xo+60 表示成1X T HX + B T X + C的形12 1212 2式。

15、存在矩阵H,向量d1,向量d2,当满足(d1)TGd2=0 ,向量d1和向量d2是关于H共轭。

16、采用外点法求解约束优化问题时,将约束优化问题转化为外点形式时引入的惩罚因子r数列,具有由小到大趋于无穷特点。

机械优化设计习题集

机械优化设计习题集

机械优化设计复习题一、单项选择题5. 机械最优化设计问题多属于什么类型优化问题( )(P19-24)A .约束线性B .无约束线性C .约束非线性D .无约束非线性6. 工程优化设计问题大多是下列哪一类规划问题( )(P22-24)A .多变量无约束的非线性B .多变量无约束的线性C .多变量有约束的非线性D .多变量有约束的线性7. n 元函数在()k x 点附近沿着梯度的正向或反向按给定步长改变设计变量时,目标函数值( )(P25-28)A .变化最大B .变化最小C .近似恒定D .变化不确定8.()f x ∇方向是指函数()f x 具有下列哪个特性的方向( )(P25-28)A . 最小变化率B .最速下降C . 最速上升D .极值9. 梯度方向是函数具有( )的方向 (P25-28)A .最速下降B .最速上升C .最小变化D .最大变化率10. 函数()f x 在某点的梯度方向为函数在该点的()(P25-28)A .最速上升方向B .上升方向C .最速下降方向D .下降方向11. n 元函数()f x 在点x 处梯度的模为( )(P25-28)A.f ∇= B .12...nf f f f x x x ∂∂∂∇=++∂∂∂ C .22212()()...()n f f f f x x x ∂∂∂∇=++∂∂∂ D.f ∇=12.更适合表达优化问题的数值迭代搜索求解过程的是( ) (P25-31)A .曲面或曲线B .曲线或等值面C .曲面或等值线D .等值线或等值面13.一个多元函数()f x 在*x 点附近偏导数连续,则该点为极小值点的充要条件( )(P29-31)A.*()0f x ∇=B. *()0G x =C. 海赛矩阵*()G x 正定D. **()0G()f x x ∇=,负定14.12(,)f x x 在点*x 处存在极小值的充分条件是:要求函数在*x 处的Hessian 矩阵*()G x 为( )(P29-31)A .负定B .正定C .各阶主子式小于零D .各阶主子式等于零15.在设计空间内,目标函数值相等点的连线,对于四维以上问题,构成了( )(P29-33)A .等值域B .等值面C .同心椭圆族D .等值超曲面16.下列有关二维目标函数的无约束极小点说法错误的是( )(P31-32)A .等值线族的一个共同中心点B .梯度为零的点C .驻点D .海赛矩阵不定的点17.设()f x 为定义在凸集D 上且具有连续二阶导数的函数,则()f x 在D 上为凸函数的充分必要条件是海赛矩阵()G x 在D 上处处( )(P33-35)A .正定B .半正定C .负定D .半负定18.下列哪一个不属于凸规划的性质( )(P33-35)A.凸规划问题的目标函数和约束函数均为凸函数B.凸规划问题中,当目标函数()f x 为二元函数时,其等值线呈现为大圈套小圈形式C.凸规划问题中,可行域{|()01,2,...,}i D x g x j m =≤=为凸集D.凸规划的任何局部最优解不一定是全局最优解19.拉格朗日乘子法是求解等式约束优化问题的一种经典方法,它是一种( )(P36-38)A .降维法B .消元法C .数学规划法D .升维法20.若矩阵A 的各阶顺序主子式均大于零,则该矩阵为( )矩阵(P36-45)A .正定B .正定二次型C .负定D .负定二次型21.约束极值点的库恩-塔克条件为1()()qi i i f x g x λ=∇=-∇∑,当约束条件()0(1,2,...i g x i m ≤=和0i λ≥时,则q 应为( )(P39-47)A .等式约束数目B .起作用的等式约束数目C .不等式约束项目D .起作用的不等式约束数目22.一维优化方法可用于多维优化问题在既定方向上寻求下述哪个目的的一维搜索( )(P48-49)A .最优方向B .最优变量C .最优步长D .最优目标23.在任何一次迭代计算过程中,当起始点和搜索方向确定后,求系统目标函数的极小值就是求( )的最优值问题(P48-49)A .约束B .等值线C .步长D .可行域24.求多维优化问题目标函数的极值时,迭代过程每一步的格式都是从某一定点()k x 出发,沿使目标函数满足下列哪个要求所规定方向()k d 搜索,以找出此方向的极小值(1)k x +( )(P48-49)A .正定B .负定C .上升D .下降25.对于一维搜索,搜索区间为[a,b],中间插入两个点1111a b a b <、,,计算出11()()f a f b <,则缩短后的搜索区间为( )(P49-51)A . [a 1,b 1]B . [b 1,b]C . [a 1,b]D . [a,b 1]26.函数()f x 为在区间[10,20]内有极小值的单峰函数,进行一搜索时,取两点13和16,若f (13)<f(16),则缩小后的区间为( )(P49-51)A.[10,16]B.[10,13]C. [13,16]D. [16,20]27.为了确定函数单峰区间内的极小点,可按照一定的规律给出若干试算点,依次比较各试算点的函数值大小,直到找到相邻三点的函数值按()变化的单峰区间为止 (P49-52)A .高-低-高B .高-低-低C .低-高-低D .低-低-高28.0.618法是下列哪一种缩短区间方法的直接搜索方法( )(P51-53)A .等和B .等差C .等比D .等积29.假设要求在区间[a,b]插入两点12αα、,且12αα< ,下列关于一维搜索试探方法——黄金分割法的叙述,错误的是( )(P51-53)A.其缩短率为0.618B.1()b b a αλ=--C.1()a b a αλ=+-D.在该方法中缩短搜索区间采用的是区间消去法。

机械优化设计试题及答案

机械优化设计试题及答案

机械优化设计试题及答案一、单项选择题(每题2分,共20分)1. 在机械优化设计中,目标函数通常代表的是()。

A. 设计变量B. 约束条件C. 优化目标D. 优化方法答案:C2. 以下哪一项不是机械优化设计的约束条件?()A. 几何约束B. 材料约束C. 经济约束D. 工艺约束答案:A3. 机械优化设计中,常用的优化算法有()。

A. 梯度法B. 遗传算法C. 牛顿法D. 所有选项答案:D4. 在进行机械优化设计时,下列哪个因素不是设计者需要考虑的?()A. 材料成本B. 制造工艺C. 产品重量D. 产品颜色答案:D5. 机械优化设计中,目标函数的最小化问题通常指的是()。

A. 成本最小化B. 重量最小化C. 体积最小化D. 所有选项答案:D6. 以下哪个不是机械优化设计中常用的优化目标?()A. 最小化成本B. 最大化寿命C. 最小化尺寸D. 最大化速度答案:D7. 在机械优化设计中,下列哪一项不是常用的设计变量?()A. 尺寸B. 形状C. 材料D. 颜色答案:D8. 机械优化设计中,以下哪一项不是常用的优化方法?()A. 线性规划B. 非线性规划C. 动态规划D. 静态规划答案:D9. 在机械优化设计中,以下哪一项不是常用的优化算法?()A. 模拟退火B. 遗传算法C. 粒子群优化D. 牛顿迭代法答案:D10. 机械优化设计中,以下哪一项不是常用的约束条件?()A. 强度约束B. 刚度约束C. 稳定性约束D. 颜色约束答案:D二、多项选择题(每题3分,共15分)1. 机械优化设计中,常用的设计变量包括()。

A. 尺寸B. 形状C. 材料D. 颜色答案:ABC2. 机械优化设计中,常用的优化目标包括()。

A. 成本最小化B. 重量最小化C. 寿命最大化D. 速度最大化答案:ABC3. 机械优化设计中,常用的约束条件包括()。

A. 几何约束B. 材料约束C. 经济约束D. 工艺约束答案:ABCD4. 机械优化设计中,常用的优化方法包括()。

机械优化设计复习题答案

机械优化设计复习题答案

机械优化设计复习题答案一、选择题1. 在机械优化设计中,目标函数是()。

A. 需要优化的参数B. 需要优化的性能指标C. 需要优化的约束条件D. 需要优化的变量答案:B2. 机械优化设计中,约束条件的作用是()。

A. 确定设计变量的范围B. 确定目标函数的值C. 确定优化算法的选择D. 确定优化过程的复杂性答案:A3. 以下哪个不是机械优化设计中常用的优化算法()。

A. 遗传算法B. 模拟退火算法C. 牛顿迭代法D. 线性规划法答案:C二、填空题1. 在机械优化设计中,目标函数的最小化或最大化通常需要通过______来实现。

答案:优化算法2. 机械优化设计中的约束条件可以分为等式约束和______。

答案:不等式约束3. 机械优化设计中,设计变量的选择需要考虑______和______。

答案:物理意义;计算可行性三、简答题1. 简述机械优化设计中目标函数的作用。

答案:目标函数在机械优化设计中的作用是定义设计的目标性能指标,它是需要被优化的量,通常表现为最小化或最大化某个性能指标,以满足设计要求。

2. 描述机械优化设计中约束条件的分类及其意义。

答案:机械优化设计中的约束条件可以分为等式约束和不等式约束。

等式约束通常表示设计变量之间必须满足的精确关系,而不等式约束则表示设计变量必须满足的条件范围。

这些约束条件的意义在于确保设计方案在物理和工程上是可行的,并且满足所有的设计要求和限制。

3. 举例说明机械优化设计中设计变量的选择原则。

答案:在机械优化设计中,设计变量的选择原则包括但不限于以下几点:首先,设计变量应具有明确的物理意义,能够直接影响目标函数和约束条件;其次,设计变量的选择应考虑计算的可行性,确保在优化过程中可以有效地进行计算和迭代;最后,设计变量的数量和范围应适中,以避免过度复杂化优化问题,同时保证优化结果的实用性和经济性。

机械优化设计试题及答案

机械优化设计试题及答案

机械优化设计试题及答案一、选择题1. 机械优化设计中的“优化”指的是:A. 最小化成本B. 最大化效益B. 达到设计目标D. 以上都是答案:D2. 以下哪项不是机械优化设计的基本步骤?A. 确定设计变量B. 确定目标函数C. 确定约束条件D. 进行材料选择答案:D3. 在机械优化设计中,目标函数通常是用来衡量:A. 设计的可行性B. 设计的安全性C. 设计的经济性D. 设计的最优性答案:D二、填空题4. 机械优化设计通常采用的数学方法包括_______、_______和_______。

答案:线性规划;非线性规划;动态规划5. 机械优化设计中,约束条件可以是等式约束也可以是_______。

答案:不等式约束三、简答题6. 简述机械优化设计中目标函数的作用。

答案:目标函数在机械优化设计中的作用是量化设计目标,为设计提供评价标准,指导设计过程朝着最优解方向进行。

7. 描述机械优化设计中设计变量、目标函数和约束条件之间的关系。

答案:设计变量是优化设计中可以调整的参数;目标函数是设计过程中需要优化或最小化/最大化的量;约束条件是设计过程中必须满足的限制,它们共同定义了优化问题的边界和可行性。

四、计算题8. 假设有一个机械部件的重量W与其尺寸L和宽度H的关系为W = 2LH,成本C与重量W和材料单价P的关系为C = 10W + P。

若L和H 的取值范围均为[1,5],材料单价P为常数,求在满足强度要求的前提下,如何确定L和H的值以最小化成本C。

答案:首先,根据题目给出的关系式,我们可以将成本C表示为C = 10 * 2LH + P = 20LH + P。

由于P为常数,我们只需考虑如何最小化20LH。

由于L和H的取值范围相同,我们可以令L = H,此时C = 20L^2。

在[1,5]的范围内,当L = 1时,C达到最小值,即C_min = 20。

五、论述题9. 论述机械优化设计在现代机械工程中的重要性及其应用前景。

机械优化设计习题集

机械优化设计习题集

机械优化设计习题集机械优化设计复习题⼀、单项选择题1.机械优化设计中,凡是可以根据设计要求事先给定的独⽴参数,称为()(P19-21)A .设计变量B .⽬标函数C .设计常量D .约束条件2.下列哪个不是优化设计问题数学模型的基本要素()(P19-21)A .设计变量B .约束条件C .⽬标函数D .最佳步长3.凡在可⾏域内的任⼀设计点都代表了⼀允许采⽤的⽅案,这样的设计点为()(P19-21)A .边界设计点B .极限设计点C .外点D .可⾏点4.当设计变量的数量n 在下列哪个范围时,该设计问题称为中型优化问题(P19-21)A .n<10B .n=10~50C .n<50D .n>505. 机械最优化设计问题多属于什么类型优化问题()(P19-24)A .约束线性B .⽆约束线性C .约束⾮线性D .⽆约束⾮线性6. ⼯程优化设计问题⼤多是下列哪⼀类规划问题()(P22-24)A .多变量⽆约束的⾮线性D .多变量有约束的线性7. n 元函数在()k x 点附近沿着梯度的正向或反向按给定步长改变设计变量时,⽬标函数值()(P25-28)A .变化最⼤B .变化最⼩C .近似恒定D .变化不确定8.()f x ?⽅向是指函数()f x 具有下列哪个特性的⽅向()(P25-28)A . 最⼩变化率B .最速下降C . 最速上升D .极值9. 梯度⽅向是函数具有()的⽅向(P25-28)A .最速下降B .最速上升C .最⼩变化D .最⼤变化率10. 函数()f x 在某点的梯度⽅向为函数在该点的()(P25-28)A .最速上升⽅向B .上升⽅向C .最速下降⽅向D .下降⽅向11. n 元函数()f x 在点x 处梯度的模为()(P25-28)A.f ?= B .12...nf f f f x x x =++??? C .22212()()...()n f f f f x x x =++??? D.f ?=12.更适合表达优化问题的数值迭代搜索求解过程的是()(P25-31)A .曲⾯或曲线B .曲线或等值⾯C .曲⾯或等值线()(P29-31)A.*()0f x ?=B. *()0G x =C. 海赛矩阵*()G x 正定D. **()0G()f x x ?=,负定14.12(,)f x x 在点*x 处存在极⼩值的充分条件是:要求函数在*x 处的Hessian 矩阵*()G x 为()(P29-31) A .负定 B .正定 C .各阶主⼦式⼩于零 D .各阶主⼦式等于零15.在设计空间内,⽬标函数值相等点的连线,对于四维以上问题,构成了()(P29-33)A .等值域B .等值⾯C .同⼼椭圆族D .等值超曲⾯16.下列有关⼆维⽬标函数的⽆约束极⼩点说法错误的是()(P31-32)A .等值线族的⼀个共同中⼼点B .梯度为零的点C .驻点D .海赛矩阵不定的点17.设()f x 为定义在凸集D 上且具有连续⼆阶导数的函数,则()f x 在D 上为凸函数的充分必要条件是海赛矩阵()G x 在D 上处处()(P33-35)A .正定B .半正定C .负定D .半负定18.下列哪⼀个不属于凸规划的性质()(P33-35)A.凸规划问题的⽬标函数和约束函数均为凸函数B.凸规划问题中,当⽬标函数()f x 为⼆元函数时,其等值线呈现为⼤圈套⼩圈形式C.凸规划问题中,可⾏域{|()01,2,...,}i D x g x j m =≤=为凸集D.凸规划的任何局部最优解不⼀定是全局最优解19.拉格朗⽇乘⼦法是求解等式约束优化问题的⼀种经典⽅法,它是⼀种()(P36-38)C .数学规划法D .升维法20.若矩阵A 的各阶顺序主⼦式均⼤于零,则该矩阵为()矩阵(P36-45)A .正定B .正定⼆次型C .负定D .负定⼆次型21.约束极值点的库恩-塔克条件为1()()qi i i f x g x λ=?=-?∑,当约束条件()0(1,2,...i g x i m ≤=和0i λ≥时,则q 应为()(P39-47) A .等式约束数⽬ B .起作⽤的等式约束数⽬C .不等式约束项⽬D .起作⽤的不等式约束数⽬22.⼀维优化⽅法可⽤于多维优化问题在既定⽅向上寻求下述哪个⽬的的⼀维搜索()(P48-49)A .最优⽅向B .最优变量C .最优步长D .最优⽬标23.在任何⼀次迭代计算过程中,当起始点和搜索⽅向确定后,求系统⽬标函数的极⼩值就是求()的最优值问题(P48-49)A .约束B .等值线C .步长D .可⾏域24.求多维优化问题⽬标函数的极值时,迭代过程每⼀步的格式都是从某⼀定点()k x 出发,沿使⽬标函数满⾜下列哪个要求所规定⽅向()k d 搜索,以找出此⽅向的极⼩值(1)k x +()(P48-49)A .正定B .负定C .上升D .下降25.对于⼀维搜索,搜索区间为[a,b],中间插⼊两个点1111a b a b <、,,计算出26.函数()f x 为在区间[10,20]内有极⼩值的单峰函数,进⾏⼀搜索时,取两点13和16,若f (13)A.[10,16]B.[10,13]C. [13,16]D. [16,20]27.为了确定函数单峰区间内的极⼩点,可按照⼀定的规律给出若⼲试算点,依次⽐较各试算点的函数值⼤⼩,直到找到相邻三点的函数值按()变化的单峰区间为⽌(P49-52)A .⾼-低-⾼B .⾼-低-低C .低-⾼-低D .低-低-⾼28.0.618法是下列哪⼀种缩短区间⽅法的直接搜索⽅法()(P51-53)A .等和B .等差C .等⽐D .等积29.假设要求在区间[a,b]插⼊两点12αα、,且12αα< ,下列关于⼀维搜索试探⽅法——黄⾦分割法的叙述,错误的是()(P51-53)A.其缩短率为0.618B.1()b b a αλ=--C.1()a b a αλ=+-D.在该⽅法中缩短搜索区间采⽤的是区间消去法。

《机械优化设计》习题与答案

《机械优化设计》习题与答案

《机械优化设计》习题与答案机械优化设计习题及参考答案1-1.简述优化设计问题数学模型的表达形式。

答:优化问题的数学模型是实际优化设计问题的数学抽象。

在明确设计变量、约束条件、⽬标函数之后,优化设计问题就可以表⽰成⼀般数学形式。

求设计变量向量[]12Tn x x x x =L 使 ()min f x →且满⾜约束条件()0(1,2,)k h x k l ==L ()0(1,2,)j g x j m ≤=L2-1.何谓函数的梯度?梯度对优化设计有何意义?答:⼆元函数f(x 1,x 2)在x 0点处的⽅向导数的表达式可以改写成下⾯的形式:??=??+??=??2cos 1cos 212cos 21cos 1θθθθxo x f x f xo x f xo x f xo d fρ令xo Tx f x f x f x fx f ??=????=?21]21[)0(,则称它为函数f (x 1,x 2)在x 0点处的梯度。

(1)梯度⽅向是函数值变化最快⽅向,梯度模是函数变化率的最⼤值。

(2)梯度与切线⽅向d 垂直,从⽽推得梯度⽅向为等值⾯的法线⽅向。

梯度)0(x f ?⽅向为函数变化率最⼤⽅向,也就是最速上升⽅向。

负梯度-)0(x f ?⽅向为函数变化率最⼩⽅向,即最速下降⽅向。

2-2.求⼆元函数f (x 1,x 2)=2x 12+x 22-2x 1+x 2在T x ]0,0[0=处函数变化率最⼤的⽅向和数值。

解:由于函数变化率最⼤的⽅向就是梯度的⽅向,这⾥⽤单位向量p表⽰,函数变化率最⼤和数值时梯度的模)0(x f ?。

求f (x1,x2)在x0点处的梯度⽅向和数值,计算如下:()-=??+-==?120122214210x x x x f x f x f 2221)0(??+ =x f x f x f =5-=??????-=??=5152512)0()0(x f x f p ?2-3.试求⽬标函数()2221212143,x x x x x x f +-=在点X 0=[1,0]T 处的最速下降⽅向,并求沿着该⽅向移动⼀个单位长度后新点的⽬标函数值。

机械优化设计试题及答案

机械优化设计试题及答案

机械优化设计试题及答案试题一:1. 请简述机械优化设计的定义及重要性。

答案:机械优化设计是通过数学模型和计算机仿真技术,以最优化的方式对机械结构进行设计和改进的过程。

机械优化设计的重要性在于能够提高机械产品的性能和效率,降低成本和能源消耗,并且缩短产品开发周期。

2. 请阐述机械优化设计的基本步骤及流程。

答案:机械优化设计的基本步骤包括:问题定义、数学建模、解的搜索、结果评价和优化、最优解验证等。

具体流程如下:(1) 问题定义:明确机械优化设计的目标和约束条件,例如提高某项指标、降低成本等。

(2) 数学建模:通过将机械系统抽象为数学模型,建立与优化目标和约束条件相关的函数关系。

(3) 解的搜索:采用合适的搜索算法,寻找函数的最优解或近似最优解。

(4) 结果评价和优化:对搜索得到的解进行评价和分析,进一步进行调整和改进,以得到更好的解。

(5) 最优解验证:通过实验或仿真验证最优解的可行性和有效性。

试题二:1. 请简述梯度下降法在机械优化设计中的应用原理。

答案:梯度下降法是一种常用的优化算法,其原理是通过求解函数的梯度向量,并采取沿着梯度方向逐步迭代优化的方法。

在机械优化设计中,可以将需要优化的机械结构的性能指标作为目标函数,通过梯度下降法不断调整结构参数,以寻找最优解。

2. 请列举至少三种机械优化设计的常用方法。

答案:常见的机械优化设计方法包括:遗传算法、粒子群优化算法、模拟退火算法等。

其中:(1) 遗传算法通过模拟生物进化过程,通过选择、交叉和变异等操作,逐渐优化机械结构,以达到最优解。

(2) 粒子群优化算法模拟鸟群或鱼群的行为,通过不断迭代更新粒子的位置和速度,最终找到最优解。

(3) 模拟退火算法基于金属退火的原理,随机选择新解,并通过一定的准则接受或拒绝新解,以便在解空间中发现更优解。

试题三:1. 请解释有限元分析在机械优化设计中的作用。

答案:有限元分析是一种基于数值计算的方法,通过将复杂的结构划分成有限个单元,建立结构的有限元模型,并对其进行离散化求解,用于分析机械结构的应力、振动、热传导等特性。

机械优化设计题库

机械优化设计题库

一、绪论1。

思考题1。

何为约束优化设计问题?什么是无约束优化设计问题?试各举一例说明。

机械优化设计问题多属哪一类?2。

一般优化问题的数学模型包括哪些部分?写出一般形式的数学模型。

3。

机械优化设计的过程是怎样的?它与常规的机械设计有什么不同?4.怎样判断所求得的最优解是不是全局最优解?5。

试简述优化算法的迭代过程。

6.何为可行域?为什么说当存在等式约束则可行域将大为缩小?当优化问题中有—个等式约束时可行域是什么?当优化问题中有两个等式约束时可行域是什么?当n维优化问题中有n个等式约束时可行域是什么?7。

什么是内点、什么是外点?在优化设计中内点和外点都可以作为设计方案吗?为什么?8。

试写出第一节中第三个问题的数学模型。

9。

目标函数及其等值线(等值面)的意义和特性是什么?2。

习题1。

设计一容积为V的平底、无盖圆柱形容器,要求消耗原材料最少,试建立其优化设计的数学模型,并指出属于哪一类优化问题。

2。

当一个矩形无盖油箱的外部总面积限定为S时,怎样设计可使油箱的容量最大?试列出这个优化问题的数学模型,并回答:①属于几维的优化问题?②是线性规划还是非线性规划?3。

欲造容积为V的长方形无盖水箱,问应如何选定其长、宽、高尺寸,才能使用料消耗最少?试写出其数学模型.4.试求直径为D的圆内所有内接三角形面积中的最大值.5。

在曲面f1(x1,x2,x3)=0上找一点P1,在曲面f2(x1,x2,x3)=0上找一点P2,使得P1与P2的距离为最短,试建立优化问题的数学模型。

6.有一薄铁皮,宽b=14cm,长L=24cm,制成如图2—9所示的梯形槽,求边长x和倾斜角α为多大时,槽的容积最大?试写出此问题的优化设计模型并指出该问题属于哪一类的优化设计问题.7.欲制-批如图2—12所示的包装纸箱,其顶和底由四边延伸的折纸板组成.要求纸箱的容积为2m3,问如何确定a、b和c的尺寸,使所用的纸板最省.试写出该优化问题的数学模型。

8。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

机械优化设计复习题一、单项选择题1.机械优化设计中,凡是可以根据设计要求事先给定的独立参数,称为( )(P19-21)A . 设计变量B .目标函数C .设计常量D .约束条件2.下列哪个不是优化设计问题数学模型的基本要素( )(P19-21)A .设计变量B .约束条件C .目标函数D .最佳步长3.凡在可行域内的任一设计点都代表了一允许采用的方案,这样的设计点为( )(P19-21)A .边界设计点B .极限设计点C .外点D .可行点4.当设计变量的数量n 在下列哪个范围时,该设计问题称为中型优化问题(P19-21)A .n<10B .n=10~50C .n<50D .n>505. 机械最优化设计问题多属于什么类型优化问题( )(P19-24)A .约束线性B .无约束线性C .约束非线性D .无约束非线性6. 工程优化设计问题大多是下列哪一类规划问题( )(P22-24)A .多变量无约束的非线性B .多变量无约束的线性C .多变量有约束的非线性D .多变量有约束的线性7. n 元函数在()k x 点附近沿着梯度的正向或反向按给定步长改变设计变量时,目标函数值( )(P25-28)A .变化最大B .变化最小C .近似恒定D .变化不确定8.()f x ∇方向是指函数()f x 具有下列哪个特性的方向( )(P25-28)A . 最小变化率B .最速下降C . 最速上升D .极值9. 梯度方向是函数具有( )的方向 (P25-28)A .最速下降B .最速上升C .最小变化D .最大变化率10. 函数()f x 在某点的梯度方向为函数在该点的()(P25-28)A .最速上升方向B .上升方向C .最速下降方向D .下降方向11. n 元函数()f x 在点x 处梯度的模为( )(P25-28)A.f ∇= B .12...nf f f f x x x ∂∂∂∇=++∂∂∂ C .22212()()...()n f f f f x x x ∂∂∂∇=++∂∂∂ D.f ∇=12.更适合表达优化问题的数值迭代搜索求解过程的是( ) (P25-31)A .曲面或曲线B .曲线或等值面C .曲面或等值线D .等值线或等值面13.一个多元函数()f x 在*x 点附近偏导数连续,则该点为极小值点的充要条件( )(P29-31)A.*()0f x ∇=B. *()0G x =C. 海赛矩阵*()G x 正定D. **()0G()f x x ∇=,负定14.12(,)f x x 在点*x 处存在极小值的充分条件是:要求函数在*x 处的Hessian 矩阵*()G x 为( )(P29-31) A .负定 B .正定 C .各阶主子式小于零 D .各阶主子式等于零15.在设计空间内,目标函数值相等点的连线,对于四维以上问题,构成了( )(P29-33)A .等值域B .等值面C .同心椭圆族D .等值超曲面16.下列有关二维目标函数的无约束极小点说法错误的是( )(P31-32)A .等值线族的一个共同中心点B .梯度为零的点C .驻点D .海赛矩阵不定的点17.设()f x 为定义在凸集D 上且具有连续二阶导数的函数,则()f x 在D 上为凸函数的充分必要条件是海赛矩阵()G x 在D 上处处( )(P33-35)A .正定B .半正定C .负定D .半负定18.下列哪一个不属于凸规划的性质( )(P33-35)A.凸规划问题的目标函数和约束函数均为凸函数B.凸规划问题中,当目标函数()f x 为二元函数时,其等值线呈现为大圈套小圈形式C.凸规划问题中,可行域{|()01,2,...,}i D x g x j m =≤=为凸集D.凸规划的任何局部最优解不一定是全局最优解19.拉格朗日乘子法是求解等式约束优化问题的一种经典方法,它是一种( )(P36-38)A .降维法B .消元法C .数学规划法D .升维法20.若矩阵A 的各阶顺序主子式均大于零,则该矩阵为( )矩阵(P36-45)A .正定B .正定二次型C .负定D .负定二次型21.约束极值点的库恩-塔克条件为1()()qi i i f x g x λ=∇=-∇∑,当约束条件()0(1,2,...i g x i m ≤=和0i λ≥时,则q 应为( )(P39-47) A .等式约束数目 B .起作用的等式约束数目C .不等式约束项目D .起作用的不等式约束数目22.一维优化方法可用于多维优化问题在既定方向上寻求下述哪个目的的一维搜索( )(P48-49)A .最优方向B .最优变量C .最优步长D .最优目标23.在任何一次迭代计算过程中,当起始点和搜索方向确定后,求系统目标函数的极小值就是求( )的最优值问题(P48-49)A .约束B .等值线C .步长D .可行域24.求多维优化问题目标函数的极值时,迭代过程每一步的格式都是从某一定点()k x 出发,沿使目标函数满足下列哪个要求所规定方向()k d 搜索,以找出此方向的极小值(1)k x +( )(P48-49)A .正定B .负定C .上升D .下降25.对于一维搜索,搜索区间为[a,b],中间插入两个点1111a b a b <、,,计算出11()()f a f b <,则缩短后的搜索区间为( )(P49-51) A . [a 1,b 1] B . [b 1,b] C . [a 1,b] D . [a,b 1]26.函数()f x 为在区间[10,20]内有极小值的单峰函数,进行一搜索时,取两点13和16,若f (13)<f(16),则缩小后的区间为( )(P49-51)A.[10,16]B.[10,13]C. [13,16]D. [16,20]27.为了确定函数单峰区间内的极小点,可按照一定的规律给出若干试算点,依次比较各试算点的函数值大小,直到找到相邻三点的函数值按()变化的单峰区间为止 (P49-52)A .高-低-高B .高-低-低C .低-高-低D .低-低-高28.0.618法是下列哪一种缩短区间方法的直接搜索方法( )(P51-53)A .等和B .等差C .等比D .等积29.假设要求在区间[a,b]插入两点12αα、,且12αα< ,下列关于一维搜索试探方法——黄金分割法的叙述,错误的是( )(P51-53)A.其缩短率为0.618B.1()b b a αλ=--C.1()a b a αλ=+-D.在该方法中缩短搜索区间采用的是区间消去法。

30.一维搜索方法中,黄金分割法比二次插值法的收敛速度( )(P51-56)A.慢B.快C.一样D.不确定31.一维搜索试探方法---黄金分割法比二次插值法的收敛速度( )(P51-58)A .慢B .快C .一样D .不确定32.关于一维搜索的牛顿法,下列叙述错误的是( )(P53-58)A.牛顿法属于一维搜索的插值方法B.牛顿法的特点是收敛速度很慢C.牛顿法中需要计算每一点的函数二阶导数D 牛顿法要求初始点离极小点不太远,否则有可能使极小化序列发散33.关于一维搜索方法的叙述,下列说法错误的是( )(P48-58)A .黄金分割法是最常用的一维搜索试探方法B .在试探法中,确定试验点的位置时没有考虑函数值的分布C .当函数具有较好的解析性质时,试探法比插值法的效果好D .插值法中的牛顿法是利用一点的函数值、一阶导数值等构造二次函数的34.下列多变量无约束优化方法中,属于直接法的是( )(P59-60)A .变量轮换法B .牛顿法C .共轭梯度法D .变尺度法35.最速下降法相邻两搜索方向k d 和+1k d 之间关系为( ) (P60-63)A .相切B .正交C .成锐角D .共轭36.下面四种无约束优化方法中,哪一种在构成搜索方向时要使用到目标函数的二阶导数( )(P59-90)A .梯度法B .牛顿法C .变尺度法D .单行替换法37.下列多变量无约束优化方法中,算法稳定性最好的是( )(P59-89)A.坐标轮换法B.原始共轭方向法C.鲍威尔法D.梯度法38.下述哪个方法的主要优点是省去了海赛矩阵的计算,被公认为是求解无约束优化问题最有效的算法之一( )(P59-89)A .变尺度法B .复合形法C .惩罚函数法D .坐标轮换法39.通常情况下,下面四种算法中收敛速度最慢的是( )(P59-89)A .牛顿法B .梯度法C .共轭梯度法D .变尺度法40.下列约束优化问题的求解方法中,属于间接解法的是( )(P59-89)A .随机方向法 B.惩罚函数法 C.复合形法 D.广义简约梯度法41.下列无约束优化方法中,哪一个需要计算Hessian 矩阵( )(P60-89)A .鲍威尔法B .梯度法C .牛顿法D .共轭梯度法42.哪种方法在确定优化搜索方向时,不需用目标函数的一阶或二阶导数信息( )(P60-90)A .梯度法B .牛顿法C .变尺度法D .鲍威尔法43.下列关于共轭梯度法的叙述,错误的是( )(P70-73)A .共轭梯度法具有二次收敛性B. 共轭梯度法的第一个搜索方向应取为负梯度方向C. 共轭梯度法需要计算海赛矩阵D .共轭梯度法的收敛速度比最速下降法快44.变尺度法的迭代公式为1()k k k k k x x H f x α+=-∇,下列不属于k H 必须满足的条件是( ) (P74-80)A .k H 之间有简单的迭代形式B .拟牛顿条件C .与海赛矩阵正交D .对称正定45.梯度法和牛顿法可看作是下列哪种方法的一种特例( )(P74-80)A .坐标转换法B . 共轭方向法C . 变尺度法D .复合形法46.坐标轮换法之所以收敛速度很慢,原因在于其搜索方向与坐标轴的关系是下述哪种情况,不适应函数的变化情况( ) (P81-82)A .垂直B .斜交C .平行D .正交47.在无约束优化方法中,直接利用目标函数值构成的搜索方法是( ) (P83-85)A .梯度法B .鲍威尔法C .共轭梯度法D .变尺度法48.关于鲍威尔方法,叙述错误的是( )(P83-88)A .鲍威尔法是利用函数的一阶导数来构造共轭方向的B .鲍威尔法又称为方向加速法C .鲍威尔法是一种有效的共轭方向法D .对于非二次函数且具有连续二阶导数的优化问题,用鲍威尔法是有效的49.下列说法不正确的是( )(P95-102)A .线性规划问题中目标函数和约束函数都是线性的B.目标函数是线性函数,而约束条件不是线性的优化问题也属于线性规划问题C .线性规划问题中目标函数的最优解位于凸多边形(或凸多面体)的顶点上D .线性规划问题中目标函数的最优解不必在可行域整个区域内搜索50.下列关于随机方向法的叙述,错误的是()(P140-143)A .随机方向法是一种原理简单的直接解法B .对目标函数的性态无特殊要求C .此算法的收敛速度慢D .是求解小型优化问题的十分有效的算法51.关于约束优化问题的解法,下列说法正确的是( )(P138-158)A.直接解法通常适用于仅含等式约束的问题B.若目标函数为凸函数,可行域为凸集,间接法可保证获得全局最优点C.间接解法可有效地处理具有等式约束的约束优化问题D.可行方向法属于间接解法52.用复合形法求解约束优化问题时,下面哪种搜索方法不能用来改变初始复合形的形状( ) (P144-148)A .反射B .扩张C .收缩D .映射53.用可行方向法求解约束优化问题时,下面哪个不是产生可行方向的条件( )(P149-158)A.按可行方向得到的新点是可行点B.目标函数值有所下降C.可行方向的起始点在可行域外D.可行方向的起始点在可行域内54.关于惩罚函数法,下列说法错误的是()(P159-165)A.惩罚函数法是一种直接解法B.使用内点时,初始点应选择一个离约束边界较远的点C.外点法的迭代过程在可行域之外进行D.混合惩罚函数法可用来求解同时具有等式约束和不等式约束的优化问题55.内点惩罚函数法可用于求解下列哪类优化问题()(P159-162)A.无约束优化问题B.只含有不等式约束的优化问题C.只含有等式的优化问题D.含有不等式和等式约束的优化问题56.下列关于内点惩罚函数法的叙述,错误的是()(P159-162)A.可用来求解含不等式约束和等式约束的最优化问题B.惩罚因子是不断递减的正值C.初始点应选择一个离约束边界较远的点D.初始点必须在可行域内57.在用惩罚函数法求解约束优化问题时,下列说法错误的是()(P159-164)A.惩罚函数法是一种很有效的间接解法B.内点惩罚函数法只能用来求解具有等式约束的优化问题C.外点惩罚函数法的迭代过程是在可行域之外进行D.混合惩罚函数法可用于求解同时具有等式约束和不等式约束的优化问题58.下列关于外点惩罚函数法的叙述,错误的是()(P160-164)A.可用来求解含不等式约束和等式约束的最优化问题。

相关文档
最新文档