【教案】 用三边比例关系判定三角形相似

合集下载

27.2.1 第2课时 三边成比例的两个三角形相似--教案

27.2.1 第2课时 三边成比例的两个三角形相似--教案

27.2.1 相似三角形的判定第2课时三边成比例的两个三角形相似一、学习目标1.初步掌握“三组对应边的比相等的两个三角形相似”的判定方法的判定方法.2.能够运用三角形相似的条件解决简单的问题.二、重点、难点1.重点:掌握这种判定方法,会运用这种判定方法判定两个三角形相似.2.难点:(1)三角形相似的条件归纳、证明;(2)会准确的运用两个三角形相似的条件来判定三角形是否相似.三、课堂引入1.复习提问:(1) 两个三角形全等有哪些判定方法?(2) 我们学习过哪些判定三角形相似的方法?(3) 全等三角形与相似三角形有怎样的关系?(4) 如图,如果要判定△ABC与△A’B’C’相似,是不是一定需要一一验证所有的对应角和对应边的关系?2.(1)提出问题:首先,由三角形全等的SSS判定方法,我们会想如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么能否判定这两个三角形相似呢?3. 探究任意画一个三角形,再画一个三角形,使它的各边长都是原来三角形各边长的k倍,度量这两个三角形的对应角,它们相等吗?这两个三角形相似吗?与同学交流一下,看看是否有同样的结论。

(1)问题:怎样证明这个命题是正确的呢?(2)探求证明方法.(已知、求证、证明)如图27.2-4,在△ABC 和△A ′B ′C ′中,A C CA C B BC B A AB ''=''='', 求证△ABC∽△A ′B ′C ′ 证明 :4. 【归纳】三角形相似的判定方法1如果两个三角形的三组对应边的比相等, 那么这两个三角形相似.三角形相似的判定方法1如果两个三角形的三组对应边的比相等, 那么这两个三角形相似.四、例题讲解解:五.回顾与反思.(1)谈谈本节课你有哪些收获.六 . 当堂检测。

用三边比例关系判定三角形相似

用三边比例关系判定三角形相似

2 易错小结
【中考·东营】如果一个直角三角形的两条边长分别是6和8,
另一个与它相似的直角三角形边长分别是3,4及x,那么x
的值( B )
A.只有1个
B.有2个
C.有3个
D.有无数个
易错点:易因考虑问题不全面而致错.
1、世上没有绝望的处境,只有对处境 绝望的 人。 2、挑水如同武术,武术如同做人。循序 渐进, 逐步实 现目标 ,才能 避免许 多无谓 的挫折 。
它相似的三角形的最长边的长是21,则其他两边
长的和是( C )
A.19
B.17
C.24
D.21
7 要制作两个形状相同的三角形框架,其中一个三 角形框架的三边长分别为4,5,6,另一个三角形 框架的一边长为2,它的另外两边长分别可以为
( D) A.2.5,3 C.1.6,2.4
B.
4,5 33
D.2.5,3或
17、在人生的竞赛场上,没有确立明确 目标的 人,是 不容易 得到成 功的。 许多人 并不乏 信心、 能力、 智力, 只是没 有确立 目标或 没有选 准目标 ,所以 没有走 上成功 的途径 。这道 理很简 单,正 如一位 百发百 中的神 射击手 ,如果 他漫无 目标地 乱射, 也不能 在比赛 中获胜 。 18、生活就像海洋,只有意志坚强的人 ,才能 到达彼 岸。——马克 思
B′C′,由△A′DE∽△A′B′C′,再证明△ABC
≌△A′DE,则可得到△ABC∽△A′B′C′.
如图,在△ABC和△A'B'C'中, AB = BC AC , AB BC AC
求证: △ABC∽△A'BA′B′(或它的延长线)上截取A′D=AB,过点D
作 DE//B′C′,交A′C′于点E.根据前面的定理,可得

2022年初中数学《三边成比例的两个三角形相似》教案(推荐)

2022年初中数学《三边成比例的两个三角形相似》教案(推荐)

27.2.1 相似三角形的判定第2课时 三边成比例的两个三角形相似1.理解“三边成比例的两个三角形相似〞的判定方法;(重点)2.会运用“三边成比例的两个三角形相似〞的判定方法解决简单问题.一、情境导入我们现在判定两个三角形是否相似,必须要知道它们的对应角是否相等,对应边是否成比例.那么是否存在判定两个三角形相似的简便方法呢?在如下列图的方格上任画一个三角形,再画第二个三角形,使它的三边长都是原来三角形的三边长的相同倍数.画完之后,用量角器比较两个三角形的对应角,你发现了什么结论?大家的结论都一样吗?二、合作探究探究点:三边对应成比例的两个三角形相似 【类型一】 直接利用定理判定两个三角形相似 在Rt △ABC 中,∠C =90°,AB =10,BC =6,在Rt △EDF 中,∠F =90°,DF =3,EF =4,那么△ABC 和△EDF 相似吗?为什么?解析:△ABC 和△EDF 都是直角三角形,且两条边长,所以可利用勾股定理分别求出第三边的长,看对应边是否对应成比例.解:△ABC ∽△EDF .在Rt △ABC 中,AB =10,BC =6,∠C =90°,由勾股定理得AC =AB 2-BC 2=102-62Rt △DEF 中,DF =3,EF =4,∠F =90°,由勾股定理得ED =DF 2+EF 2=32+42△ABC 和△EDF 中,BC DF =63=2,AC EF =84=2,AB ED =105=2,所以BC DF=AC EF =AB ED,所以△ABC ∽△EDF . 方法总结:利用三边对应成比例判定两个三角形相似时,应说明三角形的三边对应成比例,而不是两边对应成比例. 变式训练:见《 》本课时练习“课堂达标训练〞 第2题【类型二】 网格中的相似三角形如图,在边长为1的小正方形组成的网格中,△ABC 和△DEF 的顶点都在格点上,判断△ABC和△DEF是否相似,并说明理由.解析:首先由勾股定理,求得△ABC和△DEF的各边的长,即可得ABDE=ACDF=BC EF,然后由三组对应边的比相等的两个三角形相似,即可判定△ABC和△DEF相似.解:△ABC和△DEF相似.由勾股定理,得AB=25,AC=5,BC=5,DE=4,DF=2,EF=25,∵ABDE=ACDF=BCEF=254=52,∴△ABC∽△DEF.方法总结:在网格中计算线段的长,运用勾股定理是常用的方法.变式训练:见《》本课时练习“课堂达标训练〞第8题【类型三】利用相似三角形证明角相等如图,ABAD=BCDE=ACAE,找出图中相等的角,并说明你的理由.解析:由ABAD=BCDE=ACAE,证明△ABC∽△ADE,再利用相似三角形对应角相等求解.解:在△ABC和△ADE中,∵ABAD=BCDE=ACAE,∴△ABC∽△ADE,∴∠BAC=∠DAE,∠B=∠D,∠C=∠E.方法总结:在证明角相等时,可通过证明三角形相似得到.变式训练:见《》本课时练习“课后稳固提升〞第6题【类型四】利用相似三角形的判定证明线段的平行关系如图,某地四个乡镇A,B,C,D之间建有公路,AB=14千米,AD=28千米,BD=21千米,BC=42千米,DC,公路AB与CD平行吗?说出你的理由.解析:由图中线段的长度,可求两个三角形的对应线段的比,证明三角形相似,得出角相等,通过角相等证明线段的平行关系.解:公路AB与CD平行.∵ABBD=1421=23,ADBC=2842=23,BDDC=2131.5=23,∴△ABD∽△BDC,∴∠ABD =∠BDC ,∴AB ∥DC .方法总结:如果在条件中边的数量关系较多时,可考虑使用“三边对应成比例,两三角形相似〞的判定方法. 【类型五】 利用相似三角形的判定解决探究性问题要制作两个形状相同的三角形教具,其中一个三角形教具的三边长分别为50cm ,60cm ,80cm ,另一个三角形教具的一边长为20cm ,请问怎样选料可使这两个三角形教具相似?想想看,有几种解决方案.解析:要使两个三角形相似,一个三角形的三边和另一个三角形的一边,那么我们可以采用三边分别对应成比例的两个三角形相似来判定.解:①当长为20cm 的边长的对应边为50cm 时,∵50∶20=5∶2,且第一个三角形教具的三边长分别是50cm ,60cm ,80cm ,∴另一个三角形对应的三边分别为:20cm ,24cm ,32cm ;②当长为20cm 的边长的对应边为60cm 时,∵60∶20=3∶1,且第一个三角形教具的三边长分别是50cm ,60cm ,80cm ,∴另一个三角形对应的三边分别为:503cm ,20cm ,803cm ;③当长为20cm 的边长的对应边为80cm 时,∵80∶20=4∶1,且第一个三角形教具的三边长分别是50cm ,60cm ,80cm ,∴另一个三角形对应的三边分别为:12.5cm ,15cm ,20cm.∴有三种解决方案.方法总结:解答此题的关键在于分类讨论,当对应比不确定时,采用分类讨论的方法可防止漏解.变式训练:见《 》本课时练习“课后稳固提升〞第7题三、板书设计1.三角形相似的判定定理:三边对应成比例的两个三角形相似;2.利用相似三角形的判定解决问题.因为本课时教学过程中主要是让学生采用类比的方法先猜想出命题,然后证明猜想的命题是否正确.课堂上教师主要还是以提问的形式,逐步引导学生去证明命题.从课后作业情况看出学生对这节课的知识总体掌握得较好.第2课时 余弦和正切【知识与技能】1.理解余弦、正切的概念,了解锐角三角函数的定义;2.能运用余弦、正切的定义解决问题.【过程与方法】逐步培养学生观察、分析、类比、概括的思维能力.【情感态度】在探索结论的过程中,体验探索的乐趣,增强数学学习的信心,感受成功的快乐.【教学重点】掌握余弦、正切的概念,并能运用它们解决具体问题.【教学难点】灵活运用三角函数的有关定义进行计算.一、情境导入,初步认识问题我们知道,在直角三角形中,当锐角A的度数一定时,不管三角形的大小如何,∠A的对边与斜边的比都是一个固定值.试问:∠A的邻边与斜边的比、∠A的对边与邻边的比是否分别也是一个固定值呢?为什么?【教学说明】这种设置问题的方式既是对上节课重要知识的回忆,又为引入本节知识做好铺垫,同时也暗示着解决问题的方法与上节课利用相似获得结论的方法完全类似,让学生有法可依.学生可相互交流,教师巡视,听取学生的看法、见解,随时参与讨论,帮助学生获取正确认知.二、思考探究,获取新知问题如图,在Rt △ABC和Rt △A B C''',中,∠C=∠C'=90°∠A =∠A'.求证:〔1〕ACAB=A CA B'''';〔2〕BCAC=B CA C''''【教学说明】这个问题可由学生自主探究,得出结论.教师在学生探讨过程中,提出问题∠A确定后,∠A的邻边与斜边的比也确定吗?它的对边与邻边的比呢?在学生得出结论后,应与学生一道进行总结归纳.余弦:在Rt△ABC中,∠C=90°,我们把锐角A的邻边与斜边的比叫做∠A的余弦,记作cosA ,即cosA =A bc ∠的对边=斜边正切:在RtAABC中,∠C=90°,我们把锐角A的对边与邻边的比叫做∠A的正切,记作tanA,tanA =A aA b∠的对边=∠的邻边.锐角A的正弦、余弦、正切叫做∠A的锐角三角函数.三、典例精析,掌握新知例1 在Rt△ABC中,∠C = 900,BC= 6,sinA = 35,求cosA,tanB的值.分析与解由正弦函数定义及sinA = 35知,sinA =BCAB=3 5,又BC = 6,故AB = 10,所以22AB BC- = 8,从而 cosA =ACAB=8 10 =45,tanB =8463ACBC==.【教学说明】此题可先让学生独立完成,教师巡视指导,时时关注学生解题时是否能紧扣定义,即sinA = BCAB,cosA =ACAB,tanB =ACBC的运用是否得当,有没有出现混淆情形.例2在△ABC中,AB = AC = 20,BC = 30,试求 tanB,sinC 的值.【分析】由于∠B和∠C都不是直角三角形中的锐角,而题意却要求出tanB,sinC的值,这样迫使我们要将∠B,∠C放到直角三角形中去,这时,过A作AD丄BC于D可到达这一目的,问题可逐步解决.解过A作AD丄BC于D. AB = AC,∴BD = CD = 12BC=12⨯30 = 15.又 AB = AC = 20,∴AD = 57tanB = BCAC= 577153,sinC =AD577AC204=.四、运用新知,深化理解1.分别求出以下直角三角形中两个锐角的正弦值、余弦值和正切值.2.如图,在Rt△ABC中,∠C=90°,AC=8,tanA=,求cosB,sinA,tanB的值.△ABC中,∠C=90°,cosB=〔1〕求cosA和tanA的值;〔2〕假设AB=5,求BC和AC的长.△ABC中,∠C=90°,AC=b,BC=a,AB=c.〔1〕sinA与cosB的关系如何?为什么?〔2〕sin2A与cos2A的关系如何?说说你的理由〔sin2A=(sinA)2).〔3〕找出tanA与tanB的关系;〔4〕由〔1〕,〔2〕,〔3〕,你能发现什么有趣的结论?【教学说明】让学生通过对上述问题的思考,稳固所学知识,增强运用解决问题的能力.其中第2题在学生探究交流后,教师应予以评讲,让学生的分析能力和解决问题能力得到进一步开展.在完成上述题目后,教师引导学生完成创优作业中本课时的“名师导学〞局部.【答案】 1.〔1〕sinA =513,sinB =1213,cosA =1213,cosB =513,tanA=5 12tanB = 125.(2) sinA = 33131313=, sinB = 22131313=, cosA = 22131313=, cosB = 33131313=, tanA = 32,tanB = 23.2.解: tanA = BCAC = 34,AC = 8. ∴BC = 6,在△ABC 中,AB = 22AC BC += 10. ∴ cosB =63105=,tanB = 8463=. 3.解:〔1〕由于cosB = BC 1AB 3=,设BC = x,那么AB = 3x. ∴AC = 22AB BC - = 22(3x)2x x -=2.∴cosA = AC AB = 223,tanA = BC AC= 24. (2) 假设AB = 5,即3x = 5, ∴x = 53,∴BC = 53,AC = 1023. 4.解:〔1〕sinA = cosB (2)sin 2A + cos 2A = 1 (3)tanA ·tanB = 1 (4)略五、师生互动,课堂小结通过本节课的学习你有哪些收获?你还有哪些疑虑,请与同伴交流.【教学说明】 教师应与学生一起进行交流,共同回忆本节知识,理清例题思路方法,对普遍存在的疑虑,可共同探讨解决,对少数同学还面临的问题,可让学生与同伴交流获得结果,也可课后个别辅导,帮助他分析,找出问题原因,及时查漏补缺.1.布置作业:从教材P 68~70习题28.1中选取.“课时作业〞局部.本节课的引入可采用探究的形式.首先引导学生认知特殊角直角三角形的余弦、正切,进而引出锐角三角函数的定义.其次利用一个联系生活实际的问题,让学生对三角函数有关定义能够灵活运用.最后,应注重让学生用自己的语言归纳和表达经由探索得出的结论,引导学生对知识与方法进行回忆总结,形成良好的反思习惯,掌握高效的学习方法.。

22.2.4三边成比例的两个三角形相似教案

22.2.4三边成比例的两个三角形相似教案

学生编号学生姓名授课教师辅导学科九年级数学教材版本上教课题名称相似三角形的判定课时进度总第()课时授课时间7月14日教学目标1.了解相似比的定义,掌握判定两个三角形相似的方法:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似。

2.培养学生的观察﹑动手探究、归纳总结的能力,感受相似三角形与相似多边形;相似三角形与全等三角形的区别与联系,体验事物间特殊与一般的关系。

3.让学生经历从实验探究到归纳证明的过程,发展学生的合情推理能力。

重点难点重点:判定两个三角形相似的预备定理难点:探究两个三角形相似的预备定理的过程同步教学内容及授课步骤知识点归纳:1、相似三角形的概念对应角相等,对应边成比例的三角形叫做相似三角形。

相似用符号“∽”来表示,读作“相似于”。

相似三角形对应边的比叫做相似比(或相似系数)。

2.相似三角形的等价关系:(1)反身性:对于任一△ABC,都有△ABC∽△ABC;(2)对称性:若△ABC∽△A’B’C’,则△A’B’C’∽△ABC(3)传递性:若△ABC∽△A’B’C’,并且△A’B’C’∽△A’’B’’C’’,则△ABC∽△A’’B’’C’’。

3、三角形相似的判定(1)三角形相似的判定方法①定义法:对应角相等,对应边成比例的两个三角形相似②平行法:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似③判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似,可简述为两角对应相等,两三角形相似。

④判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应相等,并且夹角相等,那么这两个三角形相似,可简述为两边对应成比例且夹角相等,两三角形相似。

⑤判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似,可简述为三边对应成比例,两三角形相似课程引入:1、相似三角形的定义是什么?如果///,,CCBBAA∠=∠∠=∠∠=∠,//////CAACCBBCBAAB==,那么ΔABC∽ΔA/B/C/2、相似三角形与全等三角形有什么内在的联系呢?全等三角形是相似比为 1 的特殊的相似三角形。

新版【冀教版适用】初三数学上册《【教案】 用三边比例关系判定两三角形相似》

新版【冀教版适用】初三数学上册《【教案】 用三边比例关系判定两三角形相似》

用三边比例关系判定两三角形相似一、教学目标知识与技能掌握两个三角形相似的判定条件(三条边的比对应相等,则两个三角形相似)——相似三角形的定义,和三角形相似的预备定理(平行于三角形一边的直线和其它两边相交,所构成的三角形与原三角形相似).过程与方法会运用“两个三角形相似的判定条件”和“三角形相似的预备定理”解决简单的问题.情感态度与价值观经历两个三角形相似的探索过程,体验分析归纳得出数学结论的过程,进一步发展同学们的探究、交流能力.二、重、难点重点:掌握相似三角形的SSS 判定方法,能运用SSS 进行证明难点:熟练应用相似三角形的SSS 判定定理进行证明三、课堂引入1.复习引入(1)相似多边形的主要特征是什么?(2)在相似多边形中,最简单的就是相似三角形.在△ABC 与△A ′B ′C ′中, 如果k A C CA C B BC B A AB =''=''=''. 我们就说△ABC 与△A ′B ′C ′相似,记作△ABC ∽△A ′B ′C ′,k 就是它们的相似比. 反之如果△ABC ∽△A ′B ′C ′,则有A C CA CB BC B A AB ''=''=''. (3)问题:如果k=1,这两个三角形有怎样的关系?2.教材中的思考,并引导同学们探索与证明.3.【归纳】三角形相似的预备定理:平行于三角形一边的直线和其它两边相交,所构成的三角形与原三角形相似.三、例题讲解例1(补充)如图△ABC ∽△DCA ,AD ∥BC ,∠B=∠DCA .(1)写出对应边的比例式;(2)若AB=10,BC=12,CA=6.求AD 、DC 的长.例2(补充)在△ABC中,DE∥BC,AD=EC,DB=1cm,AE=4cm,BC=5cm,求DE的长.四、课堂练习1.(选择)下列各组三角形一定相似的是()A.两个直角三角形B.两个钝角三角形C.两个等腰三角形D.两个等边三角形2.(选择)如图,DE∥BC,EF∥AB,则图中相似三角形一共有()A.1对B.2对C.3对D.4对3.如图,DE∥BC,(1)如果AD=2,DB=3,求DE:BC的值;(2)如果AD=8,DB=12,AC=15,DE=7,求AE和BC的长.4.如图,在□ABCD中,EF∥AB,DE:EA=2:3,EF=4,求CD的长.。

27.2相似三角形1相似三角形的判定用三边比例关系判定三角形相似(教案)

27.2相似三角形1相似三角形的判定用三边比例关系判定三角形相似(教案)
然而,我也注意到在小组讨论中,有些学生过于依赖同伴,自己思考不足。在今后的教学中,我需要更加关注这部分学生,鼓励他们独立思考,提高问题解决能力。此外,对于教学难点,我可能需要设计更多有针对性的练习和解释,以帮助学生克服困难。
在总结回顾环节,学生们对今天所学的知识有了整体的认识,但仍有个别学生表示对某些部分理解不够透彻。这提醒我,在后续的教学中,要关注学生的个体差异,尽量让每个学生都能跟上教学进度。
3.重点难点解析:在讲授过程中,我会特别强调三边比例关系判定相似的两个重点:三组对应边的比例相等和两组对应边的比例相等且夹角相等。对于难点部分,我会通过具体的图形和例子来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与相似三角形判定相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示如何通过测量边长和角度来判断两个三角形是否相似。
b.如果两个三角形中有两组对应边的比例相等,并且夹角相等,即a/ b = c/ d,且∠A = ∠C或∠B = ∠D,则这两个三角形相似。
二、核心素养标
本节课的核心素养目标旨在培养学生的以下能力:
1.空间观念:通过探究相似三角形的判定,使学生能够理解和运用空间图形的性质,发展空间想象力和直觉思维能力。
2.抽象概括能力:引导学生从具体实例中抽象出相似三角形的判定方法,提高他们的逻辑推理和概括能力。
3.数据分析观念:培养学生通过观察、分析三角形边长数据,运用三边比例关系解决问题的能力,增强数据分析观念。
4.数学应用意识:将相似三角形的判定应用于解决实际问题,让学生体会数学与现实生活的联系,提高数学应用意识。
-重点知识点举例:
a.如果两个三角形的三组对应边的比例相等,即a/ b = c/ d = e/ f,则这两个三角形相似。

三角形的相似性质教案

三角形的相似性质教案

三角形的相似性质教案相似性质是数学中一个重要的概念,特别是在几何学中,对于三角形的相似性质的理解和运用更是必不可少。

了解三角形的相似性质可以帮助我们解决与三角形相关的各种问题。

本教案将着重介绍三角形的相似性质,并提供一些教学方法和习题,帮助学生加深对相似性质的理解和应用。

一、相似三角形的定义相似三角形指的是具有相同形状但可能不同大小的三角形。

两个三角形相似的条件为三个对应角相等,并且对应边成比例。

利用这个定义,我们可以进一步研究相似三角形的性质和应用。

二、相似三角形的性质1. 相似三角形中对应边的比例关系在相似三角形中,对应边的长度成比例。

即如果两个三角形相似,那么它们的对应边满足以下关系:$\frac{AB}{DE} = \frac{AC}{DF} = \frac{BC}{EF}$其中,AB、AC、BC分别为大三角形ABC的三个边的长度,DE、DF、EF分别为小三角形DEF的三个边的长度。

2. 相似三角形中对应角的性质在相似三角形中,对应角相等。

即如果两个三角形相似,那么它们的对应角满足以下关系:角B = 角E角C = 角F3. 相似三角形中各边的比例关系在相似三角形中,相似三角形的各边的比例等于缩放比例。

即如果两个三角形相似,那么它们的对应边的比例等于缩放比例:$\frac{AB}{DE} = \frac{AC}{DF} = \frac{BC}{EF} = k$其中,k为缩放比例。

三、相似三角形的判定方法1. AA判定法若两个三角形的两个角分别对应相等,则这两个三角形是相似的。

即如果两个三角形满足以下条件:角A = 角D角B = 角E那么这两个三角形相似。

2. AAA判定法若两个三角形的三个角分别对应相等,则这两个三角形是相似的。

即如果两个三角形满足以下条件:角B = 角E角C = 角F那么这两个三角形相似。

四、相似三角形的应用1. 比例定理利用相似三角形的性质,我们可以推导出三角形的比例定理。

人教版九年级下册27.2.1相似三角形的判定(一) 三边成比例的两个三角形相似 课件

人教版九年级下册27.2.1相似三角形的判定(一) 三边成比例的两个三角形相似 课件

AB=4cm ,BC =6cm ,AC =8cm,A´B´=12cm ,
B´C´=18cm ,A´C´=21cm.
解: AB 4 1 A'B' 12 3
BC B'C '
6 18
1 3
AC A'C '
8 21
AB A' B '
BC B'C '
AC A'C '
∴△ABC与△A´B´C´不相似.
2.如图, △ ABC与△ A′B′C′相似吗?你用什么方法来支持你的 判断?
讲授新课
三边成比例的两个三角形相似
合作探究 问题:在下面两个三角形中,若 A' B' B' C' A' C' ,
AB BC AC
△ABC∽△A′B′C′?. A
A′
B′
C′
B
C
通过画图不难发现∠A=∠A',∠B=∠B',∠C=∠C'.
所以△ABC的边AB(或延长线)上截取AD=A′B′,
∠BAD=20°,求∠CAE的度数.
AD DE AE
A
B
C D
E
例3 如图,在△ABC和△ADE中,AB BC AC .
∠BAD=20°,求∠CAE的度数.
AD DE AE
解:∵
∴△ABC∽△ADE(三边成比例的两个三角形相似).
∴∠BAC=∠DAE.
∴∠BAC - ∠DAC =∠DAE-∠DAC.
C
A′
B′
C′
3.如图,△ABC中,点D、E、F分别是AB、BC、CA的
中点,求证:△ABC∽△EFD.

最新北师大版九年级上册数学【教案】利用三边关系判定两三角形相似

最新北师大版九年级上册数学【教案】利用三边关系判定两三角形相似

利用三边关系判定两三角形相似
●教学目的: 使学生掌握三角形相似的判定定理3和它的应用.
●教学重点: 判定定理3
●教学难点: 判定定理3的应用
●教学过程:
复习:
1.判定三角形相似目前有哪些方法?
2.回忆三角形相似判定定理1、2的证明的方法.
新授
(一)导入新课
三角形全等的判定中AA S 和ASA,SAS 对应于相似三角形的判定的判定定理1,2,那么SSS 对应的三角形相似的判定命题是否正确,这就是本节研究的内容.(板书)
(二) 做一做
画△ABC 与△A ′B ′C ′,使B A AB ''、C B BC ''和A C CA
''都等于给定的值k.
(1)设法比较∠A 与∠A ′的大小;
(2)△ABC 与△A ′B ′C ′相似吗?说说你的理由.
改变k 值的大小,再试一试.
定理3:三边:成比例的两个三角形相似.
(三)例题学习
例:如图,在△ABC 和△ADE 中,AB AD =BC DE =AC AE
,∠BAD=20°,求∠CAE 的度数.
解:∵AB AD =BC DE =AC AE
, ∴△ABC ∽△ADE(三边成比例的两个三角形相似).
∴∠BAC=∠DAE,
∴∠BAC-∠DAC =∠D AE-∠DAC,
即∠BAD=∠CAE.
∵∠BAD=20°,
∴∠CAE=20°.
三:巩固练习
四、小结
本节学习了相似三角形判定定理3,一定用时要注意它们使用的条件.五、作业:
板书设计:。

【教案】相似三角形的判定——利用三边关系

【教案】相似三角形的判定——利用三边关系

档相似三角形的判定——利用三边关系【知识与技能】会说判定两个三角形相似的方法:三边对应成比例的两个三角形相似.会用这种方法判断两个三角形是否相似.【过程与方法】培养学生动手操作能力. 【情感态度】在动手推演中感受几何的趣味性.【教学重点】相似三角形的判定定理3以及推导过程,并会用判定定理3来证明和计算.【教学难点】相似三角形的判定定理3的运用.一、复习:1.现在要判断两个三角形相似有哪几种方法?有三种方法,(1)是根据定义;(2)判定定理1;(3)判定定理22.如图△ABC 中,D 、E 是AB 、AC 上三等分点(即AD =13AB ,AE =13AC),那么△ADE 与△ABC 相似吗?你用的是哪一种方法?同学们可以动手量一量,量什么东西后可以判断它们能否相似?(可能有一部分同学用量角器量角,有一部分同学量线段,看看能否成比例)无论哪一种,都应肯定他们,是正确的,要求同学说出是应用哪一种方法判断出的。

二、新课讲解 同学们通过量角或量线段计算之后,得出:△ADE ∽△ABC 。

从已知条件看,△ADE 与△ABC 有一对应角相等,即∠A =∠A(是公共角),而一个条件是AD =13AB ,数 AE =13AC ,即是AD AB =13,AE AC =13;因此AD AB =AE AC。

△ADE 的两条边 AD 、AE 与△ABC 的两条边AB 、AC 会对应成比例,它们的夹角又相等,符合上节课我们学习的定理2,同学们再动手测量一下线段DE,及线段BC 的长,你们发现了什么?这个结论我们一会再做总结。

请同学再做一次实验,看看如果两个三角形的三条边都成比例,那么这两个三角形是否相似?看课本69页“做一做”。

通过实验得出:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似.简单说成:三边成比例两三角形相似。

例5:△ABC 和△A ′B ′C ′中,AB =6cm ,BC =8cm ,AC =l0cm ,A ′B ′=18cm ,B ′C ′=24cm ,A ′C ′=30cm ,试证明△ABC 和△A ′B ′C ′相似。

九年级数学上册《三条边对应成比例的两个三角形相似》教案、教学设计

九年级数学上册《三条边对应成比例的两个三角形相似》教案、教学设计
-运用启发式教学法,引导学生自主探究相似三角形的性质,培养他们的发现问题和解决问题能力。
-结合直观演示法,利用几何画板等教学工具,形象直观地展示相似三角形的性质。
-采用小组合作、讨论交流等方式,培养学生的团队协作能力和口头表达能力。
2.教学过程:
-导入新课:通过一个实际生活中的问题,引出相似三角形的定义,让学生初步感知相似三角形的应用。
-各小组派代表进行汇报,展示他们的讨论成果。
2.教学目的:
-培养学生的团队协作能力和口头表达能力。
-加深学生对相似三角形性质的理解,拓展他们的思维。
(四)课堂练习
1.教学活动设计:
-设计具有梯度性的练习题,让学生独立完成,巩固相似三角形的性质和判定方法。
-针对不同层次的学生,提供不同难度的题目,使他们在练习中提高。
-激发学生对相似三角形性质的好奇心,调动他们的学习兴趣。
-引导学生从生活中发现数学问题,体会数学与生活的紧密联系。
(二)讲授新知
1.教学活动设计:
-通过几何画板动态演示,让学生直观地观察并发现相似三角形的性质。
-结合教材,讲解相似三角形的定义,阐述三条边对应成比例的两个三角形相似的原因。
-通过具体例子,讲解相似三角形的判定方法,如SSS(Side-Side-Side)判定法。
1.激发学生对数学学习的兴趣,培养他们的学习积极性。
2.培养学生勇于探索、敢于创新的精神,增强他们的自信心。
3.通过相似三角形的学习,让学生感受到几何图形的美,提高他们的审美能力。
4.培养学生严谨、认真的学习态度,使他们认识到细节在数学学习中的重要性。
5.引导学生将数学知识与实际生活相结合,培养他们用数学眼光观察世界的能力。
3.案例分析:结合实际案例,让学生运用相似三角形的判定方法,解决具体问题。

相似三角形的判定数学教学教案(优秀6篇)

相似三角形的判定数学教学教案(优秀6篇)

相似三角形的判定数学教学教案(优秀6篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、策划方案、合同协议、条据文书、竞聘演讲、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, planning plans, contract agreements, documentary evidence, competitive speeches, insights, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!相似三角形的判定数学教学教案(优秀6篇)学习可以这样来看,它是一个潜移默化、厚积薄发的过程。

【说课稿】 用三边比例关系判定三角形相似

【说课稿】 用三边比例关系判定三角形相似

用三边比例关系判定三角形相似尊敬的领导、各位老师,大家好:今天我说课的内容是人教版初中数学九年级下册《相似三角形的判定》第二课时的内容。

我将从教材分析、教法分析、学法指导、教学程序四个方面来对本课进行说明。

教材分析:一、地位和作用在这之前,学生学习了全等三角形的相关知识,相似三角形是全等三角形的拓广和发展,而相似三角形的判定是相似三角形的主要内容之一,相似三角形的判定是进一步对相似三角形的本质和定义的全面研究,也是相似三角形性质的研究基础,同时还是研究圆中比例线段和三角函数的重要工具,可见一相似三角形的判定占据着重要的地位。

二、教学目标基于对教材、教学大纲的认识和学生的已有的认知结构和心理特征的分析,我确定了本节的教学目标:知识目标:1、经历三角形相似的判定定理1 的探索及证明过程。

2、能应用定理1判定两个三角形相似,解决相关问题。

能力目标:让学生经历观察、实验、猜想、证明的过程,培养学生提出问题、分析问题的能力。

情感目标:通过学生积极参与,激发学生学习数学的兴趣,体验数学的探索与创造的快乐。

三、重难点依照教材和教学大纲的要求,为了能更好的完成本节课的教学目标,我制定了本节课教学的重、难点和关键。

重点:本节教学的重点是使学生了解判定定理并学会应用难点:了解判定定理的证明方法是难点关键:即重难点的突破方法(1)判定方法1的探究是让学生通过作图展开的,我们在教学过程中,要通过从作图方法的迁移过程,让学生进一步感受,由特殊的全等三角形到一般相似三角形,以及类比认识新事物的方法.(2)讲判定方法1时,要扣住“对应”二字,一般最短边与最短边,最长边与最长边是对应边.根据以上的教学分析,制定本节课的教法和学法。

教法分析:针对初三学生的年龄特点和心理特征,以及他们的知识水平,根据教学目标,本节课采用探究发现式教学法和参与式教学法为主,利用多媒体引导学生始终参与到学习活动的全过程中,处于主动学习的状态。

学法指导这节课主要采用动手实践,自主探索与合作交流的学习方法,使学生积极参与教学过程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

27.2.4 用三边比例关系判定三角形相似
一、教学目标
知识与技能
掌握两个三角形相似的判定条件(三条边的比对应相等,则两个三角形相似)——相似三角形的定义,和三角形相似的预备定理(平行于三角形一边的直线和其它两边相交,所构成的三角形与原三角形相似).
过程与方法
会运用“两个三角形相似的判定条件”和“三角形相似的预备定理”解决简单的问题.
情感态度与价值观
经历两个三角形相似的探索过程,体验分析归纳得出数学结论的过程,进一步发展同学们的探究、交流能力.
二、重、难点
重点:掌握相似三角形的SSS 判定方法,能运用SSS 进行证明
难点:熟练应用相似三角形的SSS 判定定理进行证明
三、课堂引入
1.复习引入
(1)相似多边形的主要特征是什么?
(2)在相似多边形中,最简单的就是相似三角形.
在△ABC 与△A ′B ′C ′中,
如果k A
C CA C B BC B A AB =''=''=''. 我们就说△ABC 与△A ′B ′C ′相似,记作△ABC ∽△A ′B ′C ′,k 就是它们的相似比. 反之如果△ABC ∽△A ′B ′C ′,则有
A C CA C
B B
C B A AB ''=''=''. (3)问题:如果k=1,这两个三角形有怎样的关系?
2.教材中的思考,并引导同学们探索与证明.
3.【归纳】
三角形相似的预备定理:平行于三角形一边的直线和其它两边相交,所构成的三角形与原三角形相似.
三、例题讲解
例1(补充)如图△ABC ∽△DCA ,AD ∥BC ,
∠B=∠DCA .
(1)写出对应边的比例式;
(2)若AB=10,BC=12,CA=6.求AD 、DC 的长.
例2(补充)在△ABC中,DE∥BC,AD=EC,DB=1cm,AE=4cm,BC=5cm,求DE的长.
四、课堂练习
1.(选择)下列各组三角形一定相似的是()
A.两个直角三角形B.两个钝角三角形
C.两个等腰三角形D.两个等边三角形
2.(选择)如图,DE∥BC,EF∥AB,则图中相似三角形
一共有()
A.1对B.2对C.3对D.4对
3.如图,DE∥BC,
(1)如果AD=2,DB=3,求DE:BC的值;
(2)如果AD=8,DB=12,AC=15,DE=7,求AE和BC的长.
4.如图,在□ABCD中,EF∥AB,DE:EA=2:3,EF=4,求
CD的长.。

相关文档
最新文档