材料力学课件:轴向拉压变形

合集下载

材料力学第3章 轴向拉压变形

材料力学第3章 轴向拉压变形
Fy 0 :FN1 sin 30 FN3 sin 30 F
(2) 变形协调方程
Δl2 Δl1 Δl3 Δl2 tan30 sin 30 sin 30 tan30
秦飞 编著《材料力学》 第3章 轴向拉压变形
31
3.4 拉压杆静不定问题的解法
例题3-5
(3) 利用物性关系,用力表示变形协调方程

B点水平位移:
线 代

Fa

Bx BB1 l1 EA ()
B点铅垂位移:
By

BB'

l2 sin 45

l1
tan
45

(1
2
2) Fa EA
()
秦飞 编著《材料力学》 第3章 轴向拉压变形
19
3.3 桁架的节点位移
例题3-3
图示托架,由横梁AB与斜撑杆CD所组成,并承受集中载荷
2
3.1拉压杆的轴向变形与横向变形
轴向应变: l 胡克定律: FN
l
E EA
所以得到: l FNl EA
(拉压杆胡克定律)
l FNl EA
EA为拉压刚度,只与材料和横截面面积有关。
秦飞 编著《材料力学》 第3章 轴向拉压变形
3
3.1拉压杆的轴向变形与横向变形
(2)补充方程-变形协调方程(compatibility equation)
l1
tan

l2
sin

l3
秦飞 编著《材料力学》 第3章 轴向拉压变形
25
3.4 拉压杆静不定问题 解法
(3)物性(物理)关系
l1

FN1l1 E1 A1

材料力学课件第二章 轴向拉伸和压缩

材料力学课件第二章 轴向拉伸和压缩

2.3 材料在拉伸和压缩时的力学性能
解: 量得a点的应力、应变分别 为230MPa、0.003
E=σa/εa=76.7GPa 比例极限σp=σa=230MPa 当应力增加到σ=350MPa时,对应b点,量得正应变值
ε = 0. 0075 过b点作直线段的平行线交于ε坐标轴,量得 此时的塑性应变和弹性应变
εp=0. 0030 εe= 0 . 0075-0.003=0.0045
内力:变形固体在受到外力作用 时,变形固体内部各相邻部分之 间的相互作用力的改变量。
①②③ 切加求 一内平 刀力衡
应力:是内力分布集度,即 单位面积上的内力
p=dF/dA
F
F
FX = 0
金属材料拉伸时的力学性能
低碳钢(C≤0.3%)
Ⅰ 弹性阶段σe σP=Eε
Ⅱ 屈服阶段 屈服强度σs 、(σ0.2)
FN FN<0
2.2 拉压杆截面上的内力和应力
第二章 轴向拉伸和压缩
在应用截面法时应注意:
(1)外载荷不能沿其作用线移动。
2.2 拉压杆截面上的内力和应力
第二章 轴向拉伸和压缩
在应用截面法时应注意:
(2)截面不能切在外载荷作用点处,要离开或 稍微离开作用点。
1
2
11
22
f 30 f 20
60kN
Ⅲ 强化阶段 抗压强度 (强度极限)σb
Ⅳ 局部颈缩阶段
例1
一根材料为Q235钢的拉伸试样,其直径d=10mm,工作段 长度l=100mm。当试验机上荷载读数达到F=10kN 时,量 得工作段的伸长为Δ l=0.0607mm ,直径的缩小为 Δd=0.0017mm 。试求此时试样横截面上的正应力σ,并求出 材料的弹性模量E。已知Q235钢的比例极限为σ p =200MPa。

材料力学课件:3-3 桁架节点位移与小变形概念

材料力学课件:3-3  桁架节点位移与小变形概念
Page 9
第三章 轴向拉压变形
例:求A,C相对位移
FA
D
O
B
*设想固定BD中点 和BD方位
C C
F
*D点随OD杆变形
发 生位移,DC杆平 移、伸长、转动, 由对称性,C点到 达C’点。
AC 2CC '
Page10
第三章 轴向拉压变形
§3-4 拉压与剪切应变能
两条平行的研究途径(从物理、理力到材力)
单向受力
Page15
第三章 轴向拉压变形
•单向受力体应变能
2
V v dxdydz 2E dxdydz
•拉压杆
(x)= FN ( x ) , dydz A
V
l
FN2 ( x) dx 2EA( x)
A (变力变截面杆)
y
V
FN2 l 2EA
(常应力等直杆)
dz
dx
•纯剪应变能密度
dVε
dxdz dy
第三章 轴向拉压变形
外力功、应变能与功能原理
F
F
•外力功( W):构件变形时,外力在相应位移上做的功。
•应变能( V):构件因变形贮存能量。
Page12
第三章 轴向拉压变形
•弹性体功能原理: Vε W (根据能量守恒定律)
•功能原理成立条件:载体由零逐渐缓慢增加,动能与
热能等的变化可忽略不计。
答:切线代圆弧的近似。
Page 6
第三章 轴向拉压变形 例:零力杆:求A点的位移。
*AB杆不受力,不伸长转动。
Page 7
例:画节点A的位移
第三章 轴向拉压变形
1
2
3
B
A
B
A

材料力学之四大基本变形 ppt课件

材料力学之四大基本变形  ppt课件

1.轴力:拉正压负。轴力图
2.横截面上的应力: N 或 = FN
A
A
3.变形公式:l Nl 或l FNl
EA
EA
4.强度条件: max [ ]
5.材料的力学性能: ~ 曲线
两个强度指标,两个塑性指标
ppt课件
3
例1-1 图示为一悬臂吊车, BC为
C
实心圆管,横截面积A1 = 100mm2, AB为矩形截面,横截面积 A2 = 200mm2,假设起吊物重为 Q = 10KN,求各杆的应力。
内径d=15mm,承受轴向载荷F=20kN作用, 材料的屈服应力σs=235MPa,安全因数ns= 1.5。试校核杆的强度。
ppt课件
8
解:杆件横截面上的正应力为
N
A


(
4F D2
d
2
)

4(20103 N )
[(0.020m)2 (0.015m)2]
1.45108 Pa 145MPa
76.4Nm
mB
9550 NB n
9550 10 500
191Nm
mC
9550 NC n
9550 6 500
114.6 Nm
计算扭矩:
mA

x
T1
MX 0
MX 0
T1 mA 0
mc T2
AB段 BC段
T1设为正的 T2设为正的
T1 mA 76.4Nm
86.6 MPa
ppt课件
5
例1-2:图示杆,1段为直径 d1=20mm的圆 杆,2段为边长a=25mm的方杆,3段为直径 d3=12mm的圆杆。已知2段杆内的应力σ 2=30MPa,E=210GPa,求整个杆的伸长△l

材料力学课件-第三章-轴向拉压变形

材料力学课件-第三章-轴向拉压变形

Δ
F
f
o


d
A

d
•弹性体功能原理:Vε W ,
f df
• 拉压杆应变能
2 FN l V ε 2 EA
Page28
BUAA
MECHANICS OF MATERIALS
*非线性弹性材料
F
f
•外力功计算
W fd
0

F W 2
•功能原理是否成立? •应变能如何计算计算?

dx
dz
dy
x
•单向受力体应变能
V v dxdydz dxdydz 2E
2
z
单向受力
Page30
BUAA
MECHANICS OF MATERIALS
2 dxdydz •单向受力体应变能 V v dxdydz 2E FN ( x ) •拉压杆 (x)= , dydz A A 2 FN ( x ) V dx (变力变截面杆) y 2 EA( x ) l 2 FN l dx (常应力等直杆) V dz 2 EA •纯剪应变能密度 dy dxdz dy dxdydz dVε 2 2 2 1 2 z v G 纯剪切
BUAA
MECHANICS OF MATERIALS
第三章
§3-1 §3-2 §3-3 §3-4
§3-5 §3-6
轴向拉压变形
引言 拉压杆的变形与叠加原理 桁架的节点位移 拉压与剪切应变能
简单拉压静不定问题 热应力与预应力
Page1
BUAA
MECHANICS OF MATERIALS
本章主要研究:
Page7

材料力学--轴向拉伸和压缩

材料力学--轴向拉伸和压缩

2、轴力图的作法:以平行于杆轴线的横坐标(称为基
线)表示横截面的位置;以垂直于杆轴线方向的纵坐
标表示相应横截面上的轴力值,绘制各横截面上的轴 FN
力变化曲线。
x
§2-2 轴力、轴力图
三、轴力图
FN
3、轴力图的作图步骤:
x
①先画基线(横坐标x轴),基线‖轴线;
②画纵坐标,正、负轴力各绘在基线的一侧;
③标注正负号、各控制截面处 、单位及图形名称。
FN
4、作轴力图的注意事项: ①基线一定平行于杆的轴线,轴力图与原图上下截面对齐; ②正负分绘两侧, “拉在上,压在下”,封闭图形; ③正负号标注在图形内,图形上下方相应的地方只标注轴力绝对值,不带正负号; ④整个轴力图比例一致。
50kN 50kN 50kN
第二章 轴向拉伸和压缩
第二章
轴向拉伸和压缩
第二章 轴向拉伸和压缩
§2 — 1 概述
§2 — 2 轴力 轴力图

§2 — 3 拉(压)杆截面上的应力
§2 — 4 拉(压)杆的变形 胡克定律 泊松比

§2 — 5 材料在拉伸与压缩时的力学性质
§2 — 6 拉(压)杆的强度计算
§2 — 7 拉(压)杆超静定问题
FN
作轴力图的注意事项: ①多力作用时要分段求解,一律先假定为正方向,优先考虑直接法; ②基线‖轴线,正负分绘两侧, “拉在上,压在下”,比例一致,封闭图形; ③正负号标注在图形内,图形上下方相应的地方只标注轴力绝对值,不带正负号; ④阴影线一定垂直于基线,阴影线可画可不画。
§ 2-3拉(压)杆截面上的应力
§2 — 8 连接件的实用计算
§2-1 概述 §2-1 概述
——轴向拉伸或压缩,简称为拉伸或压缩,是最简单也是做基本的变形。

材料力学——第一章 轴向拉伸和压缩

材料力学——第一章 轴向拉伸和压缩

形象表示轴力随截面的变化情况,发现危险面;
材料力学
例题1-1 已知F1=10kN;F2=20kN; F3=35kN;F4=25kN;试画 出图示杆件的轴力图。 1 B 2 C 3 D A 解:1、计算各段的轴力。
F1 F1 F1
FN kN
1 F2
2
F3 3
F4
AB段 BC段
FN1 FN2
F
F
F
F
d变) 拉伸ε'<0、 压缩ε’>0 ;

'
d
d
材料力学
2、泊松比 实验证明:


称为泊松比;
注意
(1)由于ε、ε‘总是同时发生,永远反号, 且均由
(2)
s 产生,
故有
=-

0 FN 1 F1 10kN
x x
F
0 FN 2 F2 F1
FN 2 F1 F2
F2
FN3
10

CD段
F4
25
10 20 10kN Fx 0
FN 3 F4 25kN
2、绘制轴力图。
10
x
材料力学
画轴力图步骤
1、分析外力的个数及其作用点; 2、利用外力的作用点将杆件分段; 3、截面法求任意两个力的作用点之间的轴力; 4、做轴力图; 5、轴力为正的画在水平轴的上方,表示该段杆件发生 拉伸变形
材料力学
例题1-3 起吊钢索如图所示,截面积分别为 A2 4 cm2, A1 3 cm2,
l1 l 2 50 m, P 12 kN, 0.028 N/cm3,
试绘制轴力图,并求

材料力学单辉祖第三章轴向拉压变形

材料力学单辉祖第三章轴向拉压变形
o x
FN q
q
L
最大正应力发生在x = 0处
P
max
FN (0) P ql (0) A A
P
x
22
Example-变轴力杆
取长度为dx的微元体 由胡克定理知,微元体伸长为
FN ( x) d dx EA
FN ( x) P q(l x)
o x
FN
dx dFN对微段变形忽略
杆件在外力F2作用下 的伸长为
l
2P
P
3l P
2P
l2 P
FN 2 L 2 Pl EA EA
19
Example-多力杆
杆件的总伸长为
l l P l2 P
方法一答案
2 Pl l l1 l2 EA ()
2 Pl EA
2P
P
l
3l
20
Example-变轴力杆
B
60 0
F2 l
F1
l
C A
C"
D
C´ A´
几何关系
45
Example-Bracket
利用几何关系, 得A点垂直位移AA´
A 2CC CD 2 6.0 mm 0 sin 30
l B
600
F2
F1
l
C A
C"
D
C´ A´
几何关系
46
Example-零力杆
求A点的位移
*AB杆不受力不伸长,只转动
()
41
Example-Bracket
图示托架,AB为刚梁,CD为支撑杆,已知 F1=5kN,F2=10kN,l=1m,斜支撑CD为铝 管,弹性模量为E=70GPa,横截面面积为 A=440mm2,求刚梁AB端点A的铅垂位移。

材料力学第三章 轴向拉压变形

材料力学第三章 轴向拉压变形
FB = 2 FA
由⑵式与⑷式联立解得得: 式与⑷式联立解得得: ⑷
B FB
F FA = FN AC = 3 2F FB = FN BC = 3
×
装配应力 ⒈ 装配应力 超静定结构,由于构件制造误差, 超静定结构,由于构件制造误差,在装配时构件内部会 产生装配应力。静定结构不会产生装配应力。 产生装配应力。静定结构不会产生装配应力。 装配应力 装配应力 静定结构

FN 1 + 2 FN 2 − 2 F = 0
FN 2 = 2 FN 1
解得: 解得:
}
FN 1
2P 4P = , FN 2 = 5 5
×
解拉压超静定问题的方法和步骤: 解拉压超静定问题的方法和步骤: ⑴画变形的几何图; 画变形的几何图; ⑵根据变形图,建立变形的几何方程; 根据变形图,建立变形的几何方程; ⑶画受力图,其中杆件的轴力应根据变形图来画,即变 画受力图,其中杆件的轴力应根据变形图来画, 形为拉伸杆件的轴力按拉力画, 形为拉伸杆件的轴力按拉力画,变形为压缩杆件的轴力按压 力画; 力画; ⑷根据受力图,建立平衡方程; 根据受力图,建立平衡方程; ⑸根据虎克定律,建立物理方程; 根据虎克定律,建立物理方程; ⑹将物理方程代入几何方程得补充方程; 将物理方程代入几何方程得补充方程; ⑺联立平衡方程与补充方程求解未知量。 联立平衡方程与补充方程求解未知量。
×
求图示结构中刚性杆AB 中点 的位移δC。 中点C 例4 求图示结构中刚性杆
① 2EA EA ②
解:由平衡方程得 l
A
δA
a δC
C a
δB
B
F
P FN 1 = FN 2 = 2 FN 1l Fl δ A = ∆l1 = = EA 2 EA FN 2 l Fl δ B = ∆l 2 = = 2 EA 4 EA

材料力学课件 第二章 轴向拉伸和压缩

材料力学课件 第二章  轴向拉伸和压缩

第二章
应力非均布区
轴向拉伸与压缩
应力均布区 应力非均布区
圣维南原理 力作用于杆端的分 布方式,只影响杆端 局部范围的应力分布, 影响区约距杆端 1~2 倍杆的横向尺寸。
端镶入底座,横向变形 受阻,杆应力非均匀分布。
第二章 2.2 杆的变形
轴向拉伸与压缩
h1
F
h
b b1
F
l 1.纵向变形 (1)纵向变形 (2) 纵向应变
第二章
轴向拉伸与压缩
3. 拉压杆横截面上的应力
问题提出:
P P P P
1)内力大小不能衡量构件强度的大小。
2)强度:①内力在截面分布集度应力;
②材料承受荷载的能力。 3)定义:由外力引起的内力集度。
第二章
轴向拉伸与压缩
轴向拉伸变形
第二章
轴向拉伸与压缩
工程构件,大多数情形下,内力并非均匀分布,集度的定义 不仅准确而且重要,因为“破坏”或“失效”往往从内力集度
1 2 1 2 2 2
第二章
轴向拉伸与压缩
FN 1 8 103 1 Pa 159MPa A1 0.0082 4
BC 段横截面上的正应力为
FN 2 15 103 2 Pa 191MPa A2 0.0102 4
第二章
4、圣维南原理 杆端应力分布
轴向拉伸与压缩
第二章
轴力的正负规定:
轴向拉伸与压缩
N N N > 0
N 与外法线同向,为正轴力(拉力) N与外法线反向,为负轴力(压力)
N N
N < 0
2. 轴力图—— N (x) 的图象表。
意 义
①反映出轴力与截面位置变化关系,较直观; ②确定出最大轴力的数值

材料力学 第二章 轴向拉压应力PPT课件

材料力学 第二章 轴向拉压应力PPT课件
第二章 轴向拉伸和压缩
§2–1 拉压杆的内力 ·轴力与轴力图 §2–2 拉压杆的应力及强度条件 §2-3 材料在拉伸和压缩时的力学性质 §2-4 剪切与挤压的强度计算
§2–1 拉压杆的内力 · 轴力与轴力图
杆件在轴向荷载作用下,将发生轴向拉伸或压缩。
拉伸 F
F
压缩 F
F
×
一、拉压杆的内力——轴力
×
§2–3 应力集中的概念
拉压杆横截面的应力并不完全是均匀分布的,当横截面 上有孔或槽时,在截面曲率突变处的应力要比其它处的应力 大得多,这种现象称为应力集中。
P
P
P
P
P
×
五、拉压杆的强度条件
拉压杆在正常情况下不发生破坏的条件是:拉压杆的最
大工作应力(横截面的最大正应力)不超过材料的容许应
力。
max
FN3
Ⅲ 30k N

×
FN3 300 FN3 30kN
例2 长为l ,重为W 的均质杆,上端固定,下端受一轴向拉
力P 作用,画该杆的轴力图。
轴力图
FN
P+W F x 0 ;F N P x 0

x
P
FN
PxPWx
l
x0 ;F NF N mi nP
P
P
x l;F NF N ma x P W
×
例3 画图示杆的轴力图。
3k N 2k N N 4k N 8kN
3k N ⊕ 1⊕kN
○-
1kN
轴力图
6k N ⊕
○-
4k N 8k N
轴力图
×
§2–2 拉压杆的应力及强度条件
一、横截面的正应力
拉压杆横截面上只有正应力而无剪应力,忽略应力集中 的影响,横截面上的正应力可视作均匀分布的,于是有

《材料力学拉压》PPT课件

《材料力学拉压》PPT课件
F
各点线应变相同 F
F
根据静力平衡条件: F NdF A dAA

FN
A
FN
A
正负号规定:拉应力为正,压应力为负.
FN 的适用条件:
A
1、只适用于轴向拉伸与压缩杆件,即杆端处力的合 力作用线与杆件的轴线重合.
2、只适用于离杆件受力区域稍远处的横截面.
4、 实验验证
拉伸与压缩/横截面上的内力和应力
卸载
卸载定律:在卸载
过程中,应力与应
变满足线性关系.
p e
应变关系
e p
拉伸与压缩/材料的力学性能
低碳钢Q235拉伸时的力学行为
断裂 冷作<应变>硬化现象:
应力超过屈服极限后
卸 载 与
卸载,再次加载,材 料的比例极限提高,

再加载
而塑性降低的现象.


拉伸与压缩/材料的力学性能
名义屈服应力
p0.
n
(n>1) 引入安全系数的原因:
1、作用在构件上的外力常常估计不准确;构件的外形及所受 外力较复杂,计算时需进行简化,因此工作应力均有一定 程度的近似性;
2、材料均匀连续、各向同性假设与实际构件的出入,且小试样 还不能真实地反映所用材料的性质等.
构件拉压时的强度条件
maxFNAmax[]
拉伸与压缩/拉〔压〕时的强度计算
1.5m B
A 1
FN1
B
FN 2
F
2m
F
2
C
FFN2 cos 0 FN1 FN2 sin 0
解得
FN1
3 4
F(拉) ,
FN2
5 4
F(压)

2材料力学轴向拉压.ppt课件

2材料力学轴向拉压.ppt课件
斜FA 布p纵α上切截=。截应c±面面力o4A5上FA上成so的截对p面全A dFA应Ac力mmm oia 可nxp9s i分0AAn 4α45解—A —59 ——为d0 c2 正横 斜Ao20 截截应s面面p力面面9 和积A 积0 4 4切550 应2F2力
pcos co2s22co2s psincossin2sin2
U
W
n i1
12Fii
利用外力功计算应变能并不方便,在更多情况下主 要是通过内力功来计算。
单向应力状态单元体微面上的力在变形过程中做的功为
y
x
dy dx

x
dz x
dW 1 2xdydzxdx1 2xxdV
不考虑能量损耗,则力做的功全部转化为单元体的应变能
dUdW12xxdV
单位体积内储存的应变能,称为应变能密度,单向应力状态有
2.3
F
F
b b1
拉压杆的变形
F 二、拉压杆的横向变形
l l1
bb1b
b
b
横向变形
横向线应变
实验表明,在胡克定律适用的范围时,有:
or
F/ A 即 横向线应变与轴向线应变恒异号,两者之 比的绝对值为一常数,称为泊松比。
00.5
弹性模量 E 和泊松比μ都是材料的弹性常数, 由实验测得。
l
l /l
第二章 轴向拉伸和压缩
A
F
连杆
A
钢拉杆
B
B
F
F
F
F
F
F
F
F
F
F
受力(简)图
受力变形特点: 外力或其合力的作用线沿杆件的轴线(轴载), 主要变形为轴向伸缩。这样的杆件称拉压杆。

《材料力学》第三章 轴向拉压变形

《材料力学》第三章 轴向拉压变形
-3(共 4 页)
第三章 轴向拉压变形
*四、温度应力、装配应力 一)温度应力:由温度引起杆变形而产生的应力(热应力) 。 温度引起的变形量—— L tL 1、静定问题无温度应力。 2、超静定问题存在温度应力。 二)装配应力——预应力、初应力:由于构件制造尺寸产生的制造误差,在装配时产生变形而引起的应 力。 1、静定问题无装配应力 2、超静定问题存在装配应力。 轴向拉压变形小结 一、拉压杆的变形(重点) 1、轴向变形:轴向尺寸的伸长或缩短。 2、横向变形:横向尺寸的缩小或扩大。 3、横向变形系数(泊松比) : 4、变形——构件在外力作用下或温度影响下所引起的形状尺寸的变化。 5、弹性变形——外力撤除后,能消失的变形。 6、塑性变形——外力撤除后,不能消失的变形。 3、横向变形系数 7、位移——构件内的点或截面,在变形前后位置的改变量。 8、正应变——微小线段单位长度的变形。
4、求变形: L
FN L EA
LAB
FNAB LAB 240 3.4 104 2.67(m m) EAAB 2.114.54
LCD 0.91mm LEF 1.74mm
5、求位移,变形图如图
LGH 1.63mm
D
LEF LGH DG LGH 1.70 mm EG
第三章 轴向拉压变形
第三章
一、概念 1、轴向变形:轴向尺寸的伸长或缩短。 2、横向变形:横向尺寸的缩小或扩大。 二、分析两种变形
轴向拉压变形
§3—1 轴向拉压杆的变形
b
L F F
b1
L1
1、轴向变形:Δ L=L1-L ,
L L F L (2) 、在弹性范围内: L N A
(1) 、轴向正应变线应变:

渔用材料力学-轴向拉压变形3-1

渔用材料力学-轴向拉压变形3-1
渔用材料力学
1、轴向拉伸或压缩(axial tension and compression)
F
F
F
F
轴向拉压的外力特点:外力的合力作用线与杆的轴线重合。 轴向拉压的变形特点:杆的变形主要是轴向伸缩,伴随横向 缩扩。
轴向拉伸:杆的变形是轴向伸长,横向缩短。
轴向压缩:杆的变形是轴向缩短,横向变粗F。
P1=2kN,P2=3kN,P3=1kN, 试求杆各段的轴力,并画轴力图。
P1
1
P2 2
P3
1
P1
Fx 0
F N1P1 0
F N1 P1 2KN
2
FN1
x
P3
FN2
Fx 0
F N 2P3 0
F N 2 P3 1KN
1
P1
1
F N1 2KN
P2 2
P3
F
轴向载荷:作用线沿杆件轴线的载荷。
2、轴力(axial force)
由于杆件产生轴向拉伸或压缩变形而引起的横截面上的,作用线与杆 的轴线一致的内力称为轴力,用FN表示。
轴力的符号规定:
Hale Waihona Puke 轴力的正负号:与该截面的外法线方向一致的为正;相反为负。 轴力以拉为正,以压为负。
FN FN
+
F
大小计算:
同一位置处左、右侧截面上内力分 量必须具有相同的正负号。
2
F N 2 1KN
FN
2KN
x
1KN
例2 已知F=50KN,求截面1、2 的轴力,并画轴力图
50kN
50kN
1
1
3m
3m
2
2
4m
4m
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

FN2
FN1
FN3
FN4
F
原则上可画出任意可能的变形图,但必须确保 内力方向与变形方向一致。
Page20
例:AB为刚性杆,求1、2、3杆的轴力。
1
2
3
假设各杆受拉(设正法) 各杆伸长,所受轴力为正
Al l1
l l2
lB
l3
F
l2
l1
2
l3
FN1
FN2
FN3
F
Page21
例:套管与轴两端用刚性板固定,其拉压刚度分别为
➢ 叠加原理(力的独立作用原理)
P
3P
例:AB段和BC段的长度均为l,拉
A
B
C 压刚度为EA,求杆的总伸长。
P
A
B
C
l1
P 2l EA
l Pl
A
3P
B
C
l2
3 Pl EA
EA
几个载荷同时作用所产生的总效果,等于各载荷单独作 用产生的效果的总和
Page1
➢ 两种方法的对比
P
3P
A
B
C
l FN l
Page18
例:AC为刚性杆,求1、2两杆的轴力
1 l
A FA
A
可直接判断:1杆缩短, 2杆伸长
2
l
lC
B
F
l1 l2
FB
计算完之后,说明一下:
C B
1杆受压,2杆受拉
Page19
例:求各杆的轴力。
B 1
D
C
2
3
A P
4 E
l3 l4 l2 l1
l4 l3 l1
l2
FN2 FN1
FN3
FN4
F
➢ 从数学上理解叠加法
y f (x)
f ( x1 ) f ( x2 ) ?f ( x1 x2 )
l ~ FN
F FN
AA
l FN l
EA
l
l
E
l FN l
EA
f ( x) kx
当函数是线性齐次函数时,叠加原理成立
1、线弹性:物理线性——应力与应变的关系 2、小变形:几何线性——用原始尺寸进行受力分析
P
P
套筒:E1A1 轴:E2A2
l1
l2
分析变形: 套筒和轴同时伸长,由于两端为刚性固 定,套筒和轴的伸长量相等。
A C
A’ A1
1、精度略有降低; 2、分析极大简化。
工程分析方法: 1、受力分析——用原结构尺寸; (前提:小变形) 2 、变形分析——切线代圆弧方法。
☺ 分析步骤:1、平衡方程求各杆轴力;
2、物理方程求各杆变形; 3、用切线代圆弧,求节点位移。
Page7
几种特殊的桁架: 1、刚性杆:AB为刚性杆,求A点的位移。
(几组外力之间没有耦合作用)
Page4
本讲内容
第三章 轴向拉压变形
§3-3 桁架的节点位移 §3-5 拉压静不定问题
Page5
B
C B
C
§3-3 桁架的节点位移
已知各杆EA, lAC, 角。求 节点A的位移 A
P
精确分析方法:
1、轴力难以分析;
A
2、节点位置难以确定。
Page6
B
工程分析方法:
l FN (Fi ) li
EA
Page2
两种方法的适用条件:
—分段求变形法 对每一段独立求变形,然后再相加 —— 要求小变形条件
l FN l
EA
l
FNi li FN ( x) dx EA l EA
—叠加法
对每种载荷情况独立求解,然后将作用效果相加 —— 要求线弹性、小变形
Page3
静不定问题的求解方法: ——补充变形协调方程
强调:建立变形协调方程时一定先画变形图
Page17
关于变形图的画法 若能直接判断出真实变形趋势,则按此趋势画变形图;
(写变形协调方程时,可先不考虑符号,计算完后加以说明即可)
若不能直接判断出真实变形趋势,则画出任意可能变形 图均可。
对于不能判断出真实变形趋势的情况,一般可假设各杆 均产生拉伸变形,即内力为正(设正法)。若计算结果 为负,则说明真实方向与所设方向相反。
各杆内力的大小: 1、与外载荷有关; 2、与杆间的夹角有关; 3、与杆的拉压刚度有关;
Page16
静定问题: 由平衡条件即可确定全部未知力的问题。 静不定问题:由平衡条件尚不能确定全部未知力的问题
静不定度=未知力数-有效平衡方程数
材料力学: 1、考虑构件的变形 2、变形与受力一一对应 3、构件的变形受一定条件的约束
F
FB
E2 A2l1 E1 A1l2 E2 A2l1
F
Page14
1杆与3杆相同: 1) 3根杆的轴力是否相等?
B
D
C
12 3
2) 3根杆的轴力有没有可能相等 ? 1、列平衡方程(设出各杆内力):
FN2
A
FN1
FN3
A
FN1 sin( ) FN 3 sin( ) 0 FN1 cos( ) FN 2 FN 3 cos( ) F 0
AC
B
F
l1
l2
1) A,B两端的支反力是否等于F/2 ? 2) A,B两端的支反力何时等于F/2 ?
Page13
求杆端的支反力。
AC
B
FA
F
l1
l2
平衡方程: FA FB F
协调方程: l1+ l2=0
物理方程:
l1
FA l1 E1 A1
l2
FB l2 E2 A2
F
FB
FA
E1 A1l2 E1 A1l2 E2 A2l1
D
D
C
A
C
A
B
B
P
C’
A’
Page8
2、零力杆:求A点的位移。
Page9
例:求节点A的位移 B
A
C
P
B
A C
Page10
例:求节点AB的相对位移
D
P
P
A
B
A
C
D B
C
Page11
P A
PA
D P A
B C Dge12
§3-5 简单拉压杆静不定问题 (statically indeterminate problem)
EA
—分段求变形
—叠加原理
方法:分段求变形,将每段变形相加。
方法:分解载荷,将载荷作用效 果相加。
步骤:1、分段求轴力;(截面法)
步骤:1、分解载荷;
2、分段求变形;
2、求每种载荷作用下整
3、求代数和。
杆的变形;
3、叠加。
分段求变形
l FNi li FN ( x) dx EA l EA
叠加法
E1A1、 E2A2。求分别在下列两种情况的载荷P作用下, 套管与轴的轴力。
P
P
P
P
l1
l2
Page22
P
P
套筒:E1A1 轴:E2A2
分析变形: 套筒和轴同时伸长,由于两端为刚性固 定,套筒和轴的伸长量相等。
协调条件: l1 l2
平衡方程:
P
FN1 FN2
FN 1 FN 2 P
Page23
P
P 2、列变形协调方程(画出变形图):
l3 l1 l2
l1 l3 l2 cos
3、物理方程:
li
FNi li Ei Ai
Page15
B
D
C
12 3
FN 1
FN 3
P cos2( ) E2 A2 2cos3( )
E1 A1
A
FN
2
1
2
P E1 A1
cos3
P
E2 A2
当=30o时,E2A2 /E1A1=3/4
相关文档
最新文档